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Abstract

Trapdoor permutations (TDP) are a fundamental primitive in cryptography. Over the years,
several variants of this notion have emerged as a result of various applications. However, it is
not clear whether these variants may be based on the standard notion of TDPs.

We study the question of whether enhanced trapdoor permutations can be based on classical
trapdoor permutations. The main motivation of our work is in the context of existing TDP-
based constructions of oblivious transfer and non-interactive zero knowledge protocols, which
require enhancements to the classical TDP notion. We prove that these enhancements are non-
trivial, in the sense that there does not exist fully blackbox constructions of enhanced TDPs
from classical TDPs.

At a technical level, we show that the enhanced TDP security of any construction in the
random TDP oracle world can be broken via a polynomial number of queries to the TDP oracle
as well as a weakening oracle, which provides inversion with respect to randomness. We also
show that the standard one-wayness of a random TDP oracle stays intact in the presence of this
weakening oracle.

1 Introduction

Trapdoor permutations (TDPs) [RSA78, Rab79] are a family of permutations, where each permu-
tation in the family is easy to compute given the underlying index key, and also easy to invert
given a corresponding trapdoor key. The classical notion of one-wayness for TDPs states that it is
hard to invert a randomly chosen permutation from the family on a random image. While classi-
cal TDPs suffice for many applications, such as public-key encryption (PKE) [Yao82] and parallel
constructions of pseudorandom synthesizers [NR99], for certain applications we need to strengthen
this basic one-wayness notion. The main reason is that in protocols in which TDPs are used, the
adversary may sometimes have some side information about the underlying image element, which
may give her some advantage.

Technically, TDPs come with a sampling algorithm S, which, on input an index key IK and
random coins R, outputs an element from the domain Domik of the permutation E(IK, ·). We call
a TDP enhanced if it is hard to find the pre-image of a random image element Y := S(IK; R)
even if the inverter is given the randomness R (along with IK). Intuitively, enhanced TDPs allow a
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sampler, given only the underlying index key, to sample an image point obliviously to its pre-image:
if we sample Y = S(IK; R) for a random R, then even with knowledge of R, we are still oblivious
to the corresponding pre-image of Y.

To see when this need of enhancement arises, consider the classical construction of hones-but-
curious oblivious transfer (OT) protocols [EGL82, GMW87]. In this setting, a receiver Alice(b, ·)
with input bit b wishes to secretly learn the message mb of Bob’s two messages (m0,m1). She does
so by sending two image elements Y1 and Y2 of a TDP E(IK, ·), where IK’s trapdoor key is only
known to Bob, in such a way that Alice knows the pre-image of Yb but not of Y1−b. She does
so by sampling Y1−b obliviously and by sampling Yb by applying E(IK, ·) on a random domain
element X. Bob sends to Alice encryptions c1 and c2 of the two bits m0 and m1, under the standard
TDP-based PKE construction, using Y0 and Y1 as the ‘encoded randomness.’ Alice can open cb

to recover Yb. In order to ensure privacy for Bob, we need to assume that the underlying TDP is
enhanced one-way.

The need for strengthening the notion of TDPs was first identified by Bellare and Yung [BY93],
noting that the previous TDP-based non-interactive zero knowledge (NIZK) construction of [FLS90]
requires the set of valid permutations to be certifiable. Goldreich [Gol04] was the first to realize
the need for enhanced TDPs in the context of OT constructions. It was also later discovered that
for the TDP-based non-interactive zero knowledge (NIZK) protocol [FLS90] the zero-knowledge
property relies on the TDP being doubly enhanced [Gol11], in addition to the certifiability property.
Informally, doubly-enhanced TDPs are enhanced TDPs that provide the feature that given an index
key IK it is possible to sample random coins Ry together with the pre-image of S(IK,Ry). As noted
in [Gol11, GR13] the main reason these requirements were not noticed earlier is because TDPs
had implicitly been assumed to be permutations over {0, 1}κ (or over domains which enable trivial
sampling algorithms). While these idealized TDPs are doubly enhanced, we do not have any
candidate constructions for them.

Faced with this difficulty, Haitner [Hai04] gives a more complicated OT protocol which works
with respect to any classical TDP with dense domains. It is not however clear whether such TDPs
may be built from classical one-way TDPs.

In summary, the possibility of basing OT or NIZK on classical TDPs remains unknown. One
way to address these questions is to investigate whether enhanced TDPs can be constructed from
standard TDPs.

1.1 Our Result and Discussion

We take a first step toward understanding the relationships between various notions of TDPs.
Our main result shows that enhanced TDPs cannot be constructed from classical TDPs in a fully
blackbox way (in the taxonomy of [RTV04]). We give an overview of our result and techniques in
Section 1.2. In what follows, we discuss the significance of our work.

TDPs are rather coarse as a primitive, since the set of assumptions from which TDPs can
currently be built is relatively small, being limited to factoring-related assumptions [RSA78, Rab79]
and obfuscation-based assumptions [BPW16]. Also, variants of the popular RSA and Rabin TDPs
(see e.g., [KKM12]) as well as variants of iO-based TDPs are already doubly enhanced [GR13,
BPW16].1 Given this state of affairs, one may ask about the motivations of this work. We provide

1The TDP construction in [BPW16] does not satisfy doubly-enhanced one-wayness, but a relaxed version of it,
which nevertheless suffices for their respective application.
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the following motivations.

• In a similar vein, Hsiao and Reyzin [HR04] draw attention to the distinction between secret-
coin collision resistant hash functions (CRHF) and public-coin CRHF by showing that the
latter cannot be constructed from the former in a blackbox way. Prior to their work, these
two notions had been deemed to be equivalent. In some sense, our result shows that a similar
situation relating to public-versus-secret coins holds in the TDP setting as well, emphasizing
the need of rigorously showing which version is required in each application and achieved by
a future construction.

• Goldreich and Rothblum [Gol11] show that the TDP-based PKE construction, when instanti-
ated with enhanced TDPs, offer properties, such as oblivious ciphertext samplability, that have
useful applications. This gives applications beyond the OT and NIZK settings, and serves as
another motivation for studying the possibility of basing enhanced TDPs on standard TDPs.

• TDPs turn out to be subtle objects to define, because after several decades of research, still
new aspects of this primitive are revealed, which turn out to be required by some applications,
but which were overlooked before. (See for example the recent work of [CL17].) Faced with
this landscape of TDP with various properties, from a theoretical point of view, one would like
to understand to what extent these notions relate to each other, elucidating and simplifying
the landscape.

Open problems. Our work leads to the following open problem: Is it possible to prove that OT
cannot be based on standard TDPs in a blackbox way? Since our work removes one path toward
this goal, our techniques may be useful in an eventual separation (if at all possible).

Other related work. There is a rich body of research on understanding the limitations of TDPs.
In particular, we know that TDPs cannot be used in a blackbox way to construct two-message
statistically-hiding commitments [Fis02], identity-based encryption [BPR+08], correlated-secure
trapdoor functions [Vah10] and verifiable random functions [FS12]. To the best of our knowledge,
all these separations still hold even if the base TDP is doubly enhanced. Haitner et al. [HHRS07] give
lower-bounds on the round complexity of blackbox statistically-hiding commitment constructions
from TDPs. There is a positive construction of TDPs from indistinguishability obfuscations (iO)
and one-way functions [BPW16], which is not so-called domain invariant. The result of Asharov
and Segev [AS16] justifies this, showing that current non-blackbox iO-based techniques are not
sufficient to give us domain-invariant TDPs.

Gertner et al [GKM+00] show that TDPs cannot be built from trapdoor functions (TDFs) in a
blackbox way. Their result is incomparable to ours (and their techniques are also different), because
their base primitive is TDFs, and in their proof they make essential of the fact that the domain of
a TDF can be different from the range. Our result in contrast is about a separation between two
notions of the same primitive, TDPs.

1.2 Technical Overview

As common in blackbox impossibility results, we will prove our impossibility by giving an oracle
relative to which the base primitive exists, but the target primitive does not. Consider a random
TDP oracle O := (g, s, e,d) with the following sub-oracles. The key-generation oracle g : {0, 1}κ 7→
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{0, 1}κ is a random injective function mapping a trapdoor key tk to an index key ik. The evaluation
oracle e(ik, ·) : {0, 1}5κ 7→ {0, 1}5κ on an index key ik is defined over all elements in {0, 1}5κ;
however, e(ik, ·) is a permutation only over a sparse subset Domik of {0, 1}5κ, where |Domik| = 2κ

(hence the name sparseness). That is, we have e(ik,Domik) = Domik.
The sampling oracle s(ik, ·) is a random injective function which allows us to sample from Domik:

given a string r ∈ {0, 1}κ, s(ik, r) returns an element in Domik. Finally, the inversion oracle d is
defined in a manner consistent with the other oracles.

The oracle O by itself is too strong. Such a randomly chosen oracle O is overly strong,
satisfying already all enhanced forms of one-wayness. Thus, it cannot be taken as is for deriving an
impossibility. To address this problem, we will add a weakening oracle u, which does not harm the
standard one-wayness of O, but which helps us break the enhanced one-wayness of any blackbox
construction (GO, SO,EO,DO). Our blackbox separation will then follow from this.

Intuition behind the weakening oracle u. As a starter, suppose we are content with u only
breaking the enhanced one-wayness of O itself (as opposed to any TDP construction based on O).
Thus, u should provide help for an inverter who has the randomness of the challenge image. A
natural choice for u would be the following: On input u(ik, r), let y := s(ik, r) and return x ∈ Domik

for which we have e(ik, x) = y.
Indeed, the above oracle u breaks the enhanced one-wayness of O. We can also see that the

oracle u does not harm the standard one-wayness of O. This is because of the sparse and random
nature of the output ranges of the sub-oracles, making the oracle u effectively useless against
standard one-wayness. However, this oracle u is not much useful beyond this simple scenario. In
particular, consider a slightly more complicated construction: A self-composing TDP construction,
whose evaluation algorithm Ee is the self-composition of e(ik, ·); i.e., Ee(ik, x) = e(ik, e(ik, x)).
An adversary A against enhanced one-wayness is given (ik, r, y), and should find x such that y =
e(ik, e(ik, x)). Given the randomness r, the adversary A may find x0 such that e(ik, x0) = y by
calling u(ik, r), but A cannot continue to get to x, because A does not have the randomness of x0.

Description of the oracle u. The above discussion directs us toward a natural choice of u: On
input (ik, r), letting y := s(ik, r), the oracle u(ik, r) returns the randomness of the pre-image of y,
not the pre-image itself. That is, letting x ∈ Domik be such that e(ik, x) = y, the oracle u(ik, r)
returns r0, where s(ik, r0) = x.

