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Note� �
This is an out of date draft and here reference only. This work was superseded and
replaced with the paper “Constrained PRFs for Bit-fixing from OWFs with Constant
Collusion Resistance” [DKNY18], which achieves a bit-fixing PRF with O(1) collusion-
resistance from OWFs.� �

Abstract. Constrained pseudorandom functions (CPRFs) allow learning modified
PRF keys that can evaluate the PRF on a subset of the input space, or based on
some sort of predicate. First introduced by Boneh and Waters [Asiacrypt 2013], they
have been shown to be a useful cryptographic primitive with many applications. The
full security definition of CPRFs requires the adversary to learn multiple constrained
keys, a requirement for all of these applications. Unfortunately, existing constructions
of CPRFs satisfying this security notion are only known from exceptionally strong
cryptographic assumptions, such as indistinguishability obfuscation and the existence
of multilinear maps, even for very weak predicates. CPRFs from more standard as-
sumptions only satisfy security when one key is learnt.
In this work, we give the first construction of a CPRF that can issue a constant number
of constrained keys for bit-fixing predicates, from learning with errors (LWE). It also
satisfies 1-key privacy (otherwise known as constraint-hiding). Finally, our construction
achieves fully adaptive security with polynomial security loss; the only construction to
achieve such security under a standard assumption.
Our technique represents a noted departure existing for CPRF constructions. We hope
that it may lead to future constructions that can expose a greater number of keys, or
consider more expressive predicates (such as circuit-based constraints).

1 Introduction

Historically, pseudorandom functions (PRFs) provide the basis of a huge swathe of cryptog-
raphy. Intuitively, such a function takes a uniform key and some binary string x as input, and
outputs (deterministically) some value y. The pseudorandomness of the function dictates that
y is indistinguishable from some output obtained from a uniformly sampled function operat-
ing solely on x. Importantly, PRFs can provide useful sources of randomness in constructions
that take adversarially-chosen inputs.

Simple constructions of PRFs exist based on well-known standard assumptions: Naor and
Reingold [NR97] give a simple and elegant construction from number-theoretic assumptions
related to the discrete log assumption; Goldreich, Goldwasser and Micali give a construction
based on the existence of pseudorandom generators [GGM84].

There have been numerous expansions of the definitional framework surrounding PRFs. In
this work we focus on a strand of PRFs that are known as constrained PRFs or CPRFs. CPRFs
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were first introduced by Boneh and Waters [BW13] (Kiayias, Papadopoulos, Triandopoulos,
and Zacharias [KPTZ13] and Boyle, Goldwasser, and Ivan [BGI14] also proposed the same
notion in their concurrent and independent works) and depart from standard PRFs in that
the adversary receives more power to evaluate the function. In particular, the adversary can
receive constrained keys that allow evaluating the function on a subset of the input space.
Security now dictates that the CPRF remains pseudorandom on the points that lie outside
of the subsets of the constrained keys that are learnt by the adversary.

Predicates. While constrained keys can be defined with respect to subsets, a more natural
definition defines functionality with respect to predicates. That is, the constrained key allows
evaluation of the function on x, if and only if the associated predicate is equal to 1 on x.
We denote such a predicate by P and thus P (x) = 1 indicates that the input satisfies the
constraint.

Using this formulation, Boneh and Waters developed three independent constructions
of constrained PRFs that allow predicates of different expressibility. The most structured
predicate is the left-right (LR) predicate that requires the inputs be taken from {0, 1}2`.
Constrained keys in this setting can be learnt for strings of length {0, 1}` corresponding to
the first half (left) or the second half (right) of the input. That is, a left constrained key
for some string v ∈ {0, 1}` can evaluate x ∈ {0, 1}2` if vi = xi, for i ∈ {1, . . . , `}. A right
key is defined in the same way except that it evaluates those inputs x satisfying vi = xi, for
i ∈ {`+ 1, . . . , 2`} instead.

A more expressive predicate is the bit-fixing (BF) predicate. Such a predicate takes some
string v ∈ {0, 1, ∗}` as input; where vi = ∗ indicates a wildcard entry. Denote the predicate by
Pv(x) for some valid input x ∈ {0, 1}`. Then we say that Pv(x) = 1 iff (xi = vi)∨ (vi = ∗) for
all i ∈ [`] — that is, the string x is equal to v on all positions that are not wildcards. Notice
that bit-fixing predicates completely subsume left-right predicates by treating the right/left
side as a sequence of ` wildcards.

Finally, the last predicate considered by [BW13] is that of circuits. Where PC(x) = 1 iff
C(x) = 1 for some circuit C, and CKC can evaluate the CPRF on x if this predicate is satisfied
in this way. Achieving constrained pseudorandom functions for circuits in P/poly represents
the most expressive predicate that we could hope to achieve for a CPRF.

m-key privacy. An additional security requirement that was introduced by Boneh et al. [BLW17]
is that the constrained keys do not reveal the constraint that is encoded in them. In other
words, given a constrained key for one of two adversarially-chosen constraints, the same adver-
sary is unable to distinguish which constraint is encoded with anything other than negligible
advantage. The definition is made stronger by requiring that the adversary is given m keys
for m ≥ 1. A CPRF satisfying this definition of security is known as a private CPRF or
PCPRF.3

It was shown by Canetti and Chen [CC17] that a CPRF satisfying privacy for more than
one key implies the existence of IO. In [CC17], the definition is also given in a simulation-
based setting, rather than the indistinguishability-based framework of [BLW17]. It is shown
in the former that security in the simulation model implies security in the indistinguishability
model, but the reverse does not hold.

1.1 Existing constructions

Since the original work of [BW13], numerous constructions of CPRFs have been given, relying
on different primitives and providing a range of functionality. The work of [BW13] gave
constructions of CPRFs for LR, BF and NC1 circuit predicates. The LR predicate CPRF
was derived from the bilinear decisional diffie-hellman (BDDH) assumption and the existence
of random oracles. The other constructions were derived from multilinear maps that satisfy

3 They are also known as ‘constraint-hiding’ CPRFs.
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the multilinear DDH (MDDH) assumption. These original constructions satisfy collusion-
resistance for any polynomial number of constrained keys. That is, the adversary in the
CPRF security game can learn polynomially-many constrained keys.

Hofheinz et al. [HKKW14] develop a construction with stronger security guarantees in that
all queries can be answered adaptively, this is the only construction that satisfies adaptive
security via a polynomial-time reduction. The adaptive security model allows the adversary to
specify all CPRF queries (input, constrained key, challenge) at any point through the security
experiment. Unfortunately their construction is based on very strong assumptions — namely
a combination of indistinguishability obfuscation (IO) and random oracles. All other works
require sub-exponential time reductions to achieve adaptive security.

More recent constructions have constructed CPRFs from much weaker assumptions, at
the expense of providing weaker guarantees. The works of [BV15, CC17, PS18, BTVW17,
CVW18] construct CPRFs from learning with errors (LWE), and other lattice-based as-
sumptions. Unfortunately, none of these constructions satisfy collusion-resistance or adaptive
security (via polynomial-time reductions). However, each of these constructions can create a
constrained key for circuits taken from the class NC1. The works of [BTVW17, PS18, CVW18,
BV15] actually provide constrained keys for P/poly. The work of [AMN+18] provides a con-
struction of CPRFs, from assumptions in traditional groups, for circuit predicates in NC1 —
again security only holds for one constrained key query.

Achieving private constraints. The constructions of [BLW17] provides poly-many pri-
vately constrained keys for circuit predicates, under the existence of IO. The PCPRFs of [CC17,
BTVW17, PS18, CVW18] also satisfy the privacy guarantee for circuit predicates, but for
only one constrained key query. This is unsurprising given that there are no known instantia-
tions of IO from standard cryptographic assumptions. Such a result would imply the existence
of IO from LWE.

Applications. In the original work of [BW13], a number of applications were given that
highlighted the utility of CPRFs. They give a cryptographic primitive that can be instantiated
by CPRFs for left-right, BF and NC1 predicates, respectively:

– LR CPRF =⇒ identity-based non-interactive key exchange (ID-NIKE);

– BF CPRF =⇒ broadcast encryption with optimal ciphertext size;4

– (NC1 ∨ P/poly) CPRF =⇒ policy-based key distribution.

Since this initial study, there have been no alternative constructions of these primitives from
methods that do not utilise CPRFs. A key property of each of the applications is that they
require a CPRF that remains secure even when multiple constrained keys have been learnt.
The initial construction of [BW13] satisfies this property but constructions relying on standard
assumptions (i.e. not obfuscation-based) cannot instantiate these applications meaningfully,
since they only permit one constrained key to be learnt.

1.2 Our contribution

In this work we develop a new CPRF construction for the bit-fixing predicate from LWE
that satisfies collusion-resistance for r = O(1) constrained keys. Furthermore, our security
proof holds in the adaptive security setting with only a polynomial loss of security. Our
construction is the first to satisfy either of these requirements from any standard assumptions.
Finally, our construction satisfies 1-key privacy by the definition of [BLW17]. We summarise
our contribution alongside the existing state of the art in Table 1.

4 For the broadcast encryption scheme, by optimal we mean that the length of the header, a tradi-
tional metric by which the efficiency of broadcast encryption schemes are measured, is 0.
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Table 1. List of existing constructions of CPRFs along with their functionality and the assumptions
required. The adaptive column only refers to works that achieve adaptive security in polynomial-time.
We say that privacy is satisfied even if it only holds for one constrained key.

Collusion-resistance Privacy Adaptive Predicate Assumption

[BW13] poly(λ) 0 � LR BDDH & ROM
poly(λ) 0 ♦ BF MDDH
poly(λ) 0 ♦ P/poly MDDH

[HKKW14] poly(λ) 0 � P/poly IO & ROM

[BV15] 1 0 ♦ P/poly LWE

[BLW17] poly(λ) 1 ♦ Puncturing MDDH
poly(λ) 1 ♦ BF MDDH
poly(λ) poly(λ) ♦ P/poly IO

[CC17] 1 1 ♦ BF LWE
1 1 ♦ NC1 LWE

[BTVW17] 1 1 ♦ P/poly LWE

[PS18] 1 1 ♦ P/poly LWE

[CVW18] 1 1 ♦ NC1 LWE

[AMN+18] 1 0 ♦ NC1 L-DDHI
1 1 ♦ BF DDH
1 1 � BF ROM

This work O(1) 1 � BF LWE

Roadmap In Section 2 we give a technical overview of our contribution. In Section 3 we
cover preliminary definitions. In Section 4 we give our construction.

