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Abstract

Concerns about the impact of quantum computers on currently deployed public key cryptography
have instigated research into not only quantum-resistant cryptographic primitives but also how to
transition applications from classical to quantum-resistant solutions. One approach to mitigate the risk
of quantum attacks and to preserve common security guarantees are hybrid schemes, which combine
classically secure and quantum-resistant schemes. Various academic and industry experiments and draft
standards related to the Transport Layer Security (TLS) protocol already use some form of hybrid key
exchange; however sound theoretical approaches to substantiate the design and security of such hybrid
key exchange protocols are missing so far.

We initiate the modeling of hybrid authenticated key exchange protocols. We consider security
against adversaries with varying levels of quantum power over time, such as adversaries who may become
quantum in the future or are quantum in the present. We reach our goal using a three-step approach:
First, we introduce security notions for key encapsulation mechanisms (KEMs) that enable a fine-grained
distinction between different quantum scenarios. Second, we propose several combiners for constructing
hybrid KEMs that correspond closely to recently proposed Internet-Drafts for hybrid key exchange in
TLS 1.3. Finally, we present a provably sound design for hybrid key exchange using KEMs as building
blocks.
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1 Introduction
Research into cryptographic algorithms that could resist attacks by quantum computers is a significant field
of current research. Even after new algorithms have been agreed upon, history shows that transitioning
applications and protocols to use new algorithms can be a long and difficult process. Backwards compatibility
has to be maintained without introducing the risk of downgrade attacks, and the adoption rate of new
versions is very slow. An additional obstacle for the post-quantum transition is the uncertainty about the
hardness of post-quantum assumptions due to their relative novelty. Parameter choices for post-quantum
schemes are not yet reliable1 and evolving cryptanalysis may yet show them to be vulnerable even against
classical attacks. So we find ourselves in a predicament: on the one hand, the demand to protect today’s
communication from the potential threat posed by quantum computers and the expected lengthy time
frame to complete widespread deployment of new algorithms, call for beginning the transition sooner rather
than later; on the other hand we are not sufficiently confident in the concrete security of post-quantum
schemes for immediate deployment.

Hybrid schemes and robust combiners. So-called hybrid schemes offer a solution for the dilemma: they
combine two or more algorithms of the same kind such that the combined scheme is secure as long as one
of the two components remains secure. The study of such schemes in the symmetric setting dates back to
work by Even and Goldreich [EG85]. In the public key setting, work by Zhang et al. [ZHSI04] and Dodis
and Katz [DK05] examined the security of using multiple IND-CCA-secure public key encryption schemes.
Harnik et al. [HKN+05] defined the term robust combiner to formalize such combinations, and the case
of combiners for oblivious transfer, with a sketch of a combiner for key agreement. Combiners for other
primitives have since followed, including Bindel et al. [BHMS17] on hybrid digital signatures. Most relevant
to our setting of key exchange and KEMs is the work by Giacon et al. [GHP18] which considers various
KEM combiners. While this work on KEM combiners is an important first step towards constructing hybrid
KEMs, their solutions focus solely on classical adversaries. Since the advent of quantum computing and
thus the introduction of more powerful adversaries is an important motivation for investigating hybrid key
exchange(and thus, implicitly, also KEM combiners), quantum security analyses of hybrid schemes is not
to be neglected; in particular because most of the constructions of [GHP18] use idealized assumptions such
as random oracles that might not immediately transfer to the quantum setting [BDF+11]. Moreover, the
(quantum) security of hybrid authenticated key exchange remains unresolved in [GHP18]. An alternative
recent approach to model security of protocols in which a component fails is the breakdown-resilience model
of Brendel, Fischlin, and Günther [BFG19]. Drucker and Gueron [DG19] have proposed a hybrid scheme
for continuous key agreement that may be applicable to secure messaging applications.

The interest in hybrid key exchange has however foremost been driven by industry players. Already
in 2016, Google temporarily tested a hybrid key exchange cipher suite named CECPQ1 which combined
elliptic curve Diffie–Hellman (ECDH) and the Ring-Learning-with-Errors-based key exchange scheme
NewHope [ADPS16] in the TLS stack on an experimental build of their Chrome browser [Bra16, Lan16].
Recently, Adam Langley announced the follow-up project CECPQ2 on his blog Imperial Violet [Lan18].
Experiments with this modification to TLS 1.3 have not only been run in Google’s Chrome browser but
also at Cloudflare [Kwi19, KSL+19]. Microsoft Research [CEL+16], Amazon [CC19], Mozilla [KK18], and
Cloudflare [dV17] have gotten involved in developing further hybrid key exchange schemes, with a focus on
supersingular isogeny-based schemes. Furthermore, along general outlines on how to transition to post-
quantum secure cryptography (cf., e.g., [ETS15, Hof19]), Crockett, Paquin, and Stebila [CPS19] have put
forward a survey on case studies for post-quantum and hybrid integration in TLS and SSH. Stebila, Fluhrer,

1For example, Albrecht et al. [ACD+18] summarize and compare different hardness estimations of instances of the LWE
and NTRU problems used in Round 1 submissions to the NIST Post-Quantum Cryptography Standardization [Nat15]. Their
results show that depending on the estimation method the differences of bit hardness are up to several hundred bits.
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and Gueron [SFG19] gave a detailed report on the expected challenges when incorporating hybrid modes in
TLS 1.3, specifically. Several “Internet-Drafts” for concrete hybrid modes in TLS [SS17, WFZGM17, KK18]
and IKE [TTB+19] have already been submitted to the Internet Engineering Task Force (IETF).

Quantum security. Designing quantum-resistant cryptographic schemes requires not only quantum-hard
mathematical assumptions, but also appropriate security definitions and proofs. Boneh et al. [BDF+11]
initiated the study of security of classical public key primitives in the quantum random oracle model, where
the locally quantum adversary can access the random oracle in superposition. A line of subsequent work by
Boneh, Zhandry, and others [Zha12, BZ13b, BZ13a] extends security definitions of various cryptographic
primitives to the case of fully quantum adversaries, i.e., where the adversary’s interaction with any other
oracles (e.g., the decryption oracle for indistinguishability under chosen-ciphertext-attacks of public key
encryption, the signing oracle for unforgeability of digital signatures) can also be in superposition. Bindel
et al. [BHMS17] give a hierarchy of intermediate security notions, where the adversary may be classical
during some portions of the security experiment, and quantum in others, to capture the transition from
fully classical to fully quantum security.

Our Contributions. We observe that, despite the strong interest by industry in hybrid key exchange,
there has been little academic investigation of the design and security of such schemes. Since early prototypes
often become de facto standards, it is important to develop solid theoretical foundations for hybrid key
exchange and KEMs at an early stage, especially considering the presence of quantum adversaries. Our
work bridges the gap for quantum-resistant hybrid KEMs and extends the foundations to treat hybrid
authenticated key exchange protocols: We give new security models both for KEMs and authenticated key
exchange protocols that account for adversaries with different levels of quantum capabilities in the security
experiment. Furthermore, we examine several combiners for KEMs and prove their robustness. These
include a new combiner, called XOR-then-MAC combiner, which is based on minimal assumptions and
is—to the best of our knowledge—the first KEM combiner construction which is provably secure against
fully quantum adversaries. We also discuss a nested dual PRF combiner closely related to the key schedule
used in TLS 1.3 [Res18]. We then proceed to show how hybrid KEMs can be used to construct hybrid
authenticated key exchange protocols. In more detail our contributions are as follows.

Hierarchy of KEM security definitions. We define a family of new security notions for KEMs. Following
the approach of Bindel et al. [BHMS17] for signature schemes, we adapt the security experiment for
indistinguishability under chosen-ciphertext attack (IND-CCA) to distinguish between classical and quantum
adversarial capabilities at several key points: the adversary’s local computational power during interaction
with the decapsulation oracle; whether or not an adversary can make decapsulation queries in superposition;
and the adversary’s local computational power later, after it can no longer interact with the decapsulation
oracle. We represent the three choices as X, y, and Z respectively, and abbreviate a combination as
XyZ-ind-cca. This leads to four different levels: fully classical adversaries (denoted XyZ = CcC); “future-
quantum” (CcQ), where the adversary is classical today but gains quantum power later; “post-quantum”
(QcQ) where the locally quantum adversary still interacts classically with the decapsulation oracle; and
“fully quantum” (QqQ), where all computation and interaction can be quantum. As summarized in Figure 1,
we show that these different security notions form a strict hierarchy. Unless stated otherwise, the following
constructions in the paper focus on providing security against QcQ adversaries, excluding the fully-quantum
scenario. This “restriction” is natural as hybrid solutions are intended to secure the transition to the
post-quantum setting.

KEM combiners. We present three KEM combiners and show their robustness for CcC, CcQ, and QcQ
adversaries; all these proofs are in the standard model and do not rely on classical or quantum random
oracles.
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Prop. 2

Prop. 3 Prop. 4

Figure 1: Implications (→) and separations (6→) between indistinguishability-based security notions for
KEMs wrt. two-stage adversaries.

• XtM: The XOR-then-MAC combiner XtM computes the session key k of the resulting hybrid KEM as
the left half of k1 ⊕ k2, where k1 and k2 are the session keys of the two input KEMs. Additionally, the
XtM combiner augments the ciphertexts with a MAC tag MACKmac(c1‖c2), where Kmac is built from
the right halves of k1 and k2, and c1 and c2 are the ciphertexts of the two input KEMs. XtM uses
the lowest number of cryptographic assumptions, as it relies solely on the security of one of the two
combined KEMs and the (one-time) existential unforgeability of the MAC scheme; such a MAC can
be built unconditionally and efficiently using universal hash functions. We also discuss that the XtM
combiner achieves full quantum resistance (QqQ) if one of the input KEMs has this property and if the
MAC is QcQ secure, where the MAC can again be built unconditionally. To the best of our knowledge
this is the first security proof for a KEM combiner in this setting.
• dualPRF: The dual PRF combiner computes k as PRF(dPRF(k1, k2), c1‖c2). In a dual PRF, the partial

functions dPRF(k1, ·) and dPRF(·, k2) are both assumed to be PRFs (and thus indistinguishable from
random functions).
This combiner is motivated by the key derivation function used in TLS 1.3 [Res18], which acts both
as an extractor (like HKDF’s extraction algorithm) and as a pseudorandom function (like HMAC
in HKDF), and models how Whyte et al.’s hybrid TLS 1.3 proposal derives the combined session
key [WFZGM17] by concatenating both session keys prior to key derivation.
• The nested combiner N computes k as PRF(dPRF(F (k1), k2), c1‖c2). It is motivated by Schanck and

Stebila’s hybrid TLS 1.3 proposal which derives the combined session key by feeding each component
into an extended TLS 1.3 key schedule [SS17].

Hybrid key exchange. Our third contribution is to show how to build hybrid authenticated key exchange
from hybrid KEMs. Our construction relies on Krawczyk’s SigMA-compiler [Kra03] using signatures and
MACs to authenticate and lift the protocol to one that is secure against active adversaries. The intriguing
question here is which security properties the involved primitives need to have in order to achieve resistance
against the different levels of adversarial quantum power. Intuitively, the “weakest primitive” determines
the overall security of the compiled protocol. However, as we will show in Section 4, this intuition is not
entirely correct for partially quantum adversaries.

2 Key Encapsulation Mechanisms and Their Security
In this section, we adjust the basic definitions for key encapsulation mechanisms and their indistinguishability-
based security notions to the partially and fully quantum adversary setting. Furthermore we establish the
relations between these different notions of security.

A key encapsulation mechanism is a triple of algorithms K = (KeyGen,Encaps, Decaps) and a corre-
sponding key space K.
1. The probabilistic key generation algorithm KeyGen() returns a public/secret-key pair (pk, sk).
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2. The probabilistic encapsulation algorithm Encaps(pk) takes as input a public key pk and outputs a
ciphertext c as well as a key k ∈ K.

3. The deterministic decapsulation algorithm Decaps(sk, c) takes as input a secret key sk and a ciphertext
c and returns a key k ∈ K or ⊥, denoting failure.
A KEM K is ε-correct if for all (sk, pk)← KeyGen() and (c, k)← Encaps(pk), it holds that

Pr[Decaps(sk, c) 6= k] ≤ ε.