Returning to the construction example above, it is not hard to see that this new oracle u
not only breaks the enhanced one-wayness of the self-composition construction, but that of more
general k-composition constructions, in which we compose e(ik, ·) k times. One would just need to
sequentially call u k times to get down to the base pre-image.

The construction does not call u itself. We will assume that the construction (GO,SO,EO,DO),
which we want to show that can be broken by a polynomial number of queries to (O,u), does not call
u itself. This is sufficient for deriving a fully blackbox separation because the base oracle O by itself
is a one-way TDP against all poly-query adversaries with access to (O,u). Our separation model
is close to those of [GMR01, HR04], which only rule out fully-blackbox constructions, as opposed
to the earlier models of [IR89, Sim98, GKM+00], which also rule out relativizing reductions.
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Main techniques. We now give a high-level sketch of how to attack a general construction
(GO,SO,EO,DO). Let (IK,R) be the challenge input to the adversary: if Y := SO(IK; R), the
adversary should invert Y w.r.t. IK. The main difficult part in inverting Y is to reply to queries
for which we need to invert some image y w.r.t. the oracle e(ik, ·). We denote such queries as
e−1(ik, y): namely, if e(ik, x) = y, then e−1(ik, y) = x.

As in the above k-composition construction example, suppose (informally) one can start the
decryption execution of Y without having the underlying inversion key; namely, it is just a matter of
answering a few oracle queries of the form e−1(ik, y) for various (ik, y). Roughly, for any meaningful
query qu := e−1(ik, y) during this execution we will have two cases: (I) y was generated during the

process which produced (IK, ∗) $←− GO(1κ): namely, during this process there was a query/response
((ik, x) −→

e
y) or ((ik, r) −→

s
y) for some x and r, and (II) y was generated during the execution of

Y := SO(IK; R).
We will show that cases (I) and (II) are the only likely cases; this is roughly because otherwise

one can forge such a valid (ik, y) without making a corresponding query: This is very unlikely
because of the sparseness of the oracle outputs.

Let Qs be the set of all queries/responses during SO(IK; R). If during the inversion of Y Case
(II) holds, then either ((ik, x) −→

e
y) in Qs, in which case the answer to the query qu is clear, or

((ik, r) −→
s

y) is in Qs, which can be used along with the oracle u to reply to the query qu.

The main difficult part of our analysis involves handling Case (I): in this case the adversary does
not have enough information to reply to qu correctly. At a high-level, our solution is as follows.
We will distinguish between two types of such qu queries: important and immaterial. We say qu is
important if a query/response ((ik, ∗) −→

s
y) or ((ik, ∗) −→

e
y) happens with ‘good’ probability during

a random execution of X′
$←− SO(IK) followed by EO(IK,X′). If qu is important, then e−1(ik, y)

is likely to be determined by performing these two preceding executions many times. If qu is
immaterial (namely, it will not be picked up during these many sample executions), then we will
show that during the inversion of Y one may reply to qu with a random answer without making
the result of the overall inversion of Y significantly skewed. The intuition is: in this case neither of
((ik, ∗) −→

s
y) and ((ik, ∗) −→

e
y) are likely to happen during the sampling algorithm that produced

the challenge pre-image X and during EO(IK,X) which results in Y. We will use this intuition to
build hybrid oracles, denoted O♦Õ, which provide random answers to such immaterial queries but
relative to which all of IK, X and Y are valid.

In Section 4 we will give a more concrete overview of our techniques and approach by showing
how to break the enhanced one-wayness of any construction whose oracle access is of the form
(Gg,Ss,Ee,Dd). We will then give the general attack against all constructions in Section 5.

2 Preliminaries

If D is a distribution, we use x
$←− D to indicate x is sampled according to D and we use x′ ∈ D

to indicate x′ ∈ support(D). If R(x1, . . . , xn) is a randomized algorithm, then R(a1, . . . , an) denotes

the random variable R(a1, . . . , an; r), where r
$←− {0, 1}∗.

If f is a function and Dom is a set, then f(Dom)
M
= {f(x) | x ∈ Dom}.

We start with the definition of a family of trapdoor permutations. Each function E(IK, ·) in the
family acts as a permutation over a domain DomIK ⊆ {0, 1}w (for some fixed polynomial w specified
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by the permutation family), where the domain DomIK may possibly depend on IK. Moreover, this
induced permutation can be inverted using any matching trapdoor key for IK. Finally, there is a
sampling algorithm S, where S(IK) allows one to sample from DomIK.

Definition 2.1 (Trapdoor Permutations). Let w = w(κ) be an arbitrary polynomial. A family of
trapdoor permutations TDP consists of four PPT algorithms G, S, E and D defined as follows.

• G(1κ): The key generation algorithm G takes as input a security parameter 1κ and outputs a
pair (IK,TK) of index/trapdoor keys.

• S(IK; R): The sampling algorithm S takes as input an index key IK and randomness R ∈
{0, 1}κ and outputs an element X ∈ {0, 1}w. We use DomIK to denote the set of values X
which are outputted by S(IK; ·).

• E(IK,X): The evaluation algorithm E takes as input an index key IK and an element X ∈
{0, 1}w and outputs Y ∈ {0, 1}w ∪ {⊥}.

• D(TK,Y): The inversion algorithm D takes as input a trapdoor key TK, and an element
Y ∈ {0, 1}w and outputs X ∈ {0, 1}w ∪ {⊥}.

We will now define the notion of correctness, as well as two one-wayness notions. As termi-
nology, we say that an index key IK is valid if (IK, ∗) = G(1κ; R) for some randomness R.

• Correctness. For any valid index key IK, the function E(IK, ·) induces a permutation over
DomIK. Moreover, for any security parameter κ we have Pr[D(TK,E(IK,X)) = X] = 1, where

(IK,TK)
$←− G(1κ), R

$←− {0, 1}κ and X := S(IK; R).

• Standard one-wayness. For any PPT adversary we have A Pr[A(IK,Y) = D(TK,Y)] =

negl(κ), where (IK,TK)
$←− G(1κ), R

$←− {0, 1}κ and Y := S(IK; R).

• Enhanced one-wayness. For any PPT adversary A

Pr[A(IK,Y,R) = D(TK,Y)] = negl(κ),

where (IK,TK)
$←− G(1κ), R

$←− {0, 1}κ, Y := S(IK; R). Note that Y can be computed from IK
and R, but we include it separately just for notational convenience.

We now define the notion of fully-blackbox constructions, tailored to our setting. See [RTV04,
BBF13] for more general notions.

Definition 2.2 (Fully blackbox constructions). A fully-blackbox (shortly, a blackbox) construction
of an enhanced TDP from a standard TDP consists of a PPT oracle-aided construction (G,S,E,D)
and a PPT oracle-aided reduction algorithm Red satisfying the following. For any correct TDP
oracle O = (g, s, e,d) (where correctness is defined in Definition 2.1) we have

1. Correctness: (GO,SO,EO,DO) is a correct TDP;

2. Security: for any adversary A breaking the enhanced one-wayness of (GO,SO,EO,DO), the
oracle algorithm RedO,A breaks the standard one-wayness of O.
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3 Main Theorem and Proofs Roadmap

In this section we describe our main theorem and the roadmap of the proofs.
As common in impossibility results, we prove our main theorem by showing the existence of

an oracle relative to which the base primitive exists (namely, standard TDPs), but not the target
primitive (namely, enhanced TDPs). Technically, our separation model is closest to that of [HR04],
which only results in fully-blackbox separations, as opposed to the more general relativizing sepa-
rations, considered in most previous work, e.g., [IR89, Sim98, GKM+00].

Theorem 3.1 (Impossibility of Enhanced TDPs from Standard TDPs). There exists oracles
(O,u,v), where O := (g, s, e,d), such that both the following conditions hold.

1. O is a standard TDP against every polynomial-query adversary AO,u,v: That is, the prob-

ability that AO,u,v(ik, y) = x is at most negligible, where (ik, tk)
$←− g(1κ), x

$←− s(ik) and
y := e(ik, x).

2. The enhanced one-wayness of any construction (GO,SO,EO,DO) can be broken by a poly-
query adversary BreakO,u,v. That is, the probability that BreakO,u,v(IK,R,Y) = DO(TK,Y)

is non-negligible, where (IK,TK)
$←− GO(1κ), R

$←− {0, 1}∗ and Y := SO(IK; R).

As a result, there exists no fully-blackbox construction of enhanced TDPs from standard TDPs.

Roadmap: Proof of Theorem 3.1. The “as a result” part follows immediately from Parts 1
and 2 of the theorem, and thus we focus on proving these two parts. (For completeness, we show
how to derive the “as a result” part below.) As common in impossibility results, we show the
existence of the oracles (O,u,v), required by Theorem 3.1, by first describing a distribution of
oracles, and then proving results for oracles randomly chosen from this distribution. We will first
start by describing a distribution Ψ of oracles (g, s, e,d,u,v). A randomly chosen O = (g, s, e,d)
from this distribution will allow one to implement an ideal version of a TDP, which not only satisfies
standard one-wayness, but also enhanced-one-wayness. We then introduce two weakening oracles
u and v, so that the oracle O still provides standard one-wayness in the presence of u and v, but
the enhanced one-wayness of any TDP construction instantiated with O can be broken by making
a polynomial number of queries to (O,u,v).

In the following definition, whenever we say a function f : Dom → Ran with property P (e.g.,
injectivity) is a randomly chosen function we mean f is chosen uniformly at random from the space
of all functions from Dom to Ran having property P .

Definition 3.2. We define an oracle distribution Ψ that produces an ensemble of oracles (Oκ,uκ,vκ)κ.
For all κ and all ik ∈ {0, 1}κ, choose a set Dik uniformly at random under the conditions that
Dik ⊆ {0, 1}5κ and that |Dik| = 2κ.

• gκ : {0, 1}κ → {0, 1}κ is a random injective function, mapping a trapdoor key to an index key.

• sκ : {0, 1}κ × {0, 1}κ → {0, 1}5κ is a random function, where for all ik ∈ {0, 1}κ: sκ(ik, ·) is
1-1 and for all r ∈ {0, 1}κ: sκ(ik, r) ∈ Dik

• eκ : {0, 1}κ × {0, 1}5κ → {0, 1}5κ ∪ {⊥} is a random function, satisfying the following two
conditions: for all ik ∈ {0, 1}κ: eκ(ik,Dik) = Dik and for all x /∈ Dik: eκ(ik, x) = ⊥.
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• dκ : {0, 1}κ × {0, 1}5κ → {0, 1}5κ ∪ {⊥} is a function, where dκ(tk, y) is defined as follows.
Letting ik := gκ(tk), if y ∈ Dik, then letting x be the unique string satisfying eκ(ik, x) = y,
set dκ(tk, y) := x. Otherwise (i.e., if y /∈ Dik), set dκ(tk, y) := ⊥.