2 Technical overview

2.1 Lattice-based constructions

The idea for this work originates from the lattice-based CPRF for bit-fixing constraints
of Canetti and Chen [CC17], though the techniques are very similar in other lattice-based
constructions [BV15, PS18]. In these works the adversary is allowed to query for one con-
strained key that is chosen selectively (rather than adaptively). The PRF is defined over
an input x ∈ {0, 1}` and the master secret key is a set of Gaussian-distributed matrices
{Di,b}i∈[`],b∈{0,1}. These matrices are thought of as representatives of LWE secrets, the un-
derlying technique is borrowed from the PRFs of [BPR12, BLMR13]. The constrained key is
then some v ∈ {0, 1, ∗}`, where Di,vi is revealed if vi ∈ {0, 1}, and both {Di}b∈b∈{0,1} are

revealed if vi = ∗, for each i ∈ [`]. Finally, newly sampled Di,1−vi ←$DZm×m,σ replace the
matrices that are not learnt.5 In the public parameters, there is a matrix A, and for an input
x, the PRF evaluation is A ·

∏`
i=1 Di,xi .

The key observation of [CC17] is that pseudorandomness only has to hold for some chal-
lenge x† where (xj 6= vj) ∧ (vj 6= ∗). Then when the PRF is evaluated at x†, the output
includes the matrix Dj,xj that is not revealed in the constrained key (and thus to the ad-
versary). As a result, their security proof relies on an LWE security reduction, where Dj,xj

ultimately acts as an unknown LWE secret. It is also noted by [CC17] that a very similar
argument can be used to show that the [BLMR13] PRF is also a PCPRF for bit-fixing con-
straints. For circuit-based constraints, this proof technique does not apply since the matrices
are no longer tied explicitly to one bit of the constraint query. In these cases, a more careful
LWE argument is used in relation to the secret distribution that is considered.

Unfortunately, the analysis for bit-fixing does not follow for more than one key. It is entirely
possible to choose two constrained keys that would reveal the entire set {Di,b}i∈[`],b∈{0,1},

5 This is not required for standard CPRF security, but only for the extra privacy property.
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without compromising all evaluation points.6 Therefore, the LWE argument cannot be used
since all the secrets are effectively public. The main issue of this technique is that one bit
of the PRF input is tied concretely to one bit of the master secret key. Consequently, when
valid constraints reveal both components of the master secret key for each bit, security is
effectively lost.

2.2 Our scheme

To improve on the functionality of previous schemes, we design a CPRF construction that
analyses r input bits at a time, for r ≥ 1. It may not be clear how just yet, but this allows us
to provably hide matrices for up to r constrained key queries. Unfortunately, we require that
r = O(1) as the size of the public parameters and the master secret key depends exponentially
on the size of r.

Key generation. To be more precise, let ρ =
∑r
ι=1

(
`
ι

)
; then our CPRF consists of public

parameters of the form:

{Ai}i∈[`]←$Zn×mq , {D(i)
j,b}j∈[`],b∈{0,1}←$DZm×m,σ,D

end←$DZρm×m,σ;

for the Gaussian distribution DZ,σ.

The master secret key consists of
∑r
i=1 2i ·

(
`
i

)
different matrices. In other words, for each

ordered set S ⊂ [`] where |S| ∈ [r] there are 2|S| possible matrices, corresponding to the
possible bits of x|S (where xi ∈ x|S if and only if i ∈ S). Let the vectors t ∈ [`]z correspond
to all possible ordered sets S, for z ∈ [r]. The master secret key is then defined to be the set:

{DG
t,b}t∈[`]z,b∈{0,1}z,z∈[r]←$DZzm×mq ,σ.

Evaluation. For each input to the CPRF, x ∈ {0, 1}`, we iterate through each of the possible
vectors t ∈ [`]z. We write xt ← reindex(x, t) to denote the bits xti for ti = t[i], abusing
notation and letting t denote a set. For each t, there are matrices DG

t,b for all b ∈ {0, 1}z.
Then, to evaluate the PRF output, we first choose the set of matrices {DG

t,xt
}t∈[`]z,z∈[r].

Let

Y x
i = Ai ·

∏̀
j=1

D
(i)
j,xj

.

Then, for each t, we compute Y x
t = [Y t1‖ . . . ‖Y tz ], where ti is the ith component of t, and:

Zx
t = Y x

tD
G
t,xt

.

We set Zx
T = [{Zx

t }]t∈[`]z,z∈[r], where [{Zx
t }]t∈[`]z,z∈[r] is the matrix that concatenates each

Zx
t according to the lexicographic ordering (from least to most) inferred by the (1) dimension

of t; (2) the value of
∑z
l=1 tl.

Finally, the PRF output is computed as:⌊
Zx

TD
end
⌉
p

for some p > 0, using a similar choice to previous lattice-based PRFs [BPR12, BLMR13,
BP14, CC17]. In contrast, our scheme makes a noted departure from previous designs in the
sense that we use a concatenated matrix Y x, and then perform multiplications with each of
the chosen DG matrices. In the previous schemes, a uniform matrix A is used, and then the
output is computed sequentially, by computing ADx1

. . .Dx` .

6 For example, choosing the constraints v1 = 1 ∗ ∗ ∗ 1 and v2 = 0 ∗ ∗ ∗ 0; where x = 1 ∗ ∗ ∗ 0 is still a
constrained point.
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Constraint queries. Let ∈ {0, 1, ∗}` be some bit-fixing constraint query, where ∗ is the
designated wildcard character. We answer a constraint query by computing vt ← reindex(v, t)
for each t ∈ [`]z and then returning all matrices DG

t,b such that 1 ← Pv(b) (i.e. (vt,i =
bi) ∨ (vt,i = ∗)). As an example, if v = 01 ∗ ∗ ∗ 1 and t = (1, 3), then we would return the
matrices DG

t,(0,0) and DG
t,(0,1).

To satisfy 1-key privacy, we also sample a dummy master secret key consisting of matrices

DG
t,b. For b such that 0← Pv(b), we return DG

t,b. Therefore, in the example above, the matrices

DG
t,(1,0) and DG

t,(1,1) would also be returned. The matrices are identically distributed and so

they hide the constraint if only one key is learnt. If more keys are learnt then it would be
simple to match up those matrices corresponding to the real master secret key, and vice-versa.

Proof overview. The proof is similar in spirit to the [CC17] proof argument. Consider
any set (v(1), . . . , v(r)) of bit-fixing constraints, i.e. v(i) ∈ {0, 1, ∗}` where ∗ is a wildcard
character. Then, each v(i) must have at least one point ti where ti 6= ∗. Let us assume that
v(i) are ordered, without loss of generality, so that ti ≤ ti+1.

Then consider the vector t that contains all the unique indices ti ∈ `, where ti > ti−1 or
i = 1. Then t ∈ [`]z, where z ≤ r is the number of such unique indices. Now, consider the

vector b = (1− v(1)t1 , . . . , 1− v
(r)
tr ) corresponding to the inverse bits in the constraint. Then we

know that DG
t,b is never revealed to the adversary, since all of the constraint queries satisfy

0← Pv(i)(b).
For security to hold, we need to show that the CPRF output remains pseudorandom on

some point x† that remains constrained, relative to the constraint queries that the adversary
makes. As a consequence, there must be some vector t† of the form above, since there must

be an index in ti ∈ [`] for each v(i) such that (x†i 6= v
(i)
ti )∧ (v

(i)
ti 6= ∗). Therefore, we know that

the matrix DG
t†,x†

t†
is never revealed by the adversary.

In essence, the output of the CPRF on x† can now be written as:

⌊
Zx†

T Dend
⌉
p

=

Zx†

t†D
end
t† +

∑
t 6=t†

Zx†

t Dend
t


p

where Dend
t† ∈ Zm×mq is the vertical component of Dend corresponding to the ordering of t† in

[`]r. Moreover, Zx†

t† = Y x†

t†D
G
t†,x†

t†
, where DG

t†,x†
t†

is never learnt by the adversary.

Firstly, we are able to replace Zx†

t† with the RHS of a Leftover Hash Lemma (Lemma 3.3)

sample (A,B), where B = AR or B←$Zn×zmq . We set Y x†

t† = A, and implicitly set DG
t†,x†

t†
=

R and the lemma follows as long as m = Ω(n log q). Secondly, we can introduce an extra error

matrix that is summed with Zx†

t†D
end
t† , since the rounding b·ep ensures that the output will be

the same with high probability. Finally, we can argue that Zx†

t†D
end
t† + E is indistinguishable

from uniform, using the non-uniform LWE argument of [BLMR13], where Dend
t† is a public

low-norm matrix and Zx†

t† is the uniform secret. The output is now a sum of a uniform matrix
(that is completely dependent on x†) with other matrices corresponding to t 6= t†, and so the
output is uniform.

For further details of the proof see Theorem 4.3.

Proof subtleties. Of course, the argument that we have given above is heavily simplified.
An astute reader may have noticed that it is impossible to simulate input queries that make
use of the matrix DG

t†,x†
t†

, but that are also not the challenge point. To get around this,

we assume that the number of input queries Q = poly(λ) is known by the proof reduction
beforehand. We then introduce a trapdoor approach that allows us to sample independent
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uniform matrices Y x
i for each i ∈ [`]. Using the trapdoors we essentially set

Y x
i = Ai

∏̀
j=1

D
(i)
j,xj

,

and this allows us to render the input queries and the challenge query completely independent
evaluations. See the proof of Lemma 4.4 for more details.