We say it is correct if ε = 0. The security of KEMs is defined in terms of the indistinguishability of the
session key against chosen-plaintext (IND-CPA) and chosen-ciphertext (IND-CCA) adversaries. In the
traditional IND-CPA experiment of KEMs, the challenger C generates keys (sk, pk)← KeyGen(), computes
(c∗, κ∗0)← Encaps(pk), and samples κ∗1 uniformly at random from the key space K and a random bit b. The
adversary A is given c∗, κ∗b , and pk, and is asked to output a bit b′, indicating whether it believes it received
the key corresponding to c∗ or a random value. The adversary wins if it outputs the correct bit b′, i.e., if
b′ = b. In the traditional IND-CCA experiment the adversary A additionally has access to a decapsulation
oracle, which returns the decapsulation of any ciphertext not equal to the challenge ciphertext c∗.

2.1 Security of KEMs Against Partially or Fully Quantum Adversaries

We adapt the traditional definitions of IND-CPA and IND-CCA security of KEMs for quantum adversaries.
We give a brief introduction to the quantum computation knowledge used in this paper in the appendix in
Section A.

2.1.1 IND-CPA security against quantum adversaries.

In the standard model, the IND-CPA adversary A is simply treated as a quantum algorithm. For IND-CPA
in the random oracle model, one can choose whether the adversary should have classical or quantum access
to the random oracle [BDF+11] or not. While both options lead to valid definitions, giving the adversary
quantum access to the random oracle is clearly the stronger option; moreover, it seems sensible to allow
the adversary quantum access to the random oracle since the random oracle is meant to capture idealized
public hash functions that can be implemented by an adversary in practice. Depending on the adversary’s
power this implementation can be classical or quantum.

In Figure 2, we give a unified definition of classical and quantum IND-CPA, denoted Z-ind-cpa, where Z
is either C (for classical) or Q (for quantum). We define the corresponding advantage AdvZ-ind-cpa

K (A) =∣∣∣Pr
[
ExptZ-ind-cpa

K (A)⇒ 1
]
− 1

2

∣∣∣.
For consistency with the IND-CCA case, where we need to distinguish the cases when the adversary

has quantum power and how it interacts with the decapsulation oracle, we occasionally also use the
notation XyZ-ind-cpa instead of Z-ind-cpa in the IND-CPA case. In such cases we sometimes refer to both
as XyZ-ind-atk with atk ∈ {cpa, cca}. We stress, however, that X and y in the cpa case are irrelevant, and
are there solely for notational uniformity.

2.1.2 IND-CCA security against partially or fully quantum adversaries.

Previous works on security of KEMs against quantum adversaries, such as that of Hofheinz, Hövelmanns,
and Kiltz [HHK17], consider a quantum adversary that has local quantum power and can query the random
oracle in superposition. Bindel et al. [BHMS17] consider partially quantum adversaries to model the
security of signature schemes against quantum adversaries. We consider this approach in the context of
IND-CCA security of KEMs to enable more distinctions when modeling chosen-ciphertext attacks for KEMs.
In particular, our model allows to distinguish between adversaries with evolving quantum capabilities
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ExptZ-ind-cpa
K (A):

1 H←$HK
2 qH ← 0
3 (sk, pk)← KeyGen()
4 (c∗, κ∗0)← Encaps(pk)
5 κ∗1←$ K

6 b←$ {0, 1}
7 b′ ← AO

Z
H (·)(pk, c∗, κ∗b)

8 return [[b = b′]]

OC
H(x):

1 qH ← qH + 1
2 Return H(x)

OQ
H(
∑

x,t,z
ψx,t,z |x, t, z〉):

1 qH ← qH + 1
2 Return state

∑
x,t,z

ψx,t,z |x, t⊕H(x), z〉

Figure 2: Security experiment for indistinguishability of a KEM K under chosen-plaintext attack against a
classical (Z = C) or quantum (Z = Q) adversary A in the classical or quantum random oracle model.

over time. For example, one may believe that no adversary today has a sufficiently powerful quantum
computer to break any cryptographic assumption, and that it may still be some decades before a full-fledged
quantum computer is built. In that scenario, one would want to protect today’s communications against
attacks in which the (currently classical) attacker records encrypted communications today and, once a
quantum computer is available, attempts to extract the encryption keys from the corresponding collected
key exchange transcripts. Alternatively, one might not feel comfortable excluding the possibility that
powerful quantum computers exist already today or in the nearer future. In this case, stronger security
guarantees are needed to protect the communications, as a locally quantum adversary may already interfere
with the deployed protocols and could for example break classical signatures used for authentication. To
capture these cases for hybrid signatures,Bindel et al. [BHMS17] introduced a two-stage security notion for
unforgeability of signature schemes; we transfer this notion to KEMs.

For IND-CCA security of KEMs, we consider four ways in which the adversary could act quantumly:
(i) the adversary could locally be running a classical or quantum computer during the stage in which the
adversary can interact with the decapsulation oracle; (ii) the adversary’s interaction with the decapsulation
oracle could be classical or quantum; (iii) the adversary could locally be running a classical or quantum
computer after the interaction with the decapsulation oracle has finished; and (iv) the adversary’s interaction
with the random oracle (if any) could be classical or quantum. As we did above for IND-CPA security,
we define the adversary’s interaction with the random oracle to be quantum whenever the adversary is
quantum, eliminating this fourth option. To model this, weconsider a two-stage adversary A = (A1,A2), in
which A1 has access to the decapsulation oracle, then terminates and passes a state to the second-stage
adversary A2, which does not have access to the decapsulation oracle. Let X,Z ∈ {C,Q} and y ∈ {c, q}.
We will use the terminology “XyZ adversary” to denote that A1 is either classical (X = C) or quantum
(X = Q), that A1’s access to its decapsulation oracle is either classical (y = c) or quantum (y = q), and that
A2 is either classical (Z = C) or quantum (Z = Q). In the random oracle model, the adversary can query
the random oracle in superposition, if it is quantum; this is independent of y but depends on X and Z. Not
all combinations of classical and quantumadversaries in the two-stage settingare meaningful in a real-world
context. We consider the following configurations of two-stageXyZ adversaries to be relevant:
• CcC security corresponds to the scenario with a purely classical adversary with classical access to all

oracles. This corresponds to the traditional IND-CCA security notion.
• CcQ security refers to a scenario with a currently classical but potentially future quantum adversary.
In particular, that means that the adversary is classical as long as the adversary has access to the
decapsulation oracle; eventually the adversary gains local quantum computing power, but by this time
the adversary relinquishes access to the decapsulation.
• QcQ security corresponds to the scenario with an adversary that always has local quantum computing

power, but interacts with the active system (in the first stage) only using classical queries. This kind
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ExptXyZ-ind-cca
K (A):

1 H←$HK
2 qD ← 0, qH ← 0
3 (sk, pk)← KeyGen()
4 (c∗, κ∗0)← Encaps(pk)
5 κ∗1←$ K

6 b←$ {0, 1}

7 st← AO
X
H (·),Oy

D
(·)

1 (pk, c∗, κ∗b)
8 b′ ← AO

Z
H (·)

2 (st)
9 return [[b = b′]]

Decaps⊥(sk, c, c∗):
1 if c = c∗: return ⊥
2 else: return Decaps(sk, c)
Oc
D(c):

1 qD ← qD + 1
2 return Decaps⊥(sk, c, c∗)
Oq
D(
∑

c,t,z
ψc,t,z |c, t, z〉):

1 qD ← qD + 1
2 return

∑
c,t,z

ψc,t,z
∣∣c, t⊕ Decaps⊥(sk, c, c∗), z

〉

Figure 3: Security experiment for indistinguishability of a KEM K under chosen-ciphertext attack against
a two-stage XyZ adversary A = (A1,A2) in the classical or quantum random oracle model. Oc

H and Oq
H

are as in Figure 2.

of setting is for example considered in [HHK17] and is commonly referred to as the post-quantum
setting.
• QqQ security corresponds to a scenario with a fully quantum adversary with quantum access to all

oracles in the first stage.2

It is notation-wise convenient to define an order for the notions, with Q ≥ C and q ≥ c, consequently
implying a partial order XyZ ≥ UvW if X ≥ U, y ≥ v, and Z ≥ W, i.e., QqQ ≥ QcQ ≥ CcQ ≥ CcC. Let
maxS (resp., minS) denote the set of maximal (resp., minimal) elements of S according to this partial
order. Since we usually have a total order on S, i.e., S ⊆ {CcC,CcQ,QcQ,QqQ}, we often simply speak of
the maximal element. For example, it holds that CcQ = max{CcC,CcQ}.

Figure 3 shows the security experiment for indistinguishability of keys in a key encapsulation mechanism
K = (KeyGen,Encaps,Decaps) under chosen-ciphertext attacks for a two-stage XyZ adversary A = (A1,A2)
in the classical or quantum random oracle model; the standard model notion can be obtained by omitting the
hash oracles. For every notion XyZ-ind-cca, we define the corresponding advantage to be AdvXyZ-ind-cca

K (A) =∣∣∣Pr
[
ExptXyZ-ind-cca

K (A)⇒ 1
]
− 1

2

∣∣∣.
2.2 Relations Between Security Notions

Similarly to [BHMS17], and as described in Figure 1, the various indistinguishability notions for KEMs are
related to each other through a series of implications and separations as we show in this section.

Proposition 1 (Implications). Let K be a key encapsulation mechanism. If K is QqQ-ind-cca secure,
then K is also QcQ-ind-cca secure. If K is QcQ-ind-cca secure, then K is also CcQ-ind-cca secure. If K is
CcQ-ind-cca secure, then K is also CcC-ind-cca secure and Q-ind-cpa secure. If K is Q-ind-cpa secure or
CcC-ind-cca secure, then K is also C-ind-cpa secure.

Proof. The proof is straightforward since every classical adversary can be seen as a quantum adversary that
forgoes its additional quantum power. Furthermore a QcQ-ind-cca adversary can be seen as a QqQ-ind-cca
adversary that does not use superposition queries to the oracle. It thus holds that AdvQqQ-ind-cca

K (A) ≥
AdvQcQ-ind-cca

K (A) ≥ AdvCcQ-ind-cca
K (A) ≥ AdvCcC-ind-cca

K (A) and Q-ind-cpa ≥ C-ind-cpa. Moreover, it trivially
holds that CcC-ind-cca ≥ C-ind-cpa.

2Our fully quantum QqQ model is different from [AGM18] since our challenge ciphertext c∗ is classical, whereas [AGM18]
considers quantum challenge ciphertexts.
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In the following we show that these implications are in fact strict by showing separations between the
different notions. We start with Proposition 2 which states essentially that there exist KEMs that are
classically secure (CcC), but that become insecure once adversaries gain quantum power at a later point in
time (CcQ).

Proposition 2 (CcC-ind-cca 6=⇒ Q-ind-cpa,CcQ-ind-cca). In the classical random oracle model, assuming
RSA is a one-way function (for classical algorithms), there exists a CcC-ind-cca secure KEM in the random
oracle model that is neither Q-ind-cpa secure nor CcQ-ind-cca secure.

Proposition 2 follows immediately from the fact that the KEM based on RSA-OAEP is CcC-ind-cca
secure in the random oracle model [BR95]. However, a CcQ adversary with local access to quantum
computing power in the second stage can run Shor’s algorithm to factor the RSA modulus and recover the
decapsulation key to win the Q-ind-cpa or CcQ-ind-cca experiments.

Next, we show that there exist KEMs that are secure as long as only classical adversaries interact with
the decapsulation oracle (CcQ) but that become insecure in the post-quantum setting (QcQ).

Proposition 3 (CcQ-ind-cca 6=⇒ QcQ-ind-cca). Let K be an CcQ-ind-cca secure KEM and KBD be a
C-ind-cpa secure KEM for which there is an efficient quantum algorithm that recovers the session key (i.e.,
it is not Q-ow-cpa). Then there exists a key encapsulation mechanism K′ that is CcQ-ind-cca secure but not
QcQ-ind-cca secure.

