
Weak Zero-Knowledge Beyond the Black-Box Barrier

Nir Bitansky∗ Dakshita Khurana† Omer Paneth‡

July 31, 2019

Abstract

The round complexity of zero-knowledge protocols is a long-standing open question, yet to
be settled under standard assumptions. So far, the question has appeared equally challenging for
relaxations such as weak zero-knowledge and witness hiding. Protocols satisfying these relaxed
notions under standard assumptions have at least four messages, just like full-fledged zero knowledge.
The difficulty in improving round complexity stems from a fundamental barrier: none of these notions
can be achieved in three messages via reductions (or simulators) that treat the verifier as a black box.

We introduce a new non-black-box technique and use it to obtain the first protocols that cross this
barrier under standard assumptions. Our main results are:

• Weak zero-knowledge for NP in two messages, assuming quasipolynomially-secure fully-
homomorphic encryption and other standard primitives (known fromquasipolynomial hardness
of Learning with Errors), as well as subexponentially-secure one-way functions.

• Weak zero-knowledge for NP in three messages under standard polynomial assumptions (fol-
lowing for example from fully-homomorphic encryption and factoring).

We also give, under polynomial assumptions, a two-messagewitness-hiding protocol for any language
L ∈ NP that has a witness encryption scheme. This protocol is also publicly verifiable.

Our technique is based on a new homomorphic trapdoor paradigm, which can be seen as a
non-black-box analog of the classic Feige-Lapidot-Shamir trapdoor paradigm.

∗Tel Aviv University, nirbitan@tau.ac.il. Member of the Check Point Institute of Information Security. Supported by
the Alon Young Faculty Fellowship, by Len Blavatnik and the Blavatnik Family foundation, and an ISF grant 18/484.

†Microsoft Research, New England, dakshkhurana@gmail.com
‡MIT, omerpa@mit.edu Supported by NSF Grants CNS-1350619 and CNS-1414119, and the Defense Advanced Research

Projects Agency (DARPA) and the U.S. Army Research Office under contracts W911NF-15-C-0226 and W911NF-15-C-
0236.Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the DARPA and ARO. Part of this research was done while visiting Tel Aviv university and
supported by Len Blavatnik and the Blavatnik Family foundation.

Contents

1 Introduction 1
1.1 Results . 2
1.2 Technical Overview . 3

1.2.1 From Explainable to Malicious . 7
1.3 More on Related Work . 8

2 Preliminaries 10
2.1 Arguments . 10

2.1.1 Weak Zero-Knowledge . 11
2.1.2 Witness Hiding . 11
2.1.3 Explainable Verifiers . 11
2.1.4 Witness Indistinguishability . 12

2.2 Commitments . 13
2.3 Fully-Homomorphic Encryption . 14
2.4 Compute and Compare Obfuscation . 14
2.5 Random Self-Reducible Public-Key Encryption . 15
2.6 Witness Encryption . 16
2.7 Conditional Disclosure of Secrets . 17

3 Weak Zero-Knowledge against Explainable Verifiers 17
3.1 The Three-Message Protocol . 17

3.1.1 Analysis . 18
3.2 The Two-Message Protocol . 25

4 Witness Hiding against Explainable Verifiers with Public Verification 26
4.1 Analysis . 26

5 From Explainable Verifiers to Malicious Ones 29
5.1 The Three-Message Transformation . 30
5.2 The Two-Message Transformation . 33
5.3 The Two-Message WH Transformation . 36

A Relaxed Random Self-Reducible Public-Key Encryption from LWE 43

1 Introduction

Zero-knowledge protocols are spectacular. They allow to prove any NP statement without revealing
anything but the statement’s validity. That is, whatever a malicious verifier learns from the protocol
can be efficiently simulated from the statement alone, without ever interacting with the prover. Since
their invention [GMR89] and construction for all of NP [GMW91], zero-knowledge protocols have had
a profound impact on modern cryptography.

A central question in the study of zero knowledge is that of round complexity. Zero-knowledge
arguments with a negligible soundness error can be achieved in four messages [FS90], under the minimal
assumption of one-way functions [BJY97].1 In terms of lower bounds, zero-knowledge arguments for
languages outside BPP, and without any trusted setup, require at least three messages [GO94].

Zero knowledge protocols with an optimal number of messages (and a negligible soundness error)
have been pursued over the last three decades and have proven difficult to construct. Three-message
zero-knowledge arguments were only constructed under auxiliary-input knowledge assumptions, which
are considered implausible [HT98, BP04b, BCPR14, BP15c, BCC+17], and more recently, under a
new, non-standard, assumption on the multi-collision resistance of keyless hash functions [BKP18].
Three-message protocols based on standard cryptographic assumptions remain out of reach.
Relaxing zero knowledge. Given the current state of affairs, it is natural to consider relaxations of the
zero-knowledge privacy guarantee. Three main relaxations considered in the literature are:

• Witness indistinguishability [FS90]: Ensures that amalicious verifier cannot distinguish between
proofs that are generated using different witnesses. While witness indistinguishability is natural
and often useful as a building block in applications, it is still quite limited. For example, in
the rather common scenario where statements have a unique witness, witness indistinguishability
becomes meaningless.

• Witness hiding [FS90]: Ensures that a malicious verifier cannot learn an entire witness from the
proof; that is, unless such a witness can be efficiently computed from the statement alone. In
contrast to witness indistinguishability, the witness hiding requirement is also meaningful in the
unique witness case.

• Weak zero-knowledge [DNRS03]: Relaxes zero-knowledge by switching the order of quantifiers.
Full-fledged zero-knowledge requires that for every verifier there exists a simulator that generates
a view, indistinguishable from the verifier’s view in a real interaction, for every distinguisher.
In contrast, weak zero-knowledge requires that for every verifier and distinguisher, there exists
a simulator that fools this specific distinguisher. We also allow the simulator to depend on the
desired distinguishing gap.2
Weak zero-knowledge hides any predicate of the statement and witness (used by the prover)
that cannot be computed from the statement alone. It implies both witness hiding and witness
indistinguishability.

The above relaxations are not subject to the same lower bounds as full-fledged zero-knowledge. In fact,
the only known unconditional lower bound rules out weak zero-knowledge in one message [GO94].

As for constructions, witness indistinguishability has indeed been obtained, under standard assump-
tions, in three [GMW91, FS90], two [DN07, BGI+17, JKKR17], and eventually even one message
[BOV07, GOS12]. In contrast, weak zero-knowledge and witness hiding have proven to be just as
challenging to construct as full-fledged zero-knowledge. So far, constructions with less than four mes-
sages are known only based on non-standard assumptions, which by now are considered implausible

1Recall that a protocol is an argument if it is only computationally sound, and a proof if it is statistically sound.
2There are several variants of this definition strengthening/weakening different aspects [DNRS03, CLP15].

1

[BP12, BM14, BST16], for restricted classes of adversarial verifiers [BCPR14, JKKR17], or for re-
stricted classes of languages [FS90, Pas03]. (See the related work section for more details).
The black-box barrier. The difficulty in obtaining round-optimal zero knowledge and its relaxations
stems from a fundamental barrier known as the black-box barrier — three-message zero-knowledge is
impossible as long as the simulator is oblivious of the verifier’s code, treating it as a black box [GK96].
Similar barriers hold for both weak zero-knowledge and witness hiding [HRS09].

Whereas classical zero-knowledge protocols all have black-box simulators, starting from the break-
through work of Barak [Bar01], non-black-box techniques that exploit the verifier’s code have been
introduced (c.f., [DGS09, CLP13, Goy13, BP15a, BBK+16, CPS16]). However, existing techniques
seem to require at least four messages (except for [BKP18], based on a non-standard assumption).

In conclusion, as in the case of zero knowledge, weak-zero-knowledge and witness-hiding protocols in
three-message or less, based on standard cryptographic assumptions, remain out of reach.

1.1 Results

We devise a new non-black-box technique and apply it to obtain, under standard assumptions, weak
zero-knowledge and witness hiding beyond the black-box barrier.

Our main result is a two-message weak zero-knowledge argument for NP.

Theorem 1.1 (informal). There exists a two-message weak zero-knowledge argument for NP assuming:
subexponentially-secure one-way functions and quasi-polynomially-secure fully-homomorphic encryp-
tion, random-self-reducible encryption, two-message witness-indistinguishable arguments and oblivious
transfer, non-interactive commitments, and compute-and-compare obfuscation.

All of the above primitives (but subexponentially-secure one-way functions) are known under
quasipolynomial hardness of LWE,with the exception of fully-homomorphic encryption that also requires
a circular security assumption [Gen09b, BV14, BGI+17, GHKW17, GKW17, JKKR17, WZ17, BD18].
We can also replace compute-and-compare obfuscation with fully-homomorphic encryption schemewith
some additional natural properties that are satisfied by known constructions (see the technical overview
for more details).

It is interesting to note that the result gives an example of a naturalweak-zero-knowledge protocol that
is provably not zero knowledge. Previously, a contrived separation was known assuming exponentially-
hard injective one-way functions [CLP15].

Our second result is a three-message protocol that is based only on polynomial hardness assumptions.

Theorem 1.2 (informal). Assuming polynomial hardness of the primitives in Theorem 1.1, as well as
dense commitments, there exists a three-message weak zero-knowledge argument for NP.

The polynomially-hard version of the required primitives (including dense commitments) can be
based on (polynomially-hard) fully-homomorphic encryption, LWE, and either Factoring or standard
Bilinear-Group assumptions.

Our third result, also from polynomial hardness assumptions, is a two-message witness-hiding protocol
for any language L ∈ NP that has a witness encryption scheme [GGSW13].

Theorem 1.3 (informal). There exists a two-message witness-hiding argument for any languageL ∈ NP
under the same (polynomial) assumptions as in Theorem 1.2 and witness encryption for L.

For the time being, witness encryption for all of NP is only known based on indistinguishability
obfuscation, or based on non-standard assumptions on multilinear maps [GGH+16, CVW18]. Witness
encryption for several non-trivial languages follows from results on hash proofs systems [CS02].

2

The protocol we obtain is publicly verifiable, meaning that the proof can be verified given the
transcript alone, without secret verifier randomness. We observe that the [GO94] lower bound for two-
message zero-knowledge extends also to two-message publicly-verifiable weak zero-knowledge, and thus
we cannot expect to get a similar result for weak zero-knowledge.
From explainable to malicious security. The main component in all of the above results is a weak-
zero-knowledge argument for NP against a new class of verifiers that we call explainable. Such verifiers
may not follow the honest verifier strategy, but they do choose their messages from the support of the
honest verifier message distribution; namely, there exist honest verifier coins that explain their behavior.
The notion resembles that of semi-malicious and defensible adversaries [HIK+11, BGJ+13], but differs
in the fact that the verifier does not explicitly choose a random tape for the honest verifier (and it may not
be possible to efficiently extract such a tape from the verifier).

Theorem 1.4 (informal). Under the same assumptions as in Theorem 1.1 (respectively, 1.2), there exists
a two-message (respectively, three-message) weak zero-knowledge argument for NP against explainable
verifiers.

We then give general compilers to boost explainable security to malicious security. These compilers
may be of independent interest. For instance, they imply that to obtain full-fledged zero knowledge in
three messages, it suffices to consider explainable verifiers.

1.2 Technical Overview

We now give an overview of our techniques. We focus on two-message protocols against explainable
verifiers, which is the technical core behind our results. We also explain how to avoid super-polynomial
hardness assumptions, at the account of adding one message to this protocol. We then describe the main
ideas behind our compilers to malicious security.
Warm up: a witness-hiding protocol. Toward constructing a two-message weak-zero-knowledge
protocol against explainable verifiers, let us first consider the easier goal of witness hiding. Recall that a
protocol is witness hiding if there exists a reduction that given as input an NP statement x, and the code
of a witness-finding verifier, outputs a witness. By a witness-finding verifier, we mean a verifier that
given a proof that x is true, finds a witness for x with noticeable probability.

Our protocol follows a classic paradigm by Feige, Lapidot, and Shamir [FLS99]. The first verifier
message fixes a so-called trapdoor statement τ . In parallel, the prover and verifier execute a two-
message witness-indistinguishable argument that either the statement x or the trapdoor statement τ hold.
(Throughout the rest of the introduction we ignore the first message of the witness-indistinguishable
argument.)

The trapdoor statement τ is meant to have two properties:

• To a malicious prover, trying to convince the verifier of a false statement x, τ should be com-
putationally indistinguishable from a false statement. Thus, by the soundness of the witness-
indistinguishable argument, the prover should fail.

• A reduction that has the code of an explainable witness-finding verifier should be able to obtain a
witness ρ for the trapdoor statement τ . Once such a witness is found, the reduction can use it to
generate the witness-indistinguishable argument. By witness indistinguishability, the reduction’s
proof is indistinguishable from the honestly generated proof and, therefore, the verifier will output
a valid witness w for the statement x with noticeable probability.

The main challenge in realizing the above paradigm is to extract the trapdoor witness ρ from the verifier’s
code. The basic idea behind our non-black-box technique, and what enables such extraction, is what we
call the homomorphic trapdoor paradigm.

3

In our protocol, on top of the trapdoor statement τ , the verifier will send an encryption ct of the
witness ρ attesting that τ holds, using a fully-homomorphic encryption scheme. On one hand, by the
security of the encryption scheme, this does not compromise soundness. On the other hand, a reduction
that has the code of the witness-finding verifier can obtain a witness w for x under the encryption. To do
so, the reduction homomorphically invokes the strategy described before — under the encryption ct, it
uses ρ to compute the witness-indistinguishable argument, and obtain the witness w from the verifier.

The above step does not find a witness w in the clear (nor does it extract the trapdoor ρ). We observe,
however, that an encryption of a witness w is already a non-trivial piece of information that could only
be obtained when x is a true statement; in fact, we can use it as another trapdoor witness. Concretely,
we extend our protocol to include yet another, so-called homomorphic, trapdoor statement τh where a
witness ρh for τh could be any encryption of a witness w for x. That is, τh is true if and only if x is true,
and a witness ρh for τh is an encryption of a witness w for x.

In the extended protocol, the prover gives a witness-indistinguishable argument that either the
statement x, the trapdoor statement τ , or the homomorphic trapdoor statement τh hold. The reduction
first uses the encrypted trapdoor ρ homomorphically to obtain a trapdoor ρh (in the clear), and then uses
ρh to generate the witness-indistinguishable argument. By witness indistinguishability, the verifier will
output a witnessw, this time in the clear. Note that we crucially rely on the fact that a fully homomorphic
encryption scheme satisfies compactness in the sense that the size of the encrypted witness (and hence
the trapdoor τh) is fixed and independent of the size of the homomorphic computation performed to
obtain this encryption. Indeed, this computation grows with the size of the malicious verifier, which is
not apriori bounded.

One difficulty in realizing the above strategy is to prove the homomorphic trapdoor statement τh;
that is, to prove that there exists an encryption ρh of a valid witness w for x, when the reduction lacks
the homomorphic decryption key. We discuss how to resolve this difficulty below when describing the
more general weak-zero-knowledge protocol.
Toward weak zero-knowledge. Recall that in weak zero-knowledge, we require that there exists a
simulator that given the code of a verifier and a distinguisher D, simulates the verifier’s output so that it
fools D. That is, D cannot ε-distinguish between the simulated output and the verifier’s output in a real
interaction with the prover, for any accuracy parameter ε, where the simulator is allowed to run in time
polynomial in 1/ε.

In this setting, the verifier’s output is arbitrary and may not include a witness. Thus, we cannot
employ the same strategy as before. Nevertheless, our protocol still builds on the homomorphic trapdoor
paradigm, but with additional ideas. In a nutshell, instead of extracting awitnessw from the verifier under
the encryption, we extract a different trapdoor witness from the distinguisher D, under the encryption.
Then, as before, we use the encryption of this trapdoor as the homomorphic trapdoor.
Random self-reducible encryption. To enable extraction from the distinguisher, we rely on a public-key
encryption scheme that is random self-reducible [BM84]. In such a scheme, any distinguisher D that
can tell encryptions of zero from encryptions of one with advantage ε, under some specific public key
pk, can be used to decrypt arbitrary ciphertexts under the key pk, in time polynomial in |D|/ε. Such
schemes are known based on various standard assumptions (see Section 2.5).
The protocol. We now describe the protocol, and then go on to analyze it.