Adaptive security. Essentially, our construction arrives at adaptive security for free. Pre-
vious constructions incur sub-exponential security losses during the reduction from selective
to adaptive security, by essentially attempting to guess the challenge point x† that a selective
adversary would use. We are able to achieve adaptive security with a polynomial security
loss (e.g. 1/poly(λ)): by simply guessing the matrix DG

t†,x†
t†

that is implicitly used by the

adversary. If this matrix is not eventually used by the challenge ciphertext, or it is revealed
via a constrained key query, then the reduction aborts. This is because the entire proof hinges
on the choice of this matrix, rather than the input itself. Since there are polynomially many
matrices (for r = O(1)), we can achieve adaptive security with only a 1/poly(λ) probability
of aborting. See Lemma 4.5 for more details.

3 Preliminaries

We provide the notational and definitional framework for the construction that we give.

3.1 Notation

For some space D, we write x←$D to indicate that x has been sampled from D using the
uniform distribution. For n ∈ N, we write [n] to represent the set {1, . . . , n}. We write [n1, n2]
to denote the set {n1, . . . , n2} for n1 < n2 and n1, n2 ∈ N. For a string x = x1 . . . x` ∈ {0, 1}`,
we let x|t = xt . . . x`, x|t = x1 . . . xt, and x|t2t1 = xt1 . . . xt2 , for t2 ≥ t1. Alternatively, let
T ⊂ [`] be some subset of indices, we write x|T to denote the bits xi ∈ {0, 1} such that i ∈ T .

Bit-fixing predicates. We write ‘bit-fixing’ constraints as v ∈ {0, 1, ∗}`, denoting a bit-
fixing predicate for v by Pv : X 7→ {0, 1}. The predicate satisfies Pv(x) = 1 for x ∈ {0, 1}` iff
((xi = vi) ∨ (vi = ∗)) for each i ∈ `.

Vectors and matrices. Vectors are written as lower-cased bold-face (i.e. v) and are as-
sumed to be in horizontal notation by default. We write vT to denote the vector in column-
form. Denote by vi, the ith entry of v.

We denote matrices by capitalized bold-face (i.e. A). We write [A1‖A2] to denote the
horizontal concatenation of matrices A1 and A2. Let [A1‖↑A2] denote the vertical concate-
nation of A1 and A2. We define an ‘empty’ matrix by setting A1 = [], in this case we define
[A1‖A2] = A2.

Let T = {(t1, . . . , tr) ∈ [`]r‖t1 ≤ t2 ≤ . . . ≤ tr}. We write [BT] to denote the matrix

[B1‖B2‖ . . . ‖B`‖B1,`‖ . . . ‖B`−1,`‖ . . . ‖B1,2,...,`−1,`]

that concatenates the matrices with respect to all unique entries of t = (t1, . . . , tr)← T. The
lexicographic ordering of t in T is from lowest to highest after removing non-unique entries,
using the criteria: (1) the dimension of t ∈ [`]z; (2) the value of

∑z
i=1 ti.

Let v be an ordered vector (v1 ≤ . . . ≤ v`). Then we write z ← unique(v) to denote
the number of positions i ∈ [`] s.t. vi−1 < vi. Let B` = {(b1, . . . , b`) ∈ {0, 1}`}, and let
b← B`. We write bv ← reindex(b,v) to denote the reindexing bv of b with respect to unique
entries vi of v (i.e. where vi−1 < vi). That is, if the unique entries of v are v2, v5, v7, v9, then
bt = (bv2 , bv5 , bv7 , bv9).
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Rounding. For some c ∈ Q, we write bce = w where |w−c| ≤ |w′−c| for all w′ ∈ Z; rounding
towards 0 in case of a tie. For c ∈ Zq, we denote the act of rounding into Zp (for some p ∈ Z)
by bcep = b(p/q)ce.

Security experiments. We use the abbreviation PPT to refer to probabilistic polynomial
time. Let λ be a security parameter and let expb,A(1λ), for b ∈ {0, 1}, be a pair of decisional
experiments along with a PPT algorithm A (known as the adversary) that attempts to
distinguish the cases where b = 0 and b = 1. We define decisional experiments such that
bA ← expb,A(1λ) is the final output, where bA is the ‘guess’ of A. This guess is made in the
final step of the game. Let

Adv(expb,A(1λ)) =
∣∣Pr
[
0← exp0,A(1λ)

]
− Pr

[
0← exp1,A(1λ)

]∣∣
denote the advantage of the adversary A in distinguishing the two experiments. We say that
exp0,A(1λ) and exp1,A(1λ) are computationally indistinguishable (or exp0,A(1λ)

c
= exp1,A(1λ))

if

max
A

(Adv(expb,A(1λ))) < negl(λ)

for some negligible function negl, where the maximum is taken over all PPT algorithms A.7

We say that they are statistically indistinguishable (or replace
c
= with

s
=) if they are negligibly

close for adversaries of unbounded running time.

Hybrid games. Let Hi and Hi+1 denote consecutive games within a hybrid argument. De-

fine exp
Hi,Hi+1

b,D (1λ) to be a decisional experiment, where the PPT algorithm D attempts to
distinguish between Hi and Hi+1. In this situtation, bD ← D is such that bD = 0 if D guesses
Hi, and bD = 1 if D guesses Hi+1.

Oracles. We write AOY(f(·)) in a security game to indicate that a PPT algorithm A has
‘oracle access’ to the function f with domain Y. During this access, A submits queries y ∈ Y
to a challenger who returns f(y) and can choose these queries adaptively. If the challenger
keeps track of the queries to the oracle using a set Q, then we write AOY(f(·),Q) where for
every query y ∈ Y, then y → Q. If the adversary is only permitted to make m ∈ Z calls to
the oracle, we will write AO·Y(f(·);[m]).

3.2 Lattice preliminaries

An n-dimensional lattice Λ is a discrete, additive subgroup of Rn. Given n linearly independent
basis vectors B = {b1, . . . , bn} ∈ Rn×n, the lattice generated by B is Λ(B) = {vi | vi =∑n
i=1 xibi; xi ∈ Z}. Let Λ + c = {v + c | v ∈ Λ} denote the c coset of Λ. The rank of the

lattice is defined to be the rank of the matrix B. We will only concern ourselves with lattices
Λ s.t. qZm ⊆ Λ ⊆ Zm.

The ith successive minima of a lattice, denoted by λi(Λ), is the radius of the smallest ball
(centred at the origin) that contains i linearly independent vectors vi ∈ Λ. As such, λ1(Λ) is
the length of the shortest vectors in Λ. This notation should not be confused with the security
parameter λ that we use throughout this paper.

Let γ > 1 be an approximation factor. The GapSVPγ problem is a widely-known hard
problem that is used for characterising the hardness of cryptographic assumptions relating to
lattices.

Definition 3.1. (γ-Gap Shortest Vector Problem (GapSVPγ)) Given a basis B of a lattice
Λ = Λ(B) and a real number d > 0, output 1 if λ1(Λ) ≤ d and 0 if λ1(Λ) > γ · d. There are
no requirements if the value is between d and γ · d.

7 We sometimes omit explicit mention of the security parameter if the context is obvious.
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Gaussian distributions. For any s > 0, define the Gaussian function on Rn centred at
c ∈ Rn with parameter s to be:

∀x ∈ Rn, ρs,c(x) = e−π‖x−c‖
2/s2 .

Likewise, for any s, c as above and n-dimensional lattice Λ, define the discrete Gaussian
distribution over Λ as:

∀x ∈ Λ, DΛ+c,s(x) =
ρs,c(x)

ρs,c(Λ)
.

The parameter s is referred to as the width of the distribution. Sometimes we use σ instead
if we want to refer to the width using the standard deviation of the distribution explicitly.

We will state a number of well-known lemmas, the proofs are omitted from this paper and
we urge the readers to refer to the citations for the full proofs.

In this work, we will make use of error distributions, samples from this distribution should
have norms bounded below some known value with high probability. We can show such a
result for the Gaussian distribution DΛ,s over the lattice Λ, with parameter s > 0.

Lemma 3.2. ([MR04, PR06]) Let B be a basis of an n-dimensional lattice Λ and let B̃ denote
the Gram-Schmidt orthogonalisation of B. Let s ≥ ‖B̃‖ · ω(log λ) and x←$DΛ,s, then:

Pr
[
(‖x‖ ≥ s

√
n) ∨ (x = 0)

]
< negl(λ) .

The lemma below states that, for A←$Zn×mq , where m = Ω(n log(q)), then Ar
s
= u;

where r←$DZm,σ and u←$Zmq . It is sometimes known as the leftover-hash lemma for lattices.

Lemma 3.3. ([GPV08]) Let q > 0 be a prime, let n,m be positive integers such that m ≥
2n log(q)), let σ ≥ ω(

√
log n). Then for A←$Zn×mq and r←$DZm,σ, the distribution (A,Ar)

is statistically indistinguishable from the distribution (A,u), for u←$Znq .

We now state the following corollary that we eventually use in the security proof.

Corollary 3.4. Let (A(u),A(u)r)u∈[`]∪{0} ∈ Zn×mq ×Znq for ` = poly(λ). Then this distribu-

tion is statistically indistinguishable from the distribution (A(0), c), (A(u),A(u)r)u∈[`] where
c←$Znq .

Proof. We give a sketch of the hybrid argument that is required. Firstly, we invoke ` + 1
independent distributions from Lemma 3.3 to switch all pairs to be of the form:

(A(u), c(u))u∈[`]∪{0}

for c(u)←$Znq . This is possible, because the samples are distributed independently of each

other, by the independent choice of A(u) for each u ∈ [`]∪{0}. Secondly, we invoke the reverse
transformation for u ∈ [`] so that we acquire a distribution of the form:

(A(0), c), (A(u),A(u)r)u∈[`]

by invoking Lemma 3.3 in reverse, ` times. This is identical to the second distribution and so
the distinguishing adversary now has no advantage. ut

3.3 Trapdoor matrices.

In the following lemmas, we will consider matrices taken from the rings Zn×mq and Zm×mq

for parameters n = poly(λ) and m = Ω(n log(q)); modulus q ≥ 2; and where Rq = R/qR
generically denotes quotient ring with respect to parameter q.
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Lemma 3.5. (Trapdoor sampling [Ajt99, GPV08, MP12]) There is a PPT algorithm denoted
by TrapSamp(1λ, 1n, 1m, q) that outputs a pair (A,T ) ∈ Zn×mq ×Zm×mq , where the distribution
of A is negl(λ) statistical distance away from uniform.