Proof. In the following, we construct the separating KEM K′ = (KeyGen′,Encaps′,Decaps′), which is
CcQ-ind-cca secure, but not QcQ-ind-cca secure. The idea is to include a backdoor which is only available
if the first-stage adversary has access to local quantum computing power. The KEM K′ is defined as
described in Figure 4, where KBD = (KeyGenBD,EncapsBD,DecapsBD) is a C-ow-cpa secure KEM which
can be broken with local quantum power. An example is again the RSA-OAEP based KEM.

KeyGen′():
1 (pk, sk)← KeyGen()
2 (pkBD, skBD)← KeyGenBD()
3 (cBD, kBD)← EncapsBD(pkBD)
4 return (pk′, sk′) = ((pk, pkBD, cBD), (sk, kBD))

Encaps′(pk, pkBD, cBD):
1 (c, k)← Encaps(pk)
2 return (c, k)

Decaps′(sk, kBD, c):
1 If c = kBD then return sk
2 Else return Decaps(sk, c)

Figure 4: Description of separating KEM K′ which is CcQ-ind-cca secure, but not QcQ-ind-cca secure

We start by showing that K′ is CcQ-ind-cca secure. Assume it is not, i.e., there exists an efficient CcQ
adversary A that can break the IND-CCA security of K′. Then there exist an adversary B that can break
the CcQ-ind-cca security of K. The adversary B receives its challenge, say, (pk, c∗, κ∗b). It runs Steps 2-3 of
KeyGen′ by itself, and sends ((pk, pkBD, cBD), c∗, κ∗b) as input to A. Whenever A (in its first stage) queries
the decapsulation oracle OD′(·) on some ciphertext c 6= kBD, algorithm B forwards the query to its own
decapsulation oracle OD(·). If the adversary queries the oracle on kB, then B returns ⊥. Since the KEM
KBD is ow-cpa and we are still in the first phase, any query of A about kBD would immediately refute the
one-wayness via a black-box reduction. Hence, B’s simulation is correct, except if A breaks one-wayness of
KBD.

Next we show that K′ is not QcQ-ind-cca secure. The first-stage adversary has access to local quantum
computing power. With this it can break the classically secure KEM KBD to obtain kBD from cBD attached
to the public key. By construction of K′, the decapsulation oracle queried on kBD returns the secret key sk
of K, allowing it to recover the encapsulated key.
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We now show that post-quantum secure KEMs (QcQ) are not necessarily secure in the fully quantum
setting where the adversary has quantum access to the decapsulation oracle (QqQ).

Proposition 4 (QcQ-ind-cca 6=⇒ QqQ-ind-cca). Let λ be the security parameter. Assume that there exists
a quantum secure family of pseudorandom permutations. Furthermore, assume there exists a QcQ-ind-cca
secure KEM K whose ciphertexts are at least 3λ bits long. Then there exists a KEM K′ that is QcQ-ind-cca
secure but not QqQ-ind-cca secure.

Finally we note that IND-CPA security in the quantum setting is not necessarily enough to show
classical IND-CCA security:

Proposition 5 (Q-ind-cpa 6=⇒ CcC-ind-cca). Assume there exists a Q-ind-cpa secure KEM K. Then there
exists a KEM K′ that is Q-ind-cpa secure but not CcC-ind-cca secure.

Proof. Let K = (KeyGen,Encaps,Decaps) be a Q-ind-cpa secure KEM, then we can construct a KEM K′
that is Q-ind-cpa but not CcC-ind-cca secure. The KEM K′ = (KeyGen′,Encaps′,Decaps′) is defined as
described in Figure 5.

KeyGen′():
1 (pk, sk)← KeyGen()
2 return (pk, sk)

Encaps′(pk):
1 (c, k)← Encaps(pk)
2 return (c, k)

Decaps′(sk, c):
1 If c = pk return sk
2 Else return k ← Decaps(sk, c)

Figure 5: Description of KEM K′.

Clearly K′ is not CcC-ind-cca secure since it is broken as soon as the public key is asked as a ciphertext
to the decapsulation oracle of K′. However, as long as no queries are allowed to the decapsulation oracle,
an adversary cannot distinguish K and K′. Hence, K′ is Q-ind-cpa secure.

2.3 The Fujisaki–Okamoto Transform

The Fujisaki–Okamoto (FO) transform [FO99, FO13, Den03] constructs an IND-CCA secure PKE or KEM
from an IND-CPA secure (or one-way-CPA secure) PKE in the random oracle model; analogues that
are secure in the quantum random oracle model have been given by Targhi and Unruh [TU16] and in a
modular framework by Hofheinz, Hövelmanns, and Kiltz [HHK17]. These results can also be applied in our
two-stage adversary setting. The FO transform converts a C-ow-cpa secure PKE into a CcC-ind-cca secure
PKE (or KEM), in the (classical) random oracle model. The transforms presented in [TU16, HHK17]
convert a Q-ow-cpa secure PKE into a QcQ-ind-cca secure PKE or KEM. It remains an open question how
to transform a Q-ind-cpa secure KEM into a QqQ-ind-cca secure KEM. We give the formal definition of
Z-ow-cpa in the supplementary material in Section B.

3 Practical Combiners for Hybrid Key Encapsulation
In this section, we discuss the use of robust combiners to construct hybrid key encapsulation mechanisms.
We propose three combiners motivated by practical applications of hybrid KEMs. The first combiner,
the XOR-then-MAC combiner XtM, uses a simple exclusive-or of the two keys k1, k2 of the KEMs but
adds a message authentication over the ciphertexts (with a key derived from the encapsulated the keys).
Hence, this solution relies solely on the additional assumption of a secure one-time message authentication
code which, in turn, can be instantiated unconditionally. The second combiner, dualPRF, relies on the
existence of dual pseudorandom functions [BCK96, Bel06, BL15] which provide security if either the key
material or the label carries entropy. The HKDF key derivation function is, for example, based on this
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EncapsXtM(pk1, pk2):
1 (c1, kkem,1‖kmac,1)← Encaps1(pk1)
2 (c2, kkem,2‖kmac,2)← Encaps2(pk2)
3 kkem ← kkem,1 ⊕ kkem,2
4 kmac ← (kmac,1, kmac,2)
5 c← (c1, c2)
6 τ ← MACkmac (c)
7 return ((c, τ), kkem)

DecapsXtM((sk1, sk2), ((c1, c2), τ)):
1 k′kem,1‖k′mac,1 ← Decaps1(sk1, c1),
2 k′kem,2‖k′mac,2 ← Decaps2(sk2, c2)
3 k′kem ← k′kem,1 ⊕ k′kem,2
4 k′mac ← (k′mac,1, k

′
mac,2)

5 if MVfk′mac
((c1, c2), τ) = 0: return ⊥

6 else: return k′kem

Figure 6: KEM constructed by the XOR-then-MAC combiner XtM[K1,K2,M] with MAC M =
(MKG,MAC,MVf).

dual principle. The third combiner, N, is a nested variant of the dual-PRF combiner inspired by the key
derivation procedure in TLS 1.3 and the proposal how to augment it for hybrid schemes in [SS17].

Throughout we let K1 = (KeyGen1,Encaps1,Decaps1) and K2 = (KeyGen2,Encaps2,Decaps2) be two
KEMs. We write C[K1,K2] = (KeyGenC ,EncapsC ,DecapsC) for the hybrid KEM constructed by one of the
three proposals C ∈ {XtM, dualPRF,N}. In all our schemes, KeyGenC simply returns the concatenation of
the two public keys (pk ← (pk1, pk2)) and the two secret keys (sk ← (sk1, sk2)).

In the following, we focus on proving security against at most post-quantum QcQ adversaries, i.e.,
adversaries with classical access to the decapsulation oracle only, omitting QqQ-ind-cca security. This is
due to the fact that hybrid KEMs and key exchange solutions are designed to secure the transitional
phase until quantum computers become first available. The eventually following widespread deployment of
quantum computers and cryptography, and thus security against QqQ adversaries, is outside the scope of
the post-quantum setting.

3.1 XtM: XOR-then-MAC Combiner

Giacon et al. [GHP18] demonstrate that the plain XOR-combiner, which concatenates the ciphertexts and
XORs the individual keys, preserves ind-cpa security. They show that, in general, it does not preserve
ind-cca security, e.g., the combiner may become insecure if one of the KEMs is insecure. We note that it
is easy to see that this is even true if both KEMs are ind-cca secure: Given a challenge ciphertext (c∗1, c∗2)
the adversary can make two decapsulation requests for (c∗1, c2) and (c1, c

∗
2) with fresh ciphertexts c1 6= c∗1,

c2 6= c∗2 for which it knows the encapsulated keys. This allows the adversary to easily recover the challenge
key from the answers.

3.1.1 The XOR-then-MAC combiner.

Our approach is to prevent the adversary from mix-and-match attacks by computing a message authentica-
tion code over the ciphertexts and attaching it to the encapsulation. For this we require a strongly robust
MAC combiner which takes two keys kmac,1, kmac,2 as input and provides one-time unforgeability, even if one
of the keys is chosen adversarially. We discuss the construction of such MACs later. The combined KEM
key is derived as an exclusive or of the leading parts of the two encapsulated keys, kkem ← kkem,1 ⊕ kkem,2,
and the MAC key kmac = (kmac,1, kmac,2) consisting of the remaining parts of both encapsulated keys. If
necessary, the encapsulated keys can be stretched pseudorandomly by the underlying encapsulation schemes
first to achieve the desired output length. We depict the resulting hybrid KEM in Figure 6.

Using the XOR-then-MAC combiner in protocols. It may seem that it would be preferable to
protect against mix-and-match attacks as above by protecting the derived key directly (by making key
derivation depend on both keys and both ciphertexts), as opposed to the approach in the XOR-then-MAC
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ExptXyZ-OT-sEUF
M (A):

1 qV ← 0
2 k = (k1, k2)← MKG()
3 (m∗, b, k∗b st)← A1()
4 if b = 1 then k∗ ← (k∗1 , k2) else k∗ ← (k1, k

∗
2)

5 τ∗ ← MACk∗(m∗)
6 st← AO

y
V

(·)
1 (τ∗)

7 (m′, τ ′, k′b)← A2(st)
8 if b = 1 then k′ ← (k′1, k2) else k′ ← (k1, k

′
2)

9 if [MVfk′(m′, τ ′) = 1]
∧ [(m′, τ ′) 6= (m∗, τ∗)]:

10 return 1
11 else: return 0

Oc
V (m, τ, k′b):

1 qV ← qV + 1
2 if b = 1 then k′ ← (k′1, k2) else k′ ← (k1, k

′
2)

3 return MVfk′(m, τ)

Oq
V (
∑

m,τ,b,k′
b
,t,z

ψm,τ,t,z |m, τ, t, z〉):

1 qV ← qV + 1
2 if b = 1 then k′ ← (k′1, k2) else k′ ← (k1, k

′
2)

3 return
∑

m,τ,b,k′
b
,t,z

ψm,τ,t,z |m, τ, b, k′b, t⊕MVfk′(m, τ), z〉

Figure 7: Security experiment for one-time strong existential unforgeability (with multiple verifications) of
a two-key MACM = (MKG,MAC,MVf) against an XyZ adversary A = (A1,A2).

combiner, which appends a MAC to the ciphertext to protect the ciphertext from modification. However,
in many practical protocols, the parties often compute a MAC over the transcript to provide integrity and
authenticity; an example of this can be found in the Finished message in the Transport Layer Security
(TLS) protocol. The key for the MAC is usually derived from the session key, and the transcript includes
the data for establishing the key, such as the KEM ciphertexts. In these cases, it may be possible to apply
the XOR-then-MAC approach without needing to add an extra MAC over the ciphertext, instead relying
on the one already present.

3.1.2 Security of MACs.

It suffices to use one-time MACs with multiple verification queries. This means that the adversary can
initially choose a message, receives the MAC, and can then make multiple verification attempts for other
messages. We require strong unforgeability, meaning the adversary wins if it creates any new valid
message-tag pair, even for the same initial message. We use a two-stage version of the definition with an
XyZ adversary who is of type X while it has y access to the verification oracle and receives the challenge
ciphertext. The adversary is of type Z after it no longer has access to the verification oracle. As explained
earlier, the meaningful notions are XyZ ∈ {CcC,CcQ,QcQ,QqQ}.