• The verifier’smessage, as before, includes a trapdoor statement τ and a fully-homomorphic encryp-
tion ct = FHE.Encsk(ρ) of the corresponding witness ρ. In addition, it includes another trapdoor
statement τ ′, and a random self-reducible encryption ct′ = RSR.Encpk(ρ

′) of the corresponding
witness ρ′. The trapdoor statements τ, τ ′ are both indistinguishable from false statements. The
statements τ, τ ′ also fix a homomorphic trapdoor statement τh, asserting that “there exists a fully-
homomorphic encryption ρh of a valid witness ρ′ for τ ′.” That is, τh is true if and only if τ ′ is
true, and any witness ρh for τh is a fully-homomorphic encryption of a witness ρ′ for τ ′.

4

• The prover, as before, gives awitness-indistinguishable argument, but now, in addition, it also sends
a random-self-reducible encryption of one ctP = RSR.Encpk(1). The witness-indistinguishable
argument attests that either one of the statements x, τ, τh hold, or ctP is an encryption of zero (and
not one). Note that the trapdoor statement τ ′ is not directly involved in thewitness-indistinguishable
argument, but only defines the homomorphic trapdoor statement τh.

• The verifier checks that the witness-indistinguishable argument is valid and that ctP decrypts to
one.

Soundness. Relying on the security of both encryption schemes, we would like to argue that the verifier’s
encryptions of ρ and ρ′ can be changed to encryptions of garbage. Then, the trapdoor statements τ and τ ′
can be changed to false statements, in which case the homomorphic trapdoor statement τh also becomes
false. Also, ctP must not be an encryption of zero or the verifier rejects. Soundness then follows from
that of the witness-indistinguishable argument.

One subtlety in the above argument is that the verifier’s decision depends on the secret key of the
the random-self-reducible encryption, and thus changing the encryption of ρ′ to garbage may affect the
bit underlying the prover’s encryption ctP and accordingly also the verifier’s decision bit. To get around
this, we require that the prover exhibits that it “knows” the contents of the encryption ctP (and therefore
does not maul the encryption of ρ′). In this case, we can argue that the verifier continues to accept,
even if we change the encryption of ρ′. To facilitate such a proof of knowledge in two messages we
resort to complexity leveraging, which is the cause of reliance on super-polynomial assumptions in our
two-message protocol. In the three-message setting, we rely instead on extractable commitments based
on polynomial hardness assumptions.
Weak zero-knowledge. To argue weak zero-knowledge, we follow a similar approach to that taken in
previous works that constructed weak zero-knowledge [BP12, JKKR17]. The simulation strategy will
have two modes: a secret mode and a public mode, with two corresponding distributions on proofs, Πs

and Πp. The secret distribution Πs is always indistinguishable from the real distribution Π generated by
the honest prover, but sampling from this distribution requires a secret s. The public distribution Πp can
be publicly sampled without knowing s. While Πp is not indistinguishable from Π, to tell them apart,
the distinguisher must “know” the secret s. That is, given any distinguisher D that ε-distinguishes Πp

from Π, it is possible to extract the secret s in time polynomial in |D|/ε.
This gives rise to a simple simulation strategy that treats separately two types of distinguishers: those

that know the secret s, and those that do not. Specifically, given the code of the distinguisher D and the
required simulation accuracy ε, first try to extract the secret s from D, and if successful, sample from Πs

to simulate the proof. Otherwise, deduce that D cannot ε-distinguish Πp from Π, and sample the proof
from Πp. As before, the main challenge in realizing this strategy is to extract the secret s from D. Our
solution again relies on the homomorphic trapdoor paradigm.
Going back to our protocol, let us define the corresponding secret and public distributions Πs,Πp:

• The secret distribution Πs is associated with the homomorphic trapdoor τh, and can be sampled
using any witness ρh for τh. Like the real proof distribution Π, it consists of an encryption of
one ctP = RSR.Encpk(1). However, differently from the real proof distribution, the witness-
indistinguishable argument is computed using the homomorphic trapdoor witness ρh.

• The public distributionΠp consists of an encryption of zero ctP = RSR.Encpk(0), and the witness-
indistinguishable argument is computed using the randomness of the encryption ctP as a witness.

We argue that Πs and Πp have the required properties. The fact that Πs is indistinguishable from the
real proof distribution Π follows from witness indistinguishability. We now show that any distinguisher
D between Πp and Π can be used to extract a witness ρh (namely, an encryption of a witness ρ′ for τ ′),
which in turn, can be used for sampling from Πs. We do this in two steps:

5

1. We show that given a distinguisher D between Πp and Π, as well as the trapdoor ρ, we can obtain
a distinguisher D′ that can tell apart encryptions of one from encryptions of zero (with about the
same advantage). By random self-reducibility, such a distinguisher D′ can be used to decrypt
arbitrary ciphertexts under the random self-reducible scheme. In particular, such D′ can be used
to decrypt the encryption ct′ of the trapdoor ρ′ (given in the first verifier message).
The distinguisher D′ is defined in the natural way: given a bit encryption, it samples on its
own a witness-indistinguishable argument, using ρ as the witness, and then applies D. By
witness indistinguishability, the induced distribution Π0, corresponding to encryptions of zero, is
indistinguishable from the real proof distribution Π. Similarly, the distribution Π1, corresponding
to encryptions of one, is indistinguishable from the public distribution Πp. Accordingly, D′ has
roughly the same advantage as D.

2. In the second step, we extract the required trapdoor ρh allowing us to sample fromΠs. Analogously
to the witness-hiding reduction we have already seen, this is done by homomorphically applying
the first step — under the encryption ct sent by the verifier, we use ρ to obtain the distinguisher D′
and decrypt ct′. This results in the required trapdoor ρh, a fully-homomorphic encryption of the
trapdoor ρ′.

How to prove homomorphic trapdoor statements. To conclude our sketch of the weak zero-knowledge
analysis, we explain how to prove the homomorphic trapdoor statement τh. As already mentioned, the
difficulty in proving that there exists an encryption ρh of a valid witness for τ ′ is that the simulator does
not have the corresponding secret key. Next, we discuss two possible solutions.

The first approach (which we follow in the body of the paper) is based on obfuscation for compute and
compare programs. A compute and compare program CC[f, u] is given by a function f (represented
as a circuit) and a target output string u in its range; it accepts every input x such that f(x) = u, and
rejects all other inputs. A corresponding obfuscator compiles any such program into a program C̃Cwith
the same functionality. In terms of security, provided that the target u has high entropy , the obfuscated
program is computationally indistinguishable from a simulated program that rejects all inputs. Such
obfuscators are defined and constructed under LWE in [GKW17, WZ17].3

Using compute-and-compare obfuscation, we modify our protocol as follows. We no longer sample
a trapdoor statement τ ′, but instead, set ρ′ to be a random string. The homomorphic trapdoor statement
τh is still defined so that a witness ρh is a fully-homomorphic encryption of ρ′. Specifically, τh is given
by an obfuscation C̃C of the program CC[FHE.Decsk, ρ

′] that accepts fully-homomorphic ciphertexts
that decrypt to ρ′. Accordingly, a ciphertext ρh is a valid witness for τh if and only if C̃C(ρh) = 1.
The obfuscation C̃C will now be specified as part of the verifier’s first message, which also includes
as before the trapdoor statement τ , a fully-homomorphic encryption of the trapdoor witness ρ, and a
random self-reducible encryption of the random string ρ′.

The simulator can obtain a fully-homomorphic encryption of ρ′ and use it as a trapdoor witness
ρh. Furthermore, as required for soundness, τh is indistinguishable from a false statement, since C̃C is
indistinguishable from a program that rejects all inputs.
Another approach, without compute-and-compare obfuscation. We now describe an alternative
approach for proving the trapdoor statement, which does not rely on compute-and-compare obfuscation,
but requires the homomorphic encryption to satisfy additional properties.

Here, given the fully-homomorphic encryption ρh of ρ′, the simulator homomorphically evaluates the
NP witness verification procedure for the statement τ ′ and sends the encrypted output bit. It then proves
that this bit encryption was indeed obtained by homomorphically evaluating the verification procedure

3The known construction have a one-sided negligible correctness error. This error will not obstruct our protocol and is
ignored in this introduction.

6

for τ ′ using the encryption ρh as a witness. The verifier checks the proof and in addition decrypts the
output bit and checks that it is accepting.

There are some subtleties to take care of: a) to preservewitness indistinguishability, the homomorphic
evaluation must be function hiding and b) to preserve soundness, the prover must convince the verifier
that the homomorphic computation was performed over a valid ciphertext ρh. To this end, we require a
validation operationmapping arbitrary (possibly invalid) ciphertexts into valid ones, while preserving the
plaintext underlying valid ciphertexts. Both properties can be achieved in existing fully-homomorphic
encryption constructions (without additional assumptions) [Gen09a, OPP14, HW15]. (Also, a similar
malleability problem as described before also occurs here and is dealt with using a proof of knowledge.)

Another issue is that the simulator cannot tell whether the encryption ρh it obtained is indeed an
encryption of a valid trapdoor witness ρ′ or not (in which case, it should deduce that D cannot tell Π
from Πp and use Πp to simulate). To deal with this, we again use the distinguisher D′ to decrypt ct′,
except that we do so in the clear. Since now we do not have the trapdoor witness ρ, we use ρh instead.
By witness indistinguishability, if we fail to decrypt ct′ and obtain the witness ρ′ in the clear, we can
deduce that D cannot tell Π from Πp.

1.2.1 From Explainable to Malicious

Observe that in the protocols described above, it was crucial that the verifier behaves in an explainable
fashion. In particular, the simulation strongly relies on the fact that the verifier’s fully-homomorphic
encryption ct is indeed an encryption of trapdoor witness ρ for the statement τ . To deal with malicious
adversaries, we design compilers that take protocols secure against explainable verifiers and turn them
into protocols secure against malicious verifiers. We provide three different compilers for different
settings. We now explain the main ideas behind each of these compilers.
A two-message compiler based on super-polynomial assumptions. Our first compiler is based on two-
message conditional disclosure of secrets schemes for NP, which is known under standard assumptions
[AIR01, BP12, AJ17]. In such a scheme, the verifier first sends an instance x′ for some NP language L′
together with an encrypted witness. The prover responds with an encryption of a message, which the
honest verifier can then decrypt. In contrast, if a cheating verifier sends x′ /∈ L′, the prover’s message is
completely hidden.

The compiler works as follows. The parties emulate the original two-message protocol for explainable
verifiers. The verifier also sends the first message of a conditional disclosure protocol for the statement
x′ asserting that its message is explainable (namely, it is in the support of the honest verifier’s messages).
The prover then responds with an encryption, relative to x′, of its second message in the underlying
protocol. The verifier decrypts and verifies the underlying protocol.

Intuitively, if the verifier does not behave in an explainable manner, the statement x′ is false, the
prover’s message is hidden, and the verifier learns nothing. If the verifier is explainable, then the weak
zero-knowledge guarantee of the underlying protocol kicks in. To argue soundness, we would like to
give a reduction that can efficiently extract the prover’s encrypted message, without using the verifier’s
randomness. To this end, the prover provides a proof-of-knowledge of its message. To enable such a
proof of knowledge in only two messages, we again rely on complexity leveraging.
A three-message compiler based on polynomial assumptions. A natural approach toward a three-
message compiler based on polynomial assumptions is to augment the previous compiler with a three-
message proof of knowledge (rather than a two-message one based on complexity leveraging). However,
we do not know how to prove that this approach works. In a nutshell, the issue is that the explainability
of the verifier’s message may now depend on the first prover message, and cannot be efficiently tested.
Instead, we take a different approach inspired by [BP15b].

To understand the basic idea behind the compiler, imagine first that the language L is in NP∩ coNP.
The compiler works as follows. Given the statement x, the verifier provides, together with its message,

7

a witness-indistinguishable argument that either x /∈ L or that its message is explainable; namely, there
exists randomness for the honest verifier strategy that is consistent with the messages. Note that x /∈ L
is indeed an NP statement since L ∈ coNP.

We first argue that the compiler preserves the privacy guarantee of the original protocol. By the
soundness of the witness-indistinguishable argument, for every x ∈ L, if the verifier sends a message
that is not explainable, the prover immediately aborts. Thus, the view of a malicious verifier can be
simulated from that of an explainable verifier. As for soundness, if x /∈ L, then, since L ∈ coNP,
there exists a witness for this fact. Given this witness as a non-uniform advice, the reduction can turn
any cheating prover against the compiled scheme into a cheating prover against the original scheme.
By witness indistinguishability, the reduction can use the witness for x /∈ L to compute the witness-
indistinguishable arguments without compromising the verifier’s randomness.

To extend the above to all ofNP, we use the first prover message to map the statement x into a related
coNP statement. For this, we rely on perfectly binding dense commitments where every string is a valid
commitment to some value. The prover, in the first message, commits to the witness w using the dense
commitment. The verifier proceeds to prove that the prover’s commitment can be opened to a string
which is not a valid witness for x (or that its messages can be explained).

To argue soundness when x /∈ L, note that the dense commitment can necessarily be opened to
some string, which is not a witness. The reduction then proceeds as in the previous protocol. Weak
zero-knowledge follows by a simple extension of the previous argument. If the commitment in the first
message indeed contains a valid witness, then by the binding of the commitment and the soundness of
the verifier’s proofs, the verifier fails to prove that the commitment is to a non-witness. Thus, the view
of a malicious verifier can be simulated given the view of an explainable verifier and a commitment
to a witness. Furthermore, by the hiding of the commitment, such simulation is possible even given a
commitment to garbage, which the simulator can generate alone.

We note that this compiler actually preserves all natural security notions (like, zero-knowledge, weak
zero-knowledge, or witness hiding).
Two-message witness-hiding compilers. We provide another two-message compiler for witness hiding
protocol that is based on polynomial assumptions and is also publicly verifiable. The compiler works
for any language L ∈ NP provided a witness encryption scheme for L. moved this here: In a witness
encryption scheme forL, it is possible to encryptmessages using statementsx as a public-key. Decryption
can be done by anyone in possession of a corresponding witnessw. In contrast, for x /∈ L, the encryption
completely hides the message.

The compiler is as follows. Given the statement x, the verifier sends, together with its message, an
encryption of its randomness under witness encryption, using the instance x as the public-key. The honest
prover, holding a witness, can decrypt and abort in case of malicious behavior. The compiler guarantees
that if the verifier is not explainable, the prover aborts. Therefore, intuitively, such a verifier does not
obtain any information. However, this intuition is misleading — a malicious verifier may generate
messages without knowing whether they are explainable, and use the prover’s abort decision to learn
this bit of information.4 Nonetheless, the compiler does preserve witness hiding — the witness-finding
reduction can simply guess if the verifier’s message is explainable and simulate the prover’s message
accordingly. This only decreases its success probability by a factor of two.

1.3 More on Related Work

We next address related work in more detail.
Weak zero-knowledge and witness hiding. The notion of weak zero-knowledge is introduced in
[DNRS03] who study the connection between 3-message public-coin weak zero-knowledge and so-

4In fact, for some instantiations of the witness encryption, this protocol reveals an arbitrary bit of the witness [BP15b].

8

called magic functions. (They also consider several variants of the definition.) The notion of witness
hiding is introduced in [FS90] who prove that any witness-indistinguishable protocol is witness hiding
for distributions on statements with at least two “independent” witnesses. In [BP12], three-message weak
zero-knowledge and witness-hiding protocols are constructed based on non-standard assumptions, which
by now are considered implausible [BM14, BST16]. Specifically, these constructions are based on the
notion of recognizable auxiliary-input point obfuscation that was shown in [BST16] to be impossible
assuming virtual-grey-box obfuscation exists.
Upgrading weak zero-knowledge. The work of [CLP15] considers two relaxed notions of zero knowl-
edge and proves that they are equivalent to their weak variants (where the simulator can depend on
the distinguisher). The first notion they consider is distributional zero-knowledge where instances are
sampled from some known distribution (and the simulator can depend on this distribution). The second
notion is zero knowledge against uniform distinguishers (these distinguishers can still get an auxiliary
input, but the same input is given to the simulator). In both settings, the equivalence is shown for
(t, ε)-zero-knowledge, where the distinguisher’s running time and distinguishing gap are bounded by t
and ε, respectively, and the simulator’s running time can depend on t and 1/ε.

