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Abstract. A two-party coin-flipping protocol is ε-fair if no efficient ad-
versary can bias the output of the honest party (who always outputs a bit,
even if the other party aborts) by more than ε. Cleve [STOC ’86] showed
that r-round o(1/r)-fair coin-flipping protocols do not exist. Awerbuch
et al. [Manuscript ’85] constructed a Θ(1/

√
r)-fair coin-flipping proto-

col, assuming the existence of one-way functions. Moran et al. [Journal
of Cryptology ’16] constructed an r-round coin-flipping protocol that
is Θ(1/r)-fair (thus matching the aforementioned lower bound of Cleve
[STOC ’86]), assuming the existence of oblivious transfer.
The above gives rise to the intriguing question of whether oblivious trans-
fer, or more generally “public-key primitives”, is required for an o(1/

√
r)-

fair coin flipping. This question was partially answered by Dachman-
Soled et al. [TCC ’11] and Dachman-Soled et al. [TCC ’14], who showed
that restricted types of fully black-box reductions cannot establish o(1/

√
r)-

fair coin-flipping protocols from one-way functions. In particular, for
constant-round coin-flipping protocols, [10] yields that black-box tech-
niques from one-way functions can only guarantee fairness of order 1/

√
r.

We make progress towards answering the above question by showing
that, for any constant r ∈ N, the existence of an 1/(c ·

√
r)-fair, r-round

coin-flipping protocol implies the existence of an infinitely-often key-
agreement protocol, where c denotes some universal constant (indepen-
dent of r). Our reduction is non black-box and makes a novel use of the
recent dichotomy for two-party protocols of Haitner et al. [FOCS ’18] to
facilitate a two-party variant of the attack of Beimel et al. [FOCS ’18]
on multi-party coin-flipping protocols.

Keywords: Coin-Flipping · Fairness · Key-Agreement.

1 Introduction

In a two-party coin flipping protocol, introduced by Blum [6], the parties wish
to output a common (close to) uniform bit, even though one of the parties
may be corrupted and try to bias the output. Slightly more formally, an ε-fair
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coin flipping protocol should satisfy the following two properties: first, when
both parties behave honestly (i.e., follow the prescribed protocol), they both
output the same uniform bit. Second, in the presence of a corrupted party that
may deviate from the protocol arbitrarily, the distribution of the honest party’s
output may deviate from the uniform distribution (unbiased bit) by at most ε.
We emphasize that the above notion requires an honest party to always output
a bit, regardless of what the corrupted party does, and, in particular, it is not
allowed to abort if a cheat is detected.3 Coin flipping is a fundamental primitive
with numerous applications, and thus lower bounds on coin flipping protocols
yield analogous bounds for many basic cryptographic primitives, including other
inputless primitives and secure computation of functions that take input (e.g.,
XOR).

In his seminal work, Cleve [8] showed that, for any efficient two-party r-round
coin flipping protocol, there exists an efficient adversarial strategy that biases
the output of the honest party by Θ(1/r). The above lower bound on coin flip-
ping protocols was met for the two-party case by Moran, Naor, and Segev [20]
improving over the Θ(n/

√
r)-fairness achieved by the majority protocol of Awer-

buch, Blum, Chor, Goldwasser, and Micali [2]. The protocol of [20], however, uses
oblivious transfer; to be compared with the protocol of [2] that can be based on
any one-way function. An intriguing open question is whether oblivious transfer,
or more generally “public-key primitives”, is required for an o(1/

√
r)-fair coin

flip. The question was partially answered in the black-box setting by Dachman-
Soled, Lindell, Mahmoody, and Malkin [10] and Dachman-Soled, Mahmoody,
and Malkin [11], who showed that restricted types of fully black-box reductions
cannot establish o(1/

√
r)-bias coin flipping protocols from one-way functions. In

particular, for constant-round coin flipping protocols, [10] yields that black-box
techniques from one-way functions can only guarantee fairness of order 1/

√
r.

1.1 Our Results

Our main result is that constant-round coin flipping protocols with better bias
compared to the majority protocol of [2] imply the existence of infinitely-often
key-agreement. We recall that infinitely-often key-agreement protocols satisfy
correctness (parties agree on a common bit with overwhelming probability),
and, for an infinite number of security parameters, no efficient eavesdropper can
deduce the output with probability noticeably far from a random guess.4

Theorem 1.1 (Main result, informal). For any (constant) r ∈ N, the exis-
tence of an 1/(c ·

√
r)-fair, r-round coin flipping protocol implies the existence

an infinitely-often key-agreement protocol, for c > 0 being a universal constant
(independent of r).

3 Such protocols are typically addressed as having guaranteed output delivery, or, abus-
ing terminology, as fair.

4 While infinitely-often key-agreement protocols are useless from a cryptographic point
of view, constructing such protocols appears to be as hard as obtaining full-blown
key agreement.
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As in [8, 10, 11], our result extends via a simple reduction to general multi-
party coin flipping protocols (with more than two-parties) without an honest
majority. Our non black-box reduction makes a novel use of the recent dichotomy
for two-party protocols of Haitner et al. [12]. Specifically, assuming that io-key-
agreement does not exist and applying Haitner et al.’s dichotomy, we show that
a two-party variant of the recent multi-party attack of Beimel et al. [3] yields a
1/(c ·

√
r)-bias attack.

1.2 Our Technique

Let Π = (A,B) be a r-round two-party coin flipping protocol. We show that
the nonexistence of key-agreement protocols yields an efficient Θ(1/

√
r)-bias

attack on Π. We start by describing the 1/
√
r-bias inefficient attack of Cleve

and Impagliazzo [9], and the approach of Beimel et al. [3] towards making this
attack efficient. We then explain how to use the recent results by Haitner et al.
[12] to obtain an efficient attack (assuming the nonexistence of io-key-agreement
protocols).

Cleve and Impagliazzo’s Inefficient Attack We describe the inefficient
1/
√
r-bias attack due to Cleve and Impagliazzo [9]. Let M1, . . . ,Mr denote the

messages in a random execution of Π, and let C denote the (without loss of
generality) always common output of the parties in a random honest execution
of Π. Let Xi = E [C |M≤i]. Namely, M≤i = M1, . . . ,Mi denotes the partial
transcript of Π up to and including round i, and Xi is the expected outcome
of the parties in Π given M≤i. It is easy to see that X0, . . . , Xr is a martingale
sequence: E [Xi | X0, . . . , Xi−1] = Xi−1 for every i. Since the parties in an honest
execution of Π output a uniform bit, it holds that X0 = Pr [C = 1] = 1/2 and
Xr ∈ {0, 1}. Cleve and Impagliazzo [9] (see Beimel et al. [3] for an alternative
simpler proof) prove that, for such a sequence (omitting absolute values and
constant factors),

Gap: Pr
[
∃i ∈ [r] : Xi −Xi−1 ≥ 1/

√
r
]
≥ 1/2. (1)

Let the ith backup value of party P, denoted ZP
i , be the output of party

P if the other party aborts prematurely after the ith message was sent (recall
that the honest party must always output a bit, by definition). In particular, ZP

r

denotes the final output of P (if no abort occurred). We claim that without loss
of generality for both P ∈ {A,B} it holds that

Backup values approximate outcome: (2)

Pr
[
∃i ∈ [r] :

∣∣Xi −E
[
ZP
i |M≤i

]∣∣ ≥ 1/2
√
r
]
≤ 1/4.