Formally, a MAC is a tuple of algorithms M = (MKG,MAC,MVf) for key generation, MAC tag
generation, and tag verification. To capture the strong combiner property of MACs, where the adversary A
tries to win for a key kmac = (kmac,1, kmac,2) where either kmac,1 or kmac,2 is chosen by A, we allow A to
specify one of the two keys for computing the challenge and for each verification query and in the forgery
attempt. The security experiment for XyZ-OT-sEUF security of such two-key MACs is given in Figure 7

We discuss possible instantiations for the MAC later, but already note that such MACs can be built
without relying on cryptographic assumptions.

3.1.3 Security of the XOR-then-MAC combiner.

We can now show that the XOR-then-MAC combiner is a robust KEM combiner, in the sense that the
resulting KEM is as secure as the strongest of the two input KEMs (assuming the MAC is also equally
secure). In particular, we show in Theorem 1 that XtM[K1,K2,M] is IND-CCA secure in the post-quantum
setting (QcQ) if the MAC M and at least one of the two KEMs is post-quantum IND-CCA secure. In
fact, the security offered by the MAC is only required in case of IND-CCA attacks, yielding an even better
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bound for the IND-CPA case.

Theorem 1 (XOR-then-MAC is robust). Let K1 be a XcZ-ind-atk secure KEM, K2 a UcW-ind-atk secure
KEM, andM is an RcT-OT-sEUF secure MAC, where RcT = max{XcZ,UcW}. Then XtM[K1,K2,M] as
defined in Figure 6 is also RcT-ind-atk secure. More precisely, for any efficient adversary A of type RcT
against the combined KEM K′ = XtM[K1,K2,M], there exist efficient adversaries B1, B2, and B3 such that

AdvRcT-ind-atk
XtM[K1,K2,M](A) ≤ 2 ·min

{
AdvRcT-ind-atk

K1 (B1),AdvRcT-ind-atk
K2 (B2)

}
+ AdvRcT-OT-sEUF

M (B3).

Moreover, the run times of B1, B2, and B3 are approximately the same as that of A, and B3 makes at most
as many verification queries as A makes decapsulation queries.

Proof. Assume there exists an adversary A that breaks the RcT-ind-atk security of XtM[K1,K2,M]. We
show that this yields an adversary that then breaks either the RcT-ind-atk security of K1 or of K2, or the
RcT-OT-sEUF security ofM. Because of symmetry it suffices to consider the case of K1. The following
proof holds analogously for K2 being RcT-ind-atk secure. We also focus on the ind-cca case here; the ind-cpa
case follows easily from this.

We prove the theorem by applying the common technique of game hopping, bounding the adversary’s
advantage introduced with each game hop until the adversary cannot win beyond the guessing probability.

Game 0. This is the original RcT-ind-atk game against XtM[K1,K2,M].

Game 1. We now replace the key k∗kem,1‖k∗mac,1 of K1 returned with the challenge ciphertext part c∗1
with a uniformly random and independent value r∗kem,1‖r∗mac,1 from the same keyspace K. This means
that we first create (c∗1, k∗kem,1‖k∗mac,1) and then use (c∗1, r∗kem,1‖r∗mac,1) immediately from then on. This
is done consistently in the challenge value for deriving the challenge key portion and the MAC, as well
as in all decapsulation requests involving the ciphertext portion c∗1. More precisely, we replace the
step “kkem,1‖kmac,1←$ Decaps1(sk1, c1)” in the decapsulation procedure with the step “if c1 = c∗1 then
kkem,1‖kmac,1 ← r∗kem,1‖r∗mac,1 else kkem,1‖kmac,1 ← Decaps1(sk1, c1)”.
We show that if A can efficiently distinguish Game 1 from Game 0, then there exists an adversary B1
against the RcT-ind-atk security of K1. Algorithm B1 receives as input a public key pk1 and a challenge
ciphertext c∗1 of K1, as well as the challenge key k∗kem,1‖k∗mac,1. This challenge key is either the actual
key or random. Algorithm B1 simulates the environment for A as follows. First, B1 generates the key
pair (pk2, sk2) for K2 and sets pk ← (pk1, pk2). Furthermore, B1 chooses the second challenge ciphertext
portion c∗2 and key share k∗kem,2‖k∗mac,2 itself. It computes k∗kem ← k∗1 ⊕ k∗kem,2 and k∗mac ← (k∗mac,1, k

∗
mac,2),

and assembles the challenge ciphertext (c∗1, c∗2, τ∗) where τ∗ ← MACk∗mac((c
∗
1, c
∗
2)). B1 then runs A on input

(pk, (c∗1, c∗2, τ∗), k∗kem).
If A is an active adversary, mounting an ind-cca attack, decapsulation queries for ciphertexts c = (c1, c2)

with c1 6= c∗1 and some MAC tag τ are answered as follows: c1 is decapsulated using B1’s decapsulation oracle
for K1, c2 is decapsulated using sk2, and the response kkem is then computed as the appropriately truncated
XOR of these decapsulations after verifying the MAC tag. If c = (c∗1, c2) then B1 uses k∗kem,1‖k∗mac,1 as the
decapsulation of c∗1, and then continues as in the previous case. For passive ind-cpa adversaries A, algorithm
B1 does not need to provide any simulation of decapsulation queries. At some point, the distinguisher A
terminates and outputs a guess bit b′. Adversary B1 outputs the same bit b′.

Clearly, B1 perfectly simulates the environments for A corresponding to Game 0 if the challenge key
k∗kem,1‖k∗mac,1 is the actual key, and perfectly simulates Game 1 if k∗kem,1‖k∗mac,1 is random. Furthermore, B1
is of the same type as A. Hence we have

AdvG0
XtM[K1,K2,M](A) ≤ AdvG1

XtM[K1,K2,M](A) + 2 · AdvRcT-ind-atk
K1 (B1),
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where the factor 2 is owned to the transition from the prediction-based RcT-ind-atk attack with a random
challenge bit b to an indistinguishability-based comparison between fixed games here.

Game 2. In a syntactical change we replace the now random value r∗kem,1 by r∗kem,1 ⊕ k∗kem,2 where k∗kem,2 is
the encapsulated key in K2 in the challenge ciphertext. This is done consistently in the challenge value and
MAC, as well as in all decapsulation requests involving the ciphertext portion c∗1. We leave r∗mac,1 unaltered.
Effectively, the modification means that the encapsulated key in the challenge ciphertext is now r∗kem,1 =
(r∗kem,1⊕k∗kem,2)⊕k∗kem,2. Since r∗kem,1 and k∗kem,2 are independent, the distributions of r∗kem,1 and r∗kem,1⊕k∗kem,2
are identical, so the adversary’s advantage does not change:

AdvG1
XtM[K1,K2,M](A) = AdvG2

XtM[K1,K2,M](A).

In Game 2 the adversary now receives a random value as the challenge key and the MAC is also
computed over a random key part r∗mac,1, independently of the challenge bit b. To complete the argument we
only need to show that the adversary in an ind-cca attack does not gain any advantage via the decapsulation
oracle (in which r∗kem,1 ⊕ k∗kem,2 from the challenge key is used for inputs of the form (c∗1, ∗, ∗)). We next
argue that the difference is negligible, though, because in the actual attack this can only happen if the
adversary forges a MAC.

Game 3. In this game we change the decapsulation oracle in that we let it immediately reject with output
⊥ if it is queried on a ciphertext of the form (c∗1, ∗, ∗) for the challenge ciphertext c∗1.
An adversary is only able to notice the difference between Games 2 and 3 if it queries about a fresh
ciphertext (c∗1, c2, τ) 6= (c∗1, c∗2, τ∗) with c2 being a K2 ciphertext of the adversary’s choice, and τ being a
valid MAC tag. If τ is not a valid MAC tag or the adversary queries exactly the challenge ciphertext, then
our decapsulation oracle would also return ⊥.

We show that if an adversary A distinguishes between the games, we can build an adversary B3 against
the MAC. Adversary B3 runs A according to Game 2, choosing all components (sk1, pk1) and (sk2, pk2)
and c∗1, c∗2 of K1 and K2 itself. To create the challenge ciphertext, adversary B3 makes its one-time MAC
request with message (c∗1, c∗2) and receives τ∗. It runs A on (c∗1, c∗2, τ∗) and a random string k∗kem. For an
ind-cca attack, if A makes a decapsulation query about (c1, c2, τ) for c1 6= c∗1, then B3 uses knowledge of
its decapsulation keys to compute the answer. For c1 = c∗1 adversary B3 calls its verification oracle with
(c1, c2, τ, 2, kkem,2), where kkem,2‖kmac,2 ← Decaps1(sk2, c2), and returns ⊥ to A to continue the simulation.

For the analysis note that Game 2 uses as the challenge key either an independent random string r∗1 (if
b = 0) or a random key (if b = 1). In both cases, the KEM part of the key is a uniform key independent
of bit b—as is B3’s choice k∗kem— and the MAC key part is also independent and uniform. The latter
holds in B3’s simulation as well, since the OT-sEUF game chooses a random MAC key. In other words, the
simulation is perfect up to the step where, potentially, A makes a query for a fresh ciphertext with a valid
MAC which would yield a reply different from ⊥. But then B3 would find a forgery against the MAC in
one of its multiple verification attempts. Since B3 is of the same type RcT as A, it holds that

AdvG2
XtM[K1,K2,M](A) ≤ AdvG3

XtM[K1,K2,M](A) + AdvRcT-OT-sEUF
M (B3).

The claim now follows, noting that in the final game the secret bit b is perfectly hidden from A. The
challenge key is an independent string in either case b = 0 or b = 1, and the decapsulation queries are now
also independent of the bit b, since the change in the oracle’s answers only depends on the public value c∗1.
Hence, A’s output is independent of the secret bit, and thus AdvG3

XtM[K1,K2,M](A) ≤ 0.

Instantiating the MAC. We use a strong form of combiner for MACs where the adversary can choose
one of the two MAC keys. It is easy to build secure MAC combiners of this type by concatenating two
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MACs, each computed under one of the keys. For specific constructions various improvements may apply.
For instance, for deterministic MACs in which verification is performed via re-computation, one may
aggregate the two MACs via exclusive-or [KL08] to reduce the communication overhead.

MACs satisfying the QcQ-OT-sEUF notion can be constructed based on the Carter-Wegman paradigm
using universal hash functions [WC81], without relying on cryptographic assumptions. Our construction of
course uses that the input, consisting of the ciphertexts holding the keys, is larger then the keys, such that
we need to extend the domain of the universal hash function.

For a pairwise-independent hash function with bound ε, it is clear that an adversary cannot win with
a single verification query after seeing one MAC, except with probability at most ε. Since verification is
deterministic and consists of re-computing the tag, it follows that the adversary cannot win with probability
more than qε with q verification queries [BGM04].

The Carter-Wegman paradigm allows for another potential improvement. Suppose one uses hashing of
the form am+ b over some finite field F with addition + and multiplication ·, where m is the message and
kmac = (a, b) is the MAC key. Then, instead of computing one MAC for each key part kmac,1 and kmac,2,
one can compute a single MAC over the key kmac = kmac,1 + kmac,2 = (a1 + a2, b1 + b2). This combiner
provides strong unforgeability as required above, since for known keys kmac,2 = (a2, b2) and k′mac,2 = (a′2, b′2)
one can transform a MAC for message m under unknown key kmac,1 + kmac,2 into one for kmac,1 + k′mac,2,
simply by adding (a′2 − a2) ·m+ (b′2 − b2) to the tag. By symmetry this holds analogously for known keys
kmac,1 and k′mac,1.

Alternatively to Carter-Wegman MACs, one could use HMAC for instantiating the MAC directly, or
rely on the HKDF paradigm of using HMAC as an extractor. Namely, one applies the extraction step of
HKDF, HKDF.Ext, with the ciphertexts acting as the salt and the MAC key as the keying material. This
approach is based on the idea that HMAC is a good extractor. We discuss such issues in more detail later,
when looking at the TLS-like combiner.