• uκ : {0, 1}κ × {0, 1}κ → {0, 1}κ is defined as follows. For ik ∈ {0, 1}κ and r ∈ {0, 1}κ, letting
y := sκ(ik, r) and r0 be such that y = eκ(ik, sκ(ik, r0)), set uκ(ik, r) := r0.

• vκ : {0, 1}κ×{0, 1}5κ → {⊥,>} is defined as follows: vκ(ik, x) checks whether the given input
x is in Dik or not: set vκ(ik, x) := > if x ∈ Dik, and vκ(ik, x) := ⊥, otherwise.

Redundancy of the oracle vκ. Note that the oracle vκ can be simulated by eκ. We only
include this oracle as it will simplicity notation.

Convention and notation. We will often drop the security parameter κ as a sub-index to
the oracles whenever the underlying security parameter is clear from the context. For an oracle
algorithm Ag,s,e,d we use notation such as (qu −→

g
an) to indicate that A queries g on qu and

receives an as the answer. We also use (qu −→
g

?) to indicate that the query qu is asked.

We will now give a simple-information theoretic lemma showing that a randomly chosen TDP
O is standard one-way even in the presence of the oracle u. The proof of the following theorem is
based on simple information theoretic arguments and so is omitted.

Lemma 3.3 (O is one-way relative to (O,u,v)). For any polynomial query adversary A we have

Pr[AO,u,v(ik, y) = x and e(ik, x) = y] ≤ 1
2κ/3

,

where (g, s, e,d,u,v) ← Ψ, O := (g, s, e,d), tk
$←− {0, 1}κ and ik = g(tk). This bound holds so

long as A is poly-query bounded (and unbounded otherwise).

The following lemma shows how to break the enhanced one-wayness of any candidate construc-
tion.

Lemma 3.4 (Breaking enhanced one-wayness of any construction). Let (G,S,E,D) be a candidate
blackbox construction of a TDP. There exists a polynomial query adversary Break such that

Pr[BreakO,u,v(1κ, IK,R,Y) = X] ≥ 1− 1

κ2
,

where (g, s, e,d,u,v)
$←− Ψ, O := (g, s, e,d), (IK,TK)

$←− GO(1κ), R
$←− {0, 1}∗, Y := SO(IK; R)

and X := DO(TK,Y).

Completing the Proof of Theorem 3.1. The proof of Theorem 3.1 follows easily by combining
Lemmas 3.3 and 3.4, as given below.

Proof of Theorem 3.1. We will first prove the “as a result” part of the theorem. Suppose to the
contrary that there exists an enhanced TDP construction (G,S,E,D), and let Red be the PPT secu-
rity reduction algorithm guaranteed to exist by Definition 2.2. Let (O,u,v) be the oracle shown to
exist by Parts 1 and 2 of the theorem. By Part 2 of the theorem we know that there exists a poly-
nomial query adversary BreakO,u,v which breaks the enhanced one-wayness of (GO,SO,EO,DO).
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Thus, by definition of blackbox constructions, RedBreak,O should break the standard one-wayness of
O. This however is a contradiction to Part 1, because RedBreak,O can be simulated by a polynomial
query adversary AO,u,v.

We now prove Parts 1 and 2. To show the existence of the oracles (g, s, e,d,u,v) required by
the theorem, we show

1. For a measure-one of oracles (g, s, e,d,u,v), the oracle (g, s, e,d) is standard oneway against
all polynomial-query adversaries with oracle access to (g, s, e,d,u,v).

2. For a measure-one of oracles (g, s, e,d,u,v), the adversary BreakO,u,v breaks the enhanced
one-wayness of (GO, SO,EO,DO).

The above two statements implies the existence of a specific oracle (g, s, e,d,u,v), meeting the
requirement of the theorem.

We show how to derive Condition 2 from Lemma 3.4. The proof of Condition 1 follows similarly
from Lemma 3.3.

By Lemma 3.4 we have

Pr
(O,u,v),IK,R

[BreakO,u,v(1κ, IK,R) = X] ≥ 1− 1

κ2
. (1)

Using a simple averaging argument we may obtain

Pr
(O,u,v)

[
Pr

IK,R
[BreakO,u,v(1κ, IK,R) = X] ≥ 1

κ3

]
≥ 1− 1

κ1.5
. (2)

Thus, for at most a 1
κ1.5

fraction of all oracles (O,u,v), the adversary BreakO,u,v, on security
parameter 1κ, recovers the pre-image corectly with probability less than 1

κ3
. Since

∑ 1
κ1.5

converges,
by the Borel-Cantelli Lemma we have that for a measure-one of oracles (O,u,v), the adversary
BreakO,u,v breaks the enhanced-onewayness of (GO, SO,EO,DO): for all sufficiently large κ, the
adversary recovers X from BreakO,u,v(1κ, IK,R,Y) with probability at least 1

κ3
.

Roadmap for the Proof of Lemma 3.4. We are left with proving Lemma 3.4, which constitutes
the main technical bulk of our work. As a warp up, first in Section 4 we will prove and give an
overview of our techniques for a special case of Lemma 3.4: that in which the oracle access of the
construction is of the form (Gg,Ss,Ee,Dd). Then, we will give the proof for the general case in
Section 5.

4 Proof of Lemma 3.4: Special Case (Gg, Ss,Ee,Dd)

In this section we show how to break the enhanced one-wayness of a simple class of TDP construc-
tions, those in which the oracle access is of the form (Gg, Ss,Ee,Dd). We call such constructions
type-1. We first start with a general overview.

Setup. The input to the adversary BreakO,u,v is (IK,R,Y), where (IK,TK)
$←− Gg(1κ), R

$←−
{0, 1}∗ and Y := Ss(IK; R). The goal of Break is to find X such that X := Dd(TK,Y).

9



High-level idea of Break’s strategy. Consider a partial fake oracle g′ and randomness R′ under
which we have Gg′(R′) = (IK, T̃K) for some T̃K. By a partial oracle we mean an oracle that is
defined only on a small set of all queries, those that occur exactly during the execution of Gg′(R′).
Such a fake oracle g′ and corresponding matching randomness R′ can be found by doing expensive
offline computation and without interacting at all with the real oracles (O,u,v).

Now consider the effect of super-imposing g′ on the real oracle g to get an oracle g̃. This oracle
g̃ is defined according to g′ on all queries defined in g′, and otherwise is defined as in g.

For this perturbed oracle g̃, we will define a correspondingly perturbed oracle d̃ so that

(g̃, s, e, d̃) is a valid TDP. Now since we know Gg̃(R′) = (IK, T̃K), we must have X = Dd̃(T̃K,Y),
and thus recovering the challenge pre-image X amounts to one’s ability to perform the execution of

Dd̃(T̃K,Y) by only making a polynomial number queries to (O,u,v). As we will see, the naive way
of performing this execution will result in an exponential number of queries to (O,u,v). Our main
technique will allow us to get around this problem by making use of the oracle u and knowledge of
R (which is the randomness underlying the image point Y).

Organization of Section 4. In Section 4.1 we will give a more detailed (but still informal)
overview of the above approach for the case in which each of the algorithms (G,S,E,D) makes only
one query. We will then formally describe an attack against any candidate many-query construction
(Gg, Ss,Ee,Dd) in the next two subsections.

4.1 General Overview: One Query Case

We will now give a concrete overview of the above abstract approach for the following type of
construction: We assume each of the algorithms (Gg, Ss,Ee,Dd) makes only one query. The input to

the adversary BreakO,u,v is (IK,R,Y), where (IK,TK)
$←− Gg(1κ), R

$←− {0, 1}∗ and Y := Ss(IK; R).
Let X denote Break’s challenge image point; namely, we have Ee(IK,X) = Y.

We sketch the main steps taken by Break, and will explain about each of them.

Sampling a fake oracle and a trapdoor key. Sample an oracle g′ and a randomness value R′

uniformly at random in such a way that

Gg′(1κ; R′) = (IK, T̃K), (3)

for some T̃K. Since G makes only one query, we may think of g′ as only one query/response pair

qa := (tk −→
g

ik). Thus, we may write Equation 3 as Gqa(1κ; R′) = (IK, T̃K).

Defining the oracle g̃. Consider an oracle g̃ := qa♦∗g, where the composed oracle qa♦∗g is
defined as follows: (qa♦∗g)(tk′) = ik if tk′ = tk; otherwise, (qa♦∗g)(tk′) = g(tk′). Briefly, the
oracle qa♦∗g first forwards a given query to qa, and if the query is not defined there, the query will
be forwarded to g.

Defining the oracle d̃. We now define d̃ in such a way that (g̃, s, e, d̃) forms a valid TDP oracle.
For any tk′ and y′, the value of d̃(tk′, y′) is formed as follows. Letting ik′ = g̃(tk′):

• If v(ik′, y′) = ⊥, then set d̃(tk′, y′) = ⊥;
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• Otherwise, letting x′ be the unique string for which we have e(ik′, x′) = y′, set d̃(tk′, y′) = x′.
Note that since we know v(ik′, y′) = > (because otherwise the previous check would hold),
by definition of e (Definition 3.2) such x′ does exist and it is unique.

Performing the execution Dd̃(T̃K,Y) is enough. It is straightforward to verify that (g̃, s, e, d̃)

forms a valid TDP oracle. Moreover, by definition of g̃ and R′, we have Gg̃(R′) = (IK, T̃K). Now

since Ee(IK,X) = Y, by completeness of the construction, we will have Dd̃(T̃K,Y) = X, where X
is Break’s challenge image point.

Executing Dd̃(T̃K,Y) efficiently? Can we execute Dd̃(T̃K,Y) by making only a polynomial
number of queries to (g, s, e,d,u)? Let us look at all the possibilities for a possible encountered
query ((tk′, y′) −→

d̃
?) below. Let ik′ := g̃(tk′), which can be computed by making at most one query

to g.

1. Simple case: ik′ 6= ik (recall that ik is defined in the query/response set qa, which in turn
forms g̃): in this case by inspection we can see that we indeed have d(tk′, y′) = d̃(tk′, y′),
and so the answer can be determined by calling d directly.

2. Simple case: ik′ = ik and v(ik, y′) = ⊥: in this case we can again easily see that d(tk′, y′) =
⊥.

3. Problematic case: ik′ = ik and v(ik, y′) 6= ⊥: in this case Break cannot right away compute
the value of d̃(tk′, y′) because in order to do so, Break must find an x′ such that e(ik, x′) = y′.

The oracle u and randomness R to the rescue. From the above discussion, the attacker
Break only needs to handle Case 3. That is, from the pair (ik, y′), upon which Line 3 is hit, and
without knowledge of ik’s trapdoor key g−1(ik), the attacker Break should find an x′ such that
e(ik, x′) = y′. Recall that D makes only one query, and so if Break gets past this “one-time”
problematic case, it will be done.