To see why, assume Equation (2) does not hold. Then, the (possibly inefficient)
adversary controlling P ∈ {A,B}\P that aborts at the end of round i if (−1)1−z ·
(Xi − E

[
ZP
i |M≤i

]
) ≥ 1/

√
r, for suitable z ∈ {0, 1}, biases the output of P

towards 1− z by Θ(1/
√
r).
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Finally, since the coins of the parties are independent conditioned on the
transcript (a fundamental fact about protocols), if party A sends the (i + 1)
message then

Independence: E
[
ZB
i |M≤i

]
= E

[
ZB
i |M≤i+1

]
. (3)

Combining the above observations yields that without loss of generality:

Pr
[
∃i ∈ [r] : A sends the ith message ∧Xi −E

[
ZB
i−1 |M≤i

]
≥ 1/2

√
r
]
≥ 1/8.

(4)

Equation (4) yields the following (possibly inefficient) attack for a corrupted
party A biasing B’s output towards zero: before sending the ith message Mi,
party A aborts if Xi − E

[
ZB
i−1 |M≤i

]
≥ 1/2

√
r. By Equation (4), this attack

biases B’s output towards zero by Ω(1/2
√
r).

The clear limitation of the above attack is that, assuming one-way func-
tions exist, the value of Xi = E [C |M≤i = (m1, . . . ,mi)] and the value of
E
[
ZP
i |M≤i = (m1, . . . ,mi)

]
might not be efficiently computable as a function

of t.5 Facing this difficulty, Beimel et al. [3] considered the martingale sequence
Xi = E

[
C | ZP

≤i
]

(recall that ZP
i is the ith backup value of P). It follows that,

for constant-round protocols, the value of Xi is only a function of a constant size
string, and thus it is efficiently computable ([3] have facilitated this approach for
protocols of super-constant round complexity, see Footnote 6). The price of using
the alternative sequence X1, . . . , Xr is that the independence property (Equa-
tion (3)) might no longer hold. Yet, [3] manage to facilitate the above approach

into an efficient Ω̃(1/
√
r)-attack on multi-party protocols. In the following, we

show how to use the dichotomy of Haitner et al. [12] to facilitate a two-party
variant of the attack from [3].

Nonexistence of Key-Agreement Implies an Efficient Attack Let Up
denote the Bernoulli random variable taking the value 1 with probability p, and

let P
c
≈ρQ stand for Q and P are ρ-computationally indistinguishablity (i.e., an

efficient distinguisher cannot tell P from Q with advantage better than ρ). We
are using two results by Haitner et al. [12]. The first one given below holds for
any two-party protocol.

Theorem 1.2 (Haitner et al. [12]’s forecaster, informal). Let ∆ = (A,B)
be a single-bit output (each party outputs a bit) two-party protocol. Then, for
any constant ρ > 0, there exists a constant output-length poly-time algorithm
(forecaster) F mapping transcripts of ∆ into (the binary description of) pairs in
[0, 1]× [0, 1] such that the following holds: let (X,Y, T ) be the parties outputs and
transcript in a random execution of ∆ , then

– (X,T )
c
≈ρ (UpA , T )(pA,·)←F(T ), and

5 For instance, the first two messages might contain commitments to the parties’
randomness.
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– (Y, T )
c
≈ρ (UpB , T )(·,pB)←F(T ).

Namely, given the transcript, F forecasts the output-distribution for each party
in a way that is computationally indistinguishable from (the distribution of) the
real output.

Consider the (r + 1)-round protocol Π̃ = (Ã, B̃), defined by Ã sending a

random i ∈ [r] to B̃ as the first message and then the parties interact in a
random execution of Π for the first i rounds. At the end of the execution, the
parties output their ith backup values zAi and zBi and halt. Let F be the forecaster

for Π̃ guaranteed by Theorem 1.2 for ρ = 1/r2 (note that ρ is indeed constant).
A simple averaging argument yields that

(ZP
i ,M≤i)

c
≈1/r (UpP ,M≤i)(pA,pB)←F(M≤i) (5)

for both P ∈ {A,B} and every i ∈ [r], letting F(m≤i) = F(i,m≤i). Namely, F is
a good forecaster for the partial transcripts of Π.

Let M1, . . . ,Mr denote the messages in a random execution of Π and let
C denote the output of the parties in Π. Let Fi =

(
FA
i , F

B
i

)
= F(M≤i) and

let Xi = E [C | F≤i]. It is easy to see that X1, . . . , Xr is a martingale sequence
and that X0 = 1/2. We assume without loss of generality that the last message
of Π contains the common output. Thus, it follows from Equation (5) that
Fr ≈ (C,C) ∈ {(0, 0), (1, 1)} (otherwise, it will be very easy to distinguish the
forecasted outputs from the real ones, given Mr). Hence, similarly to Section 1.2,
it holds that

Gap: Pr
[
∃i ∈ [r] : Xi −Xi−1 ≥ 1/

√
r
]
≥ 1/2. (6)

Since Fi has constant-size support and since Π is constant round, it follows that
Xi is efficiently computable from M≤i.

6

Let ZP
i denote the backup value computed by party P in round i of a random

execution of Π. The indistinguishablity of F yields that E
[
ZP
i | F≤i

]
≈ FP

i .
Similarly to Section 1.2, unless there is a simple 1/

√
r-attack, it holds that

Backup values approximate outcome: (7)

Pr
[
∃i ∈ [r] :

∣∣Xi −E
[
ZP
i | F≤i

]∣∣ ≥ 1/2
√
r
]
≤ 1/4.

Thus, for an efficient variant of [9]’s attack, it suffices to show that

Independence: E
[
ZP
i | F≤i

]
≈ E

[
ZP
i | F≤i+1

]
. (8)

6 In the spirit of Beimel et al. [3], we could have modified the definition of the Xi’s
to make them efficiently computable even for non constant-round protocols. The
idea is to define Xi = E [C | Fi, Xi−1]. While the resulting sequence might not be
a martingale, [3] proves that a 1/

√
r-gap also occurs with constant probability for

such a sequence. Unfortunately, we cannot benefit from this improvement, since the
results of Haitner et al. [12] only guarantees indistinguishablity for constant ρ, which
makes it useful only for attacking constant-round protocols.
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for every P ∈ {A,B} and round i in which party P ∈ {A,B} \ {P} sends the
(i+ 1) message. However, unlike Equation (3) in Section 1.2, Equation (8) does
not hold unconditionally (in fact, assuming oblivious transfer exists, the implied
attack must fail for some protocols, yielding that Equation (8) is false for these
protocols). Rather, we relate Equation (8) to the existence of a key-agreement
protocol. Specifically, we show that if Equation (8) is not true, then there exists
a key-agreement protocol.

Proving that Fi+1 and ZP
i are approximately independent given F≤i.

The next (and last) argument is the most technically challenging part of our
proof. At this time, we provide a brief yet meaningful overview of the technique.
The full details are provided in the main body (Claim 3.8 in Section 3).

We show that assuming nonexistence of io-key-agreement, Fi+1 and ZP
i are

approximately independent given F≤i. In more detail, the triple (ZP
i , Fi+1, F≤i)

is ρ-indistinguishable from (Y1, Y2, F≤i) where (Y1, Y2) is a pair of random vari-
ables that are mutually independent given F≤i. It would then follow that
E
[
ZP
i | Fi+1, F≤i

]
≈ E [Y1 | Y2, F≤i] = E [Y1 | F≤i] ≈ E

[
ZP
i | F≤i

]
as required.

To this end, we use a second result by Haitner et al. [12].7

Theorem 1.3 (Haitner et al. [12]’s dichotomy, informal). Let ∆ = (A,B)
be an efficient single-bit output two-party protocol and assume infinitely-often
key-agreement protocol does not exist. Then, for any constant ρ > 0, there
exists a poly-time algorithm (decorrelator) Dcr mapping transcripts of ∆ into
[0, 1] × [0, 1] such that the following holds: let (X,Y, T ) be the parties’ outputs
and transcript in a random execution of ∆, then

(X,Y, T )
c
≈ρ (UpA , UpB , T )(pA,pB)←Dcr(T ).