Combining our weak-zero-knowledge protocols with the equivalence theorems of [CLP15] yields
distributional (t, ε)-zero-knowledge and (t, ε)-zero-knowledge against uniform distinguishers. Note that
the two-message lower bound of [GO94] does not apply for these notions.
Distributional security against non-adaptive verifiers. The work of [JKKR17] constructs distribu-
tional weak-zero-knowledge and witness-hiding protocols for a restricted class of non-adaptive verifiers
who choose their messages obliviously of the proven statement. They give protocols in three messages
under standard assumptions, and in two messages under standard, but super-polynomial, assumptions.
Their simulators and (witness-finding) reductions access the verifier as a black box.
Bounded description adversaries. Another type of relaxation considered in the literature is restrict-
ing the (adversarial) verifier or prover to a-priori bounded description (and arbitrary polynomial run-
ning time). Here (full-fledged) zero-knowledge can be constructed in two messages against bounded-
description verifiers under standard, but super-polynomial, assumptions [BCPR14], and in threemessages
against bounded-description provers assuming also keyless hash functions that are collision-resistant
against bounded-description adversaries [BBK+16].
Super-polynomial simulation. Zero knowledge with simulators that run in super-polynomial time can
be constructed in two messages from standard, but super-polynomial, assumptions [Pas03, BGI+17].
One-message zero-knowledge with super-polynomial simulation can be constructed against uniform
provers, assuming uniform collision-resistant keyless hash functions [BP04a], or against non-uniform
verifiers, but with weak soundness, assuming multi-collision-resistant keyless hash functions [BL18].
Such zero-knowledge implies a weak notion of witness hiding for distributions on instances where it is
hard to find a witness, even for algorithms that run in the same super-polynomial time as the simulator.
Zero-knowledge proofs. So far, we have focused on the notion of arguments (which are only computa-
tionally sound). The round complexity of zero-knowledge proofs (which are statistically sound) has also
been studied extensively. Four-message proofs are impossible to achieve via black-box simulation, except
for languages in NP ∩ coMA [Kat12]. Four message proofs with non-black-box simulation are only
known assuming multi-collision-resistance keyless hash functions [BKP18]. Recent evidence [FGJ18]
suggests that, differently from zero-knowledge arguments, zero-knowledge proofs may be impossible to
achieve in three messages (even with non-black-box simulation).
Honest-verifier zero knowledge. For languages in the class SZK, there exist two-message proofs with an
inefficient prover (known as Arthur-Merlin proofs) that are zero knowledge only against honest verifiers
[AH91, SV97]. Two-message honest-verifier zero-knowledge is implied by any NIZK with a common
random string (such a NIZK exists under computational assumptions).

9

2 Preliminaries

We rely on the standard notions of Turing machines and Boolean circuits.

• We say that a Turing machine is PPT if it is probabilistic and runs in polynomial time.

• For a PPT algorithmM , we denote byM(x; r) the output ofM on input x and random coins r.
For such an algorithm, and any input x, we may write m ∈ M(x) to denote the fact that m is in
the support ofM(x; ·).

• A polynomial-size circuit family C is a sequence of circuits C = {Cλ}λ∈N, such that each circuit
Cλ is of polynomial size λO(1) and has λO(1) input and output bits. We also consider probabilistic
circuits that may toss random coins.

• We follow the standard habit of modeling any efficient adversary as a family of polynomial-size
circuits. For an adversary A corresponding to a family of polynomial-size circuits {Aλ}λ∈N, we
sometimes omit the subscript λ, when it is clear from the context.

• We also consider quasipolynomial-size adversaries, which are defined analogously to polynomial-
size adversaries, but are of size 2(log λ)O(1) instead of λO(1). By default we define the security of
primitives against polynomial-size adversaries. Security against quasipolynomial-size adversaries
is always defined analogously.

• A function f : N→ R is negligible if f(λ) = λ−ω(1) and is noticeable if f(λ) = λ−O(1).

• For random variables X and Y , distinguisher D, and 0 < µ < 1, we write X ≈D,µ Y if

|Pr[D(X) = 1]− Pr[D(Y) = 1]| ≤ µ.

2.1 Arguments

In what follows, we denote by 〈P,V〉 a protocol between two parties P and V. For input w for P, and
common input x, we denote by OUTV〈P(w),V〉(x) the output of V in the protocol. For honest verifiers,
this output will be a single bit indicating acceptance (or rejection), malicious verifiers may have arbitrary
output. Throughout, we assume that honest parties in all protocols are uniform PPT algorithms.

Definition 2.1 (Argument). A protocol 〈P,V〉 for an NP relationRL(x,w) is an argument if it satisfies:

1. Completeness: For any λ ∈ N, x ∈ L ∩ {0, 1}λ, w ∈ RL(x):

Pr [OUTV〈P(w),V〉(x) = 1] = 1 .

2. Computational soundness: For any polynomial-size proverP∗ = {P∗λ}λ, there exists a negligible
µ such that for any security parameter λ ∈ N, and any x ∈ {0, 1}λ \ L,

Pr [OUTV〈P∗λ,V〉(x) = 1] ≤ µ(λ) .

The argument is soundagainst quasipolynomial provers, if the above holds also for quasipolynomial-
size P∗.

Remark 2.1 (Public verification). We say that the protocol is publicly verifiable if the verifier’s decision
bit can be computed from the protocol’s messages (without verifier private state).
Remark 2.2 (Proofs). We say that the protocol is a proof if the soundness condition also holds against
unbounded provers P∗.
Remark 2.3 (Randomized provers). We assume that (adversarial) provers are deterministic. As usual,
this is w.l.o.g (by fixing their coins to the ones that maximize their success probability).

10

2.1.1 Weak Zero-Knowledge

Definition 2.2 (WZK). A protocol 〈P,V〉 is WZK if there exists a PPT simulator S, such that for any
polynomial-size verifier V∗ = {V∗λ}λ, distinguisher D = {Dλ}λ, and noticeable ε(λ), there exists a
negligible µ(λ), such that for any λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x),

OUTV∗λ
〈P(w),V∗λ〉(x) ≈Dλ,ε+µ S(x,V∗λ,Dλ, 1

1/ε) .

Remark 2.4 (w.l.o.g). When convenient we assume w.l.o.g that V∗ is deterministic. This is as in the case
of (standard) zero knowledge with a universal simulator [GO94]. We do not assume that the distinguisher
is deterministic. This is in contrast to standard zero-knowledge where we often fix the best random coins
for the distinguisher. In weak zero-knowledge this is not possible, as the simulated distribution can
depend on the distinguisher.

Also, when convenient we assume w.l.o.g that verifiers always output their entire view consisting of
the prover message and, if they are probabilistic, their randomness.

2.1.2 Witness Hiding

Definition 2.3 (WH). A protocol 〈P,V〉 is WH if there exists a PPT reduction R, such that for any
polynomial-size verifier V∗ = {V∗λ}λ and noticeable ε(λ), there exists a negligible µ(λ), such that for
any λ ∈ N and x ∈ L ∩ {0, 1}λ,

Pr
[
OUTV∗λ

〈P(w),V∗λ〉(x) ∈ RL(x)
]
≤ Pr

[
R(x,V∗λ, 1

1/ε) ∈ RL(x)
]

+ ε(λ) + µ(λ) .

Remark 2.5 (Randomized verifiers). As in Remark 2.4, and for the same reasons, the above definition
considers w.l.o.g only deterministic verifiers V∗.

It is well-known that WZK implies WH (by considering the specific distinguishers that checks if the
verifier’s output is a valid witness).

Lemma 2.1. Any WZK protocol is WH.

2.1.3 Explainable Verifiers

Roughly speaking, explainable verifiers are verifiers whose messages are (almost) always in the support
of the honest verifier’s messages, regardless of how the prover’s messages are generated. We also allow
such verifiers to abort at any stage.

Definition 2.4 (Explainable transcript). Let 〈P,V〉 be a protocol, P∗ be an arbitrary prover, and V∗ an
arbitrary verifier. We say that a transcript T of an execution 〈P∗,V∗〉(x) is explainable if there exists
honest verifier coins r such that T is consistent with the transcript of an execution 〈P∗,Vr〉 until the
point in T that V∗ aborts. (Here Vr is the honest verifier using coins r).

Definition 2.5 (Explainable verifier). Let 〈P,V〉 be a protocol. A (possibly probabilistic) verifier
V∗ = {V∗λ}λ is explainable if there exists a negligible µ(λ) such that for any prover P∗, λ ∈ N, and
x ∈ {0, 1}λ,

Pr
V∗λ

[T is explainable | T ← 〈P∗,V∗λ〉(x)] ≥ 1− µ(λ) .

In the two-message setting, We will also consider a simpler notion of always explainable verifiers,
which are deterministic verifiers that always output a message in the support of the honest verifier.

Definition 2.6 (Always-explainable verifier). A deterministic verifier V∗ = {V∗λ}λ is always explainable
if for any prover P∗, λ ∈ N, x ∈ {0, 1}λ, and T = 〈P∗,V∗λ〉(x), T is explainable and is not ⊥.

11

Explainable WZK and WH. WZK and WH against explainable verifiers are defined exactly as WZK
and WH only that the (respective) definition only holds against explainable verifiers rather than all
verifiers. We also note that Lemma 2.1 saying that WZK implies WH also holds for explainable verifiers.
Remark 2.6 (w.l.o.g). We note that in the two-message setting, we can assume w.l.o.g that explainable
verifiers are always explainable. This is because aborts can be easily simulated and malicious verifier
messages (that are not abort) occur with negligible probability.

2.1.4 Witness Indistinguishability

We consider two-messagewitness-indistinguishable (WI) arguments with delayed input, where the prover
obtains the input statement and witness after the first round of the protocol. In some of our protocols, we
will also require aweak argument of knowledge property that says that there exists a quasipolynomial-time
witness extractor.
Definition 2.7 (Two-message argument with delayed input). A two-message protocol 〈P,V〉 is a delayed
input WI argument if V consists of two PPT algorithms (V1,V2) that satisfy:

1. Completeness: For any λ ∈ N, x ∈ L ∩ {0, 1}λ, w ∈ RL(x):

Pr

[
V2(x,wi2; τ) = 1

∣∣∣∣ (wi1, τ)← V1(1λ)
wi2 ← P(x,w,wi1)

]
= 1 .

2. Computational soundness: For any polynomial-size proverP∗ = {P∗λ}λ, there exists a negligible
µ such that for any security parameter λ ∈ N,

Pr

[
V2(x,wi2; τ) = 1
x ∈ {0, 1}λ \ L

∣∣∣∣ (wi1, τ)← V1(1λ)
(x,wi2)← P∗(wi1)

]
≤ µ(λ) .

3. Witness indistinguishability: For any polynomial-size verifier V∗ = {V∗λ}λ, there exists a
negligible µ such that for any security parameter λ ∈ N,

Pr

 V∗λ(wi2) = b
x ∈ L ∩ {0, 1}λ
w0, w1 ∈ RL(x)

∣∣∣∣∣∣
(wi1, x, w0, w1)← V∗λ
b← {0, 1}
wi2 ← P(x,wb,wi1)

 ≤ 1

2
+ µ(λ) .

The argument has a quasipolynomial witness extractor if there exists a quasipolynomial time
extractor E such that for any polynomial-size prover P∗ = {P∗λ}λ, there exists a negligible µ such
that for any security parameter λ ∈ N,

Pr

 V2(x,wi2; τ) = 1
w /∈ RL(x)

∣∣∣∣∣∣
(wi1, τ)← V1(1λ)
(x,wi2)← P∗(wi1)
w ← E(x,wi1,wi2)

 ≤ µ(λ) .

Instantiations. Two-message WI arguments with delayed input that are also publicly verifiable (and in
fact also proofs) can be based either on trapdoor permutations [DN07], standard assumptions on bilinear
groups [GOS12], or indistinguishability obfuscation [BP15b]. Such privately-verifiable arguments can
be constructed from any 2-message oblivious transfer against malicious receivers and super-polynomial
semi-honest senders [BGI+17, JKKR17]. In particular, they can be constructed from (super-polynomial)
LWE [BD18].

A two-message WI argument with delayed input and a quasipolynomial witness extractor can be
constructed from any (plain) two-message WI argument and subexponentially-secure two-message
commitments [Pas03], which in turn can be constructed from subexponentially-secure one-way functions
[Nao91, HILL99].

12

2.2 Commitments

Non-interactive bit commitments. We define bit commitments.
Definition 2.8 (Bit commitment). A polynomial-time computable function

Com : {0, 1} × {0, 1}λ → {0, 1}`(λ)

is a bit commitment if it satisfies:
1. Binding: For any r, r′ ∈ {0, 1}λ, b, b′ ∈ {0, 1}, if Com(b; r) = Com(b′; r′) then b = b′.

2. Computational hiding: For any polynomial-size distinguisher D = {Dλ}λ∈N, there exists a
negligible µ such that for any security parameter λ ∈ N,

Com(0) ≈Dλ,µ Com(1) ,

where Com(b) is the distribution of commitments to b with randomness r ← {0, 1}λ.
The commitment is dense if for any string s ∈ {0, 1}`(λ) there exist (b, r) such that s = Com(b; r).

Instantiations. (Non-interactive) bit commitments are known based on various standard assumptions,
including LWE [GHKW17].
Extractable commitments. We define 3-message extractable commitment schemes.
Definition 2.9. A 3-message extractable commitment scheme (EC.S, EC.R, EC.V) satisfies

1. Indistinguishability: For any polynomial-size receiver R∗ = {R∗λ}λ∈N, there exists a negligible
µ such that for any security parameter λ ∈ N, and any two equal-length s0, s1,

Pr

 R∗λ(c1, c2, c3) = b

∣∣∣∣∣∣∣∣
b← {0, 1}

(c1, τ)← EC.S(sb)
c2 ← R∗(c1)

c3 ← EC.S(c1, c2; τ)

 ≤ 1

2
+ µ(λ) .

2. Extraction: There exists a PPT extractor E, such that for any deterministic sender S∗ = {S∗λ}λ
and any security parameter λ ∈ N,

if Pr

 EC.V(c1, c2, c3) = 1

∣∣∣∣∣∣
c1 ← S∗

c2 ← EC.R(c1, 1
λ)

c3 ← S∗(c1, c2)

 ≥ ε ,

then Pr


EC.V(c1, c2, c3) = 1
∃s : (c1, c2, c3) ∈ EC.S(s)

s′ ← ES∗(1λ, 11/ε)
s′ 6= s

∣∣∣∣∣∣∣∣
c1 ← S∗

c2 ← EC.R(c1, 1
λ)

c3 ← S∗(c1, c2)

 ≤ 2−λ ,

where (c1, c2, c3) ∈ EC.S(s) denotes the fact that the transcript (c1, c2, c3) is consistent with an
honest commitment to a string s.

The scheme is 2-message with a quasipolynomial extractor if c1 is always empty, and E runs in
quasipolynomial time.
Remark 2.7 (2-Message extractable commitments). In the two message case, the extraction guarantee
can be simplified to require that whenever (c2, c3) ∈ EC.S(s), the extractor outputs s. This, in particular,
implies the above definition, which will be sufficient for us.

Instantiation. 3-Message extractable commitments can be constructed from non-interactive commit-
ments [PRS02]. 2-Message extractable commitmentswith a quasipolynomial extractor can be constructed
from subexponential one-way functions [Nao91, HILL99, CGGM00].

13

2.3 Fully-Homomorphic Encryption

We recall the definition of fully-homomorphic encryption (FHE).

Definition 2.10. A fully-homomorphic encryption scheme (FHE.Enc, FHE.Dec, FHE.Eval) satisfies

1. Correctness: for any λ ∈ N, sk ∈ {0, 1}λ, messagem ∈ {0, 1}∗, and circuit C,

FHE.Decsk(FHE.Eval(C,FHE.Encsk(m))) = C(m) .

2. Indistinguishability: For any polynomial-size distinguisher D = {Dλ}λ∈N, there exists a negli-
gible µ such that for any security parameter λ ∈ N, and any two equal-length messagesm0,m1,

FHE.Encsk(m0) ≈Dλ,µ FHE.Encsk(m1) ,

where FHE.Encsk(mb) is the distribution of encryptions of mb with random secret key sk ←
{0, 1}λ.