Lemma 3.6. (Preimage sampling [Ajt99, GPV08, MP12]) There is a PPT algorithm denoted
by PreImgSamp(A,T ,Y , σ) that, with overwhelming probability over (A,T )←$TrapSamp(1n, 1m, q),
for sufficiently large σ = Ω(

√
n log(q)), satisfies:

{(A,D,Y ) | D←$PreImgSamp(A,T ,Y , σ)} c
= {(A,D,Y ) | D←$Dm×m

Z,σ ,Y = AD}

for all PPT distinguishing algorithms.

Finally, we prove a corollary of Lemma 3.6 that we use in the proof of Theorem 4.3.

Corollary 3.7. With overwhelming probability over (A,T )←$TrapSamp(1λ, 1n, 1m, q), and
for sufficiently large σ = Ω(

√
n log(q)), a PPT distinguishing algorithm cannot distinguish

samples (A1, . . . ,A`,D1, . . . ,D`,Y ), where:

AL = AL−1DL−1 for L ∈ [`]; Y ← A`D`; (1)

or:

A`+1←$Zn×mq ; {Ai,Ti}i∈[`]←$TrapSamp(1λ, 1n, 1m, q); {Di←$PreImgSamp(Ai,Ti,Ai+1)}i∈[`];
(2)

and Y = A`+1.

Proof. We prove this corollary by showing that we can switch to a game where the first
method of sampling is statistically close the second method. This provides a distinguishing
game that a PPT adversary has no advantage in.

– H0: This is the same as Equation (1).
– Hi (i ∈ [`]): Same as Hi−1, except sample:

Ai,Ti←$TrapSamp(1λ, 1n, 1m, q); Di←$PreImgSamp(Ai,Ti,Ai+1);

where A`+1 = Y .

Claim 3.7.1. maxD(Adv(exp
Hi−1,Hi

b,D (1λ))) < negl(λ) by Lemmas 3.5 and 3.6.

Proof. By Lemma 3.5, distinguishing Ai←$Zn×mq and Ai←$TrapSamp(1λ, 1n, 1m, q) is sta-
tistically indistinguishable. Since Ai is statistically close to being uniformly distributed, we
can argue by Lemma 3.6 that the method used for sampling Di is indistinguishable in both
hybrids.

The rest of the matrix sampling can be done trivially so the proof of Claim 3.7.1 is finished.
ut

The proof of Corollary 3.7 is inferred directly by repeated application of Claim 3.7.1 for
each i ∈ [`]. ut

3.4 Learning with errors

Throughout this work we rely on the hardness of the learning with errors (LWE) problem,
first introduced by Regev in 2005 [Reg05].

Definition 3.8. (LWE [Reg05]) Let q, n,m = poly(λ) be parameters and let χ be an error
distribution. The learning with errors problem (LWEq,n,m,χ) is to distinguish between:

(A, sA + e) ∈ Zn×mq × Zmq (3)

and
(A,U) ∈ Zn×mq × Zmq (4)

for A,U ←$Zn×mq ; s←$χn×n; and e←$χm.
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Regev [Reg05] gave a quantum reduction showing that LWEq,n,m,χ is at least as hard as solving

GapSVPγ to γ = Õ(n/α) approximation factors, when χ = DZ,σ for σ = α · q and α > 0.
Peikert [Pei09] gave a classical reduction for the same problem. We give specific parameters
later when discussing the hardness of our schemes from the LWEq,n,m,χ problem.

Let explweb,A(1λ, q, n,m, χ) denote the experiment where a PPT adversary A attempts to
distinguish samples from the LWE problem. We let b = 0 denote the case where A receives
samples as in Equation (3), and b = 1 denote the case where A receives samples as in
Equation (4). Let Adv(maxA(explweb,A(1λ, q, n,m, χ))) denote the advantage of A. We may omit
the additional parameters q, n,m, χ if they are obvious from context.

Matrix LWE. We will require the usage of a form of learning with errors where the secret s
in Definition 3.8 is replaced with a matrix S ∈ Zn×n. Note that the hardness of this form of
the problem can be trivially bounded by n ·maxA(Adv(explweb,A(1λ, q, n,m, χ))). Therefore, we
will use this form of LWE in the following sections, without distinguishing from the explicit
format given in Definition 3.8. This also applies to the binary LWE problem.

3.5 Non-uniform learning with errors

Boneh et al. [BLMR13] introduced the notion of ‘Non-uniform learning with errors’ (NULWE)
where the distribution of the public element, A, in an LWE sample is not necessarily uniform.
They show that a reduction from LWE to NULWE exists in the case where A←$ γn×m, where
γ is a ‘coset-samplable’ distribution and S←$Zn×nq . Formal definitions of NULWE and coset-
samplable distributions are given below.

Definition 3.9. (Non-uniform LWE [BLMR13]) Let q, n,m, χ be as in Definition 3.8, let
k = poly (λ), and let γ be a distribution over Zq. The non-uniform learning with errors
problem (NULWEq,n,k,m,χ,γ) is to distinguish between:

(D,RD + E) ∈ Zk×mq × Zn×mq

and

(D,U) ∈ Zk×mq × Zn×mq

for D←$ γk×m; U ←$Zk×mq ; R←$Zn×kq ; and E←$χk×m.

Let maxA(Adv(expnulweb,A (1λ, q, n, k,m, χ, γ))) denote the advantage of all PPT adversaries A
in distinguishing the samples in the NULWEq,n,k,m,χ,γ problem (which we categorise as the
experiments expnulweb,A (1λ, q, n, k,m, χ, γ)).

Definition 3.10. (n-coset samplable distributions [BLMR13]) For parameters q, n,m, k =
poly(λ), we say that a distribution γ = γ(λ) over Zq is n-coset samplable if there are two
PPT algorithms (MatSamp(),PreImgSamp()) such that:

– MatSamp(q, 1n, 1k, 1m) : outputs a matrix M ∈ Zn×kq and auxiliary data T ;

– PreImgSamp(Y ∈ Zn×mq ,T ) : outputs D ∈ Zk×m satisfying MD = Y where if Y ←$Zn×mq

then D is distributed statistically close to γk×m.

It was shown in [BLMR13] that a reduction from LWEq,n,m,χ to NULWEq,n,k,m,χ,γ in the
case where γ is an n-coset samplable distribution where k ≥ n. We briefly summarise the
results of [BLMR13] in Lemma 3.12.

Remark 3.11. For now, we abuse notation and use the same notation PreImgSamp() for this
algorithm as was used in Lemma 3.6. However, we show later that the distribution γ specifies
that PreImgSamp() is the same algorithm in both cases.
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Lemma 3.12. ([BLMR13, Lemma 4.3]) Let γ = γ(λ) be an n-coset samplable distribution
and let ε = ε(λ). If there is a PPT algorithm A satisfying maxA(Adv(expnulweb,A (1λ, q, n, k,m, χ, γ))) =

ε, then there is a PPT algorithm B satisfying maxarg(Adv(explwec,B(1λ, q, n,m, χ))) = ε.

Finally, it was shown in [BLMR13] that γ can be instantiated with the following distribu-
tions:

– γ{0,1}: the uniform distribution on {0, 1}k×m for sufficiently large k;

– γV : a uniform distribution over a sufficiently large linear subspace V of Zk×mq ;

– γσ: a discrete Gaussian, DZ,σ, on Zk×m with sufficiently large k and standard deviation
σ.

That γσ is n-coset samplable follows directly from Lemma 3.5 and Lemma 3.6 by instanti-
ating MatSamp() with TrapSamp() and likewise using PreImgSamp() as it is defined. We state
this formally along with parameter settings below.

Corollary 3.1. Let q, n = poly(λ) be defined as previously, let k ≥ 6n log q, σ = Ω(
√
n log q),

and γσ = DZ,σ. Then NULWEq,n,k,m,χ,γσ is at least as hard as LWEq,n,m,χ.

Proof. We simply show that γσ is n-coset samplable as in Lemma 3.12.

– MatSamp(q, 1n, 1k, 1m) runs TrapSamp(1λ, 1n, 1k, q) and outputs (M ,T ).
– PreImgSamp(M ,T ,Y , σ) simply outputs D ∈ Zk×m exactly as defined in Lemma 3.6.

ut

Notice, that we can replace k with m providing that m = Ω(n log q), as defined in Lemma 3.6.
Similar proofs can be made for γ{0,1} and γV . We refer the reader to [BLMR13] for the explicit
arguments.

3.6 Pseudorandom functions

A pseudorandom function (PRF) is a tuple PRF = (Setup,Eval). The security requirement
is that, for K ←$K, then the outputs of the function PRF.Eval : K × X 7→ Y on K and
adversarial x ∈ X are computationally indistinguishable from the evaluations of a random
function f : X 7→ Y on the same x.

More formally, let F = {f : f : X 7→ Y}, then the PRF indistinguishability game asks an
adversary to distinguish the two experiments in Figure 1. All oracle queries are handled by the
real evaluation function PRF.Eval, this oracle is denoted by OX (PRF.Eval(msk, x)) where x is
the input query — recalling that ϕ collates the input queries that have been asked by A. At
the challenge point, x†, the output is taken from either: the PRF in expprf0,A(1λ); or a uniform

function in expprf1,A(1λ). We give a formalisation of the security requirement in Definition 3.1.

expprf0,A(1λ)

1 : (pp,msk)← PRF.Setup(1λ);

2 : bA ← AOX (PRF.Eval(msk,·))(1λ, pp);

3 : return bA;

expprf1,A(1λ)

1 : (pp,msk)← PRF.Setup(1λ); f ←$ pp.F ;

2 : bA ← AOX (f(·))(1λ, pp);

3 : return bA;

Fig. 1. Standard PRF indistinguishability game.