3.1.4 Resistance against full quantum attacks.

We have shown that the combiner XtM[K1,K2,M] inherits security of the underlying KEMs if the MAC
is secure, for classical queries to the decapsulation oracle (which is the setting we also consider for key
exchange). We outline here that the result can be easily extended to fully quantum adversaries with
superposition queries to the decapsulation oracle. This only assumes that one of the individual KEMs
achieves this level of security. Interestingly, the MACM only needs to be QcQ-OT-sEUF secure for a single
classical verification query. The reason is that the MAC in the challenge is still computed classically, and
in the security reduction we will measure a potential forgery in a decapsulation superposition query and
output this classical MAC.

The approach for showing security is very similar to the proof in the post-quantum case. The only
difference lies in the final game hop, where we cannot simply read off a potential MAC forgery from
a decapsulation query of the form (c∗1, ∗, ∗) for the value c∗1 in the challenge, because the query is in
superposition. But we can adapt the “measure-and-modify” technique of Boneh et al. [BDF+11] for
proving the quantum-resistance of Bellare-Rogaway style encryptions. In our case, if the amplitudes of
entries (c∗1, c2, τ) with a valid MAC and fresh (c2, τ) 6= (c∗2, τ∗) in the quantum decapsulation queries
would be non-negligible, then we could measure for a randomly chosen query among the polynomial
many decapsulation queries to get a (classical) MAC forgery with non-negligible probability. This would
contradict the QcQ-OT-sEUF security ofM. If, on the other hand, the query probability of such forgeries
is negligible, then we can change the function Decaps⊥ into Decaps⊥⊥ which now also outputs ⊥ for any
query of the form (c∗1, ∗, ∗). Following the line of reasoning as in [BDF+11], based on the results of Bennett
et al. [BBBV97], this cannot change the adversary’s output behavior significantly. Again, since we can
instantiate the MAC for classical queries information-theoretically, we get a secure KEM combiner in the
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fully quantum case, without requiring an extra assumption beyond full quantum resistance of one of the
KEMs.

3.2 dualPRF: Dual-PRF Combiner

Our second combiner is based on dual PRFs [BCK96, Bel06, BL15]. The definitions of (dual) PRF security
can be found in Appendix B.2. Informally, a dual PRF dPRF(k, x) is a PRF when either the key material
k is random (i.e., dPRF(k, ·) is a PRF), or alternatively when the input x is random (i.e., dPRF(·, x) is a
PRF). HMAC has been shown to be a secure MAC under the assumption it is a dual PRF, and Bellare and
Lysyanskaya [BL15] have given a generic validation of the dual PRF assumption for HMAC and therefore
HKDF.

To construct a hybrid KEM from a dual PRF, the naive approach of directly using a dual PRF to
compute the session key of the combined KEM as dPRF(k1, k2) is not sufficient. If, say, K1 is secure and
K2 is completely broken, then an adversary might be able to transform the challenge ciphertext (c∗1, c∗2)
into (c∗1, c2), where c2 6= c∗2 but encapsulates the same key k2 as c∗2. With a single decapsulation query the
adversary would be able to recover the key dPRF(k1, k2) and distinguish it from random. Our approach,
shown in Figure 8, is to apply another pseudorandom function with the output of the dual PRF as the
PRF key and the ciphertexts as the input label: PRF(dPRF(k1, k2), (c1, c2)).

Our dualPRF combiner is inspired by the key derivation in TLS 1.3 [Res18] and models Whyte et al.’s
proposal for supporting hybrid key exchange in TLS 1.3 [WFZGM17]. In TLS 1.3, HKDF’s extract function
is applied to the raw ECDH shared secret; the result is then fed through HKDF’s expand function with the
(hashed) transcript as (part of) the label. In Whyte et al.’s hybrid proposal, the session keys from multiple
KEMs are concatenated as a single shared secret input to HKDF extract. The dualPRF combiner models
this by taking dPRF as HKDF extract and PRF as HKDF expand.

3.2.1 Security of the dual-PRF combiner.

We can now show that the dual-PRF combiner is a robust KEM combiner, in the sense that the resulting
KEM has the security of the strongest of the two input KEMs (assuming the PRF and dual PRF are also
sufficiently secure). In particular, we show that dualPRF[K1,K2, dPRF,PRF] is IND-CCA secure in the
post-quantum setting (QcQ) if dPRF is a post-quantum secure dual PRF, PRF is a post-quantum secure
PRF, and at least one of the two KEMs is post-quantum IND-CCA secure.

Theorem 2 (Dual-PRF is robust). Let K1 be an XcZ-ind-atk secure KEM, K2 be a UcW-ind-atk secure
KEM, and RcT = max{XcZ,UcW}. Moreover, let dPRF : K1 ×K2 → K ′ be a RcT secure dual PRF, and
PRF : K ′ × {0, 1}∗ → KdualPRF be an RcT secure PRF. Then dualPRF[K1,K2, dPRF,PRF] as defined in
Figure 8 is RcT-ind-atk secure.

More precisely, for any ind-atk adversary A of type RcT against the combiner dualPRF[K1,K2, dPRF,PRF],
we derive efficient adversaries B1, B2, B3, and B4 such that

AdvRcT-ind-atk
dualPRF[K1,K2,dPRF,PRF](A) ≤ 2 ·

(
min

{
AdvRcT-ind-atk

K1 (B1),AdvRcT-ind-atk
K2 (B2)

}
+ AdvRcT-dprf-sec

dPRF (B3) + AdvRcT-prf-sec
PRF (B4)

)
.

The theorem relies on two-stage security notions for PRFs and dual PRFs, which are the natural
adaptation of PRF and dual-PRF security: a two-stage XyZ adversary for PRF is classical or quantum (X)
while it has access to the PRF oracle (which it accesses classically or in superposition depending on y).
After this, in the second stage, it runs classically or quantumly (Z) without oracle access, before outputting
a guess as to whether its oracle was real or random. We give the formal definitions of two-stage security
notions for PRFs and dual PRFs in the supplementary material in Section B.
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EncapsdualPRF(pk1, pk2):
1 (c1, k1)← Encaps1(pk1)
2 (c2, k2)← Encaps2(pk2)
3 c← (c1, c2)
4 kd ← dPRF(k1, k2)
5 k ← PRF(kd, c)
6 return (c, k)

DecapsdualPRF(sk1, sk2, c1, c2):
1 k′1 ← Decaps1(sk1, c1)
2 k′2 ← Decaps2(sk2, c2)
3 k′d ← dPRF(k′1, k′2)
4 return PRF(k′d, (c1, c2))

Figure 8: KEM constructed by the dual PRF
combiner dualPRF[K1,K2, dPRF,PRF].

0

Ext

Exp

Pre-shared keys PSK

Ext k1||k2 (e.g., k1 (EC)DHE and k2 PQ)

Exp

Ext 0

MasterSecret

Exp handshake messages

Figure 9: Excerpt from altered TLS 1.3 key schedule
as proposed in [WFZGM17] to incorporate an additional
secret k2, effectively enabling a hybrid mode.

Proof. As before, we prove the theorem by considering a sequence of game hops. We focus on the case
that K1 is secure, and mention the necessary modification in the proof for K2 being secure as we progress
through the games.

Game 0. The original RcT-ind-atk game for dualPRF[K1,K2, dPRF,PRF].

Game 1. We replace the value k∗1 computed in the challenge ciphertext by a uniformly random value r∗1
of equal length and compute the final key in the challenge value as PRF(dPRF(r∗1, k∗2), (c∗1, c∗2)); note that
for b = 1 this value is eventually replaced with a random value. Decapsulation requests (c1, c2) are also
answered by using r∗1 instead of k∗1 in case c∗1 = c1. That is, instead of computing k1 ← Decaps1(sk1, c1) we
compute “if c1 = c∗1 then k1 ← r∗1 else k1 ← Decaps1(sk1, c1)”.
An adversary distinguishing Game 0 from Game 1 would immediately yield an efficient adversary B1 against
the indistinguishability of K1. Adversary B1 receives as input pk1 and a challenge (c∗1, k∗1), and simulates the
environment for A as follows: First, B1 generates the key pair (pk2, sk2) for K2 and sets pk ← (pk1, pk2).
Furthermore, B1 generates the second challenge ciphertext portion c∗2 and key share k∗2 itself. It assembles
the challenge ciphertext as (c∗1, c∗2) and computes k∗ = PRF(dPRF(k∗1, k∗2), (c∗1, c∗2)). Adversary B1 then runs
A on input (pk, (c∗1, c∗2), k∗).

If A is an active adversary in the ind-cca case, decapsulation queries for ciphertexts c = (c1, c2) with
c1 6= c∗1 are answered by relaying c1 to the corresponding decapsulation oracle for K1 and decapsulating c2
with the help of sk2. The final response is computed according to the protocol description. If c = (c∗1, c2)
then B1 simply substitutes the evaluation and response of K1’s decapsulation oracle with k∗1 and computes
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the answer accordingly. For passive adversaries A in an ind-cpa attack, algorithm B1 does not need to
provide any simulation of decapsulation queries. At some point, the distinguisher A terminates and outputs
a guess bit b′. Adversary B1 outputs the same bit b′.

For the analysis note that the difference between the two games lies exactly in the distinction between
the actual key k∗1 and a random value. Hence, we have

AdvG0
dualPRF[K1,K2,dPRF,PRF](A) ≤ AdvG1

dualPRF[K1,K2,dPRF,PRF] + 2 · AdvXcZ-ind-atk
K1 (B1).

For K2 being secure the proof applies analogously, yielding an adversary B2.

Game 2. Next, we replace the value dPRF(r∗1, k∗2) by a uniformly random value r∗ in the computation
of the challenge ciphertext. We make the following additional modification to the current decapsulation
procedure: We use r∗ in decapsulation requests (instead of dPRF(r∗1, k∗2)) for any request of the form (c∗1, c2)
for which Decaps2(sk2, c2) = k∗2. (Note that we still use r∗1 and dPRF(r∗1, k2) for queries of the form c1 = c∗1
but k2 = Decaps2(sk2, c2) 6= k∗2.)
Distinguishing Game 1 from Game 2 would immediately yield an efficient adversary B3 against the
PRF-security of dPRF.

Algorithm B3 creates keys (pk1, sk1), (pk2, sk2), as well as c∗1, c∗2 (with encapsulated keys k∗1, k∗2).
It then queries its PRF oracle about k∗2 to receive a value r∗. It starts a simulation of A on input
(pk, (c∗1, c∗2),PRF(r∗, (c∗1, c∗2)). Each decapsulation query for (c1, c2) with c1 6= c∗1 is answered with the help
of sk1, sk2. Each query with c1 = c∗1 is answered by decapsulating k2 from c2 with sk2. If now k2 = k∗2 then
we use r∗ to compute the final answer, else we query the pseudorandom function oracle about k2 and use
the reply to complete the computation. Note that this is admissible since k2 is different from the input k∗2
in B3’s first query. Output the final answer of adversary A.

If B3 receives a pseudorandom value r∗ then we perfectly simulate Game 1. If, on the other hand, r∗ is
random, then we perfectly simulate Game 2. Thus we have:

AdvG1
dualPRF[K1,K2,dPRF,PRF](A) ≤ AdvG2

dualPRF[K1,K2,dPRF,PRF](A) + 2 · AdvRcT-dprf-sec
dPRF (B3).

For K2 being secure the same line of reasoning applies, because dPRF is a dual PRF, such that dPRF(·, r∗2)
is also pseudorandom.

Game 3. Finally, we replace the value PRF(r∗, (c∗1, c∗2)) by a uniformly random value R∗ in the computation
of the challenge ciphertext. The decapsulation procedure remains unchanged.
We show security by a reduction to the security of the PRF. Algorithm B4 again creates keys (pk1, sk1),
(pk2, sk2) and the challenge ciphertext (c∗1, c∗2). It queries the PRF oracle about (c∗1, c∗2) to obtain a value
R∗ and runs A on (pk, (c∗1, c∗2), R∗). Each decapsulation query (c1, c2) is answered as follows: If c1 6= c∗1
we answer with the help of the decapsulation keys sk1, sk2, computing the same reply as the original
decapsulation oracle. In case c1 = c∗1 (and consequently c2 6= c∗2) and where k2 = k∗2 we call the external
oracle about (c∗1, c2) to derive the answer. For c1 = c∗1 but k2 6= k∗2 we use dPRF(r∗1, k2) to compute the
answer.

