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Abstract. Following up mass surveillance and privacy issues, modern secure communica-
tion protocols now seek more security such as forward secrecy and post-compromise security.
They cannot rely on an assumption such as synchronization, predictable sender/receiver
roles, or online availability. Ratcheting was introduced to address forward secrecy and post-
compromise security in real-world messaging protocols. At CSF 2016 and CRYPTO 2017,
ratcheting was studied either without zero round-trip time (0-RTT) or without bidirectional
communication. At CRYPTO 2018, ratcheting with bidirectional communication was done
using heavy key-update primitives. At EUROCRYPT 2019, another protocol was proposed.
All those protocols use random oracles. Furthermore, exchanging n messages has complexity
O(n2) in general.

In this work, we define the bidirectional asynchronous ratcheted key agreement (BARK)
with formal security notions. We provide a simple security model and design a secure BARK

scheme using no key-update primitives, no random oracle, and with O(n) complexity. It is
based on a public-key cryptosystem, a signature scheme, one-time symmetric encryption,
and a collision-resistant hash function family. We further show that BARK (even unidirec-
tional) implies public-key cryptography, meaning that it cannot solely rely on symmetric
cryptography.

1 Introduction

In standard communication systems, protocols are designed to provide messaging services with
end-to-end encryption. Essentially, secure communication reduces to continuously exchanging keys,
because each message requires a new key. In bidirectional two-party secure communication, partic-
ipants alternate their role as senders and receivers. The modern instant messaging protocols are
substantially asynchronous. In other words, for a two-party communication, the messages should
be transmitted (or the key exchange should be done) even though the counterpart is not online.
Moreover, to be able to send the payload data without requiring online exchanges is a major design
goal called zero round trip time (0-RTT). Finally, the moment when a participant wants to send
a message is undefined, meaning that participants use random roles (sender or receiver) without
any synchronization. They could send messages at the same time.

Even though many systems were designed for the privacy of their users, they rapidly faced
security vulnerabilities caused by the compromises of the participants’ states. In this work, com-
promising a participant means to obtain some information about its internal state. We will call it
exposure. The desired security notion is that compromised information should not uncover more
than possible by trivial attacks. For instance, the compromised state of participants should not
allow decryption of messages exchanged in the past. This is called forward secrecy. Typically, for-
ward secrecy is obtained by updating states with a one-way function x → H(x) → H(H(x)) → ...
and deleting old entries. It is used, for instance, in RFID protocols [14, 15]. A popular technique
in mechanics, that allows forward movement but prevents moving backward is the use of a de-
vice called ratchet. In the context of secure communication, a ratchet-like action is achieved by

⋆ A short version of this paper appeared at IWSEC 2019 [9].



using randomness in every state update so that a compromised state is not sufficient for the de-
cryption of any future communication either. This is called future secrecy or backward secrecy or
post-compromise security or even self-healing. One thesis of the present work is that healing after
an active attack involving a forgery is not a nice property. We show that it implies insecurity.
After one participant is compromised and impersonated, if communication self-heals, it means
that some adversary can make a trivial attack which is not detected. We also demonstrate other
events leading to breach of security. Hence, we recommend that communication is totally cut after
active attacks.

Previous work. The security of key exchange was studied by many authors. The prominent models
are the CK and eCK models [4, 13].

Techniques for ratcheting first appeared in real life protocols. It appeared in the Off-the-
Record (OTR) communication system by Borisov et al. [3]. The Signal protocol designed by
Open Whisper Systems [17] later gained a lot of interest from message communication companies.
Today, the WhatsApp messaging application has reached billions of users worldwide [20]. It uses
the Signal protocol. A broad survey about various techniques and terminologies was made at
S&P 2015 by Unger et al. [18]. At CSF 2016, Cohn-Gordon et al. [6] studied bidirectional ratcheted
communication and proposed a protocol. However, their protocol does not offer 0-RTT and requires
synchronized roles. At EuroS&P 2017, Cohn-Gordon et al. [5] formally studied Signal.

0-RTT communication with forward secrecy was achieved using puncturable encryption by
Günther et al. at EUROCRYPT 2017 [10]. Later on, at EUROCRYPT 2018, Derler et al. made
it reasonably practical by using Bloom filters [7].

At CRYPTO 2017, Bellare et al. [2] gave a secure ratcheting key exchange protocol. Their
protocol is unidirectional and does not allow receiver exposure.

At CRYPTO 2018, Poettering and Rösler (PR) [16] studied bidirectional asynchronous ratch-
eted key agreement and presented a protocol which is secure in the random oracle model. Their
solution further relies on hierarchical identity-based encryption (HIBE) but offers stronger security
than required for practical usage, leaving ample room for improving the protocol. At the same
conference, Jaeger and Stepanovs (JS) [11] had similar results but focused on secure communica-
tion rather than key agreement. They proposed another protocol relying on HIBE. In both results,
HIBE is used to construct encryption/signature schemes with key-update security. This is a rather
new notion allowing forward secrecy but is expensive to achieve. In both cases, it was claimed
that the depth of HIBE is really small. However, when participants are disconnected and continue
sending several messages, the depth increases quite rapidly. Consequently, HIBE needs unbounded
depth.

Two papers appeared after the first version of the current paper was released.
At EUROCRYPT 2019, Jost, Maurer, and Mularczyk (JMM) [12] designed another ratcheting

protocol which has “near-optimal” security and does not use HIBE. Nevertheless, it still has a
huge complexity: When messages alternate well (i.e., no participant sends two messages without
receiving one in between), processing n messages requires O(n) operations in total. However, when
messages accumulate before alternating (for instance, because the participants are disconnected
by the network), the complexity becomes O(n2). This is also the case for PR [16] and JS [11].3

One advantage of the JMM protocol [12] comes with the resilience with random coin leakage as
discussed below.

At EUROCRYPT 2019, Alwen, Coretti, and Dodis (ACD) [1] designed two other ratcheting
protocols aiming at immediate decryption, i.e. the ability to decrypt even though some previous
messages have not been received yet. This is closer to real-life protocols but this comes with a
potential threat: keys to decrypt un-delivered messages are stored until the messages are delivered.
Hence, the adversary could choose to hold messages and decrypt them with future state exposure.
This prevents forward secrecy. Furthermore, unless the direction of communication changes (or

3 For JS, this is only visible in the corrected version of the paper on eprint [11]. Our complexity analysis
is based on how those protocols have been implemented (https://github.com/qantik/ratcheted). It
was presented at the WSM 2019 workshop.
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more precisely, if the epoch increases), their protocols do not strictly adhere to the definition of
ratcheting as no random coins are used to update the state. This weakens post-compromise se-
curity as well. In Table 1, we call this weaker security “id-optimal” (not to say “insecure” in the
model we are interested in) because it is the best we can obtain with immediate decryption. The
lighter of the two protocols is not competing in the same category because it mostly uses sym-
metric cryptography. It is more efficient but with lower security. Namely, corrupting the state of a
participant A implies impersonating B to A, and also decrypting the messages that A sends. Other
protocols do not have this weakness. The second ACD [1] (in the full version) uses asymmetric
cryptography.

Some authors address the corruption of random coins in different ways. Bellare et al. [2] and
JMM [12] allow leaking the random coins just after use. JS [11] allow leaking it just before usage
only. ACD [1] allow adversarially chosen random coins. In most of the protocols, revealing (or
choosing) the random coins imply revealing some part of the new state which allows decrypting
incoming messages. It is comparable to state exposure. JMM [12] offers better security as revealing
the random coins reveals the new state (and allows to decrypt) only when the previous state was
already known.

Table 1: Comparison of Protocols: complexity for exchanging n messages in alternating or accumu-
lating mode, with timing (in seconds) for n = 900 of comparable implementations and asymptotic;
and types of coin-leakage security (⇒ state exposure means coins leakage implies a state exposure).

Security Complexity Coins leakage resilience Model
alternating accumulating

Poettering-Rösler [16] optimal 86.3 , O(n) 5897 , O(n2) no ROM

Jaeger-Stepanovs [11] optimal 58.1 , O(n) 9087 , O(n2) pre-send leakage, ⇒ state exposure ROM

Jost-Maurer-Mularczyk [12] near-optimal 2.08 , O(n) 11.4 , O(n2) post-send leakage ROM

BARK [this paper] sub-optimal 1.46 , O(n) 1.09 , O(n) no plain

Alwen-Coretti-Dodis [1] id-optimal 1.18 , O(n) 0.92 , O(n) chosen coins, ⇒ state exposure plain

Our contributions. We give a definition for a bidirectional asynchronous key agreement (BARK)
along with security properties. We start setting the stage with some definitions (such as matching
status) then identify all cases leading to trivial attacks. We split them into direct and indirect
leakages. Then, we define security with a KIND game (privacy). We also consider the resistance
to forgery (impersonation) and the resistance to attacks which would heal after active attacks
(RECOVER security). We use these two notions as building blocks to prove KIND-security. We
finally construct a secure protocol. Our design choices are detailed below and compared to other
papers. More comprehensive and technical comparisons between BARK and Bellare et al. [2],
JS [11], and PR [16] protocols are given in Appendix C.