Definition 3.1. (Pseudorandom function) Let PRF = (Setup,Eval) be a tuple of algorithms
and let λ be the security parameter. Let X be the input space, and let Y be the output space;
and define the algorithms in the following way.
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– (pp,msk) ← PRF.Setup(1λ): On input the security parameter, outputs a pair (pp,msk)
consisting of public parameters and a master secret key, respectively.

– y ← PRF.Eval(pp,msk, x): On input (pp,msk) and x ∈ X ; outputs a value y ∈ Y.

We say that PRF is a pseudorandom function, or a PRF, if

max
A

(Adv(expprfb,A(1λ))) < negl(λ)

holds, where A is any PPT algorithm and expprfb,A(1λ) is defined as in Figure 1 for b←$ {0, 1}.
We may equivalently say that PRF satisfies pseudorandomness.

3.7 Constrained PRFs

Definition 3.2. A constrained PRF is a tuple CPRF consisting of four algorithms:

(Setup,Eval,Constrain,CEval),

and satisfying the following functionality:

– CPRF.Setup(1λ, 1r, C): On input the security parameter λ, a parameter r > 0, and a class
of predicates C: outputs public parameters pp and master secret key msk;

– CPRF.Eval(pp,msk, x ∈ X ): On input x ∈ X , outputs some value y ∈ Y.
– CPRF.Constrain(pp,msk, C ∈ C): On input C ∈ C, outputs a constrained key CKC .
– CPRF.CEval(pp,CKC , x): On input a constrained key CKC for C ⊆ C, if 1← PC(x): then

outputs y ∈ Y, else: outputs ⊥.

We may sometimes omit the class C from the inputs to CPRF.Setup, if it is obvious from
context.

It is clear that, in comparison with a standard PRF, a CPRF is augmented with the
additional functionality of Constrain and CEval.

A constrained key CK obtained from CPRF.Constrain(pp,msk, C) can evaluate the original
pseudorandom function at inputs x ∈ X satisfying the predicate PC(x), using CPRF.CEval(CKC , x).
Such inputs x are termed unconstrained, inputs that cannot be evaluated (i.e. 0 ← PC(x′))
are termed constrained.

The parameter r that is input to the setup algorithm is used as a bound on the number
of queries that can be made. If this parameter is omitted, we assume that the number of
constrained keys that can be learnt is unbounded. We may include additional setup parameters
if they are required from a specific scheme.

Correctness. Let C ∈ C and let:

P = Pr

[
CPRF.CEval(pp,CKC , x) 6= CPRF.Eval(pp,msk, x)

∣∣∣∣ (pp,msk)←CPRF.Setup(1λ,1r,C)
CKC←CPRF.Constrain(msk,pp,C)

x∈X ; 1←PC(x)

]
,

Then CPRF is correct if we have that 1. P < negl(λ); and 2. each algorithm in the tuple
CPRF runs in time poly(λ). We say that it is perfectly correct if P = 0.

Security. For the constrained PRF indistinguishability security game [BW13], we modify
the adversary A so that it also has access to an oracle

Oϕ
C (·) = OC(CPRF.Constrain(msk, pp, ·),ϕ)

for learning constrained keys, and additionally an oracleOϕ
X (·) = OX (CPRF.Eval(msk, pp, ·),ϕ)

for learning PRF evaluations in expcprfb,A(1λ, 1r). The set ϕ is used to keep track of the points
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thatA can currently evaluate, using constrained keys CKC ← OC(CPRF.Constrain(msk, pp, C),ϕ),
and of points x where A has queried y ← OX (CPRF.Eval(msk, pp, x),ϕ).

Additionally, we specify a bound r on the number of constraint queries that can be ran
respectively. These are included as extra inputs to the oracle Oϕ

C (·). That is, there is an
internal state in this oracle that monitors the number of queries that have been asked by
A. If r is exceeded then the oracle simply outputs ⊥. Recall from Section 3.1 that we write
Oϕ
C (· ; [r]) to indicate that the oracles are bounded in such a way. If r is removed from the

inputs then we say that the number of allowed constraint queries is unbounded.
The entire (adaptive) security game is given in Figure 2, and formal specification of security

is given in Definition 3.3.

expcprf0,A(1λ, 1r, C)

1 : (pp,msk)← CPRF.Setup(1λ, 1r, C);

2 : x† ← AO
ϕ
X (·),Oϕ

C (· ;[r])(1λ, 1r, pp);

3 : if x† ∈ ϕ :

4 : return ⊥;

5 : y† ← CPRF.Eval(msk, x†);

6 : bA ← AO
ϕ
X (·),Oϕ

C (· ;[r])(1λ, 1r, pp, y†);

7 : if x† ∈ ϕ :

8 : return ⊥;

9 : return bA;

expcprf1,A(1λ, 1r, C)

1 : (pp,msk)← CPRF.Setup(1λ, 1r, C); f ←$ pp.F ;

2 : x† ← AO
ϕ
X (·),Oϕ

C (· ;[r])(1λ, 1r, pp);

3 : if x† ∈ ϕ :

4 : return ⊥;

5 : y† ← f(x†);

6 : bA ← AO
ϕ
X (·),Oϕ

C (· ;[r])(1λ, 1r, pp, y†);

7 : if x† ∈ ϕ :

8 : return ⊥;

9 : return bA;

Fig. 2. CPRF indistinguishability game (adaptive).

Definition 3.3. (CPRF security) Let expcprfb,A(1λ, 1r) be the experiments defined as in Figure 2.
We say that CPRF is an r-key secure, constrained pseudorandom function (or a CPRF) if

max
A

(Adv(expcprfb,A(1λ, 1r))) < negl(λ) ,

holds for all PPT adversaries A.

The game ultimately requires A to distinguish a PRF evaluation on a constrained input
x† (chosen by the adversary) from a uniformly distributed output. It concludes when the
adversary submits a bit bA ∈ {0, 1} indicating its decision. The formulation in Figure 2
targets adaptive security, since all queries are made adaptively. We can modify to target
selective security by specifying that a subset of the queries are specified by the adversary
before step one is ran.

1-key privacy. As an additional requirement, we can specify that a CPRF is a private CPRF
(or PCPRF) if the constrained keys for two different constraints are indistinguishable. We
can define the security game as in Figure 3 based on the indistinguishability model given
in [BLW17]. The explicit formalisation is given in Definition 3.4.

Definition 3.4. (1-key privacy) Let exppcprfb,A (1λ) denote the experiments from Figure 3. We
say that CPRF is a private constrained pseudorandom function (or PCPRF) if

max
A

(Adv(exppcprfb,A (1λ))) < negl(λ)

holds for all PPT adversaries A.
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exppcprfb,A (1λ, C)

1 : (pp,msk)← CPRF.Setup(1λ, C);

2 : C0, C1 ← A(1λ, pp);

3 : if (C0 /∈ C) ∨ (C1 /∈ C) :

4 : return ⊥;

5 : CKb ← CPRF.Constrain(msk, pp, Cb);

6 : bA ← A(1λ, pp,CKb);

Fig. 3. Privately constrained property in indistinguishability framework.

We can expand the definition to include m-key privacy, for m > 1, by allowing the adver-
sary in exppcprfb,A (1λ) to submit 2 vectors of length m of viable constraint circuits. We do not
extend the definition in this work, as we can only achieve security in the m = 1 setting.

Remark 3.13. This definition of key privacy that we use corresponds to a weaker definition
that was given by [BLW17]. This is because the adversary does not get access to the CPRF

evaluation oracle during exppcprfb,A (1λ). The work of [BLW17] also considered this stronger for-
mat in a separate definition.

In the simulation-based framework of [CC17], the simulator has no access to the constraint
when answering queries using CPRF.Constrain. We are unable to prove our construction secure
in this setting, and so we use the weaker indistinguishability framework above.

4 Construction

Before describing our construction, we recall some notation that we defined in Section 3.1.
let T,Br be sets such that

T = {(t1, . . . , tr) ∈ [`]r | t1 ≤ t2 ≤ . . . ≤ tr} ;

and
B` =

{
(b1, . . . , b`) ∈ {0, 1}`

}
.

For b ← B`, we will write bt ← reindex(b, t) to denote the vector that is reindexed with
respect to the unique entries ti in t ∈ T (entries where (i = 1) ∨ (ti−1 < ti)). Let z be the
number of such unique indices; for shorthand, we write z ← unique(t). Then bt ∈ {0, 1}z,
including only those components bti ∈ bt for each ti ∈ [`] once. We may abuse notation and
write xt ← reindex(x, t) similarly, where x ∈ {0, 1}` is explicitly said to be a bitstring.

Let t ← T. In Figure 5, we define a function ComputeSet(·) that takes a set of matrices,
ordered with respect to t, as input; and outputs the concatenation of said matrices with
unique indices. As an example, for r = 6, if we have indices t = (t1, . . . , t6) ← T; where
t1 = t2, t2 < t3, t3 < t4, t4 = t5 = t6, then z = 3 ← unique(t). Now, let Ati ∈ Zn×mq for
i ∈ [6]. Then running

At ← ComputeSet({Ati}i∈[6])

gives
At = [At1‖At3‖At4 ] ∈ Zn×3mq .

In addition, for such a t and b ∈ B`, then we would have that bt = (bt1 , bt3 , bt4) ← (b, t).
Furthermore, z ≤ r = O(1) by definition.

Finally, we will let Γv, denote the set

Γv =

{
(t, bt)

∣∣∣∣ (t,b)←T×B`,
bt←reindex(b,t),
(vti=bti )∨(vti=∗)

}
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for some v ∈ {0, 1, ∗}. Alternatively, we can infer that there exists some j ∈ [r] such that
(vtj 6= btj ) ∧ (vtj 6= ∗). In particular, for the set of r constraint queries {v(l)}l∈[r] made by

the distinguishing adversary in expcprfb,D(1λ, 1r), then ∃ a pair such that (t, bt) /∈ Γv(l) , for each
l ∈ [r].