Namely, assuming io-key-agreement does not exist, the distribution of the par-
ties’ output given the transcript is ρ-close to the product distribution given by
Dcr. We assume for simplicity that the theorem holds for many-bit output pro-
tocols and not merely single bit (we get rid of this assumption in the actual
proof).

We define another variant Π̂ of Π that internally uses the forecaster F, and
show that the existence of a decorrelator for Π̂ implies that Fi+1 and ZP

i are ap-
proximately independent given F≤i, and Equation (8) follows. For concreteness,
we focus on party P = B.

Fix i such that A sends the (i + 1) message in Π and define protocol Π̂ =

(Â, B̂) according to the following specifications: the parties interact just as in Π

for the first i rounds; then B̂ outputs the ith backup value of B and Â internally
computes mi+1 and outputs fi+1 = F(m≤i+1). By Theorem 1.3 there exists an

efficient decorrelator Dcr for Π̂ with respect to ρ = 1/r. That is:

7 Assuming the nonexistence of key-agreement protocols, Theorem 1.3 implies Theo-
rem 1.2. Yet, we chose to use both results to make the text more modular.
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(Fi+1, Z
B
i ,M≤i)

c
≈1/r (UpÂ , UpB̂ ,M≤i)(pÂ,pB̂)←Dcr(M≤i)

, (9)

where now pÂ describes a non-Boolean distribution, and UpÂ denotes an inde-
pendent sample from this distribution.

Since F and Dcr both output an estimate of (the expectation of) ZB
i |M≤i

in a way that is indistinguishable from the real distribution of ZB
i (given M≤i),

both algorithms output essentially the same value. Otherwise, the “accurate”
algorithm can be used to distinguish the output of the “inaccurate” algorithm
from the real output. It follows that

(UpÂ , UpB̂ ,M≤i)(pÂ,pB̂)←Dcr(M≤i)

c
≈1/r (UpÂ , UF B

i
,M≤i)(pÂ,·)←Dcr(M≤i)

(10)

Using a data-processing argument in combination with Equations (9) and (10),
we deduce that(

Fi+1, Z
B
i , F≤i

) c
≈1/r

(
UpÂ , UpB̂ , F≤i

)
(pÂ,pB̂)←Dcr(M≤i)

(11)

c
≈1/r

(
UpÂ , UF B

i
, F≤i

)
(pÂ,·)←Dcr(M≤i)

. (12)

Finally, conditioned on F≤i, we observe that the pair of random variables
(UpÂ , UF B

i
)(pÂ,·)←Dcr(M≤i)

are mutually independent since UF B
i

is sampled inde-

pendently according to FB
i , and FB

i is fully determined by F≤i.

1.3 Related Work

We review some of the relevant work on fair coin flipping protocols.

Necessary hardness assumptions. This line of work examines the minimal
assumptions required to achieve an o(1/

√
r)-bias two-party coin flipping pro-

tocols, as done in this paper. The necessity of one-way functions for weaker
variants of coin flipping protocol where the honest party is allowed to abort if
the other party aborts or deviates from the prescribed protocol, were consid-
ered in [17, 18, 13, 5]. More related to our bound is the work of Dachman-Soled
et al. [10] who showed that any fully black-box construction of O(1/r)-bias two-
party protocols based on one-way functions (with r-bit input and output) needs
Ω(r/ log r) rounds, and the work of Dachman-Soled et al. [11] showed that there
is no fully black-box and function oblivious construction of O(1/r)-bias two-
party protocols from one-way functions (a protocol is function oblivious if the
outcome of protocol is independent of the choice of the one-way function used in
the protocol). For the case we are interested in, i.e. constant-round coin flipping
protocols, [10] yields that black-box techniques from one-way functions can only
guarantee fairness of order 1/

√
r.
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Lower bounds. Cleve [8] proved that, for every r-round two-party coin flipping
protocol, there exists an efficient adversary that can bias the output by Ω(1/r).
Cleve and Impagliazzo [9] proved that, for every r-round two-party coin flipping
protocol, there exists an inefficient fail-stop adversary that biases the output by
Ω(1/

√
r). They also showed that a similar attack exists if the parties have access

to an ideal commitment scheme. All above bounds extend to the multi-party case
(with no honest majority) via a simple reduction. Very recently, Beimel et al. [3]
showed that any r-round n-parties coin flipping with nk > r, for some k ∈ N,
can be biased by 1/(

√
r · (log r)k). Ignoring logarithmic factors, this means that

if the number of parties is rΩ(1), the majority protocol of [2] is optimal.

Upper bounds. Blum [6] presented a two-party two-round coin flipping pro-
tocol with bias 1/4. Awerbuch et al. [2] presented an n-party r-round protocol
with bias O(n/

√
r) (the two-party case appears also in Cleve [8]). Moran et al.

[19] solved the two-party case by giving a two-party r-round coin flipping proto-
col with bias O(1/r). Haitner and Tsfadia [14] solved the three-party case up to
poly-logarithmic factor by giving a three-party coin flipping protocol with bias
O(polylog(r)/r). Buchbinder et al. [7] showed an n-party r-round coin flipping

protocol with bias Õ(n32n/r
1
2+

1

2n−1−2 ). In particular, their protocol for four par-

ties has bias Õ(1/r2/3), and for n = log log r their protocol has bias smaller than
Awerbuch et al. [2].

For the case where less than 2/3 of the parties are corrupt, Beimel et al. [4]

showed an n-party r-round coin flipping protocol with bias 22
k

/r, tolerating up
to t = (n+ k)/2 corrupt parties. Alon and Omri [1] showed an n-party r-round

coin flipping protocol with bias Õ(22
n

/r), tolerating up to t corrupted parties,
for constant n and t < 3n/4.

1.4 Open Questions

We show that constant-round coin flipping protocol with “small” bias (i.e.,
o(1/
√
r)-fair, for r round protocol) implies io-key-agreement. Whether such a

reduction can be extended to protocols with super-constant round complexity
remains open. The barrier to extending our results is that the dichotomy result
of Haitner et al. [12] only guarantees indistinguishablility with constant advan-
tage (as opposed to vanishing or negligible advantage). It is worth mentioning
that for protocols of super-constant round complexity, even a black-box separa-
tion between optimal (and thus between small bias) coin flipping protocol and
one-way functions is not known.

The question of reducing oblivious transfer to optimally-fair coin flip is also
open. We recall that all known small bias coin flipping protocols rely on it
[20, 15, 7]. It is open whether the techniques of Haitner et al. [12] can provide a
similar dichotomy with respect to (io-) oblivious transfer (as opposed to io-key-
agreement) allowing for the realization of oblivious transfer from o(1/

√
r)-fair

(constant round) coin flip via the techniques of the present paper.
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Paper Organization

Basic definitions and notation used through the paper are given in Section 2.
The formal statement and proof of the main theorem are given in Section 3.

2 Preliminaries

2.1 Notation

We use calligraphic letters to denote sets, uppercase for random variables and
functions, lowercase for values. For a, b ∈ R, let a ± b stand for the interval
[a − b, a + b]. For n ∈ N, let [n] = {1, . . . , n} and (n) = {0, . . . , n}. Let poly
denote the set of all polynomials, let ppt stand for probabilistic polynomial time
and pptm denote a ppt algorithm (Turing machine). A function ν : N → [0, 1]
is negligible, denoted ν(n) = neg(n), if ν(n) < 1/p(n) for every p ∈ poly and
large enough n. For a sequence x1, . . . , xr and i ∈ [r], let x≤i = x1, . . . , xi and
x<i = x1, . . . , xi−1.