1. Simplicity. Contrary to previous work, we define KIND security in a very comprehensive
way by bringing all notions under the umbrella of a cleanness predicate which identifies and
captures all trivial ways of attacking.

2. Strong security. In the same line as previous works, the adversary in our model can see
the entire communication between participants and control the delivery. Of course, he can replace
messages with anything. Scheduling communications is under the control of the adversary. This
means that the time when a participant sends or receives messages is decided by the adversary.
Moreover, the adversary is capable of corrupting participants by making exposures of their internal
data. We separate two types of exposures: the exposure of the state (that is kept in internal
machinery of a participant) and the exposure of the key (which is produced by the key agreement
and given to an external protocol). This is because states are (normally) kept secure in our protocol
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while the generated key is transferred to other applications which may leak for different reasons.
We do not consider exposure of the random coins.

3. Slightly sub-optimal security. Using the result from exposure allows the adversary to
be active, e.g. by impersonating the exposed participant. However, the adversary is not allowed
to use exposures to make a trivial attack. Identifying such trivial attacks is not easy. As a design
goal, we adopt not to forbid more than what the intuitive notion of ratcheting captures. We
do forbid a bit more than PR [16] and JS [11] which are considered of having optimal security

and than JMM [12] (which has near-optimal security)4, though, allowing lighter building blocks.
Namely, we need no key-update primitives and have linear-time complexity in terms of the number
of exchanged messages, even when the network is occasionally down. This translates to an
important speedup factor, as shown on Table 1. We argue that this is a reasonable choice
enabling ratchet security as we define it: unless trivial leakage, a message is private as long as it
is acknowledged for reception in a subsequent message from the receiver.

4. Sequence integrity. We believe that duplex communication is reliably enforced by a lower
level protocol. This is assumed to solve non-malicious packet losses e.g. by resend requests and
also to reconstruct the correct sequence order. What we only have to care of is when an adversary
prevents the delivery of a message consistently. We make the choice to make the transmission of
the next messages impossible under such an attack. Contrarily, ACD [1] advocates for immediate
decryption, even though one message is missing. This lowers the security and we chose not to have
it.

In the BARK protocol, the correctness implies that both participants generate the same keys.
We define the stages matching status, direct leakage, indirect leakage. We aim to separate trivial
attacks and trivial forgeries from non-trivial cases with our definitions. Direct and indirect leak-
ages define when the adversary can trivially deduce the key generated due to the exposure of a
participant who can either be the same participant (direct) or their counterpart (indirect).

We construct a secure BARK protocol. We build our constructions on top of a public-key
cryptosystem and a signature scheme and achieve strong security, without key-update primitives
or random oracles. We further show that a weakly secure unidirectional BARK implies public-key
cryptography.

Notations. We have two characters: Alice (A) and Bob (B). When P designates a participant,
P refers to P’s counterpart. We use the roles send and rec for sender and receiver respectively.
We define send = rec and rec = send. When participants A and B have exclusive roles (like in
unidirectional cases), we call them sender S and receiver R.

Structure of the paper. In Section 2, we define our BARK protocol along with correctness definition
and KIND security. Section 3 proves that a simple unidirectional scheme implies public-key encryp-
tion. In Section 4 we define the security notions unforgeability and unrecoverability. In Section 5,
we give our BARK construction. Appendix A recalls definitions for underlying primitives. Using
plaintext-aware security, Appendix B shows that “optimally secure” protocols may still eliminate
attacks which are of no harm, hence eliminate more than necessary. In Appendix C, we make
some comments and comparison with the results of Bellare et al. [2], Poettering-Rösler [16], and
Jaeger-Stepanovs [11].

2 Bidirectional Asynchronous Ratcheted Communication

2.1 BARK Definition and Correctness

Definition 1 (BARK). A bidirectional asynchronous ratcheted key agreement (BARK) consists
of the following polynomially bounded algorithms:

– Setup(1λ)
$
−→ pp: This defines the common public parameters pp.

4 Those terms are more formally explained on p. 11.
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– Gen(1λ, pp)
$
−→ (sk, pk): This generates the secret key sk and the public key pk of a participant.

– Init(1λ, pp, skP, pkP,P) → stP: This sets up the initial state stP of P given his secret key and
the public key of his counterpart.

– Send(stP)
$
−→ (st ′P, upd,k): The algorithm inputs a current state stP for P ∈ {A,B}. It outputs

a tuple (st ′P, upd,k) with an updated state st ′P, a message upd, and a key k.

– Receive(stP, upd) → (acc, st ′P,k): The algorithm inputs (stP, upd) where P ∈ {A,B}. It outputs
a triple consisting of a flag acc ∈ {true, false} to indicate an accept or reject of upd information,
an updated state st ′P, and a key k i.e. (acc, st ′P,k).

For convenience, we define the following initialization procedure for all games. It returns the initial
states as well as some publicly available information z.

Initall(1λ, pp):
1: Gen(1λ, pp)→ (skA, pkA)
2: Gen(1λ, pp)→ (skB, pkB)
3: stA ← Init(1λ, pp, skA, pkB,A)

4: stB ← Init(1λ, pp, skB, pkA,B)
5: z← (pp, pkA, pkB)
6: return (stA, stB, z)

Initialization is splittable in the sense that private keys can be generated by their holders with no
need to rely on an authority (except maybe for authentication of pkA and pkB). Other protocols
from the literature assume a trusted initialization.

We consider bidirectional asynchronous communications. We can see, in Fig. 1, Alice and Bob
running some sequences of Send and Receive operations without any prior agreement. Their time
scale is different. This means that Alice and Bob run algorithms in an asynchronous way. We
consider a notion of time relative to a participant P. Formally, the time t for P is the number
of elementary steps that P executed since the beginning of the game. We assume no common
clock. However, events occur in a game and we may have to compare the time of two different
participants by reference to the scheduling of the game. E.g., we could say that time tA for A

happens before time tB for B. Normally, scheduling is under the control of the adversary except in
the CORRECT game in which there is no adversary. There, we define the scheduling by a sequence
of actions. Reading the sequence tells who executes a new step of the protocol.

The protocol also uses random roles. Alice and Bob can both send and receive messages. They
take their role (sender or receiver) in a sequence, but the sequences of roles of Alice and Bob
are not necessarily synchronized. Sending/receiving is refined by the RATCH(P, role, [upd]) call in
Fig. 2.

Correctness. We say that a ratcheted communication protocol functions correctly if the receiver
accepts the update information upd and generates the same key as its counterpart. Correctness
implies that the received keys for participant P have been generated in the same order as sent keys
of participant P. We formally define the CORRECT game in Fig. 2. We define variables. receivedPkey
(respectively sentPkey) keeps a list of secret keys that are generated by P when running Receive

(respectively, Send). Similarly, receivedPmsg (respectively sentPmsg) keeps a list of upd information
that are received (respectively sent) by P and accepted by Receive. The received sequences only
keep values for which acc = true.

Each variable v such as receivedPmsg, kP, or stP is relative to a participant P. We denote by

v(t) the value of v at time t for P. For instance, receivedAmsg(t) is the sequence of upd which were
received by A at time t for A.

We initialize the two participants in the CORRECT game in Fig. 2. The scheduling is defined
by a sequence sched of tuples of form either (P, send) (saying that P must send) or (P, rec) (saying
that P must receive). In this game, communication between the participants uses a waiting queue
for messages in each direction. Each participant has a queue of incoming messages and is pulling
them in the order they have been pushed in. Sent messages from P are buffered in the queue of P.
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Fig. 1: The message exchange between Alice and Bob.

Definition 2 (Correctness of BARK). We say that BARK is correct if for all sequence sched,
the CORRECT game of Fig. 2 never returns 1. Namely, for each P, receivedPkey is always prefix of

sentPkey
5 and each RATCH(., rec, .) call accepts.

Security. We model our security notion with an active adversary who can have access to some
of the states of Alice or Bob along with access to their secret keys enabling them to act both as
a sender and as a receiver. For simplicity, we have only Alice and Bob as participants. (Models
with more participants would be asymptotically equivalent.) We focus on three main security
notions which are key indistinguishability (denoted as KIND) under the compromise of states or
keys, unforgeability of upd information (FORGE) by the adversary which will be accepted, and
recovery from impersonation (RECOVER) which will make the two participants restore secure
communication without noticing a (trivial) impersonation resulting from a state exposure. A
challenge in these notions is to eliminate the trivial attacks. FORGE and RECOVER security will
be useful to prove KIND security.