We again have that if B4 receives a pseudorandom value R∗ then we perfectly simulate Game 2. If R∗
is random, then we perfectly simulate Game 3. Hence,

AdvG2
dualPRF[K1,K2,dPRF,PRF](A) ≤ AdvG3

dualPRF[K1,K2,dPRF,PRF](A) + 2 · AdvRcT-prf-sec
PRF (B4).

The analogous applies when K2 is secure.
In the final game neither the challenge ciphertext nor the decapsulation oracle carries any information

about the secret challenge bit b. That is, the oracle does not depend on R∗ in case b = 0, so this case is
indistinguishable from the b = 1 case. We thus arrive at the final bound: AdvG3

dualPRF[K1,K2,dPRF,PRF](A) = 0.
This concludes the proof that dualPRF[K1,K2, dPRF,PRF] is a hybrid KEM with RcT-ind-atk security.
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3.3 N: Nested Dual-PRF Combiner

We augment the dualPRF combiner in the previous section by an extra preprocessing step for the key k1:
ke ← Ext(0, k1), where Ext is another PRF. This is the nested dual-PRF combiner N shown in Figure 10.
Our nested dual-PRF combiner N models Schanck and Stebila’s proposal for hybrid key exchange in TLS
1.3 [SS17]. In their proposal, as depicted in Figure 11, one stage of the TLS 1.3 key schedule is applied
for each of the constituent KEMs in the hybrid KEM construction: each stage in the key schedule applies
the HKDF extract function with one input being the output from the previous stage of the key schedule
and the other input being the shared secret from this stage’s KEM. Finally, HKDF expand incorporates
the (hash of the) transcript, including all ciphertexts. Modeling the extraction function Ext as a PRF, our
nested combiner N captures this scenario.

EncapsN(pk1, pk2):
1 (c1, k1)← Encaps1(pk1)
2 (c2, k2)← Encaps2(pk2)
3 c = (c1, c2)
4 ke = Ext(0, k1)
5 kd = dPRF(ke, k2)
6 k = PRF(kd, c)
7 return (c, k)

DecapsN(sk1, sk2, c1, c2):
1 k′1 ← Decaps1(sk1, c1)
2 k′2 ← Decaps2(sk2, c2)
3 k′e = Ext(0, k1)
4 k′d = dPRF(k′e, k2)
5 return PRF(k′d, (c1, c2))

Figure 10: KEM constructed by
the nested dual-PRF combiner
N[K1,K2,dPRF,PRF,Ext ].
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Figure 11: Excerpt from altered TLS 1.3 key schedule as proposed
in [SS17] to incorporate an additional secret k2, effectively enabling
a hybrid mode.

3.3.1 Security of the nested dual-PRF combiner.

We can show that the nested dual-PRF combiner N is a robust KEM combiner, in the sense that the resulting
KEM has the security of the strongest of the two input KEMs (assuming the PRFs are sufficiently secure).
Informally, the theorem shows that N[K1,K2, dPRF,PRF,Ext] is IND-CCA secure in the post-quantum
setting if dPRF is a post-quantum secure dual PRF, PRF and Ext are post-quantum secure PRFs, and at
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least one of the two KEMs is post-quantum IND-CCA secure.

Theorem 3 (Nested dual-PRF is robust). Let K1 be an XcZ-ind-atk secure KEM, K2 be a UcW-ind-atk
secure KEM, dPRF : K ′ ×K2 → K ′′ be a RcT = max{XcZ,UcW} secure dual PRF, PRF : K ′′ × {0, 1}∗ →
KN be an RcT secure PRF, and Ext : {0, 1}∗ × K1 → K ′ be an RcT secure PRF. Then the combiner
N[K1,K2, dPRF,PRF,Ext] as defined in Figure 8 is RcT-ind-atk secure.

More precisely, for any ind-atk adversary A of type RcT against the combined KEM N[K1,K2, dPRF,PRF,Ext],
we derive efficient adversaries B1, B2, B3, B4, and B5 such that

AdvRcT-ind-atk
N[K1,K2,dPRF,PRF,Ext](A) ≤ 2 ·

(
min

{
AdvRcT-ind-atk

K1 (B1),AdvRcT-ind-atk
K2 (B2)

}
+ AdvRcT-dprf-sec

dPRF (B3) + AdvRcT-prf-sec
PRF (B4) + AdvRcT-prf-sec

Ext (B5)
)
.

The proof follows easily from the proof of the dualPRF combiner. Only here we make one more
intermediate step in which we use the pseudorandomness of Ext to argue that the output of Ext(0, k1) is
pseudorandom.

4 Authenticated Key Exchange from Hybrid KEMs
We now turn towards the question of how to achieve hybrid authenticated key exchange from hybrid
KEMs. There exists a vast body of literature on compilers for authenticated key exchange [BCK98, KY07,
BCNP08, JKSS12, LSY+14, dSGSW17]. In the following we consider secure AKE protocols from key
encapsulation mechanisms combined with SigMA-style authentication [Kra03]. As for KEMs, we consider
a two-stage adversary and adjust the commonly used model for authenticated key exchange by Bellare and
Rogaway [BR94] to this setting.

4.1 Security Model

We begin by establishing the security definition for authenticated key exchange against active attackers,
starting from the model of Bellare and Rogaway [BR94].

4.1.1 Parties and sessions.

Let KE be a key exchange protocol. We denote the set of all participants in the protocol by U . Each
participant U ∈ U is associated with a long-term key pair (pkU , skU ), created in advance; we assume every
participant receives an authentic copy of every other party’s public key through some trusted out-of-band
mechanism. In a single run of the protocol (referred to as a session), U may act as either initiator or
responder. Any participant U may execute multiple sessions in parallel or sequentially.

We denote by πjU,V the jth session of user U ∈ U (called the session owner) with intended communication
partner V . Associated to each session are the following per-session variables; we often write πjU,V .var to
refer to the variable var of session πjU,V .
• role ∈ {initiator, responder} is the role of the session owner in this session.
• stexec ∈ {running, accepted, rejected} reflects the current status of execution. The initial value at session

creation is running.
• sid ∈ {0, 1}∗ ∪ {⊥} denotes the session identifier. The initial value is ⊥.
• stkey ∈ {fresh, revealed} indicates the status of the session key K. The initial value is fresh.
• K ∈ D ∪ {⊥} denotes the established session key. The initial value is ⊥.
• tested ∈ {true, false} marks whether the session key K has been tested or not. The initial value is false.
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To identify related sessions which might compute the same session key, we rely on the notion of partnering
using session identifiers. Two sessions πiS,T and πjU,V are said to be partnered if πiS,T .sid = πjU,V .sid 6= ⊥. We
assume that if the adversary has not interfered, sessions in a protocol run between two honest participants
are partnered.

4.1.2 Adversary model.

The adversary interacts with honest parties running AKE protocol instances via oracle queries, which
ultimately allow the adversary to fully control all network communications (injecting messages and scheduling
if and when message delivery occurs) and compromise certain secret values; the goal of the adversary is to
distinguish the session key of an uncompromised session of its choice from random.

We model the adversary as a two-stage potentially quantum adversary with varying levels of quantum
capabilities. As in Section 3, we only consider adversaries that interact with parties using classical oracle
queries, omitting QqQ adversaries.

The following queries model the adversary’s control over normal operations by honest parties:
NewSession(U, V, role): Creates a new session πjU,V for U (with j being the next unused counter value

for sessions between U and intended communication partner V ∈ U ∪ {?}) and sets πjU,V .role← role.
Send(πjU,V ,m): Sends the message m to the session πjU,V . If no session πjU,V exists or does not have
πjU,V .stexec = running, return ⊥. Otherwise, the party U executes the next step of the key agreement
protocol based on its local state, updates the execution status πjU,V .stexec, and returns any outgoing
messages. If stexec changes to accepted and the intended partner V has previously been corrupted, we
mark the session key as revealed: πjU,V .stkey ← revealed.

The next queries model the adversary’s ability to compromise secret values:
Reveal(πjU,V ): If πjU,V .stexec = accepted, Reveal(πjU,V ) returns the session key πjU,V .K and marks the session

key as revealed: πjU,V .stkey ← revealed. Otherwise, it returns ⊥.
Corrupt(U): Returns the long-term secret key skU of U . Set πjV,W .stkey ← revealed in all sessions where
V = U or W = U . (If the security definition is meant to capture forward secrecy, this last operation is
omitted.)

The final query is used to define the indistinguishability property of session keys:
Test(πjU,V ): At the start of the experiment, a test bit btest is chosen uniformly and random and fixed

through the experiment. If πjU,V .stexec 6= accepted, the query returns ⊥. Otherwise, it sets πjU,V .tested←
true and proceeds as follows. If btest = 0, a key K∗←$D is sampled uniformly at random from the
session key distribution D. If btest = 1, K∗ is set to the real session key πjU,V .K. Return K∗. The Test
query may be asked only once.

4.2 Security Definitions

We provide the specific security experiment and definition for AKE security, following the approach of
Brzuska et al. [BFWW11, Brz13] and divide Bellare–Rogaway-style AKE security into the sub-notions of
BR-Match security and BR key secrecy.

Definition 1 (Two-Stage BR-Match Security). Let λ be the security parameter. Furthermore let KE be
an authenticated key exchange protocol and A = (A1,A2) be a two-stage XcZ QPT adversary interacting
with KE via the queries defined in Section 4.1.2 in the following game GBR-Match

KE (A):
Setup. The challenger generates long-term public/private-key pairs with certificates for each participant
U ∈ U .
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Query Phase 1. The adversary A1 receives the generated public keys and has access to the queries
NewSession, Send, Reveal, Corrupt, and Test.

Stage Change. The adversary A1 passes some state st to the second stage adversary A1 and terminates.
Query Phase 2. A2 may now perform local computations on state st and only has access to queries

Reveal and Corrupt.
Stop. At some point, the adversary A2 stops with no output.
We say that A wins the game, denoted by GBR-Match

KE (A) = 1, if at least one of the following conditions
holds:
1. There exist two distinct sessions π and π′ with π.sid = π′.sid 6= ⊥, and π.stexec, π

′.stexec 6= rejected, but
π.K 6= π′.K. (Different session keys in partnered sessions.)

2. There exist two sessions π := πkU,V and π′ := πk
′
V ′,U ′ such that π.sid = π′.sid 6= ⊥ , π.role = initiator,

and π′.role = responder, but U 6= U ′ or V 6= V ′. (Different intended partners.)
3. There exist at least three sessions π, π′, and π′′ such that π, π′, π′′ are pairwise distinct, but
π.sid = π′.sid′ = π′′.sid 6= ⊥. (More than two sessions share the same session identifier.)
We say KE is two-stage BR-Match secure if for all QPT XcZ adversaries A the advantage function

AdvBR-Match
KE (A) = Pr

[
GBR-Match

KE (A) = 1
]

is negligible in the security parameter λ.

Definition 2 (Two-Stage BR Key Secrecy ). Let KE be a key exchange protocol with key distribution D
and let A = (A1,A2) be a two-stage XcZ adversary interacting with KE via the queries defined in Section 4.1
within the following security experiment ExptXcZ-BR

KE,D (A):
Setup. The challenger generates long-term public/private-key pairs for each participant U ∈ U , chooses

the test bit btest←$ {0, 1} at random, and sets lost← false.
Query Phase 1. AdversaryA1 receives the generated public keys and may (classically) query NewSession,

Send, Reveal, Corrupt, and Test.
Stage Change. At some point, A1 terminates and outputs some state st to be passed to the second
stage adversary A2.

Query Phase 2. A2 may now perform local computations on state st, but may query only Reveal and
Corrupt.