3. Compactness: There exists a fixed polynomial poly, such that for any λ ∈ N, sk ∈ {0, 1}λ,
messagem ∈ {0, 1}∗, and circuit C,

|FHE.Eval(C,FHE.Encsk(m))| ≤ poly(|C(m)|, λ) .

Instantiations. Starting from the work of Gentry [Gen09a], there have been several constructions of
FHE schemes, including ones based on LWE and a corresponding circular security assumptions, starting
from [BV14].5

2.4 Compute and Compare Obfuscation

We start by defining the class of compute and compare programs.

Definition 2.11 (Compute and compare). Let f : {0, 1}n → {0, 1}λ be a circuit, and let u ∈ {0, 1}λ be
a string. Then CC[f, u](x) is a circuit that returns 1 if f(x) = y, and 0 otherwise.

We now define compute and compare (CC) obfuscators. In what follows O is a PPT algorithm that
takes as input a CC circuit CC[f, u] and outputs a new circuit C̃C. (We assume that the CC circuit
CC[f, u] is given in some canonical description from which f and u can be read.)

Definition 2.12 (CC obfuscator). A PPT O is a compute and compare obfuscator if it satisfies:

1. One-sided correctness: for any circuit f : {0, 1}n → {0, 1}λ and u ∈ {0, 1}λ, and any
x ∈ {0, 1}n such that f(x) = u,

Pr
[
C̃C(x) = 1

∣∣∣ C̃C← O(CC[f, u])
]

= 1 .

2. Simulation: there exists a PPT simulator Sim such that

• For any polynomially-bounded function `(λ) and any polynomial-size distinguisher D =
{Dλ}λ∈N, there exists a negligible µ such that for any λ ∈ N and `(λ)-size circuit f :
{0, 1}n → {0, 1}λ,

O(CC[f, u]) ≈Dλ,µ Sim(1λ, 1`) ,

where u← {0, 1}λ is chosen uniformly at random.

5While leveled FHE is known based on LWE alone (without circular security), it will not be sufficient for this work.

14

• Simulated circuits are rejecting:

Pr
[
∃x : C̃C(x) = 1

∣∣∣ C̃C← Sim(1λ, 1`)
]
≤ 2−λ .

Instantiations. Compute and compare obfuscators are constructed in [GKW17, WZ17] based on LWE.
The correctness considered there is two-sided— they prove perfect correctness for inputs x such that

f(x) = u and almost perfect correctness for inputs x such that f(x) 6= u. We will only rely on the first
of the two (and perfect correctness will play a role).

In addition, they do not state explicitly the fact that simulated circuits are rejecting. However, this is
satisfied by their construction, and follows readily from their simulator definition and correctness analysis
(see e.g., [WZ17, Claim 4.11]).

2.5 Random Self-Reducible Public-Key Encryption

Intuitively speaking, a random self reducible (RSR) encryption scheme admits the classic notion of
random self-reduction [BM84] — it is possible to rerandomize an arbitrary ciphertext into a random
ciphertexts of the same message under the same public key. More generally, given access to an average-
case distinguisher, it is possible to decrypt in the worst case.
Syntax. An RSR encryption scheme RSR consists of PPT algorithms (RSR.Gen, RSR.Enc, RSR.Dec,

RSR.D̃ec). The first three algorithms have the standard syntax of a public-key (bit) encryption scheme.
The fourth algorithm RSR.D̃ec

D
(ct, pk, 11/ε) is an oracle-aided alternative decryption algorithm,

which given as input a ciphertext ct, public key pk and (distinguishing) parameter 11/ε, and a oracle
access to a distinguisher D, outputs a plaintext bit b.

Definition 2.13. A public-key encryption scheme (RSR.Gen, RSR.Enc, RSR.Dec, RSR.D̃ec) is random
self-reducible if it satisfies

1. Correctness: for any b ∈ {0, 1}, λ ∈ N,

Pr

[
RSR.Decsk(ct) = b

∣∣∣∣ (sk, pk)← RSR.Gen(1λ)
ct← RSR.Encpk(b)

]
= 1

2. Indistinguishability: For any polynomial-size distinguisher D = {Dλ}λ∈N, there exists a negli-
gible µ such that for any security parameter λ ∈ N,

pk,RSR.Encpk(0) ≈Dλ,µ pk,RSR.Encpk(1) ,

where RSR.Encpk(b) is the distribution of encryptions of b with random public key pk ←
RSR.Gen(1λ).

3. Random self-reduction: for any public key pk ∈ RSR.Gen(1λ) it holds that for any (possibly
probabilistic) distinguisher D and ε,

• if ∣∣E(D(RSR.Encpk(0))
)
− E

(
D(RSR.Encpk(1))

)∣∣ ≥ ε ,
• then for any b ∈ {0, 1} and ct ∈ RSR.Encpk(b),

Pr
[
RSR.D̃ec

D
(ct, pk, 11/ε) = b

]
= 1− 2−λ ,

where the probability is over the coins of RSR.D̃ec and D.

15

Remark 2.8 (Self reducibility against unbounded distinguishers). In the above definitions of random
self-reduction, the distinguisher D is allowed to be unbounded. This is not essential in our constructions,
but does make our proof cleaner, and is satisfied by all considered instantiations.

RelaxedRSR.Wemay consider a relaxed version ofRSRencryption, where ciphertexts ct ∈ RSR.Encpk(b)

can be reduced to ciphertexts relative to a different encryption algorithm RSR.Ẽnc. Such a relaxation is
simpler to construct for instance under LWE.

Formally, there exists an additional PPT algorithm RSR.Ẽnc, that satisfies:
1. Correctness: similarly to RSR.Enc.

2. Relaxed random self-reduction: for any public key pk ∈ RSR.Gen(1λ) it holds that for any
(possibly probabilistic) distinguisher D and ε,

• if ∣∣∣ED(RSR.Ẽncpk(0))− ED(RSR.Ẽncpk(1))
∣∣∣ ≥ ε ,

• then for any b ∈ {0, 1} and ct ∈ RSR.Encpk(b),

Pr
[
RSR.D̃ec

D
(ct, pk, 11/ε) = b

]
= 1− 2−λ ,

where the probability is over the coins of RSR.D̃ec.

We do not explicitly define (nor use) semantic security for the alternative encryption algorithm (although
it actually follows from the semantic security of the original encryption together with relaxed RSR).
Instantiations. There are various public-key encryption schemes [GM84, Gam85, Pai99] based on
standard algebraic assumptions, that are known to be perfectly rerandomizable and are hence random
self reducible. Assuming quasipolynomial hardness of the underlying problems they are also quasipoly-
nomially secure.

Statistically rerandomizable schemes are also known based on LWE [Reg09]. However, in such
schemes rerandomization is guaranteed for a random public key, whereas as we require that it holds for
an arbitrary public key in the support of the generation algorithm. LWE does give relaxed RSR schemes
using the standard noise flooding technique [Gen09a] (see Appendix A).

2.6 Witness Encryption

We recall the definition of witness encryption (WE).
Definition 2.14. A witness encryption scheme (WE.Enc,WE.Dec) for an NP language L satisfies

1. Correctness: for any (x,w) ∈ RL, and messagem ∈ {0, 1}∗,

WE.Decw(WE.Encx(m))) = m .

2. Indistinguishability: For any polynomial-size distinguisher D = {Dλ}λ∈N, there exists a negli-
gible µ such that for any security parameter λ ∈ N, any x ∈ {0, 1}λ \ L, and two equal-length
messagesm0,m1,

WE.Encx(m0) ≈Dλ,µ WE.Encx(m1) ,

where WE.Encx(mb) is the distribution of encryptions ofmb under x.

Instantiations. Starting from the work of Garg, Gentry, Sahai, and Waters [GGSW13], there have been
several constructions of WE schemes for any language in NP. State of the art schemes for NP (which
haven’t been broken) include constructions based on indistinguishability obfuscation [GGH+16] or the
GGH15 multi-linear maps [CVW18]. Witness encryption is also known for any language that has a hash
proof system [CS02].

16

2.7 Conditional Disclosure of Secrets

Conditional disclosure of secrets for an NP language L [AIR01, BP12, AJ17] can be viewed as a two-
message analog of witness encryption. That is, the sender holds an instance x and message m and the
receiver holds x and a corresponding witness w. If the witness is valid, then the receiver obtains m,
whereas if x /∈ L,m remains hidden. We further require that the protocol hides the witness w from the
sender.

Definition 2.15. A conditional disclosure of secrets scheme (CDS.R,CDS.S,CDS.D) for a language
L ∈ NP satisfies:

1. Correctness: for any (x,w) ∈ RL, and messagem ∈ {0, 1}∗,

Pr

[
CDS.Dk(ctS) = m

∣∣∣∣ (ctR, k)← CDS.R(x,w)
ctS ← CDS.S(x,m, ctR)

]
= 1 .

2. Message indistinguishability: For any polynomial-size distinguisher D = {Dλ}λ∈N, there exists
a negligible µ such that for any security parameter λ ∈ N, any x ∈ {0, 1}λ \ L, ct∗R, and two
equal-length messagesm0,m1,

CDS.S(x,m0, ct
∗
R) ≈Dλ,µ CDS.S(x,m1, ct

∗
R) .

3. Receiver simulation: There exists a simulator CDS.Sim, such that for any polynomial-size
distinguisher D = {Dλ}λ∈N, there exists a negligible µ such that for any security parameter
λ ∈ N, any x ∈ L, and w ∈ RL(x),

ctR ≈Dλ,µ CDS.Sim(x) ,

where ctR ← CDS.R(x,w).

Instantiations. CDS schemes can be instantiated assuming any two-message oblivious transfer protocol
where the receiver message is computationally hidden from any semi-honest sender, and with (un-
bounded) simulation security against malicious receivers. Such oblivious transfer schemes are known
based on DDH [NP01], Quadratic (or N th) Residuosity [HK12], and LWE [BD18].

3 Weak Zero-Knowledge against Explainable Verifiers

In this section, we constructWZKprotocols against explainable verifiers. We start with the three-message
protocol and then move to the 2-message protocol, which will be a special case of the 3-message protocol.

3.1 The Three-Message Protocol

In this section, we construct a three-message WZK argument against explainable verifiers.
Ingredients and notation:

• A 3-message extractable commitment (EC.S,EC.R,EC.V). We denote its messages by (c1, c2, c3).

• a 2-messageWI argument (WI.P,WI.V) with delayed input. We denote its messages by (wi1,wi2).

• A non-interactive perfectly-binding commitment scheme Com.

• A fully-homomorphic encryption scheme (FHE.Enc, FHE.Dec, FHE.Eval).

17

• A compute-and-compare obfuscator O.

• A random self-reducible public-key encryption (RSR.Gen, RSR.Enc, RSR.Dec, RSR.D̃ec). (In
fact, relaxed RSR suffices. To simplify the description of the protocol, we rely on standard RSR,
and later remark why relaxed RSR suffices.)

We describe the protocol in Figure 1.
Remark 3.1 (FHE Compactness). In the protocol the decryption circuit FHE.Decsk is meant to decrypt
encryptions of messages of size |u| = λ. Such encryptions could be the result of homomorphic
evaluation, and according to the compactness property of the FHE will have fixed polynomial size in the
security parameter.

3.1.1 Analysis

We now analyze the protocol. We first show that it is sound, and then that it is WZK against explainable
verifiers.

Proposition 3.1. Protocol 1 is sound.

Proof. Assume toward contradiction that there exists a polynomial-size (w.l.o.g deterministic) prover
P∗ = {P∗λ} that (for infinitely many λ ∈ N) breaks soundness with noticeable probability ε(λ) = λ−O(1).
Fix λ ∈ N and x ∈ {0, 1}λ \ L such that P∗λ convinces the verifier of accepting with probability ε.

Augmenting the interactionwith extraction. Weparse any verifiermessage (c2,wi1, cmt, ctV, C̃C, ct′V, pk
′),

as two parts (c2, z). For any z, we consider a sender S∗z whose first message is the same c1 output by P∗λ,
and given a message c2 from the receiver EC.R, computes the third message c3 by running P∗λ on (c2, z),
emulating a message form V. For any transcript T = (c1, (c2, z), (c3, ctP,wi2)) of an execution between
P∗λ and V, we consider the result sT of running the witness extractor sT ← ES∗z(1λ, 14/ε). (Note that sT
is a random variable that may depend on T and the extractor’s coins.)

Let F be the event, over a transcript T and coins of the extractor E, that:

1. V successfully verifies the commitment transcript (c1, c2, c3),

2. V accepts the WI argument (wi1,wi2),

3. the the extracted string sT does not attest that ctP is a zero encryption; that is, sT is not randomness
r′ such that ctP = RSR.Enc(0; r′).

We next consider several hybrid experiments and show that the probability that F occurs is preserved
through these experiments, upto a negligible difference. To reach a contradiction, we show that F occurs
in the first hybrid with probability at least ε and with probability at most ε/2 in the last hybrid. This is a
contradiction since the gap ε/2 is noticeable. In what follows, in each hybrid i, we will denote by pi the
probability that F occurs in that hybrid.
H0: This is the real protocol.

Claim 3.1. p0 ≥ ε.

Proof. By definition, whenever V accepts, it decrypts ctP to 1; thus, by the correctness of RSR, the
ciphertext ctP cannot be opened to an encryption of 0. The claim now follows from the fact that P∗λ
convinces V with probability ε.

H1: In this hybrid, ct′V is an encryption of 0λ instead of the target u.

Claim 3.2. |p0 − p1| ≤ λ−ω(1).

18

Protocol 1

Common Input: an instance x ∈ L ∩ {0, 1}λ, for security parameter λ.

P’s auxiliary input: a witness w ∈ RL(x).

1. P computes (c1, τ)← EC.S(0λ), the first message and state of an extractable commitment to
zero. It sends c1.

2. V computes

• c2 ← EC.R(c1), the second message of the extractable commitment.
• (wi1, τV)←WI.V1(1λ), the first WI message and a corresponding state.
• cmt← Com(0; r), a commitment to zero, using randomness r ← {0, 1}λ,
• ctV ← FHE.Encsk(r), an encryption of the commitment randomness, under a randomly
chosen secret key sk← {0, 1}λ.

• C̃C ← O(CC[FHE.Decsk, u]), an obfuscation of the CC program given by the FHE
decryption circuit and a random target u← {0, 1}λ.

• ct′V ← RSR.Encpk(u), an RSR encryption of the target u, where (sk′, pk′) ←
RSR.Gen(1λ) are randomly chosen keys.

It sends (c2,wi1, cmt, ctV, C̃C, ct′V, pk
′).

3. P computes

• c3 ← EC.S(c1, c2; τ), the third message of the extractable commitment.
• ctP ← RSR.Encpk′(1), an RSR encryption of 1.
• wi2 ←WI.P(Ψ, w,wi1), the second WI message for the statement

Ψ(x, cmt, C̃C,ctP, pk
′, c1, c2, c3) :=

∃w : (x,w) ∈ RL
∨

∃r : cmt = Com(0; r)
∨

∃ĉt : C̃C(ĉt) = 1
∨

∃r′ : ctP = RSR.Encpk′(0; r′)
∧

(c1, c2, c3) ∈ EC.S(r′) .

It sends (c3, ctP,wi2).

4. V verifies

• the commitment EC.V(c1, c2, c3) = 1,
• that the WI argument is accepted: WI.V2(Ψ,wi1,wi2; τV) = 1,
• that the prover’s ciphertext decrypts to one: RSR.Decsk′(ctP) = 1.

Figure 1: A 3-message WZK argument for NP against explainable verifiers.

19

Proof. The claim follows by the semantic security of the scheme RSR. Indeed, given a noticeable
difference between p0 and p1, we can distinguish an RSR encryption of a random u from one of 0λ, by
emulating an interaction between P∗λ and V, running the extractor, and testing whether F occurs.

H2: In this hybrid, the obfuscation C̃C ← Sim(1λ, 1`) is simulated rather than an obfuscation of
CC[FHE.Decsk, u], where ` is the size of the decryption circuit FHE.Decsk.

Claim 3.3. |p1 − p2| ≤ λ−ω(1).

Proof. The claim follows by the CC simulation guarantee. Indeed, given a noticeable difference between
p1 and p2, we can distinguish, given sk, an obfuscation of CC[FHE.Decsk, u] for a random u, from a
simulated obfuscation contradicting the CC guarantee. Using the fact that now ct′V is an encryption of
0λ, we can again emulate an interaction between P∗λ and V.