2.2 KIND Security

The adversary can access four oracles called RATCH, EXPst, EXPkey, and TEST.

RATCH. This is essentially the message exchange procedure. It is defined in Fig. 2. The adversary
can call it with three inputs, a participant P, where P ∈ {A,B}; a role of P; and an upd

information if the role is rec. The adversary gets upd (for role = send) or acc (for role = rec)
in return.

EXPst. The adversary can expose the state of Alice or Bob. It inputs P ∈ {A,B} to the EXPst

oracle and it receives the full state stP of P.
EXPkey. The adversary can expose the generated key by calling this oracle. Upon inputting P, it

gets the last key kP generated by P. If no key was generated, ⊥ is returned.

5 By saying that receivedPkey is prefix of sentPkey, we mean that when n is the number of keys generated by

P running Receive, then these keys are the first n keys generated by P running Send.
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Oracle RATCH(P, rec, upd)
1: (acc, st ′P, k)← Receive(stP, upd)
2: if acc then

3: updP ← upd

4: kP ← k

5: stP ← st ′P
6: append kP to receivedPkey
7: append updP to receivedPmsg

8: end if

9: return acc

Oracle RATCH(P, send)
10: (st ′P, updP,kP)← Send(stP)

11: stP ← st ′P
12: append kP to sentPkey
13: append updP to sentPmsg

14: return updP

Game CORRECT(1λ, sched)
1: set all sent∗∗ and received∗∗ variables to ∅

2: Setup(1λ)
$
−→ pp

3: Initall(1λ, pp)
$
−→ (stA, stB, z)

4: initialize two FIFO lists incomingA and incomingB to empty
5: i← 1
6: while schedi exists do
7: (P, role)← schedi
8: if role = rec then

9: if incomingP is empty then return 0
10: pull upd from incomingP
11: acc← RATCH(P, rec, upd)
12: if acc = false then return 1
13: else

14: upd← RATCH(P, send)
15: push upd to incomingP
16: end if

17: if receivedAkey not prefix of sentBkey then return 1

18: if receivedBkey not prefix of sentAkey then return 1
19: i← i+ 1
20: end while

21: return 0

Fig. 2: The CORRECT game.

TEST. This oracle can be called only once to receive a challenge key which is generated either
uniformly at random (if the challenge bit is b = 0) or given as the last generated key of a
participant P specified as input (if the challenge bit is b = 1). The oracle cannot be queried if
no key was generated yet.

We specifically separate EXPkey from EXPst because the key k generated by BARK will be used
by an external process which may leak the key. Thus, EXPkey can be more frequent than EXPst,
however it harms security less.

To define security, we avoid trivial attacks. Capturing the trivial cases in a broad sense requires
a new set of definitions. All of them are intuitive.

Intuitively, P is in a matching status at a given time if his state is not dependent on an “active”
attack (i.e. could result from a CORRECT game).

Definition 3 (Matching status). We say that P is in a matching status at time t for P if

1. at any moment of the game before time t for P, receivedPmsg is a prefix of sentPmsg — this defines

the time t for P when P sent the last message in receivedPmsg(t);

2. at any moment of the game before time t for P, receivedPmsg is a prefix of sentPmsg.

We further say that time t for P originates from time t for P.

The first condition clearly states that each of the received (and accepted) upd message was sent
before by the counterpart of P, in the same order, without any loss in between. The second
condition similarly verifies that those messages from P only depend on information coming from
P. In Fig. 1, Bob is in a matching status with Alice because he receives the upd information in the
exact order as they have sent by Alice (i.e. Bob generates k2 after k1 and k4 after k2 same as it
has sent by Alice). In general, as long as no adversary switches the order of messages or creates
fake messages successfully for either party, the participants are always in a matching status.
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The key exchange literature often defines a notion of partnering which is simpler. Asynchronous
random roles makes it more complicated.

Here is an easy property of the notion of matching status.

Lemma 4. If P is in a matching status at time t, then P is also in a matching status at any time
t0 6 t. Similarly, if P is in a matching status at time t and t for P originates from t for P, then
P is in a matching status at time t.

Proof. In Def. 3, it is clear that if the first property holds with time t for P, then it holds for any
time t0 < t for P. Similarly, if the second property holds with time t for P, then it holds for any
time t0 < t for P.

Hence, if P is in a matching status at time t, then he is in a matching status at any time t0 < t.
Furthermore, if P is in a matching status at time t and time t for P originates from time t for
t, we can exchange the roles of P and P, obtain the first property with time t instead of t, and
deduce the second property for some time which is even before. Hence, P is in a matching status
at time t. ⊓⊔

Definition 5 (Forgery). Given a participant P in a game, we say that upd ∈ receivedPmsg is a
forgery if at the moment of the game just before P received upd, P was in a matching status, but
no longer after receiving upd.

In a matching status, any upd received by P must correspond to an upd sent by P and the
sequences must match. This implies the following notion.

Definition 6 (Corresponding RATCH calls). Let P be a participant. We consider only the
RATCH(P, rec, .) calls by P returning true. We say that the ith receiving call corresponds to the
jth sending RATCH(P, send) call by P if i = j and P is in matching status at the time of this ith

accepting RATCH(P, rec, .) call.

Lemma 7. In a correct BARK protocol, two corresponding RATCH(P, rec, upd) and RATCH(P, send)
calls generate the same key kP = kP.

Proof. We let t be the time of the RATCH(P, rec, upd) call and t be the time of the RATCH(P, send).
If RATCH(P, rec, upd) and RATCH(P, send) correspond to each other, then P is in matching status
and t originates from t. We follow the sequence of RATCH calls made by the game until time t for
P and time t for P (i.e., we ignore what happens to P after time t and to P after time t). Due to
the properties of the matching status, we can model them as a sequence sched as in the CORRECT
game, where the upd messages are buffered. Using the same random coins, this game produces
the same keys. Due to correctness, we have receivedPkey = sentPkey. The ith element of receivedPkey is

kP(t). The jth element of sentPkey is kP(t). Since i = j, we have kP(t) = kP(t). ⊓⊔

Definition 8 (Ratcheting period of P). A maximal time interval during which there is no
RATCH(P, send) call is called a ratcheting period of P.

Consequently, a RATCH(P, send) call ends a ratcheting period for P and starts a new one. In Fig. 1,
the time between T1 and T3 or the interval T5 − T6 are called ratcheting period of Alice and Bob
respectively.

We now define when the adversary can trivially obtain a key generated by P due to an exposure.
We distinguish the case when the exposure was done on P (direct leakage) and on P (indirect
leakage).

Definition 9 (Direct leakage). Let t be a time and P be a participant. We say that kP(t) has
a direct leakage if one of the following conditions is satisfied:

– There is an EXPkey(P) at a time te such that the last RATCH call which is executed by P before
time t and the last RATCH call which is executed by P before time te are the same.
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– P is in a matching status and there exists t0 6 te 6 tRATCH 6 t and t such that time t

originates from time t; time t originates from time t0; there is one EXPst(P) at time te; there
is one RATCH(P, rec, .) at time tRATCH; and there is no RATCH(P, ., .) between time tRATCH and
time t.

In the first case, it is clear that EXPkey(P) gives kP(te) = kP(t). In the second case (in Fig. 3)6,
the state which leaks from EXPst(P) at time te allows to simulate all deterministic Receive (by
skipping all Send) and to compute the key kP(tRATCH) = kP(t). The reason why we can allow the
adversary to skip all Send is that they make messages which are supposed to be delivered to P

after time t, so they have no impact on kP(t).
Consider Fig. 1. Suppose t is in between time T3 and T4. According to our definition P = A

and the last RATCH call is at time T3. It is a Send, thus the second case cannot apply. The next
RATCH call is at time T4. In this case, kA(t) has a direct leakage if there is a key exposure of Alice
between T3 and T4.

Suppose now that T8 < t < T9. We have P = B, the last RATCH call is a Receive, it is at
time tRATCH = T8, and t originates from time t = T0 which itself originates from the origin time
t0 = TInit for B. We say that t has a direct leakage if there is a key exposure between T8 − T9 or
a state exposure of Bob before time T8. Indeed, with this last state exposure, the adversary can
ignore all Send and simulate all Receive to derive k0.

P P

t0

(EXPst) te

tRATCH

t

tReceive

no RATCH

P P

t ′

tRATCH

t

t

te (EXPst)
Send

no RATCH

Fig. 3: Direct (left) and indirect (right) leakage

Definition 10 (Indirect leakage). We consider a time t and a participant P. Let tRATCH be the
time of the last successful RATCH call and role be its input role. (We have kP(tRATCH) = kP(t).)
We say that kP(t) has an indirect leakage if P is in matching status at time t and one of the
following conditions is satisfied

– There exists a RATCH(P, role, .) corresponding to that RATCH(P, role, .) and making a kP which
has a direct leakage for P.