Recall that the input to Break is (IK,R,Y), where R is the randomness underlying the im-
age point Y. We claim that with all but negligible probability the following must hold: letting
(ik, y′) be the pair upon which Line 3 was hit, during the execution of Ss(IK; R) we must have a
query/response pair ((ik, r) −→

s
y′) for some r. Assuming that this claim holds, Break may then

simply call ((ik, r) −→
u

?) to get r′, and then call ((ik, r′) −→
s

?) to get x′, completing its attack.

It remains to prove the above claim. We show that if the claim does not hold, then one may
efficiently produce a pair (ik′, y′), where y′ is a valid image of s(ik′, ∗), without ever calling s(ik′, ·)
on the corresponding pre-image of y′, and without ever calling e and d at all. Due to the sparse
and random nature of the oracle s, the probability of this event is at most negligible. To produce
(ik′, y′), do the following.

1. Sample (IK,TK)
$←− Gg(1κ), R

$←− {0, 1}∗ and set Y := Ss(IK; R).

2. Form T̃K and d̃ as above. (This step is done offline, without interacting with the real oracles.)

3. Run Dd̃(T̃K,Y) and as soon as as query ((tk′, y′) −→
d̃

?) is made, return (ik′, y′), where

ik′ := g(tk′).

Our claim about the pair (ik′, y) now follows.
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4.2 Definitions and Simple Lemmas

In this section we will give some definitions and simple lemmas, which will then be used in Sec-
tion 4.3. Some of these were informally reviewed in Section 4.1.

TDP-Valid and Ψ-Valid Oracles. Recall the distribution Ψ on oracles (O,u,v) given in Def-
inition 3.2. We say that an oracle O1 := (g1, s1, e1,d1) is Ψ-valid if O1 is a possible output of
Ψ. This means in particular that the input and output sizes of the sub-routines of O1 match
those specified in Definition 3.2. We say that an oracle O2 := (g2, s2, e2,d2) is TDP valid if O2

satisfies the completeness condition of Definition 2.1. Note that if an oracle is Ψ-valid then it is
also TDP-valid, but the converse is not true.

Similarly, we say that a partial oracle O′ (which is not defined on all points) is Ψ-valid (resp.,
TDP-valid) if there exists a full Ψ-valid (resp., a full TDP-valid) oracle O such that O′ ⊆ O. Here,
O′ ⊆ O means that O agree with O′.

Definition 4.1 (Composed Oracles ♦∗). Let O := (g, s, e,d) be a Ψ-valid oracle and let

g′ := {(tk1 −→
g

ik1), . . . , (tkw −→
g

ikw)}

be a partial Ψ-valid oracle consisting of only g-type queries. We define the composed oracle
g′♦∗O := (g̃, s, e, d̃), which has perturbed key-generation and inversion oracles, as follows.

• g̃(·): for a given tk, let g̃(tk)
M
= iki if tk = tki for i ∈ [w]; otherwise, g̃(tk)

M
= g(tk).

• d̃(·, ·): for a given pair (tk, y), define d̃(tk, y) as follows. Assuming ik = g̃(tk), let d̃(tk, y)
M
=

e−1(ik, y). Here, e−1(ik, ·) is the inverse function of e(ik, ·) — i.e., e−1(ik, y) = x if for some
x, e(ik, x) = y; otherwise, e−1(ik, y) = ⊥. Note that by definition of Ψ, the function e−1(ik, ·)
is indeed well-defined.

It is straightforward to verify that the operation ♦∗ preserves completeness.

Lemma 4.2. Let O and g′ be as in Definition 4.1. Then, the composed oracle g′♦∗O is TDP-valid.

Proof. The proof is straightforward and so is omitted.

Consider a random Ψ-valid oracle (g, s, e,d,u,v). Imagine an adversary that wants to come
up with a pair (ik, y) ∈ {0, 1}κ × {0, 1}5κ of an index-key/image such that y lies in the support of
s(ik). The following lemma shows that the probability that an adversary can do this in non-trivial
way is exponentially small.

Lemma 4.3. For any polynomial query oracle adversary B with access only to the oracles (g, s,u,v)
we have

Pr
[
(ik, y)

$←− Bg,s,u,v(1κ) s.t.
(

((ik, ∗) −→
s

y) /∈ Que
)
∧ (v(ik, y) = >) ∧ (|ik| = κ))

]
≤ 1

23κ
, (4)

where (g, s, e,d,u,v)
$←− Ψ and Que is the set of all query/response pairs that Bg,s,u,v makes.

We stress that B is not allowed to make e or d queries.2

2We may define and prove a version of this lemma which allows the adversary B to also make e and d queries.
This current version however suffices for what we need for the simple separation we show in this section.

12



Proof. The proof is based on a simple information-theoretic argument and so we sketch the main
idea. Assume w.l.o.g. that B before returning its guess (ik, y), it calls the oracle v on (ik, y). This
only increases the number of queries by one.

At any point of execution, say the next query of B is a hit if the next query is a v query, say
((ik′, y′) −→

v
?), which is a valid forgery; namely, (a) ((ik′, ∗) −→

s
y′) /∈ Que, (b) |ik′| = κ and (c)

v(ik′, y′) = >.
At any point, the probability that the next query is a hit given we had no hits before is at most
2κ

25κ − 2κ
. The proof now follows by a union bound.

4.3 Many-Query Case

Fix the candidate type-1 construction (Gg,Ss,Ee,Dd). We will build an adversary Breakg,s,u,v which
breaks the enhanced one-wayness of (Gg, Ss,Ee,Dd) by making a polynomial number of queries to
its oracles. The attacker Break does not need to call the oracles e and d during its attack, so we
did not put them as superscripts to Break.

For simplicity we assume the following for all constructions (G,S,E,D) discussed in this paper.
This assumption is made only for simplicity and all our results can be proved without it.

Assumption 4.4. Each of the algorithms GO, SO, EO and DO on a security parameter 1κ call
their oracle O always on the same security parameter 1κ.

We will now describe the attacker Break. We will use notation and concepts from Definition 4.1.

Attacker Breakg,s,u,v(IK,R,Y):

Oracles: (g, s,u,v), where (g, s, e,d,u,v)
$←− Ψ. Set O := (g, s, e,d).

Input: (IK,R,Y), where (IK, ∗) $←− Gg(1κ), R
$←− {0, 1}κ and Y := Ss(IK; R).

Operations:

1. Sample (in an offline manner) a pair (g′,R′) uniformly at random, where g′ is a partial Ψ-

valid oracle and R′ ∈ {0, 1}κ, under the condition that (IK, T̃K) = Gg′(1κ; R′), for some T̃K.
Let g′♦∗O := (g̃, s, e, d̃) be formed as in Definition 4.1.

2. Let L := ∅. Run Ss(IK; R) and for any query/response pair ((ik, r) −→
s

y) made, add ((ik, r) −→
s

y) to L.

3. Simulate the execution of Dd̃(T̃K,Y) using the oracles g, s,u,v as follows. For any encoun-
tered query qu := ((tk, y) −→

d̃
?), first compute g̃(tk) to get ik; this can be done by making at

most one query to g. Then,

(a) if v(ik, y) = ⊥, then reply to qu with ⊥ and continue the execution;

(b) else if ((ik, r) −→
s

y) ∈ L for some r, then call ((ik, r) −→
u

?) to receive r0 and call ((ik, r0) −→
s

?) to get x. Return x as the response to the query qu, add ((ik, r0) −→
s

x) to L and

continue the execution.
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(c) else (i.e., if v(ik, y) = > and ((ik, ∗) −→
s

y) /∈ L), then halt the execution and return Fail.

4. If the simulation has not halted yet, return X̃, the output of Dd̃(T̃K,Y).

Theorem 4.5. The attacker Break is successful with probability at least 1− 1
23κ

. Namely,

Pr[Breakg,s,u,v(IK,R,Y) = X] ≥ 1− 1

23κ
,

where the probability is taken over (g, s, e,d,u,v) ← Ψ, (IK,TK) ← Gg(1κ), R ← {0, 1}κ, Y :=
Ss(IK,R) and X := Dd(TK,Y).

Proof roadmap. We show that if the execution of Break never halts due to Line 3c, then the
retrieved string X̃ is indeed the correct pre-image of Y. We will then show that the probability that

Line 3c is ever hit (which we call the event Bad) is at most
1

23κ
, by “reudcing” it to Lemma 4.3.

These two will complete the proof.

Lemma 4.6. Let Bad be the event that line (3c) is hit during the execution of Breakg,s,u,v(IK,R,Y).
Then

Pr[Bad] ≤ 1

23κ
,

where the probability is taken over (g, s, e,d,u,v) ← Ψ, (IK, ∗) ← Gg(1κ), R ← {0, 1}κ, Y :=
Ss(IK, R) and over Break’s random coins.

We first show how to derive Theorem 4.5 from Lemma 4.6 and we will then prove Lemma 4.6.

Proof of Theorem 4.5. All probabilities that appear below are taken over the variables sampled in
the theorem. We claim

α
M
= Pr[Breakg,s,u,v(IK,R,Y) = X | Bad] = 1.

Assuming the claim is true, we may combine it with Lemma 4.6 to get

Pr[Breakg,s,u,v(IK,R,Y) = X] ≥ (1− 1

23κ
)α = 1− 1

23κ
,

as desired. To prove the above claim first note that by Lemma 4.2 we have g′♦∗O := (g̃, s, e, d̃)
is a valid TDP-oracle, where g′ is formed in Step 1 of Break’s execution. Moreover, recall that
Y = Ee(IK, X) and that (IK, T̃K) ∈ Gg̃(1κ). Thus, by the correctness condition of the blackbox

construction (G,S,E,D) (Definition 2.2) we have X = Dd̃(T̃K,Y). The claim now follows by noting

that if the event Bad does not hold, then the simulated execution of Dd̃(T̃K,Y) performed by Break
proceeds identically to the real decryption. The proof is now complete.

Proof of Lemma 4.6. Let β := Pr[Bad]. We show how to construct an adversary Bg,s,u,v with
oracle access to (g, s,u,v) which makes a poly number of queries and with probability at least β
forges some (ik, y) ∈ {0, 1}κ×{0, 1}5κ in the sense of Lemma 4.3. Applying the lemma we will then
obtain β ≤ 1

23κ
, as desired.
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The adversary Bg,s,u,v(1κ) first samples a random input (IK,R,Y) for Break: namely, (IK,TK)
$←−

Gg(1κ), R
$←− {0, 1}∗ and Y := Ss(IK; R). Then, Bg,s,u,v simulates the execution of Breakg,s,u,v(IK,R,Y)

with the only deviation that whenever Break’s execution hits Line (3c) with the underlying strings
ik and y, then B halts and returns (ik, y). If Break’s execution is successfully completed without
ever hitting Line (3c), then Bg,s,u,v gives up and returns ⊥. Let Que be the set of all query/response
pairs that Breakg,s,u,v makes to its oracles, and note |Que| is polynomial.