Construction 4.1. We provide our construction of an r-key secure CPRF for bit-fixing
constraints, where r = O(1). We also prove that our construction satisfies 1-key privacy. Our
construction is presented in Figures 4, 5, 6, and 7. Note that constrained evaluation, on uncon-
strained inputs, is identical to the real evaluation algorithm using the master secret key.8 For
this reason, we will simply write CPRF.Eval(pp,CKv, x) for CKv ← CPRF.Constrain(pp,msk, v)
in the sequel. We prove this explicitly in Theorem 4.2.

To run in time poly(λ), we require that r = O(1). For instance, the master secret key msk
contains

∑r
k=1 2k ·

(
`
k

)
matrices, and so r = Ω(1) would result in super-polynomial key size.

CPRF.Setup(1λ, 1r, 1n, 1m, 1`, χ):

– For i ∈ [`], sample the following:
{Ai}i∈[`] ←$Zn×mq ;

{D(i)
j,bj
}j∈[`]
bj∈{0,1}

←$χm×m;

– For each t← T:
• Let z ← unique(t)
• For each b ∈ Bz:

∗ Sample a matrix:
DG

t,b ←$χzm×m;

– Let ρ =
∑r
k=1

(
`
k

)
and sample:

Dend ←$χρm×m;

– Output

pp =

(
{Ai,b}i∈[`]

b∈{0,1}
, {D(i)

j,bj
}j∈[`]
bj∈{0,1}

, Dend

)
;

msk =

{DG
t,b

}
t∈T,
z←unique(t),
b∈Bz

 .

Fig. 4. Setup algorithm for CPRF. Note that we use the set Bz rather than B` in this definition. This
is effectively so that we can iterate over all possible bt ← reindex(b, t) ∈ {0, 1}z, for b ∈ B`.

Parameter settings. Before we discuss the correctness and security of our construction, we
give a brief overview of the parameter settings that we require. We employ similar techniques
to [BLMR13, BVWW16, BV15, GGH15, CC17], but we can leverage a slightly smaller q. The
reason for this is that we do not need to invoke multiple LWE samples as part of a product
during the security proof. We only require the addition of an error term at the end, that is
not multiplied with any other matrices. This leads to concrete efficiency benefits and, in turn,
a polynomial noise-to-modulus ratio.

Let λ be the security parameter, α, σ > 0 and χ = DZ,σ. We set m = 6n log(q) (for

satisfying Lemma 3.3, Lemma 3.12 and Corollary 3.1); q/p > n3/2mσ2`+λ; σ = ω(
√
n log(q)),

α = σ/q and nα < 2λ
1−ε

for 0 < ε < 1 (for satisfying the reduction from GapSVPγ to

LWEq,n,m,χ with approximation factors Õ(n/α)).

8 In particular, a constrained key is statistically indistinguishable from the master secret key, we
prove this in Lemma 4.6.
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CPRF.Eval(pp,msk, x ∈ {0, 1}`):

– Compute Y x
i = Ai

∏`
j=1 D

(i)
j,xj

for i ∈ [`];
– For each t← T:
• Let xt ← reindex(x, t);
• Compute Y x

t = ComputeSet({Y x
tl}l∈[r]) ∈ Zn×zmq ;

• Compute:
Zx

t = Y x
tD

G
t,xt ∈ Zn×mq ;

– Let ρ =
∑r
k=1

(
`
k

)
, and:

Zx
T = [{Zx

t }t∈T] ∈ Zn×ρmq ;

– Output: ⌊
Zx

TD
end
⌉
p
∈ Zn×mp ;

ComputeSet({Y tl}l∈[r]):

– Y = [];
– for l ∈ [r]:
• if (l = 1) ∨ (tl−1 < tl):

Y ← [Y ‖Y tl ];
– Output: Y .

Fig. 5. Evaluation algorithm for CPRF.

CPRF.Constrain(pp,msk, v ∈ {0, 1, ∗}`):

– if msk.st = ∅:
msk.st =

{
DG

t,b

}
t∈T,
b∈B
←$χzm×m;

where z ← unique(t).
– For each t← T:
• For each b← Bz:

-- If (t, b) ∈ Γv:

G
(v)
t,b = DG

t,b ← msk;
-- Else if (t, b) /∈ Γv:

G
(v)
t,b = DG

t,b ← msk.st;

• Let G
(v)
t = {G(v)

t,b}b∈Bz ;

– Let G(v) = {G(v)
t }t∈T;

– Output CKv = G(v), and msk.

Fig. 6. Constraining algorithm for CPRF.

CPRF.CEval(pp,CKv, x):

– Output CPRF.Eval(pp,CKv, x).

Fig. 7. Constrained evaluation algorithm for CPRF. Since CKv and msk are statistically indistin-
guishable (by Lemma 4.6), we can just use CKv as input to the CPRF.Eval() algorithm.
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4.1 Correctness

Theorem 4.2. Construction 4.1 is perfectly correct.

Proof. Let CKv be some constrained key for v ∈ {0, 1, ∗}`, and let x ∈ {0, 1}` be such that
Pv(x) = 1. Additionally let t ∈ T, xt ← reindex(x, t) and write

Y x
t = ComputeSet({Y x

tl
}l∈[r]) ∈ Zn×zmq ,

where z ← unique(t) and Y x
tl

= Atl ·
∏`
j=1 D

(tl)
j,xj

. Then:

CPRF.CEval(pp,CKv, x) =
⌊
Zx

TD
end
⌉
p

=
⌊
[{Zx

t }t∈T]Dend
⌉
p

;

=
⌊[{

Y tD
G
t,xt

}
t∈T

]
Dend

⌉
p

;

= CPRF.Eval(pp,msk, x).

The final equality follows since x is unconstrained. That is, (t, xt) ∈ Γv for all t ∈ T. Therefore,
CKv = G(v) only contains matrices taken from msk, and not msk.st (see Figure 6). ut

4.2 Security

In this section we prove the main security theorem (Theorem 4.3) for our CPRF. In Lemma 4.4
we show that Construction 4.1 is a CPRF. Secondly, in Lemma 4.5 we show that our security
proof holds in the adaptive security model with only polynomial security loss. Lastly, in
Lemma 4.6 we show that our construction satisfies 1-key privacy from Definition 3.4.

The main computational assumption that we use is LWEq,n,m,χ, where χ = DZ,σ, for
appropriately chosen σ.

Theorem 4.3. Construction 4.1 is an r-key secure, constraint-hiding CPRF from LWEn,m,q,χ
(where r = O(1)) against adaptively chosen queries.

Proof. The proof of this theorem follows from the proofs of Lemma 4.4, Lemma 4.5 and
Lemma 4.6. Our proof strategy for Lemma 4.4 follows a similar to the strategy used by [CC17]
for their bit-fixing CPRF, and is made in the selective query model. Recall that we do not
consider the simulation-based security framework, however. Moreover, our scheme does not
require the GGH15 [GGH15] trapdoor sampling strategy used by [CC17].9 We obtain adaptive
security via Lemma 4.5 and the proof of Lemma 4.6 follows almost immediately from the fact
that our constrained keys retain very little structure.

Lemma 4.4. (Pseudorandomness on constrained points) Construction 4.1 is an r-key secure
CPRF for bit-fixing constraints, against Q = poly(λ) (selective) input queries and poly(λ)
(selective) constraint queries; assuming the hardness of LWEq,n,m,χ, where r = O(1).

Proof. We prove this theorem using the following sequence of hybrid arguments. In each
hybrid step Hi → Hi+1, we show that an adversary attempting to solve an instance of a
given hardness assumption can simulate the two distributions. In H6.(0[Q]), a PPT adversary

A clearly has no advantage in distinguishing between expcprf0,A(1λ, 1r) and expcprf1,A(1λ, 1r).

Let v(1), v(2), . . . , v(r) ∈ {0, 1, ∗}` denote the selectively chosen constraint queries, and

let x† ∈ {0, 1}` denote the selectively chosen challenge query by A. Additionally, let x†
t†
←

reindex(x†, t†) and z ← unique(t†). Since the challenge query x† should be a constrained input,
then necessarily Pv(i)(x

†) = 0 for each i ∈ [r]. We use the set (x(1), . . . , x(Q)) to denote the
set of Q = poly(λ) input queries that we consider.

For each of the hybrid arguments, we consider a specific choice of t† ← T, where (v
(i)

t†i
6= ∗)

for i ∈ [r]. There is at least one such t† ∈ T for any r constraint queries corresponding to
the challenge input x†. Otherwise x† would be unconstrained for at least one of v(i). In other

words, we can be sure that (t†, x†
t†

) /∈ Γv(i) for i ∈ [r], since v
(i)

t†i
6= x†

t†i
.10

9 Though we do use the trapdoor sampling strategy during the proof, see Hybrid H1.(ι[u]).
10 Note that we reorder the queries, without loss of generality, so that t†1 ≤ t

†
2 ≤ . . . ≤ t†r.
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– H0: This is Construction 4.1 in the experiment expcprf0,D(1λ, 1r).

– H1.(ι[0]) (ι ∈ [`]): Same as H1.(ι−1), except: (1) sample Y x†

ι ←$Zn×mq ; (2) compute:{
A

(ι,†)
j ,T

(ι)
j ←$TrapSamp(1λ, 1n, 1m, q)

}
j∈[`]

,

and {
D

(ι)

j,x†ι
←$PreImgSamp(A

(ι,†)
j ,T

(ι)
j ,A

(ι,†)
j+1 )

}
j∈[`]

,

where A
(ι,†)
1 = Aι and A

(ι,†)
`+1 = Y x†

ι .

– H1.(ι[u]) (ι ∈ [`], u ∈ [Q]): Same as H1.(ι[u−1]), except: (1) sample Y u
ι ←$Zn×mq . (2) Let ν

be the bit where x(u) deviates from all other inputs (x†, x(1), . . . , x(u−1)). Compute:{
A

(ι,u)
j ,T

(ι)
j ←$TrapSamp(1λ, 1n, 1m, q)

}
j∈[ν+1,`]

,

and {
D

(ι)

j,x†ι
←$PreImgSamp(A

(ι,u)
j ,T

(ι)
j ,A

(ι,u)
j+1 )

}
j∈[ν,`]

,

where A
(ι,u)
`+1 = Y u

ι .

– H2: Set Z
x†

t†
= U

x†

t†
←$Zn×mq .