– There exists t ′ 6 tRATCH 6 t and t 6 te such that P is in a matching status at time te, t
originates from t, te originates from t ′, there is one EXPst(P) at time te, and role = send.

In the first case, kP(t) = kP(tRATCH) is also computed by P and leaks from there. The second
case (in Fig. 3) is more complicated: it corresponds to an adversary who can get the internal state
of P by EXPst(P) then simulate all Receive with messages from P until the one sent at time tRATCH,
ignoring all Send by P, to recover kP(t).

6 Origin of dotted arrows indicate when a time originates from.
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For example, let t be a time between T1 and T2 in Fig. 1. We take P = A. The last RATCH call
is at time tRATCH = T1, it is a Send and corresponds to a Receive at time T10, but t originates from
time t = TInit. We say that t has an indirect leakage for A if there exists a direct leakage for P = B

at a time between T10 and T11 (first condition) or there exists a EXPst(B) call at a time te (after
time t = TInit), originating from a time t ′ before time T1, so te < T10 (second condition). In the
latter case, the adversary can simulate Receive with the updates sent at time T0 and T1 to derive
the key k1.

Exposing the state of a participant gives certain advantages to the attacker and make trivial
attacks possible. In our security game, we avoid those attack scenarios. In the following lemma,
we show that direct and indirect leakage capture the times when the adversary can trivially win.
The proof is straightforward.

Lemma 11 (Trivial attacks). Assume that BARK is correct. For any t and P, if kP(t) has a
direct or indirect leakage, the adversary can compute kP(t).

Proof. We use correctness, Lemma 7, and the explanations given after Def. 9 and Def. 10. ⊓⊔

So far, we mostly focused on matching status cases but there could be situations with forgeries.
Some are unavoidable. We call them trivial forgeries.

Definition 12 (Trivial forgery). Let upd be a forgery received by P. At the time t just before
the RATCH(P, rec, upd) call, P was in a matching status. We assume that time t for P originates
from time t for P. If there is an EXPst(P) call during the ratcheting period of P starting at time t,
we say that upd is a trivial forgery.

We define the KIND security game in Fig. 4. Essentially, the adversary plays with all oracles.
At some point, he does one TEST(P) call which returns either the same result as EXPkey(P) (case
b = 1) or some random value (case b = 0). The goal of the adversary is to guess b. The TEST

call can be done only once and it defines the participant Ptest = P and the time ttest at which
this call is made. It also defines updtest, the last upd which was used (either sent or received)
to carry kPtest

(ttest) from the sender to the receiver. It is not allowed to make this call at the
beginning, when P did not generate a key yet. It is not allowed to make a trivial attack as defined
by a cleanness predicate Cclean appearing on Step 6 in the KIND game in Fig. 4. Identifying the
appropriate cleanness predicate Cclean is not easy. It must clearly forbid trivial attacks but also
allow efficient protocols. In what follows we use the following predicates:

– Cleak: kPtest
(ttest) has no direct or indirect leakage.

– CP
trivial forge: P received no trivial forgery until P has seen updtest.

(This implies that updtest is not a trivial forgery. It also implies that if P never sees updtest,
then P received no trivial forgery at all.)

– CP
forge: P received no forgery until P has seen updtest.

– Cratchet: updtest was sent by a participant P, then received and accepted by P, then some updack
was sent by P, then updack was received and accepted by P.
(Here, P could be Ptest or his counterpart. This accounts for the receipt of updtest being ac-
knowledged by P through updack.)

– CnoEXP(R): there is no EXPst(R) and no EXPkey(R) query. (R is the receiver.)

Lemma 11 says that the adopted cleanness predicate Cclean must imply Cleak in all considered
games. Otherwise, no security is possible. It is however not sufficient as it hardly covers trivial
attacks with forgeries.

Cratchet targets that any acknowledged sent message is secure. Another way to say is that a
key generated by one Send starting a round trip must be safe. This is the notion of healing by
ratcheting. Intuitively, the security notion from Cclean = Cleak ∧ Cratchet is fair enough.

Bellare et al. [2] consider unidirectional BARK with Cclean = Cleak ∧ CPtest

trivial forge ∧ CnoEXP(R).

Other papers like PR [16] and JS [11] implicitly use Cclean = Cleak ∧ CPtest

trivial forge as cleanness
predicate. They show that this is sufficient to build secure protocols but it is probably not the

10



minimal cleanness predicate (it is nevertheless called “optimal”). JMM [12] excludes cases where
Ptest received a (trivial) forgery then had an EXPst(Ptest) before receiving updtest. Actually, they
use a cleanness predicate (“near-optimal” security) which is somewhere between Cleak∧CPtest

trivial forge

and Cleak ∧CA
trivial forge ∧CB

trivial forge: this cleanness implies the JMM cleanness which itself implies
the PR/JS cleanness.

In our construction (“sub-optimal”), we use the predicate Cclean = Cleak ∧CA
forge ∧CB

forge. How-
ever, in Section 4.1, we define the FORGE security (unforgeability) which implies that (Cleak ∧

CA
forge ∧ CB

forge)-KIND security and (Cleak ∧ CA
trivial forge ∧ CB

trivial forge)-KIND security are equivalent.

(See Th. 16.) One drawback is that it forbids more than (Cleak ∧ CPtest

trivial forge)-KIND security. The
advantage is that we can achieve security without key-update primitives. We will prove in Th. 19
that this security is enough to achieve security with the predicate Cclean = Cleak ∧ Cratchet, thanks
to RECOVER-security which we define in Section 4.2. Thus, our cleanness notion is fair enough.

Game KINDA
b,Cclean

(1λ)

1: Setup(1λ)
$
−→ pp

2: Initall(1λ, pp)
$
−→ (stA, stB, z)

3: set all sent∗∗ and received∗∗ variables to ∅
4: set ttest, kA, kB to ⊥
5: b ′ ← ARATCH,EXPst,EXPkey,TEST(z)

6: if ¬Cclean then return ⊥
7: return b ′

Oracle EXPst(P)

1: return stP

Oracle TEST(P)

1: if ttest 6= ⊥ then return ⊥
2: if kP = ⊥ then return ⊥
3: ttest ← time, Ptest ← P, updtest ← updP
4: if b = 1 then

5: return kP

6: else

7: return random {0, 1}|kP |

8: end if

Oracle EXPkey(P)

1: return kP

Fig. 4: Cclean-KIND game.
(Oracle RATCH is defined in Fig. 2.)

Definition 13 (Cclean-KIND security). Let Cclean be a cleanness predicate. We consider the
KINDA

b,Cclean
game of Fig. 4. We say that the ratcheted key agreement BARK is (λ,q, T , ε)-Cclean-

KIND-secure if for any adversary limited to q queries and time complexity T , the advantage

AdvA(1
λ) =

∣

∣Pr
[

KINDA
0,Cclean

(1λ)→ 1
]

− Pr
[

KINDA
1,Cclean

(1λ)→ 1
]∣

∣

of A in KINDA
b,Cclean

(1λ) security game is bounded by ε.

3 uniARK Implies KEM

We now prove that a weakly secure uniARK (a unidirectional asynchronous ratcheted key exchange
— a straightforward variant of BARK in which messages can only be sent from a participant whom
we call S and can only be received by another participant whom we call R) implies public key
encryption. Namely, we can construct a key encapsulation mechanism (KEM) out of it. We recall
the KEM definition and its IND-CPA security in Appendix A.

We consider a uniARK which is KIND-secure for the following cleanness predicate:

Cweak: the adversary makes only three oracle calls which are, in order, EXPst(S), RATCH(S, send),
and TEST(S).

(Note that R is never used.) Cweak implies cleanness for all other considered predicates. Hence,
it is more restrictive. Our result implies that it is unlikely to construct even such weakly secure
uniARK from symmetric cryptography.

11



Theorem 14. Given a uniARK protocol, we can construct a KEM with the following properties.
The correctness of uniARK implies the correctness of KEM. The Cweak-KIND-security of uniARK
implies the IND-CPA security of KEM.

Proof. Assuming a uniARK protocol, we construct a KEM as follows:

KEM.Gen(1λ)
$
−→ (sk, pk): run uniARK.Setup(1λ)

$
−→ pp, uniARK.Initall(1λ, pp)

$
−→ (stS, stR, z) and

set pk = stS, sk = stR.

KEM.Enc(pk)
$
−→ (k, ct): run uniARK.Send(pk)

$
−→ (., upd,k) and set ct = upd.