H3: In this hybrid, ctV is an encryption of 0λ instead of the commitment randomness r.

Claim 3.4. |p2 − p3| ≤ λ−ω(1).

Proof. The claim follows by the semantic security of the FHE scheme FHE. Indeed, given a noticeable
difference between p2 and p3, we can distinguish, an encryption of a random r from an encryption of
0λ. Since now the FHE key sk is not needed to compute the obfuscation C̃C, we can again emulate an
interaction between P∗λ and V.

H4: In this hybrid, cmt is a commitment to 1 instead of 0.

Claim 3.5. |p3 − p4| ≤ λ−ω(1).

Proof. The claim follows by hiding of the commitment. Given a noticeable difference between p3 and
p4, we can distinguish, a commitment to zero from a commitment to one. In this hybrid, ctV no longer
depends on the commitment randomness, so we can again emulate an interaction between P∗λ and V.

.

It is left to show that inH4, F occurs with probability at most ε/2.

Claim 3.6. p4 ≤ ε/2.

Proof. Assume toward contradiction that p4 > ε/2. First, observe that in hybridH4:

• x /∈ L.

• cmt ∈ Com(1), and by perfect binding there does not exist r such that cmt = Com(0; r).

• By the CC simulation guarantee, except with negligible probability 2−λ, there does not exist ĉt
such that C̃C(ĉt) = 1.

In particular, we can fix the second part z of the verifier’s message such that with probability at least
ε/2− 2−λ, over c2:

1. The above three conditions hold (for cmt, C̃C fixed by z).

2. The WI verifier WI.V accepts the argument (for the statement Ψ).

3. The commitment verifier EC.V accepts the transcript (c1, c2, c3).

4. The extractor ES∗z(1λ, 14/ε) outputs sT that does not attest that ctP is a zero encryption.

20

Invoking the soundness of the WI argument, it follows that with probability at least ε/2− 2−λλ−ω(1) �
2−λ, over c2:

1. The commitment verifier EC.V accepts the transcript (c1, c2, c3).

2. ∃r′ such that (c1, c2, c3) ∈ EC.S(r′), and r′ attests that ctP is a zero encryption.

3. The extractor ES∗z(1λ, 14/ε) outputs sT that does not attest that ctP is a zero encryption. In
particular, sT 6= r′.

This contradicts the extraction guarantee of the commitment.

This concludes the proof of soundness.

Proposition 3.2. Protocol 1 is weak zero-knowledge against explainable verifiers.

Proof. We describe the simulator S. Throughout, we assume w.l.o.g that the malicious verifier V∗
outputs its view consisting of its random coins and prover messages. (Otherwise, we consider a new
verifier of this form, along with a new distinguisher who computes internally the original verifier output,
and then applies the original distinguisher.)

S(x,V∗λ,Dλ, 1
1/ε):

1. Sample coins r∗ for V∗λ. Henceforth, V∗r∗ denotes the corresponding (deterministic) verifier.

2. Sample a random r′ ← {0, 1}λ and a first commitment message and state (c1, τ) ← EC.S(r′)
corresponding to a commitment to r′. Store the randomness rc used to generate the commitment.
Feed c1 to V∗r∗ .

3. If the verifier aborts, output (r∗, c1,⊥).

4. Obtain (c2, cmt, ctV, C̃C, ct′V, pk
′,wi1) from V∗r∗

5. Compute the third commitment message c3 ← EC.S(c1, c2; τ).

6. Construct the (homomorphic simulation) circuit HS(r) that given an input r:

• Construct a distinguisher D′(ctP) for the RSR encryption that given a ciphertext ctP:
– Samples at random a second WI message

wi2 ←WI.P(Ψ, r,wi1)

for the statementΨ(x, cmt, C̃C, ctP, pk
′, c1, c2, c3), using as thewitness the randomness

r attesting that cmt = Com(0; r).
– Runs Dλ(r∗, c1, (c3, ctP,wi2)).

• Applies the decryptor
ũ← RSR.D̃ec

D′

(ct′V, pk
′, 11/ε) ,

and output ũ.

All randomness required by the above is hardwired into HS.

7. Compute ĉt = FHE.Eval(HS, ctV).

8. If C̃C(ĉt) = 1:

21

• Sample ctP ← RSR.Encpk′(1).
• Sample a second WI message

wi2 ←WI.P(Ψ, ĉt,wi1)

for the statement Ψ(x, cmt, C̃C, ctP, pk
′, c1, c2, c3), using as the witness ĉt attesting that

C̃C(ĉt) = 1.

9. Otherwise:

• Compute ctP = RSR.Encpk′(0; r′), where r′ is the randomness underlying the extractable
commitment.

• Sample a second WI message

wi2 ←WI.P(Ψ, (r′, rc),wi1)

for the statement Ψ(x, cmt, C̃C, ctP, pk
′, c1, c2, c3), using as the witness the randomness r′

attesting that ctP ← RSR.Encpk′(0; r′) and the commitment randomness rc.

10. Output (r∗, c1, (c3, ctP,wi2)).

Simulation validity. The simulator clearly runs in polynomial time (in its input length). We focus
on proving validity. Let V∗ = {V∗λ}λ be a polynomial-size explainable verifier, let D = {Dλ}λ be a
polynomial-size distinguisher, and let ε(λ) = λ−O(1).

We consider a sequence of hybrid simulators that transition from the simulator to the prover, and
prove that the views generated by each two consecutive hybrids are indistinguishable.
S0: This is the real simulator S.
S1: This simulator is the same as S, only that in Step 9, if it needs to give an argument (due to unsuccessful
extraction of a proper ĉt), it uses the witness w, instead of (r′, rc).
S2: This simulator is the same as S1, only that instead of an extractable commitment (c1, c2, c3) to r′, it
provides a commitment to 0λ.
S3: This simulator is inefficient. It acts the same as S2, only that:

• It checks whether, the verifier’s message is explainable; namely, in the support of the honest verifier
messages (or ⊥), and aborts if its not.

• Then it finds the commitment randomness r, and uses it to provide proofs both in Step 8 and in
Step 9.

P1: This simulator is also inefficient. It acts the same as the honest prover P, only that:

• It checks whether, the verifier’s message is explainable; namely, in the support of the honest verifier
messages (or ⊥), and aborts if its not.

• Then it finds the commitment randomness r, and uses it to provide the WI argument.

P0: This simulator emulates the real prover.
To deduce the validity of the simulator, we prove:

22

Claim 3.7. There exists a negligible ν(λ) such that for all λ ∈ N, x ∈ L∩ {0, 1}λ, w ∈ RL(x), i ∈ [3],

Si−1(x,V∗λ,Dλ, 1
1/ε) ≈Dλ,ν Si(x,V

∗
λ,Dλ, 1

1/ε) ,

S3(x,V∗λ,Dλ, 1
1/ε) ≈Dλ,ε+2−λ OUTV∗λ

〈P1(w),V∗λ〉(x) ,

OUTV∗λ
〈P1(w),V∗λ〉(x) ≈Dλ,ν OUTV∗λ

〈P(w),V∗λ〉(x) .

Proof. We prove the indistinguishability of each two consecutive hybrid simulators.

S ≈ S1: Recall that the only difference between these two simulators is that S1 uses the witnessw in Step
9, instead of (r′, rc). Assume toward contradiction that D distinguishes the views generated by the two
simulators with noticeable probability δ(λ). We use D to construct a verifier WI.V∗ that breaks witness
indistinguishability of the underlying WI argument.

WI.V∗ runs S to sample a transcript, but discards the WI argument wi2 that S produces. Instead,
it outputs as the first WI message the message wi1 produced by V∗ during the simulation, as well as
the statement Ψ and w0 = (r′, rc) and w1 = w as the two witnesses. It then receives a WI second
message wi′2 generated using one of these witnesses wi. It then runs D on the corresponding view
(r∗, c1, (c3, ct

′
P,wi

′
2), which is identical to that generated by S, except that wi2 generated by S is replaced

by the wi′2 received from the challenger. WI.V∗ outputs whatever D outputs.
It is left to observe that for each i ∈ {0, 1}, the generated view is distributed identically to that

generated by Si. It follows that WI.V∗ has advantage δ in the WI challenge.

S1 ≈ S2: Recall that the only difference between these two simulators is that S2 commits to 0λ instead of
to r′ like S1. Assume toward contradiction thatD distinguishes the views generated by the two simulators
with noticeable probability δ(λ), then we construct a receiver R∗ that breaks the indistinguishability of
the extractable commitment with the same advantage δ.

R∗ emulates S1, when sampling r′, R∗ submits to the challenger s1 = r′ and s2 = 0λ. Then, instead
of sampling c1 as part of the simulation, R∗ obtains it from an outside challenger. It proceeds with the
emulation of S1, feeding c1 to V∗, and obtaining c2 as part of V∗’s message. R∗ sends c2 to the challenger
and obtains c3. It then performs the rest of the emulation using c3 (note that S1 no longer requires the
randomness underlying the commitment in Step 9).

It is left to observe that for each i ∈ {1, 2}, when the challenger commits to si, the generated view
is distributed identically to that generated by Si. It follows that R∗ has advantage δ in the WI challenge.

S2 ≈ S3: Recall that the difference between these two simulators is that S3 aborts if the verifier’s message
is not explainable, and if it is uses the commitment randomness r as the witness in Steps 8 and 9, instead
of ĉt and w, respectively. Assume toward contradiction that D distinguishes the views generated by the
two simulators with noticeable probability δ(λ). We use D to construct a verifier WI.V∗ that breaks
witness indistinguishability of the underlying WI argument. While the simulator S3 is inefficient,WI.V∗

will be efficient (albeit non-uniform).
First note that the first messages c1 of the two simulators are distributed identically. Furthermore,

since V∗ is explainable, there exists a negligible µ(λ) such that except with probability µ over the choice
of first message and randomness r∗ for V∗λ, the verifier’s message is explainable. Thus by averaging there
exists a fixed first message c1 and randomness r∗ such that conditioned on (c1, r

∗), Dλ distinguishes
S from S1 with advantage δ − µ and the verifier’s message is explainable. We fix such (c1, r

∗) non-
uniformly, which also fixes the randomness r, underlying the verifier’s V∗ commitment (we can assume
w.l.o.g that the verifiers message is not ⊥, because then both simulators abort).

The verifier WI.V∗ has (c1, r
∗, r) hardwired, as well as the state τ corresponding to c1. It emulates

S2 starting from the point it obtains the message from V∗ (Step 4), obtains a corresponding transcript,
but discards the WI argument wi2 that S2 produces. Instead:

23

• If the transcript reaches Step 8 (corresponding to successful extraction of ĉt), WI.V∗ sends the
challenger the first WI message wi1 generated by V∗ along with the statement Ψ and witnesses
w2 = ĉt and w3 = r.

• If the transcript reaches Step 9 (corresponding to unsuccessful extraction of ĉt), WI.V∗ sends to
the challenger wi1 and Ψ with witnesses w2 = w and w3 = r.

It then receives a WI second message wi′2 generated using one of these witnesses wi. It then runs D on
the corresponding view (r∗, c1, (c3, ct

′
P,wi

′
2), which is identical to that generate by S2, except that wi2

generated by S2 is replaced by the wi′2 received from the challenger. WI.V∗ outputs whatever D outputs.
It is left to observe that for each i ∈ {2, 3}, the generated view is distributed identically to that

generated by Si. It follows that WI.V∗ has advantage δ − µ in the WI challenge.

P1 ≈ P: We jump to prove this indistinguishability as it is very similar to the previous one (the tired
reader is advised to skip it).

Recall that the difference between these two provers is that P1 aborts if the verifier’s message
is not explainable, and if it is, uses the commitment randomness r as the witness when proving Ψ
instead of w like P. Assume toward contradiction that D distinguishes the views generated by the two
provers with noticeable probability δ(λ). We use D to construct a verifier WI.V∗ that breaks witness
indistinguishability of the underlying WI argument. While the prover P1 is inefficient, WI.V∗ will be
efficient (albeit non-uniform).

First note that the first messages c1 of the two provers are distributed identically. Furthermore, since
V∗ is explainable, there exists a negligible µ(λ) such that except with probability µ over the choice of first
message and randomness r∗ for V∗λ, the verifier’s message is explainable. Thus by averaging there exists
a fixed first message c1 and randomness r∗ such that conditioned on (c1, r

∗), Dλ distinguishes P from
P1 with advantage δ − µ and the verifier’s message is explainable. We fix such (c1, r

∗) non-uniformly,
which also fixes the randomness r, underlying the verifier’s V∗ commitment (we can assume w.l.o.g that
the verifiers message is not ⊥, because then both simulators abort).

The verifier WI.V∗ has (c1, r
∗, r) hardwired, as well as the state τ corresponding to c1. It emulates

P starting from the point it obtains the message from V∗ (the third protocol message), obtains a corre-
sponding transcript, but discards the WI argument wi2 that P1 produces. Instead, it sends the challenger
the first WI message wi1 generated by V∗ along with the statement Ψ and witnesses w0 = w and w1 = r.
It then receives a WI second message wi′2 generated using one of these witnesses wi. It then runs D on
the corresponding view (r∗, c1, (c3, ct

′
P,wi

′
2), which is identical to that generate by P, except that wi2

generated by S2 is replaced by the wi′2 received from the challenger. WI.V∗ outputs whatever D outputs.
It is left to observe that for each i ∈ {0, 1}, the generated view is distributed identically to that

generated by Pi. It follows that WI.V∗ has advantage δ − µ in the WI challenge.

S3 ≈ P1: Note that up to receiving the verifier’s V∗ message, and adding the generation of c3, the
views generated by the two simulators are distributed identically. Thus, to prove (Dλ, ε + 2−λ)-
indistinguishability of these two simulators, it suffices to prove (Dλ, ε+ 2−λ)-indistinguishability condi-
tioned on any fixing of the first prover message, verifier randomness r∗ and message, and c3. Note that if
the verifier’s message is not explainable, both simulators abort, and thus we concentrate on the case that
the verifier’s message is explainable. From hereon consider such a fixing and let r be the corresponding
randomness.

Let ∆ be the advantage of the probabilistic distinguisher D′ (as defined in the simulation procedure)
in distinguishing zero-encryptions from one-encryptions:

∆ :=

∣∣∣∣ E
D′,RSR.Enc

[
D′(RSR.Encpk′(0))− D′(RSR.Encpk′(1))

]∣∣∣∣ .
We consider two cases.

24

Case 1: ∆ > ε. Let u be the target string underlying the obfuscated CC program C̃C, and recall
that ct′V ∈ RSR.Encpk′(u), due to explainability. Then by the random self reducibility of RSR, with
overwhelming probability 1− 2−λ, over the coins of RSR.D̃ec, it holds that

RSR.D̃ec
D′

(ct′V, pk
′, 11/ε) = u ,

in which case, HS(r) = u. Assume that this is indeed the case.
By the correctness of FHE, the ciphertext ĉt = FHE.Eval(HS, ĉt) obtained by the simulator S3

satisfies:
FHE.Decsk(ĉt) = u ,

and thus by the one-sided correctness of the CC obfuscator O,

C̃C(ĉt) = 1 .

This corresponds to successful extraction of ĉt, and will result in the simulator S3 behaving identically
to the prover P1 (in Step 8) — sampling ctP as a one encryption and wi2 using the witness r.

Thus, in case 1, we have (Dλ, 2
−λ)-indistinguishability.

Case 2: ∆ ≤ ε. Here we consider two sub-cases according to whether the simulator still obtains a
ciphertext ĉt such that C̃C(ĉt) = 1 or not. In case it does obtain such ĉt, the simulator behaves exactly
like P1. Henceforth, we assume that the simulator does not obtain such a witness, in which case it
reaches Step 9. Here the difference between the simulator S3 and prover P1 is that the first samples
ctP ← RSR.Encpk′(0), whereas the second samples ctP ← RSR.Encpk′(1). The advantage of Dλ in
distinguishing the two is exactly the advantage ∆ ≤ ε of D′. This completes the proof of this case, and
of Claim 3.7.

Remark 3.2 (On using relaxed random self-reducible encryption). We can rely on relaxed RSR encryption
by slightly tweaking the protocol. Specifically, in the protocol, the encryption ctP will be under the
alternative RSR encryption algorithm RSR.Ẽnc. The simulation and analysis remain the same.