– H3: Let Dend
t† ∈ Zm×m be the square block matrix that is multiplied with Z

x†

t†
when

computing Z
x†

T Dend ∈ Zn×mq . Replace the matrix product U
x†

t†
Dend

t† with U
x†

t†
Dend

t† +Eend
t†

for Eend
t† ←$χn×m.

– H4: Replace

U
x†

t†
Dend

t† + Eend
t†

with Û
x†

t†
←$Zn×mq .

– H5: Replace the output of CPRF.Eval(pp,msk, x†) with Ûx† ←$Zn×mp .

– H6.(ι[u]): Undo the step H1.(ι[u]), for decreasing ι ∈ [`] and u ∈ [Q]. In other words, for

x(u), sample: {
D

(ι)

j,x†ι
←$χm×m

}
j∈[ν+1,`]

;

where ν is the bit where x(u) deviates from (x†, x(1), . . . , x(Q)). When u = 0, sampling for
ι ∈ [`] should be of the form:

Aι←$Zn×mq and
{
D

(ι)
j,b

}
j∈[`],b∈{0,1}

←$χm×m.

Claim 4.4.1. maxD(Adv(exp
H1.(ι−1[Q]),H1.(ι[0])

b,D (1λ))) < negl(λ) by Corollary 3.7.

Proof. Let A be an adversary who sees the distribution ({Aj}j∈[`], {Dj}j∈[`],Y ) in Corol-

lary 3.7. Using the selectively chosen input query, x†, A sets A
(ι,†)
j = Aj for j ∈ [`] and sets

Y x†

ι = Y . Finally, A sets D
(ι)

j,x†j
= Dj .

Sample the rest of the matrices obliviously: i.e. D
(ι)

j,1−x†j
←$χm×m.
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For ι′ < ι, sample the paths indexed by (ι′, x†ι′) as in H1.(ι′). For ι′′ > ι, sample the paths

indexed by (ι′′, x†ι′′) by sampling each matrix obliviously. All queries can be handled in exactly
the same way in both hybrids, since the only difference is in the way that the matrices are
sampled.

In the case of Equation (1), then A simulates H1.(ι−1) for D. In the case of Equation (2),
A simulates H1.(ι) for D. Therefore, we can infer that if D had advantage ε in distinguishing
the two hybrids, then A would succeed with the same advantage. Since Corollary 3.7 shows
that A has negligible advantage, therefore we must have that ε < negl(λ).

Since H0 is equivalent to H1.(0[Q]), this completes the proof of Claim 4.4.1. ut

Claim 4.4.2. maxD(Adv(exp
H1.(ι[u−1]),H1.(ι[u])

b,D (1λ))) < negl(λ) by Corollary 3.7.

Proof. Let x(u) be an input query from the set (x(1), . . . , x(Q)), for u ∈ [Q]. Let ν be the first
bit such that x(u)|ν /∈ {x†|ν , x1|ν , . . . , xu−1|ν . In other words, the prefix of length ν of x(u) is
distinct from all previous queries. Note that ν ∈ ` because x(u) is not permitted to be the
same as any other query.

Then, let ({Al}l∈[ν,`], {Dl}l∈[ν,`],Y u) be the distribution seen by adversary B, taken from
Corollary 3.7 (for the smaller range [ν+1, `]). Let Aν be sampled as in H1.(ι[u−1]). Employing

a similar argument to the previous claim, B sets A
(ι,u)
l = Al for l ∈ [`] and sets Y u

ι = Y .

Finally, B sets D
(ι)

l,x
(u)
l

= Dl. All other matrices are sampled obliviously as in Claim 4.4.1.

By a similar argument to the proof of Claim 4.4.1, when the distribution from Corollary 3.7
is as in Equation (1), then the sampling is as in H1.(ι[u−1]), and otherwise it as in H1.(ι[u]).
Therefore, B simulates the two hybrids for D within ε < negl(λ) statistical distance of each
other, by Corollary 3.7. ut

Claim 4.4.3. maxD(Adv(exp
H1.(`[Q]),H2

b,D (1λ))) < negl(λ) by Lemma 3.3 and our parameter
choices.

Proof. LetA be an adversary receives (Q+1)m samples of the form ({(Y u, c
(u)
i )i∈[m]}u∈[Q]∪{0})

given in Corollary 3.4. Specifically, (Y u, ci) ∈ Zn×zmq ×Znq for each i ∈ [m] and u ∈ [Q]∪{0}.
We require that, either c

(u)
i = Y uri for ri←$χzm; or c

(u)
i ←$Zmq . Since z ≥ 1, this is equiv-

alent to receiving (Q + 1)m independent samples from Lemma 3.3; using the same set of m
secret vectors ri.

Let (Y u,Cu) ∈ Zn×zmq ×Zn×mq refer to the concatenation of these samples, where the ith

column of Cu is set to be c
(u)
i . Furthermore, write Y u = [Y u[1]‖ . . . ‖Y u[z]] to denote the

individual concatenated matrix components, where Y u[l] ∈ Zn×mq for l ∈ [z].
The adversary, A runs

(pp,msk)← CPRF.Setup(1λ, 1r, 1n, 1m, 1`, χ)

as in H1.(`[Q]), except for the challenge query x†, it sets Y x†

t†l
= Y 0[l] ∈ Zn×mq , and Z

x†

t†
= C0.

For input queries x(u) (for u ∈ [Q]):

– If DG

t†,x
(u)

t†
6= DG

t†,x†
t†

: then answer the query by simply running the evaluation algorithm

using the simulated msk. This is the situation, when x(u)t† 6= x†t† .
– If DG

t†,x
(u)

t†
= DG

t†,x†
t†

: then answer the query in the same way as the challenge query,

except use Y u
t†l

= Y u[l] for i ∈ [`]; and set Zu
t† = Cu.

Constraint queries are answered as normal and recall that DG
t†,x†

t†
is never revealed to

the adversary during these queries. When A makes constraint queries, the fact that x† is

constrained means that only DG
t†,x†

t†
←$χzm×m is revealed in constrained keys; and this is

sampled independently. Thus, DG
t†,x†

t†
is never sampled explicitly by A.
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In the case where C0 = Y 0R, for R ∈ Zzm×mq the matrix where the ith column is set to

ri, then A simulates H1.(`[Q]) with DG
t†,x†

t†
= R inferred, implicitly. The distribution of R is

identical to the distribution of DG
t†,x†

t†
and so the simulation is admissible.

If C0 = U ←$Zn×mq , then this argument simulates H2. By Corollary 3.3 of Lemma 3.3,
we know that the two distributions:

((Y 0,Y 0R), (Y u,Cu)u∈[`]) and ((Y 0,U), (Y u,Cu)u∈[`])

are statistically close, providing that m ≥ 2n log(q). In our parameter settings, we indeed
choose m = 6n log(q). Thus, we can bound the advantage of any adversary D against

expcprfb,D(1λ, 1r) by the advantage of A distinguishing the distributions in Lemma 3.3 (or more
accurately Corollary 3.4). Since these distributions are statistically close, then the advantage
of D must be bounded by a negligible function. ut

Claim 4.4.4. maxD(Adv(expH2,H3

b,D (1λ))) < negl(λ) by Lemma 3.2 and our choice of parame-
ters.

Proof. We know that Zx†

T =

[{
Z
x†t
t

}
t∈T

]
, and from H2 then we have Zx†

t† = Ux†

t† ←$Zn×mq .

In the product Ux†

T Dend, let Dend
t† ∈ Zm×mq be the matrix that is multiplied directly with

Ux†

t† . Then the two differing distributions of H2 and H3 can be written as:Ux†

t†D
end
t† +

∑
t 6=t†

Z
x†t
t Dend

t


p

and

Ux†

t†D
end
t† + Et† +

∑
t 6=t†

Z
x†t
t Dend

t


p

;

for some matrix Et† ←$χm×m. In other words, the only difference is the addition of this error
matrix. Therefore, we can only distribute the two hybrid games, if adding Et† causes the
output of the evaluation to change. That is, all queries are answered in the same manner as
the previous hybrid, apart from this small change.

By the choice of χ = DZ,σ and by Lemma 3.2, we have that

‖Et†‖∞ = B ≤ σ
√
n

with overwhelming probability — i.e. Et† has small-norm relative to q. Then, the probability
that such an event occurs for any given coordinate is (2B + 1)p/q. Applying a union bound
for all nm coordinates gives a total probability of (2B + 1)nmp/q. By our choice of q, this
probability is necessarily negligible.

Let Pr[BADx ] = (2B + 1)nmp/q denote the probability of this occurring for some input
x. Then Pr[BAD] ≤ 2` · Pr[BADx ] is the probability that this event occurs for any given
x ∈ {0, 1}`. Again, this probability remains statistically negligible and, consequently, H2 and
H3 are statistically indistinguishable. ut

Claim 4.4.5. maxD(Adv(expH3,H4

b,D (1λ))) < negl(λ) by LWEq,n,m,χ.

Proof. Let (D,B) ∈ χk×m×Zn×mq be a NULWE sample. We set k = m and thus we use the
NULWEq,n,m,m,χ assumption, which is implied by LWEq,n,m,χ by the results of Corollary 3.1;
since clearly k = Ω(n log(q)) by the fact that m = Ω(n log(q)).

Let A be a distinguishing adversary against NULWEq,n,m,m,χ, that attempts to simulate
the two hybrids for the CPRF adversary D. Then, A sets Dend

t† = D and the rest of Dend

can be sampled obliviously from χm×m for each m×m block corresponding to the pairs
(t, x†t) where t 6= t†. The rest of CPRF.Setup(1λ, 1r, 1n, 1m, 1`, χ) can be sampled as normal
according to the procedure in H3.
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For the challenge input query, compute the output as:B +
∑
t∈T,
t 6=t†

Zx†

t Dend
t


p

.

For all input queries x(u), u ∈ [Q]; compute the output as:⌊∑
t∈T

Zu
t D

end
t

⌉
p

.

where Zu
t is as described in H2. Constraint queries from D are handled normally (as in the

proof of Claim 4.4.4, the matrix DG
t†,x†

t†
is never revealed).