KEM.Dec(sk, ct)→ k: run uniARK.Receive(sk, upd)→ (., .,k).

The IND-CPA security game with adversary A works as in the left-hand side below. We transform
A into a KIND adversary B in the right-hand side below.

Game IND-CPA:
1: KEM.Gen

$
−→ (sk, pk)

2: KEM.Enc(pk)
$
−→ (k, ct)

3: if b = 0 then set k to random
4: A(pk, ct,k)

$
−→ b ′

5: return b ′

Adversary B(z):
1: call EXPst(S)→ pk

2: call RATCH(S, send)→ ct

3: call TEST(S)→ k

4: run A(pk, ct,k)→ b ′

5: return b ′

We can check that Cweak is satisfied. The KIND game with B simulates perfectly the IND-CPA
game with A. So, the KIND-security of uniARK implies the IND-CPA security of KEM. ⊓⊔

4 FORGE and RECOVER Security

4.1 Unforgeability

Another security aspect of the key agreement BARK is to have that no upd information is forgeable
by any bounded adversary except trivially by state exposure. This security notion is independent
from KIND security but is certainly nice to have for explicit authentication in key agreement.
Besides, it is easy to achieve. We will also use it as a helper to prove KIND security: to reduce
CP

trivial forge-cleanness to CP
forge-cleanness.

Let the adversary interact with the oracles RATCH,EXPst, EXPkey in any order. For BARK to
have unforgeability, we eliminate the trivial forgeries (as defined in Def. 12). The FORGE game is
defined in Fig. 5.

Definition 15 (FORGE security). Consider FORGEA(1λ) game in Fig. 5 associated to the ad-
versary A. Let the advantage of A be the probability that the game outputs 1. We say that BARK
is (λ,q, T , ε)-FORGE-secure if, for any adversary limited to q queries and time complexity T , the
advantage is bounded by ε.

We can now justify why forgeries in the KIND game must be trivial for a BARK with unforge-
ability.

Theorem 16. If a BARK is (λ,q, T , ε)-FORGE-secure, then (λ,q, T , ε ′)-(Cleak ∧ CPtest

forge)-KIND-

security implies (λ,q, T , 2qε+ε ′)-(Cleak∧CPtest

trivial forge)-KIND-security and (λ,q, T , ε ′)-(Cleak∧CA
forge∧

CB
forge)-KIND-security implies (λ,q, T , 2qε+ ε ′)-(Cleak ∧ CA

trivial forge ∧ CB
trivial forge)-KIND-security.

Proof. Let us assume that we have FORGE-security and (Cleak ∧ CPtest

forge)-KIND-security. To prove

(Cleak∧CPtest

trivial forge)-KIND-security, we consider an adversary A. Let Cclean = Cleak∧CPtest

trivial forge and

C ′clean = Cleak ∧ CPtest

forge. We transform the game KINDA
b,Cclean

into a KINDA
b,C′

clean
game by adding a

failure event F which is true if and only if Ptest received a non-trivial forgery before he has seen
updtest. By using the Difference Lemma, we have

|Pr[KINDA
b,Cclean

→ 1] − Pr[KINDA
b,C′

clean
→ 1]| 6 Pr[F]
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Game FORGEA(1λ)

1: Setup(1λ)
$
−→ pp

2: Initall(1λ, pp)
$
−→ (stA, stB, z)

3: (P, upd)← ARATCH,EXPst,EXPkey (z)

4: RATCH(P, rec, upd)→ acc

5: if acc = false then return 0
6: if upd is not a forgery for P then return 0
7: if upd is a trivial forgery for P then return 0
8: return 1

Game RECOVERA
BARK(1

λ)

1: win← 0
2: Setup(1λ)

$
−→ pp

3: Initall(1λ, pp)
$
−→ (stA, stB, z)

4: set all sent∗∗ and received∗∗ variables to ∅
5: P ← ARATCH,EXPst,EXPkey (z)

6: if we can parse receivedPmsg = (seq1, upd, seq2) and

sentPmsg = (seq3, upd, seq4) with seq1 6= seq3 (where upd

is a single message and all seqi are finite sequences of
single messages) then win← 1

7: return win

Game PREDICTA
BARK(1

λ)

1: Setup(1λ)
$
−→ pp

2: Initall(1λ, pp)
$
−→ (stA, stB, z)

3: P ← ARATCH,EXPst,EXPkey (z)

4: RATCH(P, send)→ upd

5: if upd ∈ receivedPmsg then return 1
6: return 0

Fig. 5: FORGE, RECOVER, and PREDICT games.
(Oracle RATCH, EXPst, EXPkey are defined in Fig. 2 and Fig. 4.)

We show below that Pr[F] 6 qε, we deduce

Adv(KINDA
C′

clean
) 6 Adv(KINDA

C′

clean
) + 2qε

and conclude.
To show Pr[F] 6 qε, for i = 1, . . . ,q, we transform A into a FORGE-adversary Ai as follows: Ai

simulates A until A asks for the ith receive RATCH call. We denote by P and upd the parameters
of this ith RATCH(P, rec, upd) call by A. The adversary Ai just stops and outputs (P, upd). The
FORGE game goes on by making this RATCH(P, rec, upd) call in line 4 of the FORGE game. and
returns 1 if and only if it is accepted as a non-trivial forgery. When F occurs, at least one of the Ai

wins in the FORGE game. However, forgery implies that Pr[FORGEAi → 1] 6 ε. Hence, Pr[F] 6 qε.
The same proof works for the other cleanness predicates in the statement. ⊓⊔

4.2 Recovery from Impersonation

A priori, it seems nice to be able to restore a secure state when a state exposure of a participant
takes place. We show here that it is not a good idea.

Let A be an adversary playing the two games in Fig. 6. On the left strategy, A exposes A with
an EXPst query (Step 2). Then, the adversary A impersonates A by running the Send algorithm
on its own (Step 3). Next, the adversary A “sends” a message to B which is accepted due to
correctness because it is generated with A’s state. In Step 5, A lets the legitimate sender generate
upd ′ by calling RATCH oracle. In this step, if security self-restores, then B accepts upd ′ which is
sent by A, hence acc ′ = 1. It is clear that the strategy shown on the left side in Fig. 6 is equivalent
to the strategy shown on the right side of the same figure (which only switches Alice and the
adversary who run the same algorithm). Hence, both lead to acc ′ = 1 with the same probability p.
The crucial point is that the forgery in the right-hand strategy becomes non-trivial, which implies
that the protocol is not FORGE-secure. In addition to this, if such phenomenon occurs, we can
make a KIND adversary passing the Cleak ∧ CPtest

trivial forge condition. Thus, we lose KIND-security.
Consequently, security should not self-restore.

We define the RECOVER security notion with another game in Fig. 5. Essentially, in the game,
we require the receiver P to accept some messages upd sent by the sender after the adversary
makes successful forgeries in seq1. We further use it as a second helper to prove KIND security
with Cratchet-cleanness.
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Alice Bobadversary

(EXPst)

•

•

•

•

•
(forgery)

•

acc = 1

acc = 1

acc = 1

acc = 1

acc = 1

1: · · · (normal communications)· · ·
2: EXPst(A)→ stA
3: Send(stA)→ (st′A, upd,kA)
4: RATCH(B, rec, upd)→ acc
5: RATCH(A, send)→ upd′

6: RATCH(B, rec, upd′)→ acc′

Alice Bobadversary

(EXPst)

•

•

•

•

•

•(forgery)

acc = 1

acc = 1

acc = 1

acc = 1

acc = 1

1: · · · (normal communications)· · ·
2: EXPst(A)→ stA
3: RATCH(A, send)→ upd
4: RATCH(B, rec, upd)→ acc
5: Send(stA)→ (st′A, upd′,k′

A)
6: RATCH(B, rec, upd′)→ acc′

Fig. 6: Two recoveries succeeding with the same probability.

Definition 17 (RECOVER security). Consider RECOVERA
BARK(1

λ) game in Fig. 5 associated to
the adversary A. Let the advantage of A in succeeding playing the game be Pr(win = 1). We say
that the ratcheted communication protocol is (λ,q, T , ε)-RECOVER-secure, if for any adversary
limited to q queries and time complexity T , the advantage is bounded by ε.

RECOVER-security is easy to achieve using a collision-resistant hash function.
To be sure that no message was received before it was sent, we need the following security

notion. In the PREDICT game, the adversary tries to make P receive a message upd before it was
sent by P.

Definition 18 (PREDICT security). Consider PREDICTA
BARK(1

λ) game in Fig. 5 associated to
the adversary A. Let the advantage of A in succeeding playing the game be the probability that 1
is returned. We say that the ratcheted communication protocol is (λ,q, ε)-PREDICT-secure, if for
any adversary limited to q queries, the advantage is bounded by ε.