Guess. At some point, A2 terminates and outputs a guess bit bguess.
Finalize. The challenger sets lost← true if there exist two (not necessarily distinct) sessions π, π′ such
that π.sid = π′.sid, π.stkey = revealed, and π′.tested = true. (That is, the adversary has tested and
revealed the key in a single session or in two partnered sessions.) If lost = true, the challenger outputs
a random bit; otherwise the challenger outputs [[bguess = btest]]. Note that forward secrecy, if being
modelled, is incorporated into the Corrupt query and need not be stated in the Finalize step.
We say that A wins the game if bguess = btest and lost = false. We say KE provides XcZ-BR key secrecy

(with/without forward secrecy) if for all QPT XcZ adversaries A the advantage function

AdvXcZ-BR
KE,D (A) =

∣∣∣∣Pr
[
ExptXcZ-BR

KE,D (A)⇒ 1
]
− 1

2

∣∣∣∣
is negligible in the security parameter.

Definition 3 (Two-Stage BR Security). We call a key exchange protocol KE XcZ-BR secure (with/without
forward secrecy) if KE provides BR-Match security (Def. 1) and XcZ-BR key secrecy (with/without forward
secrecy)(Def. 2).
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4.2.1 Implications between two-stage BR notions.

Similarly to the two-stage security notions of indistinguishability for KEMs, the following implications hold
for two-stage BR security.

Theorem 4 (QcQ-BR =⇒ CcQ-BR =⇒ CcC-BR). Let KE be an authenticated key exchange protocol.
If KE is QcQ-BR secure, then KE is also CcQ-BR secure. If KE is CcQ-BR secure then it also is CcC-BR
secure.

Proof. We show both implications separately and focus on the case of BR key secrecy. A similar argument
shows the implications for two-stage BR-Match security and establishes the final result.

- QcQ-BR key secrecy =⇒ CcQ-BR key secrecy: This holds trivially since the adversary in the
CcQ-BR key secrecy experiment is a restricted version of the QcQ-BR adversary with only classical
access in the first stage and the oracles for NewSession, Send, and Test removed in the second stage.

- CcQ-BR key secrecy =⇒ CcC-BR key secrecy: Assume otherwise, i.e., there exist a scheme KE′
that achieves key secrecy in the CcQ-BR sense, but for which there exists an efficient CcC-BR adversary
A. An adversary B can use A to break the CcQ-BR key secrecy of KE′: B forwards all queries made by
A to its own oracles and responds with their answers. It does not perform a stage change and thus
simulates the environment for A faithfully since it has the same oracles available as A. Once A outputs
a guess bit bguess, B performs a stage change and outputs the same bit. The winning probability of B
is the same as that of A, contradicting the assumption.

4.2.2 Separations between two-stage BR notions.

We give separations based on the compiler CSigMA that we will prove secure in the next section. The full
proofs of the security are very much like the proof given in that section for the generic construction, thus
we only give a proof sketch here, highlighting the relevant points.

Theorem 5 (CcC-BR 6=⇒ CcQ-BR 6=⇒ QcQ-BR). There exists an authenticated key exchange protocol
KE′ that is CcC-BR secure but not CcQ-BR secure. Furthermore, there exists an authenticated key exchange
protocol KE′′ that is CcQ-BR secure but not QcQ-BR secure.

KeyGen():
1 x←$ Zq
2 pk ← gx

3 sk ← x

4 return (pk, sk)

Encaps(pk):
1 y←$ Zq
2 c← gy

3 K ← pky

4 return (c,K)

Decaps(sk, c):
1 K′ ← csk

2 return K′

Figure 12: Diffie-Hellman KEM K = (KeyGen,Encaps,Decaps).

Proof Sketch. We show both separations separately and focus on the case of BR key secrecy.
CcC-BR key secrecy 6=⇒ CcQ-BR key secrecy. Consider the Diffie–Hellman KEM depicted in Figure 12.
It is well known that KE′ = CSigMA[K, Sig,MAC,KDF] with DH key agreement K and secure signatures
and MACs is a classically BR-secure protocol. However, a CcQ-BR adversary can extract the secret
key K = gxy from the transcript by using its local quantum power to break the discrete logarithm of,
e.g., either pk = gx or c = gy, hence trivially breaking key secrecy.
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CcQ-BR key secrecy 6=⇒ QcQ-BR key secrecy. Let K = (KeyGen,Encaps,Decaps) be a Q-ind-cpa-secure
KEM, let Sig be an CcC-unforgeable signature scheme, MAC be a CcC-unforgeable message authentica-
tion scheme and KDF be a CcQ-secure key derivation function modeled as a PRF.
Theorem 6 establishes that the compiler KE′′ = CSigMA[K,Sig,MAC,KDF] achieves CcQ-BR security,
and in particular key secrecy. However we see that the compiler CSigMA does not achieve QcQ-BR key
secrecy. A locally quantum adversary A1 in the first stage can for example forge signatures in Game 3
of the proof, thus, in the end, no longer guaranteeing the correct identification of the associated session.
This enables the adversary to ask a Reveal query on this session and hence trivially break key secrecy.

4.3 Compilers for Hybrid Authenticated Key Exchange

Alice Bob

identity A identity B
long-term signing keys long-term signing keys
(pkA, skA) (pkB, skB)

Key Encapsulation K
(epkA, eskA)← KeyGen()

epkA

(c, k)← Encaps(epkA)
c

k ← Decaps(eskA, c)

Output of K: shared key k, transcript t = (epkA, c)
Kmac ← KDF(k, “MAC”||t)

SigMA Authentication
rA←$ {0, 1}λ rA

rB ←$ {0, 1}λ
σB ← Sig(skB, “0”||t||rA||rB)

τB ← MAC(Kmac, “0”||B)
B, rB, σB, τB

abort if SVf(pkB, “0”||t||rA||rB, σB) = 0
or if MVf(Kmac, “0”||B, τB) = 0
σA ← Sig(skA, “1”||t||rA||rB)
τA ← MAC(Kmac, “1”||A)

A, σA, τA
abort if SVf(pkA, “1”||t||rA||rB, σA) = 0

or if MVf(Kmac, “1”||A, τA) = 0

K = KDF(k, “KE”||(t, rA, rB, A,B)), sid = (t, rA, rB, A,B)

Figure 13: Compiled protocol CSigMA - AKE from signatures and MACs

In the following we present a compiler for authenticated key exchange in the two-stage adversary setting.
The compiled protocol, denoted by CSigMA, combines a passively secure key encapsulation mechanisms
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(KEMs) with SigMA-style authentication [Kra03]. Figure 13 shows the compiled protocol between Alice and
Bob. It takes as input an IND-CPA-secure KEM K, a signature scheme S, a message authentication scheme
M —both existentially unforgeable under chosen-message attack— and a KDF-secure key derivation
function KDF, where security is considered with respect to two-stage adversaries. To obtain hybrid
authenticated key exchange, the KEM K may then be instantiated with any hybrid KEM.

4.3.1 Security Analysis.

We now show that the compiled protocol CSigMA achieves two-stage BR security (cf. Definition 3). In the
theorem below we assume that the key encapsulation mechanism K is either classically secure or quantum
resistant against passive adversaries, i.e., R-ind-cpa = C-ind-cpa or R-ind-cpa = Q-ind-cpa and that the
remaining primitives achieve either CcC, CcQ, or QcQ security.

One would generally assume that the “weakest primitive” determines the overall security of the
compiled protocol. However, it turns out this intuition is not quite correct. Naturally, in case either
the unauthenticated key agreement K or the key derivation function KDF are only classically secure, we
cannot expect more than classical CcC-BR security of the compiled protocol. Similarly, full post-quantum
QcQ-BR security can only be achieved if all components of the protocol provide this level of security.
Interestingly though, for the compiled protocol to guarantee security against future-quantum adversaries
(CcQ-BR security) it suffices for the signature and MAC scheme to be classically secure when combined
with Q-ind-cpa-secure key encapsulation and at least CcQ-secure key derivation. This is due to the fact
that, in the proof of the main theorem,Theorem 6, the signatures and message authentication codes of
π∗ and π∗a must be received while the first stage adversary, which is classical, is present. As soon as the
stage change occurs, the adversary loses the power to interfere with still ongoing sessions and message
transmissions via the then withdrawn Send oracle.

Theorem 6. Let K be an R-ind-cpa key encapsulation mechanism, S be an ScT-unforgeable signature
scheme,M be a UcV-unforgeable message authentication scheme, and KDF be a WcX-secure key derivation
function. Then the compiled protocol CSigMA is YcZ-BR secure with forward secrecy, where
• YcZ = CcC, if either the key encapsulation mechanism K or the key derivation function KDF are only
classically secure, i.e., if either R = C or WcX = CcC.
• YcZ = QcQ, if all components are resistant against fully quantum adversaries, i.e, ScT = UcV =

WcX = QcQ (and R = Q).
• YcZ = CcQ, if the employed signature and MAC scheme are at most future-quantum secure, i.e., if

ScT,UcV ∈ {CcC,CcQ} (and R = Q, WcX ≥ CcQ).
More precisely, for any efficient two-stage YcZ adversary A there exist efficient adversaries B1,B2, . . . ,B4

such that

AdvYcZ-BR
CSigMA,D(A) ≤ n2

s · 2−|nonce| + ns ·
(
nu · AdvScT-eufcma

S (B1)

+ ns ·
(
2 · AdvR-ind-cpa

K (B2) + 2 · AdvWcX-kdf-sec
KDF (B3) + AdvUcV-eufcma

M (B4)
))
,

where ns denotes the maximum number of sessions, |nonce| the length of the nonces, and nu the maximum
number of participants.

To prove Theorem 6, we need to show the required properties, BR-Match security and YcZ-BR key
secrecy, separately.

Proof Match Security. Let t be the transcript of the key encapsulation mechanism K between parties
A and B. Recall that the session identifier sid is set to be sid = (t, rA, rB, A,B) which consists of public
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information only. We show that A cannot achieve any of the three winning conditions defined in Def. 1
with non-negligible probability:
Ad (1) Partnered sessions agree on the session identifier sid, which fixes the transcript t and hence also
the input value k to the key derivation function. Consequently, partnered sessions derive the same
session keys.

Ad (2) The session identifiers contain the partner identities, thus agreement on the session identifiers
implies agreement on the partner identity, excluding the possibility of different intended partners.

Ad (3) For more than two honest sessions to share a session identifier, a third honest session must share
a colliding transcript t with the initial two sessions and must have a collision in either of the (randomly
chosen) nonces rA or rB (depending on whether the third session is initiator or responder). It is easy
to see that this occurs only with negligible probability.

Proof of Key Secrecy. For the proof we apply the common technique of game hopping. In each game hop
we bound the respective difference in the adversary’s advantages until the adversary cannot win anymore.

Game 0. The original two-stage BR key secrecy game ExptYcZ-BR
CSigMA,D(A).

Game 1. We start by aborting the game if two sessions of honest parties generate the same nonce rA or
rB. Let ns denote the maximum number of sessions and |nonce| the length of the nonces. Since there are
ns possible pairs of randomly sessions, the probability of an abort for this reason is upper-bounded by
n2
s · 2−|nonce|. Hence we have

AdvG0
CSigMA

(A) ≤ n2
s · 2−|nonce| + AdvG1

CSigMA
(A).

Game 2. For simplicity of the argument it is beneficial to restrict the adversary to a single Test query.

This can be done via a standard hybrid argument, guessing the tested session in the beginning, and using
the Reveal queries resp. random keys to answer other Test queries. Since session partnering can be checked
publicly, we can also answer consistently in such simulated Test queries. Note also that the adversary
always has access to the Reveal oracle in the second stage, even if the other queries are prohibited. This
strategy reduces the adversary A’s advantage by a factor of at most 1

ns
:

AdvG1
CSigMA

(A) ≤ ns · AdvG2
CSigMA

(A).

From now on, the test session is known in advance and we denote it by π∗. Notice that, in order for the
adversary to win, π∗ has received all incoming messages and must have accepted before the stage change
of A occurred.