Validity of B’s forgery output. As per Lemma 4.3, we need to show three things: that, (a)
((ik, ∗) −→

s
y) /∈ Que, (b) v(ik, y) = > and (c) |ik| = κ.

Condition (a) holds because for any s query ((ik′, r′) −→
s

y′) ever made by B, this query/response

is added to the set L. By the underlying if-condition of Line (3c), we have ((ik, ∗) −→
s

y) /∈ L and

hence ((ik, ∗) −→
s

y) /∈ Que. Condition (b) also holds immediately by the underlying if-condition of

Line (3c). Finally, by Assumption 4.4 |ik| = κ. To see this, recall from the description of Break
that ik = g̃(tk) and that |tk| = κ. Thus, by definition of g̃ we have |ik| = κ, as desired. The proof
is now complete.

5 Proof of Lemma 3.4: general case

Sketch of the Attack. Let (IK,R,Y) be the inputs to BreakO,u,v, where (IK,TK)
$←− GO(1κ)

and Y := SO(IK; R). Let Q be the set of all query/response pairs during SO(IK; R) = Y. Let X :=

DO(TK,Y). Let us first try to proceed as before: sample (O′, T̃K) such that (IK, T̃K)
$←− GO′(1κ)

and attempt to perform DO′♦∗O. However, things are not as simple as before. Previously, we were
able to show that for any meaningful query which asks for the value of e−1(ik, y), we must have
((ik, ∗) −→

s
y), and so Break can simulate the answer using u. However, this does not hold here,

because y may be coming from the queries made by GO, to which Break does not have access.
Our solution at a high level is as follows. We work with a partial oracle Õ for which initially

we have (IK, T̃K)
$←− GÕ(1κ). This oracle will then be used to invert Y (using T̃K) as the secret

key, but since Õ is not necessarily defined on all encountered queries (since it is a partial oracle) we
need to “make up” answers as we go on in a consistent manner. Ideally, we would like to produce
answers by directly resorting to O, so to make the whole execution as close to the real execution
as possible. However, this is not always possible, and so at times we need to fake some answers.
Whenever, a new answer is generated (either by directly calling O or by faking it) we add the new
query/answer pair to Õ and will continue. Let us elaborate more.

Consider the execution of DÕ(T̃K,Y): Suppose we encounter a query qu that is not defined in
Õ yet. We have two cases. If qu is of type g, s or e — namely, a query which does not require any
“trapdoor” information to reply to — we will use the oracle O directly to answer to this query but
with some case to make sure we do not introduce inconsistencies. (Remember that Õ fakes some
answers, so “blind” use of O may potentially creat inconsistencies.) If, however, qu is of d-type, we
will make use of our trapdoor-based accumulated knowledge of the oracle O along with the oracle
u if we happened to have the required information. Let us give a more detailed explanation.

1. Suppose qu := ((ik′, r′) −→
s

?), but Õ(qu) is not defined yet. Suppose x′ = s(ik′, r′). We may

think we can simply reply to qu with x′ and add the query/response pair qua := ((ik′, r′) −→
s
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x′) to Õ. However, we may get the following problem: There may already be a (fake)
query/response qua1 := ((ik′, x′) −→

e
⊥) ∈ Õ, which would be inconsistent with qua. Thus,

Õ ∪ {qua} will not be TDP-consistent, and so we cannot guarantee correct inversion w.r.t.
this oracle. We handle this as follows: In case of such inconsistencies, we will reply to qu with
a random answer (which is unlikely to create inconsistencies) and will add the result to Õ.

A same situation may hold for an e query and we will handle such inconsistencies in a similar
manner. For g queries, however, we will preempt the possibility of inconsistencies by putting
Break in “normal form”; see Assumption 5.4.

2. Suppose qu := ((tk′, y′) −→
d

?), and qua := (tk′ −→
g

ik) ∈ Õ. (We will force qua to already be in

Õ by putting Break in normal form.) We have two cases: (a) trapdoor-available: g(tk′) = ik
(i.e., tk′ is the real trapdoor key); or (b) trapdoor-absent: g(tk′) 6= ik: That is, the trapdoor
key tk′ has been “faked” before.

If case (a) holds, we call the real oracle O on qu and will use the result as is if it leads to no
inconsistencies — we, however, now have many more cases of inconsistencies, as compared to
Part 1; if an inconsistency occurs, we will fake the answer.

For case (b) we need to resort to our side trapdoor-information about O (e.g., set Q above:
the set of all query/response pairs during SO(IK; R) = Y). Also, to handle case (b), we will
also need to collect all frequent trapdoor information that happen during random executions
of SO and EO. This collection of information is done in Step 1 of the algorithm Break.

For our analysis, we will show w.h.p. the union of Õuni
M
= Õ ∪W1 ∪W2 is TDP-valid, where W1

is the (hidden) set of all queries/responses made to sample the challenge pre-image X and W2 is
the (hidden) set of all query/response pairs in EO(IK,X). Note that W1 and W2 are not available
to Break (which is the reason we called them hidden). Proving this will show that w.h.p. the

decrypted result, X̃, by Break will be equal to X. This is because relative to Õuni, (IK, T̃K) is valid,

X is valid (i.e., outputted by SÕuni(IK)), Y = EO(IK,X) and X̃ = DO(T̃K,Y).
We now proceed to describe the attack formally. We start with the following assumption.

Assumption 5.1. We assume that Gg,s,e,d never calls the oracle d. (It can predict the answer
with high probability.) For notational convenience we keep d as a superscript to G.

We first start by describing two procedures that will be used by Break. The first procedure
samples many executions of S and E in order to collect frequent trapdoors. The second procedure
allows one to sample a fake secret key w.r.t. a priori information about the real oracle O.

Definition 5.2 (Sampling frequent queries). We define a probabilistic oracle procedure SFreqO:

• Input: (1κ, p, IK), where p is an integer.

• Output: A set of query/response pairs Freq ← SFreqO(1κ, p, IK) sampled as follows. Let
Freq = ∅. Do the following p times:

– Sample X← SO(IK) and execute EO(IK,X) and record all query/response pairs to Freq.

Definition 5.3. We define the procedure SOrc.
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• Input: (Freq, IK): A set of query/answer pairs Freq and an index key IK.

• Output: (TK′,Qg,Qs,Qe), produced as follows. Qe sampled as follows. Sample a Ψ-generated
O′ = (g′, s′, e′,d′) and TK′ uniformly at random subject to the conditions that (a) O′ is
consistent with Freq (i.e., O′ ∪ Freq is a valid TDP) and (b) GO′ = (IK,TK′). Let Qg, Qs
and Qe contain, respectively, the g, s and e query/response pairs made during the execution
of GO′. (Recall that by Assumption 5.1 no d queries are made.)

We need the following normal-form condition for our attack algorithm.

Assumption 5.4. We assume the following for any oracle algorithm A with oracle access to
(g, s, e,d): Any query ((tk, y) −→

d
?) is preceded by a query (tk −→

g
?). Moreover, if d(tk, y) = x 6= ⊥,

then A will make the query ((ik, x) −→
e

?) after making the query ((tk, y) −→
d

?).

Partial oracles. In the algorithm Break below we will work with partial oracles, defined only on
a subset of their input queries. Specifically, for a partial oracle Õ we define the following notation:
We write Õ(qu) = null to indicate Õ is not defined on the query qu. This should not be confused
with Õ(qu) = ⊥ as we use Õ(qu) = ⊥ to indicate that the output of Õ(qu) is a fixed invalid
symbol. We say Õ is TDP consistent, if there exists a full TDP oracle Õfull such that Õ ⊆ Õfull.

Parameter γ. For any Ψ-valid oracle O we assume that each of the algorithms GO, SO, EO and
DO on inputs corresponding to the security parameter 1κ make exactly κγ oracle queries.

The Attack Algorithm Breakg,s,e,d,u,v: We describe all components of the attack algorithm.

Oracles. (O,u,v). Parse O := (g, s, e,d).

Input. (1κ, IK,R)

Output. (X̃,Freq, Õ).3

1. Sample Freq ← SFreqO(1κ, κ2γ+8, IK). Let Õ and Real be two partial oracles, both initially
empty.

2. Sample (T̃K,Qg,Qs,Qe)← SOrc(Freq, IK). Add Qg ∪ Qs ∪ Qe ∪ Freq to Õ.

3. Run SO(R) — which gives us the challenge image Y — and add all the underlying query/response
pairs to Real. Also, add all elements of Freq to Real. From this point on, all the queries made
to the real oracles (g, s, e,d,u,v) will be recorded in Real.

4. Simulate the execution of D·(T̃K,Y) and answer an encountered query qu as follows:

4.1. Already answered in Õ: if for some ans, (qu, ans) ∈ Õ, then reply to qu with ans;

4.2. g-type query: if qu is of g-type, then reply to qu by calling the real oracle g and add
the query/response pair to Õ;

3X̃ is the final result of inversion. The other two outputs, namely Freq, Õ, are partial oracles, which are included
in the output so to help us later state our security statements easier.
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4.3. s-type query: if qu := ((ik, r) −→
s

?), then call ((ik, r) −→
s

x). If ((ik, x) −→
e
⊥) /∈ Õ, then

reply to qu with x and add ((ik, r) −→
s

x) to Õ. Otherwise, reply to qu with x′ ← {0, 1}5κ

and add ((ik, r) −→
s

x′) to Õ.

4.4. e-type query: if qu := ((ik, x) −→
e

?) for some ik and x: Call the real oracle ((ik, x) −→
e

?)

to get y;

4.4.1. if y = ⊥ or ((∗, ∗) −→
e

y) /∈ Õ, then reply to qu with y add ((ik, x) −→
e

y) to Õ;

4.4.2. Otherwise, reply to qu with a random y′ ← {0, 1}5κ and add ((ik, x) −→
e

y′) to Õ.

4.5. d-type query: if qu := ((tk, y) −→
d

?) for some tk and y: letting ik be such that

(tk −→
g

ik) ∈ Õ

4.5.1. if ((ik, x) −→
e

y) ∈ Õ, then reply to qu with x and add ((tk, y) −→
d

x) to Õ.

4.5.2. else if ((ik, y) −→
e
⊥) ∈ Õ then reply to qu with ⊥ and add ((tk, y) −→

d
⊥) to Õ.

4.5.3. otherwise,

4.5.3.1. if for some tk′: (tk′ −→
g

ik) ∈ Real then call ((tk′, y) −→
d

?) to get x:

(A) if ((ik, x) −→
e
∗) /∈ Õ, then reply to qu with x and add ((ik, x) −→

e
y) to Õ.