Given a distribution, or random variable, D, we write x ← D to indicate
that x is selected according to D. Given a finite set S, let s← S denote that s is
selected according to the uniform distribution over S. The support of D, denoted
Supp(D), be defined as {u ∈ U : D(u) > 0}. The statistical distance between two
distributions P and Q over a finite set U , denoted as SD(P,Q), is defined as
maxS⊆U |P (S)−Q(S)| = 1

2

∑
u∈U |P (u)−Q(u)|. Distribution ensembles X =

{Xκ}κ∈N and Y = {Yκ}κ∈N are δ-computationally indistinguishable in the set

K, denoted by X
c
≈K,δ Y , if for every pptm D and sufficiently large κ ∈ K:

|Pr [D(1κ, Xκ) = 1]− Pr [D(1κ, Yκ) = 1]| ≤ δ.

2.2 Protocols

Let Π = (A,B) be a two-party protocol. The protocol Π is ppt if the running
time of both A and B is polynomial in their input length (regardless of the party
they interact with). We denote by (A(x),B(y))(z) a random execution of Π with
private inputs x and y, and common input z, and sometimes abuse notation and
write (A(x),B(y))(z) for the parties’ output in this execution.

We will focus on no-input two-party single-bit output ppt protocol: the only
input of the two ppt parties is the common security parameter given in unary
representation. At the end of the execution, each party outputs a single bit.
Throughout, we assume without loss of generality that the transcript contains
1κ as the first message. Let Π = (A,B) be such a two-party single-bit output

protocol. For κ ∈ N, let CA,κ
Π , CB,κ

Π and TκΠ denote the outputs of A, B and the
transcript of Π, respectively, in a random execution of Π(1κ).

Fair Coin Flipping Protocols. Since we are concerned with a lower bound,
we only give the game-based definition of coin flipping protocols (see [15] for the
stronger simulation-based definition).
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Definition 2.1 (Fair coin flipping protocols). A ppt single-bit output two-
party protocol Π = (A,B) is an ε-fair coin flipping protocol if the following holds.

Output delivery: The honest party always outputs a bit (even if the other
party acts dishonestly, or aborts).

Agreement: The parties always output the same bit in an honest execution.

Uniformity: Pr
[
CA,κ
Π = b

]
= 1/2 (and thus Pr

[
CB,κ
Π = b

]
= 1/2), for both

b ∈ {0, 1} and all κ ∈ N.
Fairness: For any ppt A∗ and b ∈ {0, 1}, for sufficiently large κ ∈ N it holds

that
Pr
[
CB,κ
Π = b

]
≤ 1/2 + ε, and the same holds for the output bit of A.

Key-Agreement. We focus on single-bit output key-agreement protocols.

Definition 2.2 (Key-agreement protocols). A ppt single-bit output two-
party protocol Π = (A,B) is io-key-agreement, if there exist an infinite K ⊆ N

such that the following hold for κ’s in K:

Agreement. Pr
[
CA,κ
Π = CB,κ

Π

]
≥ 1− neg(κ).

Secrecy. Pr
[
Eve(TκΠ) = CA,κ

Π

]
≤ 1/2 + neg(κ), for every ppt Eve.

2.3 Martingales

Definition 2.3 (Martingales). Let X0, . . . , Xr be a sequence of random vari-
ables. We say that X0, . . . , Xr is a martingale sequence if E [Xi+1 | X≤i = x≤i] =
xi for every i ∈ [r − 1].

In plain terms, a sequence is a martingale if the expectation of the next point
conditioned on the entire history is exactly the last observed point. One way
to obtain a martingale sequence is by constructing a Doob martingale. Such
a sequence is defined by Xi = E [f(Z) | Z≤i], for arbitrary random variables
Z = (Z1, . . . , Zr) and a function f of interest. We will use the following fact
proven by [9] (we use the variant as proven in [3]).

Theorem 2.1. Let X0, . . . , Xr be a martingale sequence such that Xi ∈ [0, 1],
for every i ∈ [r]. If X0 = 1/2 and Pr [Xr ∈ {0, 1}] = 1, then

Pr

[
∃i ∈ [r] s.t. |Xi −Xi−1| ≥

1

4
√
r

]
≥ 1

20
.

3 Fair Coin Flipping to Key-Agreement

In this section, we prove our main result: if there exist constant-round coin
flipping protocols which improve over the 1/

√
r-bias majority protocol of [2], then

infinitely-often key-agreement exists as well. Formally, we prove the following
theorem.
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Theorem 3.1. The following holds for any (constant) r ∈ N: if there exists an
r-round, 1

25600
√
r

-fair two-party coin flipping protocol, see Definition 2.1, then

there exists an infinitely-often key-agreement protocol.8,9

Before formally proving Theorem 3.1, we briefly recall the outline of the proof
as presented in the introduction (we ignore certain constants in this outline). We
begin with a good forecaster for the coin flipping protocol Π (which must exist,
according to [12]), and we define an efficiently computable conditional expected
outcome sequence X = (X0, . . . , Xr) for Π, conditioned on the forecaster’s out-
puts. Then, we show that (1) the ith backup value (default output in case the
opponent aborts) should be close to Xi; otherwise, an efficient attacker can use
the forecaster to bias the output of the other party (this attack is applicable
regardless of the existence of infinitely-often key-agreement). And (2), since X
is a martingale sequence, “large” 1/

√
r-gaps are bound to occur in some round,

with constant probability. Hence, combining (1) and (2), with constant proba-
bility, for some i, there is a 1/

√
r-gap between Xi and the forecasters’ prediction

for one party at the preceding round i− 1. Therefore, unless protocol Π implies
io-key-agreement, the aforementioned gap can be exploited to bias that party’s
output by 1/

√
r, by instructing the opponent to abort as soon as the gap is de-

tected. In more detail, the success of the attack requires that (3) the event that
a gap occurs is (almost) independent of the backup value of the honest party.
It turns out that if Π does not imply io-key-agreement, this third property is
guaranteed by the dichotomy theorem of [12]. In summary, if io-key-agreement
does not exist, then protocol Π is at best 1/

√
r-fair.

Moving to the formal proof, fix an r-round, two-party coin flipping protocol
Π = (A,B) (we assume nothing about its fairness parameter for now). We asso-
ciate the following random variables with a random honest execution of Π(1κ).
Let Mκ = (Mκ

1 , . . . ,M
κ
r ) denote the messages of the protocol and let Cκ denote

the (always) common output of the parties. For i ∈ {0, . . . , r} and P ∈ {A,B}, let

ZP,κ
i be the “backup” value party P outputs, if the other party aborts after the

ith message was sent. In particular, ZA,κ
r = ZB,κ

r = Cκ and Pr [Cκ = 1] = 1/2.

Forecaster for Π. We are using a forecaster for Π, guaranteed by the following
theorem (proof readily follows from Haitner et al. [12, Thm 3.8]).

Theorem 3.2 (Haitner et al. [12], existence of forecasters). Let ∆ be a
no-input, single-bit output two-party protocol. Then for any constant ρ > 0, there
exists a ppt constant output-length algorithm F (forecaster) mapping transcripts
of ∆ into (the binary description of) pairs in [0, 1] × [0, 1] and an infinite set
K ∈ N such that the following holds: let CA,κ, CB,κ and Tκ denote the parties’
outputs and protocol transcript, respectively, in a random execution of ∆(1κ).

8 Definition 2.1 requires perfect uniformity: the common output in an honest execution
is an unbiased bit. The proof given below, however, easily extends to any non-trivial
uniformity condition, e.g., the common output equals 1 with probability 3/4.

9 We remark that we did not optimize the value of the constant.
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Let m(κ) ∈ poly be a bound on the number of coins used by F on transcripts in
supp(Tκ), and let Sκ be a uniform string of length m(κ). Then,

– (CA,κ, Tκ, Sκ)
c
≈ρ,K (UpA , T

κ, Sκ)(pA,·)=F(Tκ;Sκ), and

– (CB,κ, Tκ, Sκ)
c
≈ρ,K (UpB , T

κ, Sκ)(·,pB)=F(Tκ;Sκ).

letting Up be a Boolean random variable taking the value 1 with probability p.10

Since we require a forecaster for all (intermediate) backup values of Π, we
apply Theorem 3.2 with respect to the following variant of protocol Π, which
simply stops the execution at a random round.