Game 3. We abort the game if the test session π∗ run by party U ∈ {A,B} receives a signature σV on
(“b”||t||rA||rB) that verifies correctly but has not been signed by some honest party V at this point. Note
that this signature must have been received prior to any stage change of the adversary since the second
stage of the adversary does not have access to Test. Furthermore, recall that the concerned participants,
and thus their long-term secrets, may not be corrupted before the tested session has accepted. In case of a
corruption of one of the involved parties after acceptance, forward secrecy is achieved since this does not
interfere with the honest generation of the signature σV received by session π∗ in this game hop.
The probability of an abort happening for this reason can be upper-bounded by the success probability of
a reduction B1 against the ScT-eufcma security of the signature scheme S. The reduction B1 obtains some
public key pk∗ as its challenge and proceeds by guessing the party V under whose identity the forgery

26



received by π∗ is issued. B1 generates all key exchange parameters as specified, except for setting pkV = pk∗.
The signing operations by V are performed by relaying the queries to the signature oracle, any other action
can be carried out by B1 itself. If at some point the tested session π∗ accepts a signature for a previously
unsigned message, then B1 outputs this message-signature pair as a forgery.

Since the correctly validated signature has not been created by an honest party before, party V cannot
have signed (“b”||t||rA||rB) in the past. At most it could have signed (“b′”||t||rA||rB) for b′ = 1− b. With
probability 1

nu
, where nu is the total number of users, our reduction correctly anticipates the party V , and

thus

AdvG2
CSigMA

(A) ≤ AdvG3
CSigMA

(A) + nu · AdvScT-eufcma
S (B1).

Game 4. Next, we guess the honest session π∗a of party V that has issued the valid signature σV obtained
by π∗ in Game 3 and abort if our guess was wrong. Due to the previous game hop such a session must
exist. Furthermore it is unique since there is no collision among the nonces due to Game 1. Note that the
session π∗a is not necessarily partnered with the test session π∗, since it need not have accepted yet. We
therefore refer to this session as associated.
This game hop reduces the adversary’s advantage by a factor of at most 1

ns
. Thus, we have

AdvG3
CSigMA

(A) ≤ ns · AdvG4
CSigMA

(A).

Game 5. We now replace the decapsulated value k in both the test session and its associated session by a
uniformly random value k̃ of the same length, after the KEM phase and before the parties compute the
MAC key. Both parties use the key k̃ instead for the subsequent computations.
If A were able to distinguish Game 4 and Game 5, then this implies an efficient adversary B2 against the
R-ind-cpa security of K. The reduction B2 simulates the environment for A as follows:
– Initially, B2 receives as a challenge a public key epk∗ and a corresponding challenge ciphertext c∗ along
with the challenge key k∗.

– In order to initialize A, the reduction B2 generates all key exchange parameters as specified.
– B2 can initiate any new sessions that A establishes via NewSession and can answers all Corrupt queries
with the appropriate long-term secret key.

– B2 further simulates all Send queries. For Send queries on π∗ and π∗a , the adversary B2 uses (epk∗, c∗)
as transcript t for the key encapsulation, creates signatures with the correct signing key of the parties,
and computes tags with Kmac ← KDF(k∗, “MAC”||t).

– For all but the predicted sessions π∗ and π∗a , algorithm B2 simulates any Reveal query straightforwardly
by itself. For the session π∗a , if it has already accepted, algorithm B2 derives the session key by using
k∗ as the allegedly decapsulated key from the KEM phase. Note that, at this point, we have not yet
shown that the associated session π∗a is partnered with the test session, such that the adversary could
Reveal that session without violating freshness.

– OnceA queries Test on π∗, B2 simulates the Test oracle by providing K∗ = KDF(k∗, “KE”||(t, rU , rV , U, V ))
to A, where U, V are the respective owners of π∗ and π∗a , and rU , rV are the nonces exchanged in the
authentication. Note that depending on the nature of k∗ this then corresponds to either Game 4 or
Game 5.
Once A has output some bguess, then B2 outputs the same bguess and thus it is easy to see that if A can

win its game with non-negligible probability, so can B2. Hence,

AdvG4
CSigMA

(A) ≤ AdvG5
CSigMA

(A) + 2 · AdvR-ind-cpa
K (B2).
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Game 6. We now replace the session key K = Kapp and the MAC key Kmac by uniformly random values
K̃app and K̃mac in the test session π∗ as well as the associated session π∗a . An adversary A that can efficiently
distinguish Game 5 from Game 6 would immediately yield an efficient successful adversary B3 against the
security of KDF:

AdvG5
CSigMA

(A) ≤ AdvG6
CSigMA

(A) + 2 · AdvWcX-kdf-sec
KDF (B3).

Game 7. Next, we abort the game if the associated session π∗a accepts with a different session identifier
than the test session, i.e., if π∗a .sid 6= π∗.sid 6= ⊥. Since, at this point, all entries in the session identifier
are set except for the partner identity, this can only happen if the adversary can cause π∗a to accept a
signature σW and MAC τW for some identity W 6= U . The adversary may indeed sign under an identifier
of a previously corrupted party W . However, to succeed A still needs to forge the corresponding tag τW .
This tag depends on the MAC key which is derived from the secret value k shared between parties U
and V . Similar to Game 3, the probability of an abort happening in this game can be upper-bounded by
the success probability of an adversary B4 against the UcV-eufcma-unforgeability of the MAC schemeM.
Hence, we have

AdvG6
CSigMA

(A) ≤ AdvG7
CSigMA

(A) + AdvUcV-eufcma
M (B4).

To conclude the proof, observe that the adversary expects the challenge value K∗ to be a uniformly
random string for btest = 0 or to be the output of the key derivation function applied to the output of
the key encapsulation mechanism K. These two cases cannot be distinguished by A since both keys are
drawn independently and uniformly at random from the key space. Hence, the adversary cannot gain any
information about the test bit btest and can do no better than to guess. We thus arrive at the final bound:

AdvG7
CSigMA

(A) ≤ 0.

5 Conclusion
Hybrid key exchange designs are widely considered as a suitable transitional solution to post-quantum
secure key exchange, offering both quantum-resistance as well as preserving today’s security guarantees.
Despite the profound recent interest in these schemes, the foundational theory behind hybrid key exchange
in general, and hybrid key encapsulation mechanisms in particular, is insufficient to establish meaningful
security results. Furthermore, no concrete construction for full-fledged hybrid AKE protocols have been
proposed so far.

In this work we extended the theory of hybrid KEMs and hybrid AKE by providing security notions
that consider adversaries with varying levels of quantum power, thus capturing the adversarial settings
that motivate the introduction of hybrid designs.

We examined several combiners for KEMs and prove their robustness in the standard model. We
introduced a new combiner, the XOR-then-MAC combiner, which is based on minimal assumptions and
constitutes the first hybrid KEM construction which is provably secure against fully quantum adversaries.
We further discussed practice-inspired KEM combiners based on dual-PRFs which are closely related to the
key schedule used in TLS 1.3.

Finally, we showed how to build post-quantum secure hybrid authenticated key exchange protocols
from hybrid key encapsulation mechanisms. We consider it as an interesting open problem to leave the
realm of the post-quantum setting and extend the treatment further to fully quantum adversaries.
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Supplementary Material

A Introduction to Quantum Computing
In the following we give a brief introduction of quantum computation knowledge used in this paper. A
standard text for a more complete explanation is for example given by Nielsen and Chuang [NC00].

Let H be a complex Hilbert space with inner product 〈y|x〉 with vectors |x〉 , |y〉 ∈ H. A quantum state
is an element in H of norm 1. Let {|x〉}x be a basis for H, then we can represent any quantum state |y〉 as
|y〉 =

∑
x ψx |x〉 where ψx are complex numbers such that |y〉 has norm 1. Operations on elements of H,

i.e., quantum operations, are represented by unitary transformations U. Hence, quantum operations (prior
to measurement) are reversible. This impacts the quantization of classical operations, such as for classical
or quantum decapsulation oracles, as follows.

Let A be a classical algorithm with input x ∈ {0, 1}a and output y ∈ {0, 1}b. Moreover, let {0, 1}a ×
{0, 1}b → {0, 1}a×{0, 1}b : (x, t) 7→ (x, t⊕A(x)) be a classical reversible mapping. The corresponding unitary
transformation A acting linearly on quantum states is given by A :

∑
x,t ψx,t |x, t〉 7→

∑
x,t ψx,t |x, t⊕A(x)〉.

We may add a workspace register to the input and the output registers to allow for more generality. Thus,
the quantized classical algorithm is given as A :

∑
x,t,z ψx,t,z |x, t, z〉 7→

∑
x,t,z ψx,t,z |x, t⊕A(x), z〉.

B Two-Stage Security Definitions
In this section we adapt traditional security definitions to our two-stage model.

B.1 One-Way Security of KEMs Against Partially or Fully-Quantum Adversaries.

First we define unified security experiments for one-way security against partially or fully quantum
adversaries since some of our results, e.g., Proposition 3 relies on this notion. During the one-way security
experiment of KEMs, the adversary’s task is to fully recover the session key, not just distinguish it
from random as in the indistinguishability notions of Section 2. We can similarly consider classical and
quantum adversaries for this security goal, in both the chosen-plaintext and chosen-ciphertext scenarios.
Figure 14 shows the corresponding security experiments for one-way chosen-plaintext (Z-ow-cpa) and
one-way chosen-ciphertext (XyZ-ow-cca) attacks.

ExptZ-ow-cpa
K (A):

1 H←$HK
2 qH ← 0
3 (sk, pk)← KeyGen()
4 (c∗, κ∗)← Encaps(pk)
5 κ′ ← AO

X
H (·)(pk, c∗)

6 return [[κ∗ = κ′]]

ExptXyZ-ow-cca
K (A):

1 H←$HK
2 qD ← 0, qH ← 0
3 (sk, pk)← KeyGen()
4 (c∗, κ∗)← Encaps(pk)

5 st← AO
X
H (·),Oy

D
(·)

1 (pk, c∗)
6 κ′ ← AO

Z
H (·)

2 (st)
7 return [[κ∗ = κ′]]

Figure 14: Security experiment for one-way security of a KEM K under chosen-plaintext attacks against a
classical (Z = C) or quantum (Z = Q) adversary A (left), and under chosen-ciphertext attack against a
two-stage XyZ adversary A = (A1,A2) (right), in the classical or quantum random oracle model. Oracles
OC
H(·), OQ

H(·), Oc
D(·), and Oq

D(·) as in Figures 2 and 3.
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B.2 PRF Security in the Two-Stage Model.

Two of our combiners, namely the dual-PRF combiner dualPRF in Section 3.2 and the nested dual-PRF
combiner N in Section 3.3 are based on the security of pseudorandom functions and dual pseudorandom
functions defined as in Definitions 4 and 5, respectively.

Definition 4 (Two-Stage PRF Security). Let λ be the security parameter and let F : Keys× In→ Out be
a pseudorandom function. Define Func[In,Out] to be the set of all functions f : In→ Out. Furthermore, let
A = (A1,A2) be a two-stage QPT XyZ adversary interacting with F in the Game Exptprf-sec

F (·) given in
Figure 15. A wins the game if Exptprf-sec

F (A) = 1.
We say that F is a XyZ-secure pseudorandom function (prf-sec) if for all QPT XyZ adversaries A the

advantage function

Advprf-sec
F (A) = Pr

[
Exptprf-sec

F (A) = 1
]

is negligible in the security parameter λ.

Exptprf-sec
F (A):

1 k←$ KeysF
2 b←$ {0, 1}
3 f ←$ Func[In,Out]
4 st← AO

y
F

(·)
1 ()

5 b′ ← A2(st)
6 return [[b = b′]]

Classical Oy
F (x):

1 if b = 1 return f(x)
2 else return F (k, x)

Quantum Oy
F (
∑

x,t,z
ψx,t,z |x, t, z〉):

1 Return state
∑

x,t,z
ψx,t,z |x, t⊕Oy

F (x), z〉

Figure 15: PRF security definition for a two-stage adversary A = (A1,A2); if y = c then A1 has classical
access to the oracle Oy

F (·), otherwise quantum access.

Definition 5 (Two-Stage Dual PRF Security). Let λ be the security parameter and let F : Keys× In→ Out
be a pseudorandom function. Furthermore, define F swap : In× Keys→ Out. We say that F is a dual PRF
if both F and F swap are pseudorandom functions.

We say that F is a XyZ-secure dual pseudorandom function (dprf-sec) if for all QPT XyZ adversaries A
the advantage function

Advdprf-sec
F (A) = max{Advprf-sec

F (A),Advprf-sec
F swap (A)}

is negligible in the security parameter λ.
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