3.2 The Two-Message Protocol

We also construct, under stronger assumptions, a two-message WZK argument against explainable
verifiers and quasipolynomial provers. Specifically we strengthen the ingredients as follows.
Ingredients and notation:

• A 2-message extractable commitment (EC.S,EC.R,EC.V) with a quasipolynomial extractor. We
denote its messages by (c2, c3); this is for consistency with the three-message protocol (c1 is always
empty).

• a 2-message WI argument (WI.P,WI.V) with delayed input, sound against quasipolynomial
provers.

• A non-interactive perfectly-binding commitment scheme Com, hiding against qausipolynomial
distinguishers.

• A fully-homomorphic encryption scheme (FHE.Enc,FHE.Dec,FHE.Eval), secure against qausipoly-
nomial distinguishers.

• A compute-and-compare obfuscator O, secure against qausipolynomial distinguishers.

25

• A random self-reducible public-key encryption (RSR.Gen, RSR.Enc, RSR.Dec, RSR.D̃ec), se-
cure against qausipolynomial distinguishers. (In fact, relaxed RSR suffices. To simplify the
description of the protocol, we rely on standard RSR, and later remark why relaxed RSR suffices.)

The protocol is identical to the one in Figure 1, only that since the first commitment message c1 is always
empty, it consists of only two messages.

Proposition 3.3. Protocol Figure 1, instantiated with the above ingredients, is a 2-messageWZK protocol
against explainable verifiers and soundness against quasipolynomial provers.

Proof sketch. The proof is essentially identical to that of the previous protocol, only taking into account
the above enhancements.

In the proof of soundness, the prover P∗ and the extractor E are now quasipolynomial instead of
polynomial. Thus, each of the reductions in the proof is now quasipolynomial instead of polynomial,
and breaks the quasipolynomial (rather than polynomial) security of the underlying primitives.

The same WZK proof applies. In fact, it can be simplified. This is because obtaining the commit-
ment randomness r can now be done efficiently (non-uniformly), which means that we can invoke the
indistinguishability of the extractable commitment in the presence of any one of the simulators. Thus
instead of first switching to simulating the argument in the simulation Step 9 with w, we can directly
switch to r.

4 Witness Hiding against Explainable Verifiers with Public Verification

In this section, relying on witness encryption, we give a two-message protocol that is also publicly-
verifiable. The new protocol, however, is only WH. We start by presenting the protocol and then proceed
to analyze it.
Ingredients and notation:

• A 2-message publicly-verifiableWI argument forNPwith delayed input (WI.P,WI.V). We denote
its messages by (wi1,wi2).

• A non-interactive perfectly-binding commitment scheme Com.

• A fully-homomorphic encryption scheme (FHE.Enc, FHE.Dec, FHE.Eval).

• A compute-and-compare obfuscator O.

• A witness encryption scheme (WE.Enc,WE.Dec) for languages in NP.

We describe the protocol in Figure 2.
Remark 4.1 (FHE Compactness). Remark 3.1 regarding the fixed size of the circuit FHE.Decsk holds for
the above protocol as well.

Public verification. The verification of an argument in the above system amounts to applying the public
verification of the WI argument, and involves no private randomness.

4.1 Analysis

We now analyze the protocol. We first show that it is sound, and then that it is WH against explainable
verifiers.

Proposition 4.1. Protocol 2 is sound.

26

Protocol 2

Common Input: an instance x ∈ L ∩ {0, 1}λ, for security parameter λ.

P’s auxiliary input: a witness w ∈ RL(x).

1. V computes

• wi1, the first message of the WI argument,
• cmt← Com(0; r), a commitment to zero, using randomness r ← {0, 1}λ,
• ctV ← FHE.Encsk(r), an encryption of the commitment randomness, under a randomly
chosen secret key sk← {0, 1}λ.

• C̃C ← O(CC[FHE.Decsk, u]), an obfuscation of the CC program given by the FHE
decryption circuit and a random target u← {0, 1}λ.

• ct′V ←WE.Encx(u), a witness encryption of the target u.

It sends (wi1, cmt, ctV, C̃C, ct′V).

2. P computes wi2, the second WI message for the statement Ψ(x, cmt, C̃C) given by:

∃w : (x,w) ∈ RL
∨

∃r : cmt = Com(0; r)
∨

∃ĉt : C̃C(ĉt) = 1 ,

using the witness w ∈ RL(x). It sends wi2.

3. V verifies the WI argument (wi1,wi2) for the statement Ψ.

Figure 2: A publicly-verifiable 2-message WH argument 〈P,V〉 for L.

The soundness analysis is a simplification of that of Protocol 1. We include it here for completeness
(a reader who already went through the latter proof, may want to skip this one).

Proof. To prove soundness, we consider several hybrid protocols, transitioning from the real system to
a system where no prover cannot convince the verifier of accepting. We show that the probability that
the prover convinces the verifier to accept is preserved throughout the hybrids. Since the argument is
publicly verifiable, it suffices to show that the prover’s view is indistinguishable between these hybrids.
H0: This is the real protocol.
H1: In this hybrid, ct′V is an encryption of 0λ instead of the target u.

Since x /∈ L, this hybrid is indistinguishable from the previous one by the semantic security of
witness encryption schemeWE.
H2: In this hybrid, the obfuscation C̃C ← Sim(1λ, 1`) is simulated rather than an obfuscation of
CC[FHE.Decsk, u], where ` is the size of the decryption circuit FHE.Decsk.

This hybrid is indistinguishable from the previous one by the CC simulation guarantee; indeed, in
the previous hybrid, the target u is uniformly random and independent of FHE.Decsk, and the rest of the
experiment.

27

H3: In this hybrid, ctV is an encryption of 0λ instead of the commitment randomness r.
This hybrid is indistinguishable from the previous one by the semantic security of the FHE scheme

FHE.
H4: In this hybrid, cmt is a commitment to 1 instead of 0.

This hybrid is indistinguishable from the previous one by hiding of the commitment.

It is left to show that in H4, no malicious prover can convince the verifier to accept a false statement
x /∈ L, except with negligible probability.

Observe that in this hybrid:

• x /∈ L.

• cmt ∈ Com(1), and by perfect binding there does not exist r such that cmt = Com(0; r).

• By the CC simulation guarantee, except with negligible probability 2−λ, there does not exist ĉt
such that C̃C(ĉt) = 1.

Overall we deduce that, with overwhelming probability 1− 2−λ, the statement Ψ(x, cmt, C̃C) is false.
By the soundness of the WI argument, the prover cannot cheat in this hybrid except with negligible
probability.

Proposition 4.2. Protocol 2 is witness hiding against explainable verifiers.

Proof. We describe the witness-finding reduction R.

R(x,V∗λ, 1
1/ε):

• Obtain (wi1, cmt, ctV, C̃C, ct′V) from V∗λ.

• Construct the (homomorphic simulation) circuit HS(r) that given an input r:

– Sample a second WI message wi2 for the statement Ψ(x, cmt, C̃C), using as the witness the
randomness r attesting that cmt = Com(0; r).

– Feed wi2 to V∗λ and obtain a candidate witness w̃.
– Apply the witness decryptor

ũ←WE.Decw̃(ct′V) ,

and output ũ.

All randomness required by the above is hardwired to HS.

• Compute ĉt = FHE.Eval(HS, ctV).

• If C̃C(ĉt) = 1, repeat the following at most 1/ε times:

– Sample a second WI message wi2 for the statement Ψ(x, cmt, C̃C), using as the witness ĉt
attesting that C̃C(ĉt) = 1, feed it to V∗λ.

– If V∗λ outputs a witness w ∈ RL(x), output w.

• Otherwise, output ⊥.

28

Reduction validity. The reduction clearly runs in polynomial time. We now prove its validity for
always-explainable verifiers (which is w.l.o.g, Remark 2.6). Let V∗ = {V∗λ}λ be any always-explainable
polynomial-size verifier. Fix any λ, and x ∈ L ∩ {0, 1}λ, and assume that V∗λ outputs a witness
w ∈ RL(x) with probability δ.

Let r be the randomness underlying the commitment cmt = Com(0; r) given by V∗λ. We argue that
the circuit HS(r) outputs the target u underlying the CC obfuscation C̃C with probability δ − λ−ω(1),
over its own coins. First, we argue that when HS gives V∗λ the second WI message wi2, V∗λ outputs a
witness w with probability δ−λ−ω(1). Otherwise, we can construct a verifierWI.V∗ that breaks witness
indistinguishability. The verifier WI.V∗λ has the witness r non-uniformly hardwired. It obtains V∗λ’s
message, and gives the challenger the WI first message wi1 generated by V∗λ, along with the statement
Ψ, and two witnesses w0 = w and w1 = r, when it receives wi2, it uses it to complete the emulation of
V∗λ. It then check if V∗λ outputs a witness for x, if it does WI.V∗λ outputs 0, and otherwise outputs 1. By
construction the advantage of WI.V∗ is exactly the difference between the probabilities of outputting a
witness.

Next, note that whenever the verifier V∗ outputs a witness (under the encryption), the witness
decryption operation performed by HS, will indeed result in the target u.

By the correctness of FHE, the ciphertext ĉt = FHE.Eval(HS, ĉt) obtained by the reduction satisfies:

FHE.Decsk(ĉt) = u ,

and thus by the one-sided correctness of the CC obfuscator O,

C̃C(ĉt) = 1 .

It follows that in this case, except with negligible probability λ−ω(1), the reduction obtains a valid witness
ĉt for the statement Ψ. By witness indistinguishability given the second WI message wi2, using ĉt as the
witness, V∗λ outputs a witness with probability δ − λ−ω(1). Otherwise, we can again construct WI.V∗

that will break witness indistinguishability similarly to the previous reduction, but now using the (non-
uniformly hardwired) . By Markov’s inequality, in this case, the reduction (which makes 1/ε attempts),
obtains a witness with probability at least 1− ε

δ − λ
−ω(1).

Overall, the reduction obtains a witness with probability at least(
δ − λ−ω(1)

)
·
(

1− ε

δ
− λ−ω(1)

)
= δ − ε− λ−ω(1) ,

as required.

5 From Explainable Verifiers to Malicious Ones

In this section, we present three generic transformations that compile protocols that are private (according
to some natural notion, such as ZK, WZK, WH) against explainable verifiers into ones that satisfy the
same privacy guarantee against malicious verifiers.

This includes the following:

• A 3-message transformation that preserves WZK (or ZK), based on polynomial hardness assump-
tions.

• A 2-message transformation that preserves WZK, based on super-polynomial hardness assump-
tions.

• A 2-message transformation that preserves WH, based on polynomial witness encryption.

29

5.1 The Three-Message Transformation

We provide a transformation that compiles any 3-message WZK protocol against explainable verifiers
into one against malicious verifiers.
Ingredients and notation:

• A 2-message WI argument for NP with delayed input (WI.P,WI.V). We denote its messages by
(wi1,wi2).

• A non-interactive dense commitment scheme Com.

• A 3-message argument system 〈P,V〉 for an NP language L that is WZK against explainable
verifiers. We denote its messages by (arg1, arg2, arg3).

We describe the protocol in Figure 3.

Protocol 3

Common Input: an instance x ∈ L ∩ {0, 1}λ, for security parameter λ.

P̄’s auxiliary input: a witness w ∈ RL(x).

1. P̄ computes

• arg1, the first message in the original protocol.
• cmt← Com(w) a commitment to the witness.
• wi1, the first message of a WI argument.

It sends (arg1, cmt,wi1).

2. V̄ computes

• arg2, the second message in the original protocol.
• wi2, the second WI message for the statement Φ(x, cmt, arg1, arg2):

∃r : arg2 = V(x, arg1; r)
∨
∃r, s : cmt = Com(s; r), s /∈ RL(x) .

It sends (arg2,wi2).

3. P̄ verifies the WI argument (wi1,wi2) for the statement Φ, and aborts if it does not accept.
It then computes arg3, the third message in the original protocol, and sends it.

4. V̄ verifies the argument (arg1, arg2, arg3).

Figure 3: A WZK argument 〈P̄, V̄〉 for NP against malicious verifiers.

Analysis. We now analyze the transformation.

Proposition 5.1. Protocol 3 is sound.

Proof. To prove soundness, we show how to transform any cheating prover P̄∗ against Protocol 3 into a
cheating prover P∗ against the original protocol.

30

Fix any polynomial-size prover P̄∗ =
{
P̄∗λ
}
λ
. We describe a new prover P∗ = {P∗λ}λ, and show that

for any x ∈ {0, 1}λ \ L, if P̄∗λ convinces V̄ to accept with probability ε, the new prover convinces P∗
convinces V to accept with probability ε− λ−ω(1). For this, consider the first message (arg1, cmt,wi1)
sent by P̄∗λ. Since the commitment Com is dense, there exists an underlying string s and randomness r,
such that cmt = Com(s; r). The constructed P∗λ will have (s, r) non-uniformly hardwired into its code,
and will operate as follows.
P∗λ:

• It sends arg1 to V, and obtains arg2.

• It computes the argument message wi2 for Φ(x, cmt, arg1, arg2) using the witness (r, s).

• It then feeds (arg2,wi2) to P̄∗λ, and obtains back arg3. It sends arg3 to V.

Prover analysis. P∗ is clearly of polynomial size. We now analyze its cheating probability. First, note
that since x /∈ L, it necessarily holds that s /∈ RL(x), and accordingly (r, s) is also a valid witness for
any statment Φ(x, cmt arg1, arg2), regardless of arg2.

Next, observe that the only difference between the view of P̄∗ in a real interaction with V̄ and its view
as emulated by P∗ is that in the first, the WI argument (wi1,wi2) is computed using the randomness of
the honest verifier V as the witness, whereas in the second it is computed using the witness (r, s).

By the witness indistinguishability of the argument, it follows that P∗ convinces V with the same
probability ε that P̄∗ convinces V̄, up to a negligible difference.

Proposition 5.2. Assume that the original protocol 〈P,V〉 is WZK against explainable verifiers, then
Protocol 3 is WZK.

Proof. Fix any polynomial-size (malicious) verifier V̄∗ =
{
V̄∗λ
}
λ
against Protocol 3 and a polynomial-

size distinguisher D = {Dλ}λ . To prove that the protocol is WZK, we first prove that V̄∗ can be
converted into an explainable verifier against the original protocol, which is given as auxiliary input a
commitment to the witness.

Claim 5.1. There exists a PPT simulator E such that:

• V∗ =
{
V∗x,cmt := EV̄∗λ(x, cmt)

}
x,cmt

is an explainable verifier against the original protocol 〈P,V〉

for all x ∈ L ∩ {0, 1}λ, w ∈ RL(x), and cmt ∈ Com(w).

• For any λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x),

OUTV̄∗λ
〈P(w), V̄∗λ〉(x) ≡ OUTV∗x,cmt

〈P(w),V∗x,cmt〉(x) ,

where cmt← Com(w).

Before proving the claim let us show that it implies that the protocol is WZK. For this purpose, we
describe the corresponding WZK simulator.
S̄(x, V̄∗λ,Dλ, 1

1/ε):

• Sample a commitment of zero cmt← Com(0|w|).

• Construct the verifier V∗x,cmt := EV̄∗λ(x, cmt).

• Output S(x,V∗x,cmt, 1
1/ε), where S is the simulator of the original protocol 〈P,V〉.

31

To prove the validity of S̄, we consider an alternative S̄w that acts similarly, except that it samples a
commitment of the witness cmt ← Com(w), rather than a commitment of zero. Then by the hiding of
the commitment

S̄(x, V̄∗λ,Dλ, 1
1/ε) ≈Dλ,λ−ω(1)

S̄w(x, V̄∗λ,Dλ, 1
1/ε) .

Furthermore, by construction

S̄w(x, V̄∗λ,Dλ, 1
1/ε) ≡ S(x, V̄x,cmt,Dλ, 1

1/ε) ,

where cmt← Com(w). By the first part of Claim 5.1, the corresponding verifier V̄x,cmt is explainable,
and thus by the WZK guarantee of the original protocol 〈P,V〉,

S(x, V̄x,cmt,Dλ, 1
1/ε) ≈Dλ,ε+λ−ω(1)

OUTV∗x,cmt
〈P(w),V∗x,cmt〉(x) .

By the second part of Claim 5.1, we deduce

S̄(x, V̄∗λ,Dλ, 1
1/ε) ≈Dλ,ε+λ−ω(1)

OUTV̄∗λ
〈P(w), V̄∗λ〉(x) ,

as required.