Protocol 3.3 (Π̃ =
(
Ã, B̃

)
)

Common input: security parameter 1κ.
Description:

1. Ã samples i← [r] and sends it to B̃.
2. The parties interact in the first i rounds of a random execution of Π(1κ),

with Ã and B̃ taking the role of A and B receptively.
Let zAi and zBi be the ith backup values of A and B as computed by the parties
in the above execution.

3. Ã outputs zAi , and B̃ outputs zBi .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let ρ = 10−6 · r−5/2. Let K ⊆ N and a ppt F be the infinite set and ppt
forecaster resulting by applying Theorem 3.2 with respect to protocol Π̃ and ρ,
and let Sκ denote a long enough uniform string to be used by F on transcripts
of Π̃(1κ). The following holds with respect to Π.

Claim 3.4. For I ← [r], it holds that

– (ZA,κ
I ,Mκ

≤I , S
κ)

c
≈ρ,K (UpA ,M

κ
≤I , S

κ)(pA,·)=F(M≤I ;Sκ), and

– (ZB,κ
I ,Mκ

≤I , S
κ)

c
≈ρ,K (UpB ,M

κ
≤I , S

κ)(·,pB)=F(M≤I ;Sκ),

letting F(m≤i; r) = F(i,m≤i; r).

Proof. Immediate, by Theorem 3.2 and the definition of Π̃. �

We assume without loss of generality that the common output appears on the
last message of Π (otherwise, we can add a final message that contains this
value, which does not hurt the security of Π). Hence, without loss of generality
it holds that F(m≤r; ·) = (b, b), where b is the output bit as implied by m≤r
(otherwise, we can change F to do so without hurting its forecasting quality).

For κ ∈ N, we define the random variables Fκ0 , . . . , F
κ
r , by

Fκi = (FA,κ
i , FB,κ

i ) = F(M≤i;S
κ) (13)

10 Haitner et al. [12] do not limit the output-length of F. Nevertheless, by applying
[12] with parameter ρ/2 and chopping each of the forecaster’s outputs to the first
dlog 1/ρe+ 1 (most significant) bits, yields the desired constant output-length fore-
caster.
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The expected outcome sequence. To attack the protocol, it is useful to
evaluate at each round the expected outcome of the protocol conditioned on the
forecasters’ outputs so far. To alleviate notation, we assume that the value of κ
is determined by |Sκ|.
Definition 3.1 (Expected outcome function). For κ ∈ N, i ∈ [r], f≤i ∈
supp(Fκ≤i) and s ∈ Supp(Sκ), let

g(f≤i, s) = E
[
Cκ | Fκ≤i = f≤i, S

κ = s
]
.

Namely, g(f≤i, s) is the probability that the output of the protocol in a random
execution is 1, given that F(M≤j ; s) = fj for every j ∈ (i) and M1, . . . ,Mr being
the transcript of this execution.

Expected outcome sequence is approximable. The following claim, proven
in Section 3.1, yields that the expected outcome sequence can be approximated
efficiently.

Claim 3.5. There exists pptm G such that

Pr
[
G(Fκ≤i, S

κ) /∈ g(Fκ≤i, S
κ)± ρ

]
≤ ρ,

for every κ ∈ N and i ∈ [r].

Algorithm G approximates the value of g on input (f≤i, s) ∈ supp(Fκ≤i, S
κ)

by running multiple independent instances of protocol Π(1κ) and keeping track
of the number of times it encounters f≤i and the protocol outputs one. Standard
approximation techniques yield that, unless f≤i is very unlikely, the output of
G is close to g(f≤i, s). Claim 3.5 follows by carefully choosing the number of
iterations for G and bounding the probability of encountering an unlikely f≤i.

Forecasted backup values are close to expected outcome sequence.
The following claim bounds the probability that the expected outcome sequence
and the forecaster’s outputs deviate by more than 1/8

√
r. The proof is given in

Section 3.2.

Claim 3.6. Assuming Π is 1
6400

√
r
-fair, then

Pr
[
∃i ∈ [r] s.t.

∣∣∣g(Fκ≤i, S
κ)− FP,κ

i

∣∣∣ ≥ 1/8
√
r
]
< 1/100

for both P ∈ {A,B} and large enough κ ∈ K.

Loosely speaking, Claim 3.6 states that the expected output sequence and
the forecaster’s outputs are close for a fair protocol. If not, then either of the
following attackers P∗0, P∗1 can bias the output of party P: for fixed randomness
s ∈ supp(Sκ), attacker P∗z computes fi = F(m≤i, s) for partial transcript m≤i
at round i ∈ [r], and aborts as soon as (−1)1−z(G(fκ≤i, s) − fi) ≥ 1/8

√
r − ρ.

The desired bias is guaranteed by the accuracy of the forecaster (Claim 3.4), the
accuracy of algorithm G (Claim 3.5) and the presumed frequency of occurrence
of a suitable gap. The details of the proof are given in Section 3.2.
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Expected outcome sequence has large gap. Similarly to [9], the success
of our attack depends on the occurrence of large gaps in the expected outcome
sequence. The latter is guaranteed by [9] and [3], since the expected outcome
sequence is a suitable martingale.

Claim 3.7. For every κ ∈ N, it holds that

Pr
[
∃i ∈ [r] :

∣∣g(Fκ≤i, S
κ)− g(Fκ≤i−1, S

κ)
∣∣ ≥ 1/4

√
r
]
> 1/20.

Proof. Consider the sequence of random variables Gκ0 , . . . , G
κ
r defined by Gκi =

g(Fκ≤i, S
κ). Observe that this is a Doob (and hence, strong) martingale sequence,

with respect to the random variables Z0 = Sκ and Zi = Fκi for i ∈ [r], and
the function f(Sκ, Fκ≤r) = g(Fκ≤r, S

κ) = Fκr [0] (i.e., the function that outputs
the actual output of the protocol, as implied by Fκr ). Clearly, Gκ0 = 1/2 and
Gκr ∈ {0, 1} (recall that we assume that F(M≤r; ·) = (b, b), where b is the output
bit as implied by M≤r). Thus, the proof follows by Theorem 2.1. �

Independence of attack decision. Claim 3.4 immediately yields that the
expected values of Fi and ZP

i are close, for both P ∈ {A,B} and every i ∈ [r].
Assuming io-key-agreement does not exist, the following claim essentially states
that Fi and ZP

i remain close in expectation, even if we condition on some event
that depends on the other party’s next message. This observation will allow us
to show that, when a large gap in the expected outcome is observed by one of
the parties, the (expected value of the) backup value of the other party still lags
behind. The following claim captures the core of the novel idea in our attack,
and its proof is the most technical aspect towards proving our main result.

Claim 3.8 (Independence of attack decision). Let D be a single-bit output

pptm. For κ ∈ N and P ∈ {A,B}, let EP,κ
1 , . . . , EP,κ

r be the sequence of random

variables defined by EP,κ
i = D(Fκ≤i, S

κ) if P sends the ith message in Π(1κ), and

EP,κ
i = 0 otherwise.

Assume io-key-agreement protocols do not exist. Then, for any P ∈ {A,B}
and infinite subset K′ ⊆ K, there exists an infinite set K′′ ⊆ K′ such that

E
[
EP,κ
i+1 · (Z

P,κ
i − FP,κ

i )
]
∈ ±4rρ

for every κ ∈ K′′ and i ∈ (r − 1), where P ∈ {A,B} \ {P}.