Theorem 19. If a BARK is (λ,q, T , ε)-RECOVER-secure, (λ, ε ′)-PREDICT-secure, and (λ,q, T , ε ′′)-
(Cleak∧CA

forge∧CB
forge)-KIND secure, then it is (λ,q, T , 4ε+2qε ′+ε ′′)-(Cleak∧Cratchet)-KIND secure.

Proof. Let Cclean = Cleak ∧ Cratchet, and let us consider a Cclean-KIND game with an adversary
A. In this game, we define the failure event F that Cratchet holds and the following happens. We
denote by P the participant who sent updtest. Since Cratchet holds, we know that updtest and its
acknowledgement updack are genuine messages. We consider the failure event that, at the end of
the game, we can parse

– either receivedPmsg = (seq1, updtest, seq2), sent
P
msg = (seq3, updtest, seq4) with seq1 6= seq3,

– or receivedPmsg = (seq1, updack, seq2), sent
P
msg = (seq3, updack, seq4) with seq1 6= seq3.

We define four RECOVER adversaries Ab,P for b ∈ {0, 1} and P ∈ {A,B} to transform the
KINDA

b,Cclean
game into a RECOVERAb,P game. More precisely, Ab,P essentially simulates A ex-

cept for the TEST oracle, and eventually outputs P. When A makes a TEST query, Ab,P simulates
this oracle (it uses a EXPkey oracle call for that in the b = 1 case). Clearly, if the failure event
happens in KINDA

b,Cclean
, then either RECOVERAb,A or RECOVERAb,B returns 1. Due to RECOVER

security, the failure event in KINDA
b,Cclean

occurs with probability bounded by 2ε.
In a KIND game where Cratchet holds and the failure event F does not occurs, we have that

receivedPmsg = (seq1, updtest, seq2) , sent
P
msg = (seq1, updtest, seq4)

receivedPmsg = (seq ′1, updack, seq
′
2) , sent

P
msg = (seq ′1, updack, seq

′
4)
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Namely, all messages received by P until updtest were sent in the same order by P, and all messages
received by P until updack were sent in the same order by P.

We define another failure event F ′ that Cratchet holds, F does not occur, and either P is not in
a matching status when receiving updack, or P is not in a matching status when receiving updtest.
For each i = 1, . . . ,q and each b = 0, 1, we define a PREDICT adversary A ′b,i who simulates

KINDA
b,Cclean

until it makes the ith send RATCH call. If this call is made with a participant Q, A ′b,P
just stops and outputs Q. The simulation of TEST works like for Ab,P. If the failure event F ′

happens, it must be the case that one of the A ′b,P adversaries wins the PREDICT game because
one message was received before it was sent. Hence, F ′ happens with probability bounded by qε ′.

When neither F nor F ′ happens, the matching status of both participants imply that CA
forge ∧

CB
forge holds. Hence, by letting C ′clean = Cleak ∧ CA

forge ∧ CB
forge, we have

|Pr[KINDA
b,Cclean

→ 1] − Pr[KINDA
b,C′

clean
→ 1]| 6 Pr[F] + Pr[F ′] 6 2ε+ qε ′

Hence

Adv(KINDA
Cclean

) 6 Adv(KINDA
C′

clean
) + 4ε+ 2qε ′ 6 4ε+ 2qε ′ + ε ′′

⊓⊔

5 Our BARK Protocol

We construct a BARK in Fig. 7. We use a public-key cryptosystem PKC, a digital signature scheme
DSS, a one-time symmetric encryption Sym, and a collision-resistant hash function H. They are
all defined in Appendix A. First, we construct a naive signcryption SC from PKC and DSS by

SC.Enc(

stS
︷ ︸︸ ︷

skS, pkR, ad, pt) = PKC.Enc(pkR, (pt,DSS.Sign(skS, (ad, pt))))

SC.Dec(skR, pkS
︸ ︷︷ ︸

stR

, ad, ct) = (pt,σ)← PKC.Dec(skR, ct) ; DSS.Verify(pkS, (ad, pt),σ) ? pt : ⊥

Second, we extend SC to multi-key encryption called onion due to the multiple layers of keys.
Third, we transform onion into a unidirectional ratcheting scheme uni. Finally, we design BARK.
(See Fig. 7.)

The state of a participant is a tuple st = (λ, hk, ListS, ListR,Hsent,Hreceived) where hk is the
hashing key, Hsent is the iterated hash of all sent messages, and Hreceived is the iterated hash of
all received messages. We also have two lists ListS and ListR. They are lists of states to be used
for unidirectional communication: sending and receiving. Both lists are growing but entries are
eventually erased. Thus, they can be compressed. (Typically, only the last entry is not erased.)

The idea is that the ith entry of ListS for a participant P is associated to the ith entry of
ListR for its counterpart P. Every time a participant P sends a message, it creates a new pair of
states for sending and receiving and sends the sending state to his counterpart P, to be used in
the case P wants to respond. If the same participant P keeps sending without receiving anything,
he accumulates some receiving states this way. Whenever a participant P who received many
messages starts sending, he also accumulated many sending states. His message is sent using all
those states in the uni.Send procedure. After sending, all but the last send state are erased, and the
message shall indicate the erasures to the counterpart P, who shall erase corresponding receiving
states accordingly. Our onion encryption needs to ensure O(n) complexity (we cannot compose SC
encryptions as ciphertext overheads would produce a O(n2) complexity). For that, we use a one-
time symmetric encryption Sym using a key k in {0, 1}Sym.kl which is split into shares k1, . . . ,kn.
Each share is SC-encrypted in one state. Only the last state is updated (as others are meant to be
erased).

The protocol is quite efficient when participants alternate their roles well, because the lists are
often flushed to contain only one unerased state. It also becomes more secure due to ratcheting:
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onion.Enc(1λ, hk, st1S, . . . , st
n
S , ad, pt)

1: pick k1, . . . , kn in {0, 1}Sym.kl(λ)

2: k← k1 ⊕ · · · ⊕ kn

3: ctn+1 ← Sym.Enc(k, pt)
4: adn+1 ← ad

5: for i = n down to 1 do

6: adi ← H.Eval(hk, adi+1,n, cti+1)

7: cti ← SC.Enc(stiS, adi,ki)

8: end for

9: return (ct1, . . . , ctn+1)

onion.Dec(hk, st1R, . . . , st
n
R , ad, ~ct)

1: if |~ct| 6= n+ 1 then return ⊥
2: parse ~ct = (ct1, . . . , ctn+1)

3: adn+1 ← ad

4: for i = n down to 1 do

5: adi ← H.Eval(hk, adi+1,n, cti+1)

6: SC.Dec(stiR, adi, cti)→ ki

7: if ki = ⊥ then return ⊥
8: end for

9: k← k1 ⊕ · · · ⊕ kn

10: pt← Sym.Dec(k, ctn+1)

11: return pt

uni.Init(1λ)

1: SC.GenS(1
λ)

$
−→ (skS, pkS)

2: SC.GenR(1
λ)

$
−→ (skR, pkR)

3: stS ← (skS, pkR)
4: stR ← (skR, pkS)
5: return (stS, stR)

uni.Send(1λ, hk, ~stS, ad, pt)

1: SC.GenS(1
λ)

$
−→ (sk ′S, pk

′
S)

2: SC.GenR(1
λ)

$
−→ (sk ′R, pk

′
R)

3: st ′S ← (sk ′S, pk
′
R)

4: st ′R ← (sk ′R, pk
′
S)

5: pt ′ ← (st ′R, pt)
6: onion.Enc(1λ, hk, ~stS, ad, pt

′)→ ~ct

7: return (st ′S, ~ct)

uni.Receive(hk, ~stR, ad, ~ct)
1: onion.Dec(hk, ~stR, ad, ~ct)→ pt ′

2: if pt ′ = ⊥ then return (false,⊥,⊥)
3: parse pt ′ = (st ′R, pt)
4: return (true, st ′R, pt)

BARK.Setup(1λ)

1: H.Gen(1λ)
$
−→ hk

2: return hk

BARK.Gen(1λ, hk)

1: SC.GenS(1
λ)

$
−→ (skS, pkS)

2: SC.GenR(1
λ)

$
−→ (skR, pkR)

3: sk← (skS, skR)
4: pk← (pkS, pkR)
5: return (sk, pk)

BARK.Init(1λ, hk, skP, pkP,P)
1: parse skP = (skS, skR)
2: parse pkP = (pkS, pkR)
3: stsendP ← (skS, pkR)
4: strecP ← (skR, pkS)
5: stP ← (λ, hk, (stsendP ), (strecP ),⊥,⊥)
6: return stP