Now, if B = UD + E, then the output on x† is effectively computed as:Ux†

t†
Dend

t† + Eend
t† +

∑
t∈T,
t 6=t†

Zx†

t Dend
t


p

,

for U
x†

t†
= U ←$Zn×mq , and Eend

t† = E. This is equivalent to how the output is constructed in

H3. Otherwise, if B←$Zn×mq , then A has simulated H4, where Ûx†

t†
= B.

As a consequence, this implies that we can bound the advantage of D by the advantage
of A against NULWEq,n,m,m,χ. Furthermore, by the reduction in Lemma 3.12 we can further
bound this advantage by LWEq,n,m,χ and the proof of the claim is complete. ut

Claim 4.4.6. maxD(Adv(expH4,H5

b,D (1λ))) = 0.

Proof. In H4, the output of OX (CPRF.Eval(msk, pp, x†),) takes the form:Ûx†

t†
+

∑
t∈T
t 6=t†

Z
x†

t Dend
t



p

,

where Û
x†

t†
←$Zn×mq is unknown to the adversary. Therefore this sum is distributed identically

to an output of the form: ⌊
Ûx†

⌉
p
,

for Ûx† ←$Zn×mq . It is important to note that Ûx† is sampled only for the challenge input

x†, and thus is uniformly distributed with respect to other evaluation queries. This means
that all other queries can be simulated independently of x†. Thus H4 and H5 are perfectly
indistinguishable. ut

Claim 4.4.7. maxD(Adv(exp
H6.(ι[u]),H6.(ι[u−1])

b,D (1λ))) < negl(λ)

Proof. The proof of this claim is essentially the reverse statement from Claim 4.4.2. Let ν be
the first bit where x(u) deviates from the inputs (x†, x(1), . . . , x(u−1)).

Let A be an adversary attempting to distinguish the samples in Corollary 3.7 for the
interval [ν + 1, `]. A constructs the public parameters using the distribution that it receives,
in the same way as Claim 4.4.2. Notice that the output for the PRF on x† can be sampled
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uniformly by the previous hybrid. The rest of the simulation (for input and constraint queries)
are carried out just using the simulated public parameters.

Then if A has access to the distribution of Equation (2), where trapdoor sampling is used,
this corresponds to H6.(ι[u]). If it receives Equation (1), then it has simulated H6.(ι[u−1]). Since
A has negligible statistical advantage in Corollary 3.7, then D must also have advantage
bounded by the same amount. ut

Claim 4.4.8. maxD(Adv(exp
H6.(ι[0]),H6.(ι−1[Q])

b,D (1λ))) < negl(λ)

Proof. This argument follows the same structure as Claim 4.4.7, except focusing only on the
input x†. The simulation is identical and so we point the reader to the previous proof for the
details. ut

In H6.(0[Q]) we have a CPRF scheme that outputs uniform values bÛx†ep on the challenge

input x†, but where the rest of the simulation is identical to the actual construction. This is
due to the fact that all trapdoors have been removed from the public parameters, and so all
constraint and input queries are answered using the real construction. This is identical to the
situation that D witnesses in expcprf1,D(1λ, 1r).

Therefore, expcprf0,D(1λ, 1r) and expcprf1,D(1λ, 1r) are computationally indistinguishable, under
the above claims. We can conclude that CPRF is an r-key secure CPRF against selective
queries and the proof of Lemma 4.4 is complete. ut

Assuming that maxA(Adv(expcprfb,A(1λ, 1r))) = ε for all PPT adversaries A in the selective
security model, then there is an adversary B that has advantage (1/poly(λ))ε in succeeding

in expcprfc,B (1λ, 1r) using adaptive queries.

Lemma 4.5. (Adaptive security) Let B be a PPT adversary attempting to distinguish expcprfc,B (1λ, 1r)
for c ∈ {0, 1} in the adaptive security model. Then, if A is an adversary that distinguishes

expcprfb,A(1λ, 1r) with advantage ε in the selective security model, then B can succeed with ad-
vantage (1/poly(λ))ε.

Proof. The proof of Lemma 4.4 hinges on a specific choice of matrix DG
t†,x†

t†
, that is inferred

by the pair (t†, x†
t†

), for x†
t†
← reindex(xt†). We show that B can run A as a subroutine via a

polynomial-time reduction to obtain advantage (1/poly(λ))ε advantage in the adaptive query
model.

At first B obtains the output of CPRF.Setup and guesses a pair (t†, b†) for b† ∈ {0, 1}z,
where z ← unique(t†). Then, B receives the selective queries ofA: constraint queries (v(1), . . . , v(r))
for r = O(1), and input queries (x(1), . . . , x(Q)) for Q = poly(λ).

– If A asks a query v(i) ∈ {0, 1, ∗}` whereby (t†, b†) ∈ Γv(i) , then B aborts the reduction.

– For the challenge query x†, if (t†, x†
t†

) 6= (t†, b†), then B aborts the security game.

– Otherwise, answer all the queries by sending them to the challenger in expcprfc,B (1λ, 1r) and
returning the output to A.

If the game is not aborted, then this is identical to the game expcprfb,A(1λ, 1r) witnessed by
A. To ensure that the reduction incurs only a polynomial security loss, we have to ensure
that the probability of aborting is 1/poly(λ).

There are
∑r
j=1 2j

(
`
j

)
possible pairs (t, b). Since (t†, b†) is chosen uniformly by B, then

the minimum probability that (t†, b†) /∈ Γv(i) , for each i ∈ [r], is 1/(
∑r
j=1 2j

(
`
j

)
) which is

1/poly(λ). This follows by the fact that r = O(1), and so the denominator is poly(λ) by the
fact that ` = poly(λ).

If the above is satisfied, then there exists a pair satisfying (t†, x†
t†

) /∈ Γv(i) for each i ∈ [r].

Note that the set of viable pairs is polynomial in size and bounded above by
∑r
j=1 2j

(
`
j

)
.

Therefore, the probability of (t†, x†
t†

) = (t†, b†) occurring, for the originally chosen pair (t†, b†)

is ≥ 1/(
∑r
j=1 2j

(
`
j

)
). Which is identical to the above.
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Therefore, the probability that B does not abort is ≥ (1/(
∑r
j=1 2j

(
`
j

)
))2 = 1/poly(λ).

Therefore, the probability that B succeeds is identical to (1/poly(λ)) · Adv(expcprfb,A(1λ, 1r)) =
(1/poly(λ))ε by the statement of the claim, and we are done. ut

Lemma 4.6. (1-key privacy) Construction 4.1 is a 1-key private CPRF.

Proof. The proof of this theorem follows from the fact that a constrained key Gv
(c)

contains
only (2`)r matrices sampled from χzm×m. For any two constraints v(0), v(1) ← A(1λ, 1`) where

v(c) ∈ {0, 1, ∗}`, then the challenger returns CKv(c) = Gv
(c)

. The keys CKv(c) are distributed
identically for c ∈ {0, 1} and thus A cannot distinguish which constrained key has been
returned. ut

By the results of Lemma 4.4 and Lemma 4.6, the statement of Theorem 4.3 follows im-
mediately. ut
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In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I,
volume 10210 of LNCS, pages 446–476. Springer, Heidelberg, April / May 2017.

CVW18. Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permutation
branching programs: Proofs, attacks, and candidates. In Shacham and Boldyreva [SB18],
pages 577–607.

24



DKNY18. Alex Davidson, Shuichi Katsumata, Ryo Nishimaki, and Shota Yamada. Constrained
prfs for bit-fixing from owfs with constant collusion resistance. IACR Cryptology ePrint
Archive, 2018:982, 2018.

DN15. Yevgeniy Dodis and Jesper Buus Nielsen, editors. TCC 2015, Part II, volume 9015 of
LNCS. Springer, Heidelberg, March 2015.

GGH15. Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from
lattices. In Dodis and Nielsen [DN15], pages 498–527.

GGM84. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions
(extended abstract). In 25th FOCS, pages 464–479. IEEE Computer Society Press,
October 1984.

GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th
ACM STOC, pages 197–206. ACM Press, May 2008.

HKKW14. Dennis Hofheinz, Akshay Kamath, Venkata Koppula, and Brent Waters. Adaptively se-
cure constrained pseudorandom functions. Cryptology ePrint Archive, Report 2014/720,
2014. http://eprint.iacr.org/2014/720.

KPTZ13. Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM CCS 13, pages 669–684. ACM Press, November
2013.

MP12. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In Pointcheval and Johansson [PJ12], pages 700–718.

MR04. Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
Gaussian measures. In 45th FOCS, pages 372–381. IEEE Computer Society Press, Oc-
tober 2004.

NR97. Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In 38th FOCS, pages 458–467. IEEE Computer Society Press, October
1997.

Pei09. Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Michael Mitzenmacher, editor, 41st ACM STOC, pages 333–342.
ACM Press, May / June 2009.

PJ12. David Pointcheval and Thomas Johansson, editors. EUROCRYPT 2012, volume 7237
of LNCS. Springer, Heidelberg, April 2012.

PR06. Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case as-
sumptions on cyclic lattices. In Shai Halevi and Tal Rabin, editors, TCC 2006, volume
3876 of LNCS, pages 145–166. Springer, Heidelberg, March 2006.

PS18. Chris Peikert and Sina Shiehian. Privately constraining and programming PRFs, the
LWE way. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part II, volume
10770 of LNCS, pages 675–701. Springer, Heidelberg, March 2018.

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM
Press, May 2005.

SB18. Hovav Shacham and Alexandra Boldyreva, editors. CRYPTO 2018, Part II, volume
10992 of LNCS. Springer, Heidelberg, August 2018.

25

http://eprint.iacr.org/2014/720

	A Bit-fixing PRF  with O(1) Collusion-Resistance from LWE
	Introduction
	Existing constructions
	Our contribution

	Technical overview
	Lattice-based constructions
	Our scheme

	Preliminaries
	Notation
	Lattice preliminaries
	Trapdoor matrices.
	Learning with errors
	Non-uniform learning with errors
	Pseudorandom functions
	Constrained PRFs

	Construction
	Correctness
	Security