Since E
[
EP,κ
i+1 · (Z

P,κ
i − FP,κ

i )
]

= E
[
EP,κ
i+1 ·E

[
ZP,κ
i − FP,κ

i | EP,κ
i+1 = 1

]]
, Claim 3.8

yields that the expected values of Fi and ZP
i remain close, even when condition-

ing on a likely-enough-event over the next message of P.
The proof of Claim 3.8 is given in Section 3.3. In essence, we use the recent

dichotomy of Haitner et al. [12] to show that if io-key-agreement does not exist,

then the values of EP,κ
i+1 and ZP,κ

i conditioned on M≤i (which determines the

value of FP,κ
i ), are (computationally) close to be in a product distribution.
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Putting everything together. Equipped with the above observations, we
prove Theorem 3.1.

Proof of Theorem 3.1. Let Π be an ε = 1
25600

√
r
-fair coin flipping protocol. By

Claims 3.6 and 3.7, we can assume without loss of generality that there exists
an infinite subset K′ ⊆ K such that

Pr

[
∃i ∈ [r] : A sends ith message in Π(1κ) ∧ g(Fκ≤i, S

κ)− FB,κ
i−1 ≥

1

8
√
r

]
(14)

≥ 1

80
− 1

100
=

1

400

We define the following ppt fail-stop attacker A∗ taking the role of A in Π.
We will show below that assuming io-key-agreement do not exist, algorithm A∗

succeeds in biasing the output of B towards zero by ε for all κ ∈ K′′, contradicting
the presumed fairness of Π. In the following, let G be the pptm guaranteed to
exist by Claim 3.5.

Algorithm 3.9 (A∗)

Input: security parameter 1κ.

Description:

1. Sample s← Sκ and start a random execution of A(1κ).

2. Upon receiving the (i− 1) message mi−1, do

(a) Forward mi−1 to A, and let mi be the next message sent by A.

(b) Compute fi = (fAi , f
B
i ) = F(m≤i, s).

(c) Compute g̃i = G(f≤i, s).

(d) If g̃i ≥ fBi−1 + 1/16
√
r, abort (without sending further messages).

Otherwise, send mi to B and proceed to the next round.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is clear that A∗ is a pptm. We conclude the proof showing that assuming
io-key-agreement do not exist, B’s output when interacting with A∗ is biased
towards zero by at least ε.

The following random variables are defined with respect to a a random exe-
cution of (A∗,B)(1κ). Let Sκ and Fκ = (Fκ1 , . . . , F

κ
r ) denote the values of s and

f1, . . . , fr sampled by A∗. Let ZB,κ = (ZB,κ
1 , . . . , ZB,κ

r ) denote the backup values
computed by B. For i ∈ [r], let Eκi be the event that A∗ decides to abort in round
i. Finally, let Jκ be the index i with Eκi = 1, setting it to r+ 1 if no such index
exist. Below, if we do not quantify over κ, it means that the statement holds for
any κ ∈ N.

By Claim 3.5 and Equation (14),

Pr [Jκ 6= r + 1] >
1

400
− ρ ≥ 1

800
(15)
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for every κ ∈ K′. Where since the events Eκi and Eκj for i 6= j are disjoint,

E
[
ZB,κ
Jκ−1 − F

B,κ
Jκ−1

]
= E

[
r+1∑
i=1

Eκi · (Z
B,κ
i−1 − F

B,κ
i−1)

]
(16)

=

r+1∑
i=1

E
[
Eκi · (Z

B,κ
i−1 − F

B,κ
i−1)

]
=

r∑
i=1

E
[
Eκi · (Z

B,κ
i−1 − F

B,κ
i−1)

]
.

The last inequality holds since the protocol’s output appears in the last mes-
sage, by assumption, and thus without loss of generality ZB,κ

r = FB,κ
r . Consider

the single-bit output pptm D defined as follows: on input (f≤i, s) where f≤i is
a sequence of pairs of values, i.e., f≤i = (fA1 , f

B
1 ), . . . , (fAi , f

B
i )), it outputs 1 if

G(f≤i, s) − fBi−1 ≥ 1/16
√
r, and G(f≤j , s) − fBj−1 < 1/16

√
r for all j < i. Oth-

erwise, it outputs zero. Observe that Eκi is the indicator of the event A sends
the ith message in Π(1κ) and D(Fκ≤i, S

κ) = 1, for any fixing of (Fκ, Sκ, ZB,κ).
Thus, assuming io-key-agreement protocols do not exist, Claim 3.8 yields that
that there exists an infinite set K′′ ⊂ K′ such that

E
[
Eκi+1 · (Z

B,κ
i − FB,κ

i )
]
∈ ±4rρ (17)

for every κ ∈ K′′ and i ∈ [r − 1]. Putting together Equations (16) and (17), we
conclude that, for every κ ∈ K′′,

E
[
ZB,κ
Jκ−1 − F

B,κ
Jκ−1

]
∈ ±4r2ρ. (18)

Recall that our goal is to show that E
[
ZB,κ
Jκ−1

]
is significantly smaller than 1/2.

We do so by showing that it is significantly smaller than E
[
g(Fκ≤Jκ , S

κ)
]

which
equals 1/2, since, by tower law (total expectation),

E
[
g(Fκ≤Jκ , S

κ)
]

= E [Cκ] = 1/2. (19)

Finally, let Gi be the value of G(F≤i, S
κ) computed by A∗ in the execution of

(A∗,B)(1κ) considered above, letting Gr+1 = g(Fκ≤r+1, S
κ). Claim 3.5 yields that

E
[
g(Fκ≤Jκ , S

κ)−GJκ
]
≤ 2rρ. (20)
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Putting all the above observations together, we conclude that, for every κ ∈ K′′,

E
[
ZB,κ
Jκ−1

]
= E

[
g(Fκ≤Jκ , S

κ)
]
−E

[
GJκ − FB,κ

Jκ−1

]
+ E

[
ZB,κ
Jκ−1 − F

B,κ
Jκ−1

]
−E

[
g(Fκ≤Jκ , S

κ)−GJκ
]

≤ 1

2
−E

[
GJκ − FB,κ

Jκ−1 | J
κ 6= r + 1

]
· Pr [Jκ 6= r + 1] + 4r2ρ+ 2rρ

≤ 1

2
− (1/16

√
r) · (1/800) + 4r2ρ+ 2rρ

<
1

2
− 1

25600
√
r
.

The first inequality holds by Equations (18) to (20). The second inequality holds
by the definition of Jκ and Equation (15). The last inequality holds by our choice
of ρ. �

3.1 Approximating the Expected Outcome Sequence

In this section we prove Claim 3.5, restated below.

Claim 3.10 (Claim 3.5, restated). There exists pptm G such that

Pr
[
G(Fκ≤i, S

κ) /∈ g(Fκ≤i, S
κ)± ρ

]
≤ ρ,

for every κ ∈ N and i ∈ [r].

The proof of Claim 3.10 is straightforward. Since there are only constant
number of rounds and F has constant output-length, when fixing the random-
ness of F, the domain of G has constant size. Hence, the value of of g can be
approximated well via sampling. Details below.

Let c be a bound on the number of possible outputs of F (recall that F has
constant output-length). We are using the following implementation for G. In the
following, let F((m1, . . . ,mi); s) = (F(m1; s), . . . , (F(mi; s)) (i.e., F(M≤i;S

κ) =
F≤i).

Algorithm 3.11 (G)

Parameters: v =

⌈
1
2 ·
(

2cr

ρ

)4
· ln
(

8
ρ

)⌉
.

Input: f≤i ∈ supp(Fκ≤i) and s ∈ Supp(Sκ).
Description:

1. Sample v transcripts
{
mj , cj

}
j∈[v] by taking the (full) transcripts and outputs

of v independent executions of Π(1κ).
2. For every j ∈ [v] let f ji = F(mj

≤i; s).