BARK.Send(stP)
1: pick k at random in {0, 1}BARK.kl

2: parse stP = (λ, hk, (stsend,1P , . . . , stsend,uP ), (strec,1P , . . . , strec,vP ),Hsent,Hreceived)

3: uni.Init(1λ)
$
−→ (stSnew, st

rec,v+1
P ) ⊲ append a new receive state to the strecP list

4: pt← (stSnew, k) ⊲ stSnew could be deleted immediately to avoid leaking
5: take the smallest i s.t. stsend,iP 6= ⊥ ⊲ i = u− n if we had n Receive since the last Send

6: uni.Send(1λ, hk, (stsend,iP , . . . , stsend,uP ),Hsent, pt)
$
−→ (st

send,u
P , ~ct) ⊲ update st

send,u
P

7: st
send,i
P , . . . , stsend,u−1

P ← ⊥ ⊲ flush the send state list: only st
send,u
P remains

8: upd← (Hsent, ~ct) ⊲ ~ct has u− i+ 2(= n+ 1) components
9: Hsent ′ ← H.Eval(hk, upd)
10: st ′P ← (λ, hk, (stsend,1P , . . . , stsend,uP ), (strec,1P , . . . , strec,v+1

P ),Hsent ′,Hreceived)
11: return (st ′P, upd,k)

BARK.Receive(stP, upd)
12: parse stP = (λ, hk, (stsend,1P , . . . , stsend,uP ), (strec,1P , . . . , strec,vP ),Hsent,Hreceived)
13: parse upd = (h, ~ct)
14: set n+ 1 to the number of components in ~ct ⊲ the onion has n layers
15: if h 6= Hreceived then return (false, stP,⊥)
16: set i to the smallest index such that strec,iP 6= ⊥
17: if i+ n− 1 > v then return (false, stP,⊥)
18: uni.Receive(hk, (strec,iP , . . . , strec,i+n−1

P ),Hreceived, ~ct)→ (acc, st ′P
rec,i+n−1, pt)

19: if acc = false then return (false, stP,⊥)
20: parse pt = (st

send,u+1
P ,k) ⊲ a new send state is added in the list

21: st
rec,i
P , . . . , strec,i+n−2

P ← ⊥ ⊲ update strecP stage 1: clean up
22: st

rec,i+n−1
P ← st ′P

rec,i+n−1
⊲ update strecP stage 2: update st

rec,i+n−1
P

23: Hreceived ′ ← H.Eval(hk, upd)
24: st ′P ← (λ, hk, (stsend,1P , . . . , stsend,u+1

P ), (strec,1P , . . . , strec,vP ),Hsent,Hreceived ′)
25: return (acc, st ′P,k)

Fig. 7: Our BARK Protocol.

any exposure has very limited impact. If there are unidirectional sequences, the protocol becomes
less and less efficient due to the growth of the lists.

We note that our protocol does not offer (Cleak ∧ CPtest

forge)-KIND security due to the following
attack:

1: EXPst(A)→ stA
2: EXPst(B)→ stB ⊲ this reveals skrec,1B to be used later on
3: RATCH(B, send)→ updB
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4: RATCH(A, rec, updB)→ true

5: RATCH(A, send)→ upd

6: TEST(A)→ k

7: Send(stA)→ updA ⊲ this creates a trivial forgery
8: RATCH(B, rec, updA)→ true ⊲ this makes B out-of-sync and updates skrec,1B

9: EXPst(B)→ st ′B ⊲ this reveals skrec,2B and sk
rec,1
B (updated)

10: use sk
rec,1
B (from Step 2) and sk

rec,2
B to decrypt upd

11: compare the result with k

Note that the trivial forgery is here to make the following EXPst(B) a non-trivial leakage for skrec,2B

(skrec,1B is already known).
The attack is ruled out in the (Cleak ∧ CA

forge ∧ CB
forge)-KIND security which does not allow

forgeries until upd is received.

Theorem 20 (Correctness). BARK in Fig. 7 is correct.

Proof. To prove correctness, we first show that the underlying constructions in BARK are correct.
This is quite straightforward for the signcryption SC and the multi-key extension onion of it. When
two SC states stS and stR are generated, we call them associated SC states and we denote stS ⊲ stR
(or stR ⊳ stS). By convention, we say that ⊥ and ⊥ are associated SC states as well: ⊥ ⊲ ⊥. We
extend this notion to vectors of SC states. We say that a vector stsendP of sending states is associated
to a vector strec

P
of receiving states if we have u 6 v, where u (resp. v) denotes the size of stsendP

(resp. strec
P
), and we have st

send,j
P ⊲ st

rec,j

P
for j = 1, . . . ,u. We denote stsendP ⊲ strecR or strecP ⊳ stsendR .

For BARK, we first observe that Hsent is the hash of sentmsg and Hreceived is the hash of
receivedmsg. In the CORRECT game, the participants are always in a matching status, thus the
hashes match. We ignore them below.

For every participant P and every integer i, let stP,i be the state of P after the ith step of the
loop in the CORRECT game. Let uP,i be the size of stsendP,i and vP,i be the size of strecP,i. Similarly,
let kP,i be the key generated by P at step i.

Each new entry st
rec,j
P,i is generated as some stR from a uni.Init in BARK.Send. Each new entry

st
send,j
P,i is the result of a decryption (which is presumably some stS generated by P from a uni.Init

before encryption). Entries strec,jP,i are updated with outputs from SC.GenS in uni.Send. Conversely,

entries st
send,j
P,i are updated with the result of decryptions (which are presumably some outputs

from SC.GenR in uni.Send by P). We have to identify which st
send,j
P,i is associated with which st

rec,j

P,i′
.

We can see by looking at the Send and Receive procedures that exactly uP,i − 1 messages
were received by P after the ith step of the game (stsendP grows by 1 at every Receive and its size
remains unchanged at every Send) and exactly vP,i − 1 messages were sent by P (strecP grows by

1 at every Send and its size remains unchanged at every Receive). Actually, strec,j+1
P was created

when P sent his jth message and st
send,j+1

P
was set when P decrypted the jth message from P. Due

to the structure of the CORRECT game, a participant P cannot receive more messages than what
P has sent. Hence, we have the property that

∀P,m,m ′ m 6 m ′ =⇒ uP,m 6 vP,m′ (1)

If schedi+1 = (P, send), we denote stroleP,i
send
−→ stroleP,i+1 for role ∈ {send, rec}. Similarly, if schedi+1 =

(P, rec), we denote stroleP,i
rec
−→ stroleP,i+1 for role ∈ {send, rec}.

By inspection on the Send and Receive procedures, we easily show that

(

stsendP,m ⊲ strec
P,m′ ∧ stsendP,m

send
−→ stsendP,m+1 ∧ strec

P,m′

rec
−→ strec

P,m′+1

)

=⇒







stsendP,m+1 ⊲ st
rec
P,m′+1

st
rec,vP,m+1

P,m+1 ⊳ st
send,uP,m′+1

P,m′+1

kP,m+1 = kP,m′+1

This is essentially the correctness of the uni procedure. We call this property the correctness of
the send/rec transition.
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Similarly,
(

stsendP,m ⊲ strec
P,m′ ∧ strec

P,m′

send
−→ strec

P,m′+1

)

=⇒ stsendP,m ⊲ strec
P,m′+1

because the send operation only adds one extra rec state st
rec,vP,m′+1

P,m′+1
, which cannot be taken into

account in the ⊲ definition since uP,m 6 vP,m′ < vP,m′+1. We call this property the correctness of
the ⊥/send transition.

We show by induction on i that

∀P,m,m ′ (0 6 m 6 i, 0 6 m ′ 6 i,uP,m 6 vP,m′ , vP,m = uP,m′) =⇒ stsendP,m ⊲ strec
P,m′

We denote this property by Ri.
First of all, R0 is trivial: it is equivalent to ∀P st

send,1
P,0 ⊲ st

rec,1

P,0
which is true due to how Initall

works. We now assume that Ri is true and we prove Ri+1. We consider the operation done in this
iteration number i+ 1, following schedi+1. We assume it involves a participant Q. Since schedi+1

only involves Q, we have stQ,i+1 = stQ,i. Thus, to prove Ri+1, we only have to consider P = Q and

m = i+ 1, or P = Q and m ′ = i+ 1. Hence, we only have to prove the two following properties:

R1
i+1 : ∀m ′ (0 6 m ′ 6 i,uQ,i+1 6 vQ,m′ , vQ,i+1 = uQ,m′) =⇒ stsendQ,i+1 ⊲ st

rec
Q,m′ (2)

R2
i+1 : ∀m (0 6 m 6 i,uQ,m 6 vQ,i+1, vQ,m = uQ,i+1) =⇒ strecQ,i+1 ⊳ st

send
Q,m

(3)

Case 1: schedi+1 = (Q, send). We first prove R1
i+1: Let m

′ be such that 0 6 m ′ 6 i. Due to the
send operation, we have vQ,i+1 = vQ,i + 1. Since m ′ 6 i, due to (1) we have uQ,m′ 6 vQ,i thus

uQ,m′ < vQ,i+1. Hence, we cannot have vQ,i+1 = uQ,m′ . Therefore, R1
i+1 is true.