(B) if ((ik, x) −→
e
∗) ∈ Õ then reply to qu with a random x′ ← {0, 1}5κ and add

((ik, x′) −→
e

y) to Õ.

4.5.3.2. else if ((ik, x) −→
e

y) ∈ Real, then

(A) if ((ik, x) −→
e
∗) /∈ Õ then reply to qu with x and add ((ik, x) −→

e
y) to Õ.

(B) if ((ik, x) −→
e
∗) ∈ Õ then reply to qu with a random x′ ← {0, 1}5κ and add

((ik, x′) −→
e

y) to Õ.

4.5.3.3. else if for some r: ((ik, r) −→
s

y) ∈ Real, then call ((ik, r) −→
u

?) to get r0 and call

((ik, r0) −→
s

?) to get x0:

(A) if ((ik, x0) −→
e
∗) /∈ Õ, then reply to qu with x0 and add ((ik, x0) −→

e
y) to Õ.

(B) if ((ik, x0) −→
e
∗) ∈ Õ, then reply to qu with a random x′ ← {0, 1}5κ and add

((ik, x′) −→
e

y) to Õ.

4.5.3.4. else if v(ik, y) = ⊥ then reply to qu with ⊥;

4.5.3.5. otherwise, reply to qu with a random x′ ← {0, 1}5κ and add both of ((tk, y) −→
d

x′) and ((ik, x′) −→
e

y) to Õ.

5. Letting X̃ be the result of the simulated execution of D·(T̃K, Y ), return (X̃,Freq, Õ).

5.1 Proof of Attack Effectiveness

We now focus on proving Lemma 3.4. We first start with a simple information theoretic lemma,
which generalizes Lemma 4.3 to the case in which the “forger” may call all the underlying oracles.
For that lemma, we need the following definition.
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Definition 5.5. Let Q be a set of query/response pairs obtained from oracles (g, s, e,d,u,v). We
say that (ik, x) is embedded in Q if

• ((ik, ∗) −→
s

x) ∈ Q, or

• ((ik, ∗) −→
e

x) ∈ Q or

• for some tk: (tk −→
g

ik) ∈ Q and ((tk, ∗) −→
d

x) ∈ Q.

The following lemma generalizes Lemma 4.3. The proof again follows using standard information-
theoretic arguments and so is omitted.

Lemma 5.6. Let B be a a polynomial-query oracle adversary. We have

Pr
(O,u,v)←Ψ

[(ik, y)
$←− Bg,s,e,d,u,v(1κ) s.t. |ik| = κ and v(ik, y) = > and (ik, y) is not embedded in Que] ≤ 1

23κ
,

where Que is the set of all query/answer pairs of B.

We define the following environment that specifies a random choice of (g, s, e,d,u,v) as well
as random variables used to form a random input to an adversary against enhanced one-wayness
of the construction.

Environment. Env(κ) specifies the following random variables: (IK,Query,Ry,Y,Rx,X,O):

• (g, s, e,d,u,v)← Ψ. Let O := (g, s, e,d);

• (IK,TK) ← GO(1κ) and let Query be the set of all query/response pairs asked during the
execution;

• Ry ← {0, 1}∗;

• Y := SO(IK,Ry);

• X := DO(TK,Y)

• Rx ← S, where
S := {R | SO(IK,R) = X}.

Notation HitQ. For an oracle algorithm AO we let HitQ(AO(X)) denote the set of all query re-
sponse pairs made during the execution of AO(X). If A is a randomized algorithm, then HitQ(AO(X))
will be a random variable.

Notation ♦. For a partial oracle Õ and full oracle O we let Õ♦O denote the oracle that responds
to a query qu as follows: if Õ(qu) 6= null then Õ♦O(qu) = Õ(qu); otherwise, Õ♦O(qu) = O(qu).
Note that even if both Õ and O are TDP consistent, Õ♦O is not necessarily so.

Lemma 5.7. Let (IK,Query,Ry,Y,Rx,X,O,u,v)← Env(κ) and (X̃,Freq, Õ)← BreakO,u,v(1κ, IK,R).

1.

Pr[X = SÕ♦O(IK,Rx) and EÕ♦O(IK,X) = Y] ≥ 1− 1

4κ2
(5)
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2. Letting

ALLQ := Õ ∪ HitQ(SÕ♦O(IK,Rx)) ∪ HitQ(EÕ♦O(IK,X))

we have Pr[ALLQ is TDP consistent ] ≥ 1− 1
2κ2

.

Let us first show how to use Lemma 5.7 to prove Lemma 3.4. We will then prove Lemma 5.7.

Proof of Lemma 3.4. Let all the variables be sampled as in Lemma 3.4. Let Rx ← S, where

S := {R | SO(IK,R) = X}.

Let Evnt1 and Evnt2 denote the events of Parts 1 and 2 of Lemma 5.7. That is,

• Evnt1 : X = SÕ♦O(IK,Rx) and EÕ♦O(IK,X) = Y

• Evnt2 : ALLQ is TDP consistent .

We claim if Evnt1 ∧ Evnt2 holds, then X̃ = X. This implies our result since

Pr[X̃ = X] ≥ Pr[Evnt1 ∧ Evnt2] ≥ 1− Pr[Evnt1]− Pr[Evnt2] ≥ 1− 1

κ2
.

It remains to prove the above claim. We show if Evnt1∧Evnt2 then (I) ALLQ is TDP consistent,

(II) (IK, T̃K) ∈ GALLQ(1κ), (III) X̃ = DALLQ(T̃K, Y ), (IV) X = SALLQ(IK,Rx), (V) EALLQ(IK,X) =
Y. Then, by the correctness of the construction (G,S,E,D) we obtain X̃ = X, and the proof will
be complete.

First, note that (I) follows by definition of Evnt2.

To prove (II) and (III), first note that we have (IK, T̃K) ∈ GÕ(1κ) and X̃ = DÕ(T̃K,Y).

Now since Õ ⊆ AllQ and since ALLQ is TDP consistent, we have (IK, T̃K) ∈ GALLQ and X̃ =

DALLQ(T̃K,Y). Note that the mere fact that Õ ⊆ ALLQ will not be sufficient to conclude these two
last statements (II) and (III); the reason is that there may be collisions between Õ and ALLQ \ Õ
(e.g., a query qu may receive different responses from the two oracles), rendering the corresponding
executions ambiguous.

Similarly, from the facts that ALLQ is TDP consistent and that Evnt1 holds, we conclude (IV)
and (V).

We now show how to prove Lemma 5.7, starting with Part 1. We give the proof of Part 2 of
the lemma in the appendix. To this end, we define some variables and events to help us describe
things more concisely.

Sub-oracles Õ1, Õ2, Õ3, Õ4 and set Rand. We define four sub-oracles of Õ, which capture
some of the query/response pairs that were added to Õ as a result of faking answers for those
queries that created conflict with the real oracle O. Recall that for removing such conflicts, we
sampled elements uniformly at random from {0, 1}5κ and used those for faking answers. Informally,
the set Rand contain those points sampled for these purposes. We now formally define these pieces
of notation.

• Õ1: We let Õ1 contain any query/response pair ((ik, x) −→
e

y′) added to Õ as a result of

Line 4.4.2..
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• Õ2: We let Õ2 contain any query/response pair added to Õ as a result of Condition (B) of
Line 4.5.3.1..

• Õ3: We let Õ3 contain any query/response pair added to Õ as a result of Condition (B) of
Line 4.5.3.3..

• Õ4: We let Õ4 contain any query/response pair ((ik, x) −→
e

y) added to Õ as a result of

Line 4.5.3.5..

• Rand: We let Rand contain all x such that ((∗, x) −→
e
∗) ∈ Õ2 ∪ Õ3 or ((∗, ∗) −→

e
x) ∈ Õ1.

Intuitively, the set Rand contains all points that were sampled uniformly at random for making
up fake answers.

Events Surp1, Surp2, Surp3, Surp4. We define some events which we will prove can only happen
with negligible probability.

• Surp1: the event that for some ((ik, ∗) −→
e

y′) ∈ Õ1 we have v(ik, y′) = > or for some

((ik, x′) −→
e
∗) ∈ Õ2 ∪ Õ3 ∪ Õ4 we have v(ik, x′) = >.

• Surp2: the event that during the execution SO(IK; Rx) a query qu = ((ik, x) −→
e

?) or a query

((∗, x) −→
d

?) is made where x ∈ Rand;

• Surp3: the event that there exists ((ik, x) −→
e

y) ∈ Õ4 such that (ik, y) is not embedded in

Query.

• Surp4: For x 6= x′ and y 6= ⊥: ((ik, x) −→
e

y) ∈ Õ and ((ik, x′) −→
e

y) ∈ Õ.

Let Surp = Surp1 ∨ Surp2 ∨ Surp3 ∨ Surp4.

Set Dif. Let Q := Qg∪Qs∪Qe, where recall that the sets Qg, Qs and Qe are formed during Line 2
of the algorithm Break. Let Dif be the set of queries formed as follows: For any query/response
pair (qu −→

∗
∗) ∈ Q, add the query qu to Dif. Moreover, for any (ik, x) that occurs in Query ∪ Q:

(A) if for some r: s(ik, r) = x add ((ik, r) −→
s

?) to Dif;

(B) add ((ik, x) −→
e

?) to Dif;

(C) add ((tk, x) −→
d

?) to Dif, where tk = g−1(ik);

(D) if for some x′: e(ik, x′) = x, add ((ik, x′) −→
e

?) to Dif.4

4Note that we do not claim that Dif can be built efficiently. We merely introduce Dif to define a related event.
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Events Match and MissQ. Equipped with the set Dif we now define the following two events.

• Match: Õ♦O agrees with HitQ(SO(IK; Rx)) ∪ HitQ(EO(IK,X)).

• MissQ: ∃〈qu〉 ∈ Dif : 〈qu〉 /∈ Freq and 〈qu〉 ∈ HitQ(SO(IK; Rx)) ∪ HitQ(EO(IK,X)).

Lemma 5.8. If Match holds, then MissQ ∨ Surp holds.

Lemma 5.9. We have Pr[MissQ] ≤ 1
8κ2

.

Lemma 5.10. We have Pr[Surp] ≤ 1
2κ

Proof of Part 1 of Lemma 5.7. Let α(n) denote the probability of this part of the lemma. We have
α(n) ≥ Pr[Match]. From Lemmas 5.8, 5.9 and 5.10 Pr[Match] ≤ 1

4κ2
. The proof is complete.

We give the proof of Lemma 5.8 in the appendix. We now prove Lemma 5.9, for which we will
use the following standard lemma.

Lemma 5.11. Let Ev1, . . . ,Evt+1 be independent, Bernoulli random variables, where Pr[Evi =
1] = p, for all i ≤ t+ 1. Then

Pr[Ev1 = 0 ∧ · · · ∧ Evt = 0 ∧ Evt+1 = 1] ≤ 1

t
.