Proof of Claim 5.1. We describe the explainable simulator E.
V∗x,cmt := EV̄∗λ(x, cmt):

• Given prover message arg1 from P, sample a first WI message wi1, feed (arg1, cmt,wi1) to V̄∗λ,
and obtain its message (arg2,wi2).

• Verify the WI argument (wi1,wi2) for the statement Φ(x, cmt, arg1,2).

• If verification does not pass, emulate an abort:

– Send P message ⊥.
– Feed V̄∗λ with a message ⊥ (emulating an abort of P̄), and output whatever V̄∗λ does.

• Otherwise, send arg2 to P, obtain arg3, feed it to V̄∗λ, and output whatever V̄∗λ does.

First, by the construction of E, for any λ ∈ N, x ∈ L ∩ {0, 1}λ, and w ∈ RL(x),

OUTV̄∗λ
〈P(w), V̄∗λ〉(x) ≡ OUTV∗x,cmt

〈P(w),V∗x,cmt〉(x) .

We now prove that V∗ =
{
V∗x,cmt := EV̄∗λ(x, cmt)

}
x,cmt

is explainable for all x ∈ L ∩ {0, 1}λ, w ∈
RL(x), and cmt ∈ Com(w).

Assume toward contradiction that when interacting with P, V∗λ outputs a message that is not explain-
able with noticeable probability δ(λ). We use V∗ to construct a prover wiP∗ that breaks the soundness of
the WI argument. Given a first WI message wi1, wiP∗λ emulates V∗λ, but replaces the message wi1 that V∗λ
generates with the one received from the challenger. It then obtains from the emulated V∗λ, the statement
Φ(x, cmt, arg1, arg2) and second WI message wi2, it returns (Φ,wi2) to the challenger. By construction
and the assumption that V∗λ’s message is not explainable with probability δ, wiP∗ breaks soundness with
probability exactly δ.

This completes the proof of the claim.

Remark 5.1 (Zero knowledge). We note that the above transformation holds just the same for ZK — the
constructed explainable verifierV∗ only depends on themalicious verifier V̄∗, and not on the distinguisher.

32

5.2 The Two-Message Transformation

We provide a transformation that compiles any 2-message WZK protocol against explainable verifiers
with soundness against quasipolynomial provers (like the one fromSection 3.2) into one against malicious
verifiers.
Ingredients and notation:

• A 2-message WI argument for NP with delayed input with a quasipolynomial witness extractor
〈WI.P, (WI.V1,WI.V2)〉. We denote its messages by (wi1,wi2).

• A conditional disclosure of secrets scheme (CDS.R,CDS.S,CDS.D) for NP, with receiver simu-
lation security against quasi-polynomial time senders.

• A 2-message argument system 〈P,V〉 for an NP language L that is WZK against explainable
verifiers and sound against quasipolynomial provers. We denote its messages by (arg1, arg2).

We describe the protocol in Figure 4.
Analysis. We now analyze the transformation.

Proposition 5.3. Protocol 4 is sound.

Proof. To prove soundness, we transform any cheating prover P̄∗ against Protocol 4 into a quasi-
polynomial cheating prover P∗ against the original protocol 〈P,V〉. We describe P∗.
P∗λ:

• Obtain the first message arg1 from the verifier V.

• Simulate the CDS receiver first message ctR = CDS.Sim(Ψ), relative to the statement Ψ(arg1)
attesting that arg1 is honest.

• Sample a first WI message wi1, feed (wi1, arg1, ctR) to P̄∗λ, and obtain (ctS,wi2).

• Apply the quasipolynomialwitness extractor arg2 ← E(Φ,wi1,wi2) for the statementΦ(x, arg1, ctS, ctR).

• Send the extracted arg2 to V.

Prover analysis. Fix any polynomial-size prover P̄∗ = {P̄∗λ}λ. First note that the corresponding new
prover P∗ runs in quasipolynomial time. We show that for any x 6∈ L, if P̄∗λ convinces V̄ to accept with
noticeable probability ε(λ), the new prover P∗λ convinces V to accept with probability ε− λ−ω(1).

First, we consider a hybrid experiment where the prover strategy P̃∗ is identical to that of P∗, except
that instead of sampling a simulated CDS receiver message ctR ← CDS.Sim(Ψ) for the statement
Ψ(arg1), P̃∗ obtains externally a CDS message ctR ← CDS.R(Ψ, r) corresponding to the randomness
used by V to sample arg1. (P̃∗ then uses ctR like P∗).

Claim 5.2. P̃∗ convinces V with the same probability as P∗ does, up to a negligible difference.

Proof. Otherwise, we can use P̃∗ to construct a quasipolynomial distinguisher D that breaks the receiver
simulation property. Dλ emulates an interaction between P̃∗λ and V. It then submits Ψ(arg1) and r to
a challenger, where arg1 is the message generated by V∗ using randomness r. It receives back ctR, and
completes the emulation. It is left to note that if ctR ← CDS.Sim(Ψ), then the view of V is distributed
as in an interaction with P∗λ, whereas if ctR ← CDS.S(Ψ, r), the view is distributed as in an interaction
with P̃∗λ.

33

Protocol 4

Common Input: an instance x ∈ L ∩ {0, 1}λ, for security parameter λ.

P̄’s auxiliary input: a witness w ∈ RL(x).

1. V̄ computes

• (wi1, τV)←WI.V1(1λ), the first WI message.
• arg1, the verifier message in the original protocol 〈P,V〉(x). It stores the randomness r
used by the verier to generate the message.

• (ctR, k) ← CDS.R(Ψ, r), a CDS receiver message for the statement Ψ(arg1) attesting
that arg1 was computed according to the honest verifier V, using r as the witness.

It sends (wi1, arg1, ctR).

2. P̄ computes

• arg2, the prover message in the original protocol 〈P,V〉.
• ctS ← CDS.S(Ψ, arg2, ctR), a CDS sender message encrypting arg2.
• wi2 ←WI.P(Φ, arg2,wi1), the second WI message for the statement

Φ(x,Ψ, ctS, ctR) := ∃arg : ctS ∈ CDS.S(Ψ, arg, ctR)
∨

x ∈ L .

It sends (ctS,wi2).

3. V̄ then

• Runs WI.V2(Φ,wi1,wi2; τV) to verify the WI argument for the statement Φ.
• Decrypts ãrg2 ← CDS.Dk(ctS).
• Verifies the original argument (arg1, ãrg2).

Figure 4: A WZK argument 〈P̄, V̄〉 for NP against malicious verifiers.

From hereon we focus on proving that P̃∗ convinces V of accepting with probability ε− λ−ω(1). Let
arg1 be the message received from V, let ctS be sender encryption emulated by P̃∗λ, let arg2 be the prover
message that P̃∗λ extracts from P̄∗λ, and let ãrg2 = CDS.Dk(ctS) be the decrypted message with respect
to the secret key k produced when generating the receiver message ctR. Also let (wi1,wi2) be the WI
argument for the statement Φ(x,Ψ, ctR, ctS) generated by P̄∗λ during its emulation by P̃∗λ.

Claim 5.3. With probability at least ε− λ−ω(1),

1. V accepts (arg1, ãrg2).

2. ãrg2 = arg2.

This implies that that P̃∗, who sends arg2, convinces V with probability at least ε − λ−ω(1), as
required and would complete the proof.

Proof of Claim 5.3. By construction, an interaction between P̃∗ and V perfectly emulates an interaction
between P̄∗ and V̄. In such an interaction the verifier V̄ both accepts the WI argument (wi1,wi2) for

34

Φ(x,Ψ, ctR, ctS) and accepts the underlying (arg1, ãrg2). Since x /∈ L, it follows by the extraction guar-
antee, that except with negligible probability λ−ω(1), ctS is a valid CDS encryption of arg2. Furthermore,
by CDS correctness, it holds that ãrg2 = CDS.Dk(ctS) = arg2.

This completes the proof of sounenss.

Proposition 5.4. Protocol 4 is weak zero-knowledge against malicious verifiers.

Proof. Wedescribe a simulator S̄. Throughout, we assumew.l.o.g that the simulated verifier V̄∗ =
{
V̄∗λ
}
λ

is deterministic and always outputs the prover message it receives (Remark 2.4).
S̄(x, V̄∗λ, D̄λ, 1

1/ε):

• Obtain (wi1, arg1, ctR) from V̄∗λ.

• Construct a new verifier V∗λ that sends arg1 as its first message, and given arg2 from P, outputs it.

• Construct a new distinguisher Dλ that given arg2 from P:

– Samples ctS ← CDS.S(Ψ, arg2, ctR), an encryption of arg2 under Ψ(arg1).
– Sampleswi2 ←WI.P(Φ, (arg2, rcds),wi1), a secondWImessage for the statementΦ(x,Ψ, ctR, ctS),

using as the witness the message arg2 and randomness rcds used for generating ctS.
– Runs D̄λ(ctS,wi2).

• Obtain ãrg2 ← S(x,V∗λ,Dλ, 1
1/ε), where S is the simulator for the protocol 〈P,V〉.

• Compute a CDS encryption c̃tS ← CDS.S(Ψ, ãrg2, ctR).

• Compute a secondWImessage w̃i2 ←WI.P(Φ, (ãrg2, r̃cds),wi1), using as the witness themessage
ãrg2 and randomness r̃cds used for generating c̃tS.

• Output (c̃tS, w̃i2).

Simulator analysis. The simulator S̄ clearly runs in polynomial time. We now prove its validity.
Assume toward contradiction that there exist polynomial-size distinguisher D̄ =

{
D̄λ
}
λ
and verifier

V̄∗ =
{
V̄∗λ
}
λ
that for infinitely many x ∈ L and w ∈ RL(x) distinguishes S̄(x, V̄∗λ, D̄λ, 1

1/ε) from
OUTV̄∗λ

〈P̄∗(w), V̄∗λ〉(x) with advantage ε(λ) + δ(λ) for noticeable ε, δ. We consider two cases.
Case 1: There exists a set H of infinitely many x as above such that the verifier’s message arg1 is in
the support of the honest verifier’s messages. We show that this contradicts WZK against explainable
verifiers.

By the WZK guarantee of 〈P,V〉 against explainable verifiers, there exists a negligible µ(λ) such
that for any x ∈ H ∩ {0, 1}λ,

Dλ(OUTV∗λ
〈P(w),V∗λ〉(x)) ≈ε+λ−ω(1) Dλ(S(x,V∗λ,Dλ, 1

1/ε)) .

Furthermore, by the definition of S̄,D, for any such x,

Dλ(S(x,V∗λ,Dλ, 1
1/ε)) ≡ D̄λ(S̄(x, V̄∗λ, D̄λ, 1

1/ε)) .

Finally, by the definition of D,V∗,P, for any such x,

D̄λ(OUTV̄∗λ
〈P̄(w), V̄∗λ〉(x)) ≡ Dλ(OUTV∗λ

〈P(w),V∗λ〉(x)) .

35

It follows that for any x ∈ H ∩ {0, 1}λ,

OUTV̄∗λ
〈P̄(w), V̄∗λ〉(x) ≈D̄λ,ε+λ−ω(1)

S̄(x, V̄∗λ, D̄λ, 1
1/ε) .

This disproves Case 1.
Case 2: There exists a set M of infinitely many x as above such that the verifier’s message arg1 is
malicious (not in the support of the honest verifier’s messages). We show how to use V̄∗, , to break
the CDS message hiding. First we consider an alternative simulator ′ that has the witness w ∈ RL(x)

hardwired. It computes w̃i2 in the simulation using thewitnessw instead of using as thewitness ãrg2, r̃cds.
Similarly, we consider an alternative prover P̄′, which computes its own message wi2 using w instead of
arg2 and rcds. By witness indistinguishability:

OUTV̄∗λ
〈P̄′(w), V̄∗λ〉(x) ≈D̄λ,λ−ω(1)

OUTV̄∗λ
〈P̄(w), V̄∗λ〉(x)

S̄′(x, V̄∗λ, D̄λ, 1
1/ε) ≈D̄λ,λ−ω(1)

S̄(x, V̄∗λ, D̄λ, 1
1/ε) .

Thus D̄ distinguishes the view (CDS.S(Ψ, ãrg2, ctR)), w̃i2(w) generated by S̄′ from (CDS.S(Ψ, arg2, ctR)),wi2(w)
generated byP′ with advantage ε+δ−λ−ω(1). However, since the verfier’s message is maliciousΨ(arg1)
is false. Thus in this case we obtain a distinguisher against the CDS message hiding.

This completes the proof of the proposition.

5.3 The Two-Message WH Transformation

Here we again only consider the case that the original protocol is also a 2-message one.
Ingredients and notation:

• A witness encryption schemeWE for L.

• A 2-message WH argument system 〈P,V〉 for L. We denote its messages by (arg1, arg2).

The protocol can be viewed as a variant of Protocol 3, where the verifier, rather than using a WI system
to prove that it behaves honestly, proves it using a witness encryption of its coins under x. This proof is
simulatable if x /∈ L, and otherwise is sound.

We describe the protocol in Figure 5.
Analysis. We now analyze the transformation.

Proposition 5.5. Protocol 5 is sound.

Proof. To prove soundness, we show how to transform any cheating prover P̄∗ against Protocol 5 into a
cheating prover P∗ against the original protocol.

Fix any polynomial-size prover P̄∗ =
{
P̄∗λ
}
λ
. We describe a new prover P∗, and show that for any

x /∈ L, if P̄∗ convinces V̄ to accept with probability ε, the new prover convinces P∗ convinces V to accept
with probability ε− λ−ω(1).

P∗P̄
∗
(x):

• Obtains arg1 from V.

• Computes a witness encryption of zeros ct←WE.Encx(0λ).

• It then feeds (arg1, ct) to P̄∗, and obtains back arg2, which it sends to V.

36

Protocol 5

Common Input: an instance x ∈ L ∩ {0, 1}λ, for security parameter λ.

P̄’s auxiliary input: a witness w ∈ RL(x).

1. V̄ computes

• arg1, the first message in the original protocol.
• ct←WE.Encx(r), a witness encryption of the coins r used to generate arg1.

It sends (arg1, ct).

2. P̄ decrypts r̃ ← WE.Decw(ct), and verifies that arg1 = V(x; r). If this is not the case, it
aborts.

3. It then computes arg2, the second message in the original protocol, and sends it.

4. V̄ verifies the original argument arg1, arg2.

Figure 5: An argument 〈P̄, V̄〉 for NP against malicious verifiers.

Prover analysis. P∗ clearly runs in polynomial time.
We analyze the success probability. Observe that the only difference between the view of P̄∗ in a real

interaction with V̄ and its view as emulated by P∗ is that in the first ct is an encryption of the randomness
r of the honest verifier V, whereas in the second it is an encryption of zeros. Since x /∈ L, it follows by
the security of the witness encryption that P∗ convinces V with the same probability ε that P̄∗ convinces
V̄, upto a negligible difference.

Proposition 5.6. Protocol 5 is witness hiding.

Proof. Let R be the witness be the witness-finding reduction of the original protocol 〈P,V〉, we describe
the witness-finding reduction R̄ for the new protocol 〈P̄, V̄〉. In what follows let V̄∗ =

{
V̄∗λ
}
λ
be a

polynomial-size verifier.

R̄(x, V̄∗λ, 1
1/ε):

• Runs V̄∗λ(x) and and obtains (arg1, ct).

• Emulates an abortmessage from P̄, feeds it to V̄∗λ, and testswhether it outputs awitnessw ∈ RL(x),
and if so outputs it.

• Otherwise, constructs from V̄∗λ a verifier V∗λ that sends (arg1, ct) as its first message, obtains arg2

from P, feeds it to V̄∗ and outputs whatever V̄∗ does.

• Runs R(x,V∗λ, 1
1/ε).

Reduction analysis. The above reduction clearly runs in polynomial time. We now analyze its validity.
Let V∗ = {V∗λ}λ be a (w.l.o.g deterministic) polynomial-size verifier. Assume toward contradiction

that there exist an infinite set X of x ∈ L ∩ {0, 1}λ and w ∈ RL(x) such that for some noticeable δ(λ)

Pr
[
OUTV∗λ

〈P(w),V∗λ〉(x) ∈ RL(x)
]
> Pr

[
R(x,V∗λ, 1

1/ε) ∈ RL(x)
]

+ ε(λ) + δ(λ) .