3. Let q =
∣∣∣{j ∈ [v] : f j≤i = f≤i

}∣∣∣ and p =
∣∣∣{j ∈ [v] : f j≤i = f≤i ∧ cj = 1

}∣∣∣.
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4. Set g̃ = p/q. (Set g̃ = 0 if q = p = 0.)
5. Output g̃.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Remark 3.1 (A more efficient approximator.). The running time of algorithm G
above is exponential in r. While this does not pose a problem for our purposes
here, since r is constant, it might leave the impression that out approach cannot
be extended to protocols with super-constant round complexity. So it is worth
mentioning that the running time of G can be reduced to be polynomial in r,
by using the augmented weak martingale paradigm of Beimel et al. [3]. Unfor-
tunately, we currently cannot benefit from this improvement, since the result
of [12] only guarantees indistinguishablity for constant ρ, which makes it useful
only for attacking constant-round protocols.

We prove Claim 3.10 by showing that the above algorithm approximates g well.

Proof of Claim 3.10. To prove the quality of G in approximating g, it suffices to
prove the claim for every every κ ∈ N, i ∈ [r] and fixed s ∈ supp(Sκ). That is

Pr
[∣∣g(F(M≤i, s), s)− G(F(M≤i, s), s)

∣∣ ≥ ρ] ≤ ρ, (21)

where the probability is also taken over the random coins of G.
Fix κ ∈ N and omit it from the notation, and fix i ∈ [r] and s ∈ Sκ. Let

Di =
{
f≤i : Pr

[
F(M≤i, s) = f≤i

]
≥ ρ/2cr

}
. By Hoeffding’s inequality [16], for

every f≤i ∈ D, it holds that

Pr [|g(f≤i, s)− G(f≤i, s)| ≥ ρ] ≤ 4 · exp
(
−2 · v · (ρ/2cr)4

)
(22)

≤ 4 · exp

(
− vρ

4

8c4r

)
≤ ρ/2.

It follows that

Pr
[∣∣g(F(M≤i, s), s)− G(F(M≤i, s), s)

∣∣ ≥ ρ]
≤ Pr

[
(F(M≤j , s) /∈ D

]
+ ρ/2

≤
∣∣Supp(F(M≤j , s))

∣∣ · ρ/2cr + ρ/2

≤ cr · ρ/2cr + ρ/2 = ρ.

�

3.2 Forecasted Backup Values are Close to Expected Outcome
Sequence

In this section, we prove Claim 3.6 (restated below).
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Claim 3.12 (Claim 3.6, restated). Assuming Π is 1
6400

√
r
-fair, then

Pr
[
∃i ∈ [r] s.t.

∣∣∣g(Fκ≤i, S
κ)− FP,κ

i

∣∣∣ ≥ 1/8
√
r
]
< 1/100

for both P ∈ {A,B} and large enough κ ∈ K.

Proof. Assume the claim does not holds for P = B and infinitely many security
parameters K (the case P = A is proven analogously). That is, for all κ ∈ K and
without loss of generality, it holds that

Pr

[
∃i ∈ [r] s.t. g(Fκ≤i, S

κ)− FB,κ
i ≥ 1

8
√
r

]
≥ 1

200
. (23)

Consider the following ppt fail-stop attacker A∗ taking the role of A in Π to
bias the output of B towards zeros.

Algorithm 3.13 (A∗)
Input: security parameter 1κ.
Description:

1. Samples s← Sκ and start a random execution of A(1κ).
2. For i = 1 . . . r:

After sending (or receiving) the prescribed message mi:

(a) Let fi = F(m≤i; s) and µi = G(f≤i, s)− fi.
(b) Abort if µi ≥ 1

8
√
r
− ρ (without sending further messages).

Otherwise, proceed to the next round.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the following, we fix a large enough κ ∈ K such that Equation (23) holds,
and we omit it from the notation when the context is clear. We show that
algorithm A∗ biases the output of B towards zero by at least 1/(6400

√
r).

We associate the following random variables with a random execution of
(A∗,B). Let J denote the index where the adversary aborted, i.e., the smallest
j such that G(F≤j , S) − FB

j ≥ 1
8
√
r
− ρ, or J = r if no abort occurred. The

following expectations are taken over (F≤i, S) and the random coins of G. We
bound E

[
ZB
J

]
, i.e. the expected output of the honest party.

E
[
ZB
J

]
(24)

= E
[
ZB
J

]
+ E [g(F≤J , S)]−E [g(F≤J , S)] + E

[
G(F≤J , S)− FB

J

]
−E

[
G(F≤J , S)− FB

J

]
= E [g(F≤J , S)]−E

[
G(F≤J , S)− FB

J

]
+ E [G(F≤J , S)− g(F≤J , S)] + E

[
ZB
J − FB

J

]
=

1

2
−E

[
G(F≤J , S)− FB

J

]
+ E [G(F≤J , S)− g(F≤J , S)] + E

[
ZB
J − FB

J

]
.

The last equation follows from E [g(F≤J , S)] = E [C] and thus E [g(F≤J , S)] = 1
2

(for a more detailed argument see Equation (19) and preceding text). We bound
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each of the terms above separately. First, observe that

Pr [J 6= r] (25)

≥ Pr

[
(∀i ∈ [r] : |G(F≤i, S)− g(F≤i, S)| ≤ ρ) ∧

(
∃j ∈ [r] : g(F≤j , S)− FB

j ≥
1

8
√
r

)]
≥ Pr

[
∃j ∈ [r] : g(F≤j , S)− Fj ≥

1

8
√
r

]
− Pr [∃i ∈ [r] : |G(F≤i, S)− g(F≤i, S)| > ρ]

≥ 1

200
− ρ

≥ 1

400
.

The penultimate inequality is by Equation (24) and Claim 3.5. It follows that

E
[
g(F≤J , S)− FB

J

]
= Pr [J 6= r] ·E

[
g(F≤J , S)− FB

J | J 6= r
]

(26)

≥ 1

400
·
(

1

8
√
r
− ρ
)
−E [G(F≤J , S)− g(F≤J , S)]

≥ 1

400
· 1

8
√
r
− 3ρ.

The penultimate inequality is by Claim 3.5. Finally, since we were taking κ large
enough, Claim 3.4 and a data-processing argument yields that

E
[
ZB
J − FB

J

]
≤ rρ (27)

We conclude that E
[
g(F≤J , S)− FB

J

]
≥ 1

400 ·
1

8
√
r
− (r + 3)ρ > 1/(6400

√
r), in

contradiction to the assumed fairness of Π. �

3.3 Independence of Attack Decision

In this section, we prove Claim 3.8 (restated below).

Claim 3.14 (Claim 3.8, restated). Let D be a single-bit output pptm. For

κ ∈ N and P ∈ {A,B}, let EP,κ
1 , . . . , EP,κ

r be the sequence of random variables

defined by EP,κ
i = D(Fκ≤i, S

κ) if P sends the ith message in Π(1κ), and EP,κ
i = 0

otherwise.
Assume io-key-agreement protocols do not exist. Then, for any P ∈ {A,B}

and infinite subset K′ ⊆ K, there exists an infinite set K′′ ⊆ K′ such that

E
[
EP,κ
i+1 · (Z

P,κ
i − FP,κ

i )
]
∈ ±4rρ

for every κ ∈ K′′ and i ∈ (r − 1), where P ∈ {A,B} \ {P}.

We prove for P = A. Consider the following variant of Π in which the party
playing A is outputting EA

i and the party playing B is outputting its backup
value.
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Protocol 3.15 (Π̂ =
(
Â, B̂

)
)

Common input: security parameter 1κ.
Description:

1. Party Â samples i← [r] and s← Sκ, and sends them to B̂.
2. The parties interact in the first i−1 rounds of a random execution of Π(1κ),

with Â and B̂ taking the role of A and B respectively.
Let m1, . . . ,mi−1 be the messages, and let zBi−1 be the (i− 1) backup output
of B in the above execution.