Proof of Lemma 5.9. Let ExecO(IK) be the following random execution: Sample X′ ← SO(IK) and
run EO(IK,X′). Recall that Freq is formed by running ExecO(IK) independently t := κ2γ+8 times.
Also, note that Rx is a uniformly random string, and thus (SO(IK; Rx);EO(IK, X)) corresponds to
a random execution of ExecO(IK).

Using simple inspection, we may verify |Dif| ≤ 6κγ . Now applying Lemma 5.11 for each element
of Dif and taking a union bound, we will have Pr[MissQ] ≤ 6κγ 1

κ2γ+8 ≤ 1
8κ2

, as desired.

Proof of Lemma 5.10. We can easily show that each of the events Surp1, Surp2 and Surp4 happens
with probability at most 1

23n
: Arguing about the probability of each of these events amounts to

arguing that a randomly chosen element in {0, 1}5κ happens to lie in a sparse subset of {0, 1}5κ.
Thus, we omit the details for these parts.

We focus on bounding the probability of Surp3. Recall that

• Surp3: a query ((tk, y) −→
d

?) is made for which Line 4.5.3.5. is hit and for which (ik, y) is not

embedded in Query, where (ik, y) is defined as in Line 4.5.3.5.. Also, recall that the notion of
embeddedness from Definition 5.5.

We will show that whenever the event Surp3 holds, we can forge a pair (ik, y) in the sense of
Lemma 4.3, obtaining Pr[Surp3] ≤ 1

23n
.

In order for Line 4.5.3.5. — during the simulated execution of D·(T̃K,Y) — to be hit with the
underlying values (ik, y), all of the following must hold at that point:

(I) ((ik, ∗) −→
e

y) /∈ Real — this is because otherwise Line 4.5.3.2. would have been hit.

(II) ((ik, ∗) −→
s

y) /∈ Real — this is because otherwise Line 4.5.3.3. would have been hit.
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(III) ((tkreal, ∗) −→
d
∗) /∈ Real, where tkreal = g−1(ik) — this is because otherwise Line 4.5.3.1.

would have been hit (by Assumption 5.4).

(IV) v(ik, y) = > — this is because otherwise Line 4.5.3.4. would have been hit.

We now show show how the above conditions enable us to forge in the sense of Lemma 4.3.
In particular, the above conditions immediately imply that (ik, y) is not embedded in Real. Also,
notice that the set Real contains all those query/response pairs made by BreakO,u,v(1κ, IK,R) (to
its real oracles) up to the point the event Surp3 holds. Moreover, since Surp3 holds, then, by
definition, the pair (ik, y) is not embedded in Query either, which contains all the query/response
pairs used to produce IK. We may now design a forgery attack as follows. The forger BO,u,v(1κ)
first samples (IK, ∗)← GO(1κ) and then simulates BreakO,u,v(1κ, IK,R) for R← {0, 1}∗. Whenever
the event Surp3 holds with the underlying pair (ik, y), then B will halt and return (ik, y). Note
that BreakO,u,v(1κ, IK,R) can efficiently recognize the occurrence of the event Surp3. The success
probability of BO,u,v(1κ) is the probability that Bad holds.
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A Proof of Lemma 5.8

A.1 Useful lemmas and claims

We give two simple statements below whose proofs follows easily by inspection.

Claim A.1. Defining Õr = O \ (Õ1 ∪ Õ2 ∪ Õ3 ∪ Õ4 ∪ Qe), the oracle O agrees with Õr on all
e-type queries.

Claim A.2. For all ((ik, ∗) −→
e

y) ∈ Õ4 we have v(ik, y) = >.

A.2 Proof of Lemma 5.8

Proof of Lemma 5.8. Let O′ = Õ♦O. We prove that if both Match and Surp hold then MissQ
holds. We prove this by considering the first query qu∗ during the sequential executions SO(IK; Rx);EO(IK,X)
on which O′ and O disagree. We know that qu∗ /∈ Freq: this is because Freq agrees with O and we
know that Õ (and hence O′) agree with Freq. In the following we will show that qu∗ ∈ Dif.

We prove the above claim by considering all types of queries for qu∗. Recall that we are assuming
that Surp holds.

The case qu∗ is of g-type. If qu∗ is of g-type or of s-type, then we immediately have qu∗ ∈ Q,
and hence qu∗ ∈ Dif. This follow easily by inspection.

The case qu∗ is s-type. If qu∗ = ((ik, r) −→
s

?), then one of the following two must hold

• 〈qu∗〉 ∈ Qs: thus qu∗ ∈ Dif;

• Assuming x = e(ik, r) we have ((ik, x) −→
e
⊥) ∈ Õ. The only way this can happen is if

((ik, x) −→
e
⊥) ∈ Qe, meaning that (ik, x) occurs in Qs. Now by Item (A) of the definition of

Dif we have ((ik, r) −→
s

?) ∈ Dif.

The case qu∗ is e-type. Suppose qu∗ := ((ik, x) −→
e

?) for some ik and x. By Claim A.1 we have

qu∗ ∈ Qe ∪ Õ1 ∪ Õ2 ∪ Õ3 ∪ Õ4. We consider each case below:

1. qu∗ ∈ Qe: in this case by definition we have qu∗ ∈ Dif, as desired.

2. qu∗ ∈ Õ1: by Lemma B.1 we will have qu∗ ∈ Dif.

3. qu∗ ∈ Õ2 ∪ Õ3 ∪ Õ4: this contradicts the fact that Surp2 does not hold.
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The case qu∗ is d-type. Suppose qu∗ = ((tk, y) −→
d

?). We have g(tk) = g̃(tk) = ik for some ik.

Suppose d̃(tk, y) = x′ and x = d(tk, y). We know that x 6= x′. We claim one of the following must
hold:

• ((ik, x′) −→
e

y) ∈ ẽ;

• ((ik, x) −→
e

y′) ∈ ẽ for y′ 6= y; or

• x 6= ⊥ and ((ik, y) −→
e
⊥) ∈ ẽ

Before proving the above claim, let us show how to use it. We will give three Lemmas A.3, A.4
and A.5 below, which will imply that either qu∗ ∈ Dif or qu∗1 ∈ Dif, where qu∗1 is the next query
after qu∗ during the sequential execution of SO(IK; Rx);EO(IK,X). This will complete the proof
for the d-type case.

We now prove the above claim. We know that ((tk, y) −→
d

x′) ∈ d̃. We consider all possible

cases that this can happen.

• If ((tk, y) −→
d

x′) ∈ Qd then by Assumption 5.4 (tk −→
g

ik) ∈ Qg and thus ((ik, x′) −→
e

y) ∈ Qe.

Thus, ((ik, x′) −→
e

y) ∈ ẽ, as desired.

• Otherwise, the facts that g̃(tk) = g(tk) and d(tk, y) 6= x′ imply that

– Line 4.5.1. is hit, which implies ((ik, x′) −→
e

y) ∈ ẽ; or

– Line 4.5.2. is hit, which implies ((ik, y) −→
e
⊥) ∈ ẽ and x 6= ⊥ (because x′ = ⊥ and

x 6= x′).

– Line 4.5.3.1. is hit, which implies ((ik, x) −→
e

y′) ∈ ẽ for some y′ 6= y.

Lemma A.3. Suppose g̃(tk) = g(tk) = ik, d(tk, y) = x 6= ⊥ and ((ik, x) −→
e

y∗) ∈ Õ for some

y∗ 6= y. Assuming Surp1 ∧ Surp2 ∧ Surp3 ∧ Surp4 holds, ((ik, x) −→
e

?) ∈ Dif.

Proof. Note that v(ik, x) = >. We consider all possible cases:

• ((ik, x) −→
e

y∗) ∈ Qe: by definition we have ((ik, x) −→
e

?) ∈ Dif, and thus the next query is in

Dif.

• ((ik, x) −→
e

y∗) ∈ Õ1: By Lemma B.1 we have ((ik, x) −→
e

?) ∈ Dif.

• ((ik, x) −→
e

y∗) ∈ Õ2 ∪ Õ3 ∪ Õ4: Since we know v(ik, x) = > this will contradict the fact that

Surp1 does not happen.

• ((ik, x) −→
e

y∗) ∈ Õ \ (Qe ∪ Õ1 ∪ Õ2 ∪ Õ3 ∪ Õ4): this cannot happen because by Claim A.1 we

know that it must be that y∗ = y, which is a contradiction.
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Lemma A.4. Suppose ((tk, y) −→
d

?) is the first query during the execution on which d and d̃

disagree. Suppose g̃(tk) = g(tk) = ik, d(tk, y) = x and ((ik, x′) −→
e

y) ∈ Õ for some x′ 6= x. (Note

that it may be that x = ⊥.) Assuming Surp1∧Surp2∧Surp3∧Surp4 holds, then ((tk, y) −→
d

?) ∈ Dif

or ((ik, x) −→
e

?) ∈ Dif.

Proof. We consider all possible cases:

• ((ik, x′) −→
e

y) ∈ Qe: By Case (C) of definition Dif we have ((tk, y) −→
d

?) ∈ Dif

• ((ik, x′) −→
e

y) ∈ Õ1: this contradicts the fact that Surp2 does not hold.

• ((ik, x′) −→
e

y) ∈ Õ2 ∪ Õ3: This implies that x 6= ⊥ and ((ik, x) −→
e

y∗) ∈ Õ for some y∗ 6= y.

By Lemma A.3 we have ((ik, x) −→
e

?) ∈ Dif.

• ((ik, x′) −→
e

y) ∈ Õ4: since Surp3 does not hold, we know that (ik, y) is embedded in Query.

Moreover, by Fact A.2 we know v(ik, y) 6= ⊥. Thus, by by Item (D) of definition Dif we have
((ik, x) −→

e
?) ∈ Dif.

• ((ik, x′) −→
e

y) ∈ Õ \ (Qe ∪ Õ1 ∪ Õ2 ∪ Õ3 ∪ Õ4): this case cannot happen because by Fact A.1

we will have e(ik, x′) = y, a contradiction.

Lemma A.5. Suppose g̃(tk) = g(tk) = ik, d(tk, y) = x 6= ⊥ and ((ik, y) −→
e
⊥) ∈ Õ. We then

have ((ik, y) −→
e

?) ∈ Dif.

Proof. By inspection we can easily verify that ((ik, y) −→
e
⊥) ∈ Qe. This means that ((tk, y) −→

d
?) ∈

Dif.

B Proof of Part 2 of Lemma 5.7

B.1 Useful Lemmas

Lemma B.1. Assume Surp1 ∧ Surp3 holds. For every ((ik, x) −→
e

x′) ∈ Õ1 we have ((ik, x) −→
e

?) ∈
Dif.