37

We argue that for any x such as above the verifier’s message arg1 is in the support of the honest verifier.
Indeed, if it is not, then the reduction R first emulates a prover abort just as in the real system, where the
prover detects the witness encryption does decrypt to randomness that explains arg1. Thus,

Pr
[
OUTV∗λ

〈P(w),V∗λ〉(x) ∈ RL(x)
]
≤ Pr

[
R(x,V∗λ, 1

1/ε) ∈ RL(x)
]
.

Thus, we can construct an explainable verifier V∗xx∈X that on input x behaves like V∗, and on any other
input sends an abort message ⊥. This verifier is explainable and fails the witness-finding reduction.

Remark 5.2. The transformation given by Protocol 5 preserves public verifiability. Indeed, verification
is the same as in the original protocol.

References

[AH91] William Aiello and Johan Håstad. Statistical zero-knowledge languages can be recognized
in two rounds. J. Comput. Syst. Sci., 42(3):327–345, 1991.

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell
digital goods. In EUROCRYPT, volume 2045 of Lecture Notes in Computer Science, pages
119–135. Springer, 2001.

[AJ17] Prabhanjan Ananth and Abhishek Jain. On secure two-party computation in three rounds.
In Theory of Cryptography - 15th International Conference, TCC 2017, Baltimore, MD,
USA, November 12-15, 2017, Proceedings, Part I, pages 612–644, 2017.

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In 42nd Annual Symposium
on Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada,
USA, pages 106–115, 2001.

[BBK+16] Nir Bitansky, Zvika Brakerski, Yael Tauman Kalai, Omer Paneth, and Vinod Vaikun-
tanathan. 3-message zero knowledge against human ignorance. In Theory of Cryptography
- 14th International Conference, TCC 2016-B, Beijing, China, October 31 - November 3,
2016, Proceedings, Part I, pages 57–83, 2016.

[BCC+17] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Ru-
binstein, and Eran Tromer. The hunting of the SNARK. J. Cryptology, 30(4):989–1066,
2017.

[BCPR14] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable
one-way functions. In Symposium on Theory of Computing, STOC 2014, New York, NY,
USA, May 31 - June 03, 2014, pages 505–514, 2014.

[BD18] Zvika Brakerski and Nico Döttling. Two-message statistical sender-private OT from LWE.
IACR Cryptology ePrint Archive, 2018:530, 2018.

[BGI+17] Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay Wadia.
Two-message witness indistinguishability and secure computation in the plain model from
new assumptions. In Advances in Cryptology - ASIACRYPT 2017 - 23rd International
Conference on the Theory and Applications of Cryptology and Information Security, Hong
Kong, China, December 3-7, 2017, Proceedings, Part III, pages 275–303, 2017.

38

[BGJ+13] Elette Boyle, Sanjam Garg, Abhishek Jain, Yael Tauman Kalai, and Amit Sahai. Secure
computation against adaptive auxiliary information. In Advances in Cryptology - CRYPTO
2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, pages 316–334, 2013.

[BJY97] Mihir Bellare, Markus Jakobsson, and Moti Yung. Round-optimal zero-knowledge argu-
ments based on any one-way function. In Advances in Cryptology - EUROCRYPT ’97,
International Conference on the Theory and Application of Cryptographic Techniques,
Konstanz, Germany, May 11-15, 1997, Proceeding, pages 280–305, 1997.

[BKP18] Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. Multi-collision resistance: a paradigm
for keyless hash functions. In Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages
671–684, 2018.

[BL18] Nir Bitansky and Huijia Lin. One-message zero knowledge and non-malleable commit-
ments. In Theory of Cryptography Conference, TCC 2018, Goa, India, November 11-14,
2018, Proceedings, 2018.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of
pseudo-random bits. SIAM J. Comput., 13(4):850–864, 1984.

[BM14] Christina Brzuska and Arno Mittelbach. Indistinguishability obfuscation versus multi-bit
point obfuscation with auxiliary input. InAdvances in Cryptology - ASIACRYPT 2014 - 20th
International Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings, Part II, pages
142–161, 2014.

[BOV07] Boaz Barak, Shien Jin Ong, and Salil P. Vadhan. Derandomization in cryptography. SIAM
J. Comput., 37(2):380–400, 2007.

[BP04a] Boaz Barak and Rafael Pass. On the possibility of one-message weak zero-knowledge. In
Theory of Cryptography, First Theory of Cryptography Conference, TCC 2004, Cambridge,
MA, USA, February 19-21, 2004, Proceedings, pages 121–132, 2004.

[BP04b] Mihir Bellare and Adriana Palacio. Towards plaintext-aware public-key encryption without
random oracles. In ASIACRYPT, pages 48–62, 2004.

[BP12] Nir Bitansky and Omer Paneth. Point obfuscation and 3-round zero-knowledge. In Theory
of Cryptography - 9th Theory of Cryptography Conference, TCC 2012, Taormina, Sicily,
Italy, March 19-21, 2012. Proceedings, pages 190–208, 2012.

[BP15a] Nir Bitansky and Omer Paneth. On non-black-box simulation and the impossibility of
approximate obfuscation. SIAM J. Comput., 44(5):1325–1383, 2015.

[BP15b] Nir Bitansky and Omer Paneth. Zaps and non-interactive witness indistinguishability from
indistinguishability obfuscation. In Theory of Cryptography - 12th Theory of Cryptography
Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part II, pages
401–427, 2015.

[BP15c] Elette Boyle and Rafael Pass. Limits of extractability assumptions with distributional aux-
iliary input. In Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference
on the Theory and Application of Cryptology and Information Security, Auckland, New
Zealand, November 29 - December 3, 2015, Proceedings, Part II, pages 236–261, 2015.

39

[BST16] Mihir Bellare, Igors Stepanovs, and Stefano Tessaro. Contention in cryptoland: Obfusca-
tion, leakage and UCE. In Theory of Cryptography - 13th International Conference, TCC
2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II, pages 542–564, 2016.

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. SIAM J. Comput., 43(2):831–871, 2014.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable zero-
knowledge (extended abstract). In STOC, pages 235–244. ACM, 2000.

[CLP13] Kai-Min Chung, Huijia Lin, and Rafael Pass. Constant-round concurrent zero knowledge
from p-certificates. In 54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 50–59, 2013.

[CLP15] Kai-Min Chung, Edward Lui, and Rafael Pass. From weak to strong zero-knowledge and
applications. In Theory of Cryptography - 12th Theory of Cryptography Conference, TCC
2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part I, pages 66–92, 2015.

[CPS16] Kai-Min Chung, Rafael Pass, and Karn Seth. Non-black-box simulation from one-way
functions and applications to resettable security. SIAM J. Comput., 45(2):415–458, 2016.

[CS02] Ronald Cramer andVictor Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In Advances in Cryptology - EUROCRYPT 2002,
International Conference on the Theory and Applications of Cryptographic Techniques,
Amsterdam, The Netherlands, April 28 - May 2, 2002, Proceedings, pages 45–64, 2002.

[CVW18] Yilei Chen, Vinod Vaikuntanathan, and HoeteckWee. GGH15 beyond permutation branch-
ing programs: Proofs, attacks, and candidates. In Advances in Cryptology - CRYPTO 2018 -
38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2018, Proceedings, Part II, pages 577–607, 2018.

[DGS09] Yi Deng, Vipul Goyal, and Amit Sahai. Resolving the simultaneous resettability conjecture
and a new non-black-box simulation strategy. In 50th Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA,
pages 251–260, 2009.

[DN07] Cynthia Dwork andMoni Naor. Zaps and their applications. SIAM J. Comput., 36(6):1513–
1543, 2007.

[DNRS03] Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer. Magic functions. J.
ACM, 50(6):852–921, 2003.

[FGJ18] Nils Fleischhacker, Vipul Goyal, and Abhishek Jain. On the existence of three round
zero-knowledge proofs. In Advances in Cryptology - EUROCRYPT 2018 - 37th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Tel
Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part III, pages 3–33, 2018.

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM J. Comput., 29(1):1–28, 1999.

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, May 13-17,
1990, Baltimore, Maryland, USA, pages 416–426, 1990.

40

[Gam85] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Information Theory, 31(4):469–472, 1985.

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009. crypto.stanford.edu/craig.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the
41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA,
May 31 - June 2, 2009, pages 169–178, 2009.

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. SIAM
J. Comput., 45(3):882–929, 2016.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its
applications. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA,
USA, June 1-4, 2013, pages 467–476, 2013.

[GHKW17] RishabGoyal, SusanHohenberger, Venkata Koppula, and BrentWaters. A generic approach
to constructing and proving verifiable random functions. In Theory of Cryptography -
15th International Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017,
Proceedings, Part II, pages 537–566, 2017.

[GK96] OdedGoldreich andHugoKrawczyk. On the composition of zero-knowledge proof systems.
SIAM J. Comput., 25(1):169–192, 1996.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In 58th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,
October 15-17, 2017, pages 612–621, 2017.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity for all languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691–
729, 1991.

[GO94] OdedGoldreich andYair Oren. Definitions and properties of zero-knowledge proof systems.
J. Cryptology, 7(1):1–32, 1994.

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive zero-
knowledge. J. ACM, 59(3):11:1–11:35, 2012.

[Goy13] Vipul Goyal. Non-black-box simulation in the fully concurrent setting. In Symposium on
Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages
221–230, 2013.

[HIK+11] Iftach Haitner, Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. Black-box
constructions of protocols for secure computation. SIAM J. Comput., 40(2):225–266, 2011.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

41

crypto.stanford.edu/craig

[HK12] Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-message oblivious
transfer. J. Cryptology, 25(1):158–193, 2012.

[HRS09] Iftach Haitner, Alon Rosen, and Ronen Shaltiel. On the (im)possibility of arthur-merlin wit-
ness hiding protocols. In Theory of Cryptography, 6th Theory of Cryptography Conference,
TCC 2009, San Francisco, CA, USA, March 15-17, 2009. Proceedings, pages 220–237,
2009.

[HT98] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge protocols.
In Proceedings of the 18th Annual International Cryptology Conference, pages 408–423,
1998.

[HW15] Pavel Hubáček and Daniel Wichs. On the communication complexity of secure function
evaluation with long output. In Proceedings of the 2015 Conference on Innovations in
Theoretical Computer Science, ITCS 2015, Rehovot, Israel, January 11-13, 2015, pages
163–172, 2015.

[JKKR17] Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana, and Ron Rothblum. Distinguisher-
dependent simulation in two rounds and its applications. In Advances in Cryptology -
CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 20-24, 2017, Proceedings, Part II, pages 158–189, 2017.

[Kat12] Jonathan Katz. Which languages have 4-round zero-knowledge proofs? J. Cryptology,
25(1):41–56, 2012.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–158, 1991.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In S. Rao Kosaraju,
editor, Proceedings of the Twelfth Annual Symposium on Discrete Algorithms, January 7-9,
2001, Washington, DC, USA., pages 448–457. ACM/SIAM, 2001.

[OPP14] Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky. Maliciously
circuit-private FHE. In Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, pages
536–553, 2014.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Advances in Cryptology - EUROCRYPT ’99, International Conference on the Theory
and Application of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999,
Proceeding, pages 223–238, 1999.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol compo-
sition. In Advances in Cryptology - EUROCRYPT 2003, International Conference on the
Theory and Applications of Cryptographic Techniques, Warsaw, Poland, May 4-8, 2003,
Proceedings, pages 160–176, 2003.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with loga-
rithmic round-complexity. In 43rd Symposium on Foundations of Computer Science (FOCS
2002), 16-19 November 2002, Vancouver, BC, Canada, Proceedings, pages 366–375, 2002.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J.
ACM, 56(6):34:1–34:40, 2009.

42

[SV97] Amit Sahai and Salil P. Vadhan. A complete promise problem for statistical zero-knowledge.
In 38th Annual Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach,
Florida, USA, October 19-22, 1997, pages 448–457, 1997.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs under
LWE. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, October 15-17, 2017, pages 600–611, 2017.

A Relaxed Random Self-Reducible Public-Key Encryption from LWE

In this appendix, we describe a relaxed random self-reducible public-key based on LWE.
Lattice preliminaries. In what follows, q is a prime and α, β,m, n are such that α2n

0.1
< β < q

8m

and n < m
3 log q < nO(1). We denote by Ψm,σ the truncated discrete Gaussian distribution on Zm with

parameter σ, where any sample x such that ‖x‖ >
√
mσ is replaced by 0. Following common habit, we

will identify the security parameter (denoted by λ in the rest of the paper) with the lattice dimension n.
The scheme:

• RSR.Gen(1n) : outputs a public key A ∈ Zm×nq and secret key t ∈ {0, 1}m−1 such that A is
statistically close to uniform and (1|tT)A = 0.

• RSR.EncA(b) : samples s← Znq , e← Ψm,α and outputs c = As + e + b
(q

2 |0
m−1

)
.

• RSR.Dect(c) : outputs 0 if |〈c, (1|tT)〉| ≤ q/4, and 1 otherwise.

• RSR.ẼncA(b) : similar to RSR.Enc, only that e← Ψm,β .

• RSR.D̃ec
D

(c,A, 1k) :

– Let c̃ be the distribution given by sampling s′ ← Znq , e′ ← Ψm,β , and outputting c+As′+e′.
– Compute estimations:

∗ ρ̃ of ρ := ED(c̃),
∗ ρ̃0 of ρ0 := ED(RSR.ẼncA(0)),
∗ ρ̃1 of ρ1 := ED(RSR.ẼncA(1)),

using k2 · n samples for each.
– Output 0 if |ρ− ρ0| ≤ |ρ− ρ1| and 1 otherwise.

Claim A.1. Assuming LWEn,q,α, the scheme is a relaxed RSR encryption.

Proof sketch. We prove that the scheme satisfies the properties required in Definition 2.13.
Correctness: for any b ∈ {0, 1}, n ∈ N,

RSR.Dect(RSR.EncA(b)) =
〈
As + e + b

(q
2

∣∣∣ 0m−1
)
, (1|tT)

〉
=

0 + 〈e, (1|tT)〉+ bq/2 .

Correctness then follows from the fact that

|〈e, (1|tT)〉| ≤ ‖e‖ · ‖(1|tT)‖ ≤ α
√
m ·
√
m ≤ q/8 .

43

For RSR.ẼncA(b), correctness is shown similarly, where the only exception is that ‖e‖ ≤ β
√
m. Still,

|〈e, (1|tT)〉| ≤ βm ≤ q/8 .

Indistinguishability: by the LWEn,q,α assumption, for any polynomial-size distinguisherD = {Dn}n∈N,
there exists a negligible µ such that for any security parameter n ∈ N and any b ∈ {0, 1},

A,RSR.EncA(b) = A,As + e + b
(q

2

∣∣∣ 0m−1
)
≈Dn,µ A,u ,

whereA← Zm×nq , s← Znq ,u← Zmq , and e← Ψn,α.
Random self-reduction: fix anyA and distinguisher D such that |ρ0 − ρ1| ≥ ε , and fix any ciphertext
c = As + e + b

(q
2

∣∣ 0m−1
)
∈ RSR.EncA(b).

For this, we rely on noise flooding [Gen09a]: for s′ ← Znq , e′ ← Ψm,β

c̃ = c + As′ + e′ = A(s + s′) + (e + b
(q

2

∣∣∣ 0m−1
)

+ e′)

is statistically close to a fresh sample

RSR.ẼncA(b) = As′ + e′ .

Our random self reduction process now succeeds by standard concentration bounds.

44

	Introduction
	Results
	Technical Overview
	From Explainable to Malicious

	More on Related Work

	Preliminaries
	Arguments
	Weak Zero-Knowledge
	Witness Hiding
	Explainable Verifiers
	Witness Indistinguishability

	Commitments
	Fully-Homomorphic Encryption
	Compute and Compare Obfuscation
	Random Self-Reducible Public-Key Encryption
	Witness Encryption
	Conditional Disclosure of Secrets

	Weak Zero-Knowledge against Explainable Verifiers
	The Three-Message Protocol
	Analysis

	The Two-Message Protocol

	Witness Hiding against Explainable Verifiers with Public Verification
	Analysis

	From Explainable Verifiers to Malicious Ones
	The Three-Message Transformation
	The Two-Message Transformation
	The Two-Message WH Transformation

	Relaxed Random Self-Reducible Public-Key Encryption from LWE