3. Â sets the value of eAi as follows:
If A sends the i− 1 message above, then it sets eAi = 0.
Otherwise, it
(a) Continues the above execution of Π to compute its next message mi.
(b) Computes fi = F(m≤i, s).
(c) Let eAi = D(f≤i, s).

4. Â outputs eAi and B outputs zBi−1.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We apply the the following dichotomy result of Haitner et al. [12] on the
above protocol.

Theorem 3.16 (Haitner et al. [12], Thm. 3.18, dichotomy of two-party
protocols). Let ∆ be an efficient single-bit output two-party protocol. Assume
io-key-agreement protocol do not exist, then for any constant ρ > 0 and infinite
subset K ⊆ N, there exists a ppt algorithm Dcr (decorelator) mapping transcripts
of ∆ into (the binary description of) pairs in [0, 1] × [0, 1] and an infinite set
K′ ∈ N, such that the following holds: let CA,κ, CB,κ and Tκ denote the parties’
output and protocol transcript in a random execution of ∆(1κ). Let m(κ) ∈ poly
be a bound on the number of coins used by Dcr on transcripts in supp(Tκ), and
let Sκ be a uniform string of length m(κ). Then

(CA,κ, CB,κ, Tκ, Sκ)
c
≈ρ,K′ (UpA , UpA , T

κ, Sκ)(pA,pB)=Dcr(Tκ;Sκ)

letting Up be a Boolean random variable taking the value 1 with probability p.

Proof of Claim 3.14. Assume io-key-agreement does not exits, and let K′′ ⊆ K′
and a ppt Dcr be the infinite set and ppt decorrelator resulting by applying
Theorem 3.16 with respect to protocol Π̂ and ρ. Let Ŝκ denote a long enough
uniform string to be used by Dcr on transcripts of Π̂(1κ). Then for I ← (r− 1),
letting Dcr(m≤i, s; ŝ) = Dcr(i, s,m≤i; ŝ), it holds that

(EA,κ
I+1, Z

B,κ
I ,Mκ

≤i, S
κ, Ŝκ)

c
≈ρ,K′′ (UpA , UpB ,M

κ
≤I , S

κ, Ŝκ)(pA,pB)=Dcr(M≤I ,Sκ;Ŝκ)
.

(28)

For i ∈ [r], let Wκ
i = (WA,κ

i ,WB,κ
i ) = Dcr(M≤i, S

κ; Ŝκ). The proof of Claim 3.17
follows by the following three observations, proven below, that hold for large
enough κ ∈ K′′.
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Claim 3.17. E
[
EA,κ
I+1 · Z

B,κ
I −WA,κ

I ·WB,κ
I

]
∈ ±ρ.

Claim 3.18. E
[
WA,κ
I · FB,κ

I − EA,κ
I+1 · F

B,κ
I

]
∈ ±ρ.

Claim 3.19. E
[
WA,κ
I ·WB,κ

I −WA,κ
I · FB,κ

I

]
∈ ±2ρ.

We conclude that E
[
EP,κ
I+1 · Z

P,κ
I − EP,κ

I+1 · F
P,κ
I

]
∈ ±4ρ, and thus

E
[
EP,κ
i+1 · Z

P,κ
i − EP,κ

i+1 · F
P,κ
i

]
∈ ±4rρ for every i ∈ (r − 1). �

Proving Claim 3.17.

Proof of Claim 3.17. Consider algorithm D that on input (zA, zB, ·), outputs (the
product) zAzB. By definition,

1. Pr
[
D(UW A,κ

I
, UW B,κ

I
,Mκ
≤I , S

κ) = 1
]

= E
[
UW A,κ

I
· UW B,κ

I

]
= E

[
WA,κ
I ·WB,κ

I

]
,

2. Pr
[
D(EA,κ

I+1, Z
B,κ
I ,Mκ

≤I , S
κ) = 1

]
= E

[
EA,κ
I+1 · Z

B,κ
I

]
.

Hence, the proof follows by Equation (28). �

Proving Claim 3.18.

Proof of Claim 3.18. Consider the algorithm D that on input (zA, zB, (m≤I , s)):
(1) computes (·, fB) = F(m≤I ; s), (2) samples u ← UfB , and (3) outputs zA · u.
By definition,

1. Pr
[
D(UW A,κ

I
, UW B,κ

I
,Mκ
≤I , S

κ) = 1
]

= E
[
UW A,κ

I
· UF B,κ

I

]
= E

[
WA,κ
I · FB,κ

I

]
,

2. Pr
[
D(EA,κ

I+1, Z
B,κ
I ,Mκ

≤I , S
κ) = 1

]
= E

[
EA,κ
I+1 · UF B,κ

I

]
= E

[
EA,κ
I+1 · F

B,κ
I

]
.

Hence, also in this case the proof follows by Equation (28). �

Proving Claim 3.19.

Proof of Claim 3.19. Since
∣∣∣WA,κ

I

∣∣∣ ≤ 1, it suffices to prove E
[∣∣∣WB,κ

I − FB,κ
I

∣∣∣] ≤
2ρ. We show that if E

[∣∣∣WB,κ
I − FB,κ

I

∣∣∣] > 2ρ, then there exists a distinguisher

with advantage greater than ρ for either the real outputs of Π̂ and the emulated
outputs of Dcr, or, the real outputs of Π̃ and the emulated outputs of F, in
contradiction with the assumed properties of Dcr and F.

Consider algorithm D that on input (zA, zB,m≤i, s) acts as follows: (1) sam-

ples ŝ ← Ŝκ, (2) computes (·, fB) = F(m≤i; s) and (·, wB) = Dcr(m≤i, s; ŝ), (3)
outputs zB if wB ≥ fB, and 1 − zB otherwise. We compute the difference in
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probability that D outputs 1 given a sample from Dcr(Mκ
≤I) or a sample from

F(Mκ
≤I) (we omit the superscript κ and subscript I below to reduce clutter)

Pr
[
D(U

W
A,κ
I
, U

W
B,κ
I
,Mκ

≤I , S
κ) = 1

]
− Pr

[
D(U

F
A,κ
I
, U

F
B,κ
I
,Mκ

≤I , S
κ) = 1

]
= E

[
UWB |W B ≥ F B

]
· Pr

[
W B ≥ F B

]
+ E

[
1− UWB |W B < F B

]
· Pr

[
W B < F B

]
−E

[
UFB |W B ≥ F B

]
· Pr

[
W B ≥ F B

]
−E

[
1− UFB |W B < F B

]
· Pr

[
W B < F B

]
= E

[
W B |W B ≥ F B

]
· Pr

[
W B ≥ F B

]
−E

[
W B |W B < F B

]
Pr
[
W B < F B

]
−E

[
F B |W B ≥ F B

]
· Pr

[
W B ≥ F B

]
+ E

[
F B |W B < F B

]
· Pr

[
W B < F B

]
= E

[
W B − F B |W B ≥ F B

]
· Pr

[
W B ≥ F B

]
+ E

[
−W B + F B |W B < F B

]
Pr
[
W B < F B

]
= E

[∣∣∣W B − F B
∣∣∣]

> 2ρ.

An averaging argument yields that either D is a distinguisher for the tuples
(UF A,κ

I
, UF B,κ

I
,Mκ
≤I , S

κ) and (ZA,κ
I , ZB,κ

I ,Mκ
≤I , S

κ) with advantage greater than

ρ, in contradiction with Claim 3.4, or, algorithm D is a distinguisher for the tuples
(UW A,κ

I
, UW B,κ

I
,Mκ
≤I , S

κ) and (EA,κ
I , ZB,κ

I ,Mκ
≤I , S

κ) with advantage greater than

ρ, in contradiction with Equation (28). �
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