Proof. Suppose qu = ((ik, x) −→
e

x′) is the first query/response pair added to Õ1 where ((ik, x) −→
e

?) /∈ Dif. Assuming qu is the ith query added to Õ, this means that

(I) no query/response ((ik, x) −→
e
∗) was among the first i − 1 query/response pairs added to Õ

(because otherwise Line 4.4.2. would not have been hit); and
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(II) among the first i − 1 query/response pairs added to Õ there must exist a query/response
((ik, x′) −→

e
y), where x 6= x′ and y = e(ik, x).

We now consider all possible cases for the query/response ((ik, x′) −→
e

y) ∈ Õ, guaranteed by

Item (II) above.

• ((ik, x′) −→
e

y) ∈ Qe: In this case by Item (D) of definition Dif we have ((ik, x) −→
e

?) ∈ Dif.

• ((ik, x′) −→
e

y) ∈ Õ1: This cannot happen because we know v(ik, y) = >, contradicting the

fact that Surp1 holds.

• ((ik, x′) −→
e

y) ∈ Õ2 ∪ Õ3: This implies that we should already have ((ik, x) −→
e
∗) ∈ Õ,

contradicting Condition (I) above.

• ((ik, x′) −→
e

y) ∈ Õ4 : Since Surp3 holds, (ik, y) is embedded in Query and so ((ik, x) −→
e

?) ∈ Dif.

• ((ik, x′) −→
e

y) ∈ Õ \ (Qe ∪ Õ1 ∪ Õ2 ∪ Õ3 ∪ Õ4): This implies that the query/response

((ik, x′) −→
e

y) must have been added to Õ by Item (B) of Line 4.5.3.2. — because all other

cases have been considered above. This however cannot be the case because having hit Item
(B) of Line 4.5.3.2. implies that ((ik, x) −→

e
∗) ∈ Õ, a contradiction to Item (I) above.

B.2 Proof of Part 2 of Lemma 5.7

Proof. Let Evt be the event we want to bound, namely Evt is the event that ALLQ is TDP consis-
tent, where

ALLQ := Õ ∪ HitQ(SÕ♦O(IK,Rx)) ∪ HitQ(EÕ♦O(IK,X)).

Also, recall the events Surp and Match defined earlier. In particular

• Surp := Surp1 ∧ Surp2 ∧ Surp3 ∧ Surp4;

• Match: For any query qu during SÕ♦O(IK,Rx) and EÕ♦O(IK,X): Õ♦O(qu) = O(qu). That
is, either qu /∈ Õ or Õ(qu) = O(qu).

We will show that whenever if both Surp and Match hold, then Evt also holds. We will then
have

Pr[Evt] ≥ Pr[Surp ∧Match] ≥ 1− Pr[Surp]− Pr[Match] ≥ 1− 1

2κ2
,

as desired.
In the following, we show how to reach a contradiction if Surp ∧Match and Evt hold. First,

note that if Surp ∧Match holds, then the event MissQ (defined earlier) holds:

• MissQ : ∃〈qu〉 ∈ Dif : 〈qu〉 /∈ Freq and 〈qu〉 ∈ HitQ(SO(IK;Rx);EO(IK, X))
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First, by inspection one can easily verify that if Õ is not TDP-consistent, then Evt1 must hold.
Thus, assume Õ is TDP-consistent Let qu∗ be the first query (say ith query) which makes things
TDP inconsistent. That is,

Õ ∪ Qryi−1(SÕ♦O(IK, Rx);EÕ♦O(IK,X)) ∈ TDP and

(Õ ∪ Qryi(S
Õ♦O(IK, Rx);EÕ♦O(IK,X)) /∈ TDP, (6)

where we used “;” above to denote two sequential computations, used Qryj to denote the first j set
of query/answer pairs in the respective execution and we wrote ∈ TDP to mean that the respective
set of query/response pairs is TDP consistent.

Let T := Õ ∪ Qryi−1(SÕ♦O(IK, Rx)).

qu∗ is g-type: This case cannot happen because qu∗ /∈ Õ implies that (qu∗,O(qu∗)) can be added
to T while preserving TDP consistency.

qu∗ is s-type: Suppose qu∗ = ((ik, r) −→
s

?) and x = s(ik, r).

• For some y′, ((ik, x) −→
e
⊥): In this case by inspection we can see that ((ik, x) −→

e
⊥) ∈ Qe, and

by Part (C) of definition Dif we will have ((ik, r) −→
s

?) ∈ Dif. But we know ((ik, r) −→
s

?) /∈ Freq.

qu∗ is e-type: Suppose qu∗ = ((ik, x) −→
e

?) and y = e(ik, x). Since qu∗ /∈ Õ (meaning that

((ik, x) −→
e
∗) /∈ Õ), in order for T∪ (qu∗, e(qu∗)) to be TDP-inconsistent one of the following must

hold:

1. y 6= ⊥ and ((ik, x′) −→
e

y) for x′ 6= x. We consider all possible cases for ((ik, x′) −→
e

y):

(a) ((ik, x′) −→
e

y) ∈ Qe: By Part (D) of definition Dif this implies ((ik, x) −→
e

?) ∈ Dif.

(b) ((ik, x′) −→
e

y) ∈ Õ1: Since v(ik, y) = > this case contradicts Surp1.

(c) ((ik, x′) −→
e

y) ∈ Õ2: This implies that ((ik, x) −→
e
∗) ∈ Õ, a contradiction.

(d) ((ik, x′) −→
e

y) ∈ Õ3: Since Surp3 holds, this implies (ik, y) is embedded in Query and

hence by part (D) of definition Dif we have ((ik, x) −→
e

?) ∈ Dif.

2. y 6= ⊥ and ((ik, y) −→
e
⊥) ∈ Õ: Since v(ik, y) = >, if we have ((ik, y) −→

e
⊥) ∈ Õ, we must

have ((ik, y) −→
e
⊥) ∈ Qe, meaning that (ik, y) occurs in Qe. Now by Part (D) of definition Dif

we have ((ik, x) −→
e

?) ∈ Dif.

3. y = ⊥ and ((ik, ∗) −→
s

x) ∈ Õ: In this case since v(ik, x) = ⊥, the fact that ((ik, ∗) −→
s

x) ∈ Õ

implies ((ik, ∗) −→
s

x) ∈ Qe. (This can be easily checked by inspection.) Thus, by part (B) of

definition Dif we have ((ik, x) −→
e

?) ∈ Dif.
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4. y = ⊥ and ((ik, ∗) −→
e

x) ∈ Õ: We show this will lead to a contradiction. We know ((ik, ∗) −→
e

x) /∈ Õ1 because it will contradict the fact that Surp2 holds. Also, ((ik, ∗) −→
e

x) /∈ Õ2 ∪ Õ2

because v(ik, x) = ⊥. Finally, we know ((ik, ∗) −→
e

x) /∈ Õ \ (Õ1 ∪ Õ2 ∪ Õ2) because otherwise

it must hold e(ik, ∗) = x, which is a contradiction to the fact that v(ik, x) = ⊥.

qu∗ is d- type: Suppose qu∗ = ((tk, y) −→
d

?) and x = d(tk, y). Again recall that qu∗ /∈ Õ. Also,

we must have (tk −→
g
∗) ∈ Õ because if it has not been initialized, then T ∪ ((tk, y) −→

d
x) will still

be TDP-consistent. Now, letting ik = g(tk) by Assumption A we must have g̃(tk) = ik. In order
for T ∪ ((tk, y) −→

d
x) to be TDP inconsistent one of the following must hold

• x 6= ⊥ and ((ik, x) −→
e

x′) ∈ Õ for some y 6= y′:

– ((ik, x) −→
e

x′) ∈ Qe: In this case we know ((ik, x) −→
e

?) ∈ Dif. We also know that

((ik, x) −→
e

?) /∈ Freq because Qe must agree with Freq. Thus, the next query after qu∗ is

in Dif but is not in Freq.

– ((ik, x) −→
e

x′) ∈ Õ1: Again we know that ((ik, x) −→
e

?) /∈ Freq. Also, by Lemma B.1

((ik, x) −→
e

?) ∈ Dif. Thus, the next query after qu∗ is in Dif but is not in Freq.

– ((ik, x) −→
e

x′) ∈ Õ2 ∪ Õ3: Impossible because we know v(ik, x) = >, contradicting the

fact that Surp1 holds.

• x 6= ⊥ and ((ik, x′) −→
e

y) ∈ Õ for some x′ 6= x:

– ((ik, x′) −→
e

y) ∈ Qe: In this case we know ((ik, x) −→
e

?) ∈ Dif. We also know that

((ik, x) −→
e

?) /∈ Freq because Qe must agree with Freq. Thus, the next query after qu∗ is

in Dif but is not in Freq.

– ((ik, x′) −→
e

y) ∈ Õ1: Since v(ik, y) = > this case contradicts Surp1.

– ((ik, x′) −→
e

y) ∈ Õ2: Impossible because it implies ((tk, y) −→
d

?) ∈ Õ.

– ((ik, x′) −→
e

y) ∈ Õ3: Since Surp3 holds, (ik, y) is embedded in Query and thus by part (C)

of definition Dif we have ((tk, y) −→
d

?) ∈ Dif. But we know that ((tk, y) −→
d

?) /∈ Freq.

• x 6= ⊥ and ((ik, y) −→
e
⊥) ∈ Õ: In this case by inspection we can see that ((ik, y) −→

e
⊥) ∈ Qe,

implying that ((tk, y) −→
d

?) ∈ Dif. But we know ((tk, y) −→
d

?) /∈ Freq.

• x = ⊥ and for some r, ((ik, ∗) −→
s

y) ∈ Õ: In this case by inspection we can see that

((ik, r) −→
s

y) ∈ Qs, meaning that ((tk, y) −→
d

?) ∈ Dif. But we know that ((tk, y) −→
d

?) /∈ Freq.

• x = ⊥ and ((ik, ∗) −→
e

y) ∈ Õ: We show this will lead to a contradiction. We know ((ik, ∗) −→
e

y) /∈ Qe because otherwise ((tk, y) −→
d

?) ∈ Dif. We know ((ik, ∗) −→
e

y) /∈ O1 because it will

contradict Surp2. We know ((ik, ∗) −→
e

y) /∈ O2 ∪O3 because we know v(ik, y) = ⊥.
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• x = ⊥ and ((ik, y) −→
e

x′) ∈ Õ for x′ 6= ⊥: We show this will lead to a contradiction. We

know ((ik, y) −→
e

x′) /∈ Qe because otherwise ((tk, y) −→
d

?) ∈ Dif. We know ((ik, ∗) −→
e

y) /∈ O1

because by Lemma B.1 (ik, x) is embedded in Query and thus ((tk, y) −→
d

?) ∈ Dif. Finally, we

know ((ik, y) −→
e

x′) /∈ O2 ∪O3 because it will contradict Surp2.
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