We also prove R2
i+1: Let m be such that 0 6 m 6 i, uQ,m 6 vQ,i+1, and vQ,m = uQ,i+1. Due to

the send operation, we have uQ,i+1 = uQ,i. Since m 6 i, due to (1) we have uQ,m 6 vQ,i. Hence,

we have uQ,m 6 vQ,i and vQ,m = uQ,i. Due to Ri, we deduce st
rec
Q,i⊳st

send
Q,m

. Since, strecQ,i
send
−→ strecQ,i+1,

we apply the correctness of the ⊥/send transition to deduce strecQ,i+1 ⊳ stsend
Q,m

. Therefore, R2
i+1 is

true.
Therefore, Ri+1 is true in the schedi+1 = (Q, send) case.
Case 2: schedi+1 = (Q, rec). We consider the smallest m ′′ 6 i such that vQ,m′′ = uQ,i+1 (i.e.,

the message received by Q at step i + 1 is the message sent by Q at step m ′′ and schedm′′ =

(Q, send)). Due to both the send and receive operations, we have vQ,m′′ = vQ,m′′−1 + 1 and
uQ,i+1 = uQ,i + 1 thus vQ,m′′−1 = uQ,i. Furthermore, due to (1), since m ′′ − 1 6 i, we have

uQ,m′′−1 6 vQ,i. We can apply Ri and deduce stsend
Q,m′′−1

⊲ strecQ,i. We can then apply the correctness

of the send/rec transition and deduce stsend
Q,m′′

⊲ strecQ,i+1 and st
rec,vQ,m′′

Q,m′′
⊳ st

send,uQ,i+1

Q,i+1 .

We first prove R1
i+1. Let m ′ be such that 0 6 m ′ 6 i, uQ,i+1 6 vQ,m′ , and vQ,i+1 = uQ,m′ .

Due to the rec operation, we have uQ,i+1 = uQ,i+1 and vQ,i+1 = vQ,i. Since m
′ 6 i, due to (1) we

have uQ,m′ 6 vQ,i. thus, uQ,i < vQ,m′ , and vQ,i = uQ,m′ . Due to Ri, we have st
send
Q,i ⊲ st

rec
Q,m′

. The

rec operation only adds a new element st
send,uQ,i+1

Q,i+1 in stsendQ,i . We have shown above that this new

element is such that st
send,uQ,i+1

Q,i+1 ⊲ st
rec,vQ,m′′

Q,m′′
. Since vQ,m′′ = uQ,i+1 6 vQ,m′ , we have m ′′ 6 m ′.

None of the rec operations for Q in between step m ′′ and step m ′ will need to use st
rec,vQ,m′′

Q,m′′

because Q has uQ,j 6 uQ,i < vQ,m′′ for all j 6 i. Hence, st
rec,vQ,m′′

Q,m′′
= st

rec,vQ,m′′

Q,m′
. We deduce

st
send,uQ,i+1

Q,i+1 ⊲ st
rec,vQ,m′

Q,m′
. Since stsendQ,i ⊲ strec

Q,m′
and the rec operation does not change the elements

in stsendQ,i , we deduce stsendQ,i+1 ⊲ st
rec
Q,m′

. Therefore, R1
i+1 is true.

We also prove R2
i+1: Let m be such that 0 6 m 6 i, uQ,m 6 vQ,i+1, and vQ,m = uQ,i+1. We

have already proven that stsend
Q,m′′

⊲ strecQ,i+1. We have m > m ′′ (because m ′′ is the smallest integer

with the vQ,m = uQ,i+1 property). Hence, only some rec operations occur for Q between step m ′′

and step m. These rec only add new elements in stsend
Q,m′′

. By the same reasoning as before, these
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elements are associated to elements in strecQ at the same position which remain untouched until

strecQ,i+1 because Q does not receive more messages after the one sent at step m ′′ by Q. Hence,

stsend
Q,m

⊲ strecQ,i+1. Therefore, R
1
i+1 is true.

Therefore, Ri+1 is also true in the schedi+1 = (Q, rec) case.
By induction, Ri is true for every i. Hence,

∀P,m,m ′ (uP,m 6 vP,m′ , vP,m = uP,m′) =⇒ stsendP,m ⊲ strec
P,m′

Let P be a participant and let j be any integer. If receivedPkey has an entry at position j, there must

be a step m ′ at which P received the jth message, and there must be a step m 6 m ′ at which P

sent the jth message. We have vP,m−1 = uP,m′−1. Due to (1), we have uP,m−1 6 vP,m′−1. Hence,

we have stsendP,m−1 ⊲ st
rec
P,m′−1

. Due to the correctness of the send/rec transition, the jth entry kP,m

which is inserted at step m in sentPkey is equal to the jth entry kP,m′ which is inserted at step m ′

in receivedPkey.

Since this holds for any j for which receivedPkey has a jth entry, we deduce that receivedPkey is a

prefix of sentPkey. Since this holds for any P, the protocol is correct. ⊓⊔

We state the security of our protocol below.

Theorem 21 (Unrecoverability). For any λ,q, T , ε, if H is a (λ, T , ε)-collision-resistant hash
function, then BARK in Fig. 7 is (λ,q, T , ε)-RECOVER-secure.

Proof. Each upd sent must include the hash of the previous upd sent. We call them chained for
this reason. If (seq1, upd, seq2) and (seq3, upd, seq4) are two validly chained list of messages with
seq1 6= seq3, we can easily see that upd = (h, ~ct) must include a collision on h. This cannot happen
thanks to collision resistance. ⊓⊔

Theorem 22 (Unpredictability). For any λ and q, BARK in Fig. 7 is (λ,q,q2−Sym.kl(λ))-
PREDICT-secure.

Proof. We show that guessing upd before a BARK.Send call implies guessing k ∈ {0, 1}Sym.kl, from
an information theory point of view.

Indeed, given an adversary A playing the PREDICT game, we design an unbounded adversary
A ′ to play the following game Γ :

Game Γ(1λ):
1: run A ′ → k ′

2: pick k ∈ {0, 1}Sym.kl(λ)

3: return 1k=k′

Clearly, whatever unbounded algorithm A ′ we use, the probability that Γ returns 1 is bounded by
2−Sym.kl(λ).

To construct A ′, the algorithm simulates the PREDICT game until A is done (i.e., before the
final RATCH in the game). The simulation of A gives some P. Next, A ′ looks into the state stP
to see with which key in the next RATCH send call will encrypt a key k. The stP includes some
PKC encryption key pk in stnS which is used by PKC in SC. By exhaustive search, A ′ can find some
associated decryption key for PKC to be able to decrypt. This is done by finding coins ρ such that

PKC.Gen(ρ) = (sk, pk). Then, A ′ guesses which upd from receivedPmsg will come out, in the case the
PREDICT game succeeds. This gives a upd to decrypt. If P ran PKC.Enc(pk, x) → ctn for some x

and A ′ runs PKC.Dec(sk, ctn) with ctn from upd, due to the correctness of PKC, this must give x

from which A ′ can extract kn. Hence, the decryption gives one key k ′ which is the output of A ′.
Let p be the probability that the PREDICT game outputs 1. We note that A ′ guesses the

correct upd in receivedPmsg with probability 1
q
. Hence, with probability at least p

q
, the adversary A ′

predicts the value of k = k ′ before it is selected at random. Hence, Γ outputs 1 with probability
p
q
.

Since p
q
6 2−Sym.kl, we have p 6 q2−Sym.kl. ⊓⊔
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Theorem 23 (Unforgeability). For any λ,q, T , ε, assuming that DSS is (λ, T ′, ε)-SEF-OTCMA-
secure and H is a (λ, T , ε ′)-collision-resistant hash function, then BARK in Fig. 7 is (λ,q, T , 2(q+

1)ε+ ε ′)-FORGE-secure. We let T ′ = T + TInit+qTSend,Receive where TInit denotes a complexity upper
bound of Setup and Initall and TSend,Receive denotes a complexity upper bound of both Send and
Receive.

Proof. It is quite clear that SC is (λ, T ′, ε)-EF-OTCPA-secure (as defined in Def. 27 in Appendix A)
if and only if DSS is (λ, T ′, ε)-SEF-OTCMA-secure.

We consider an adversary A making a forgery upd = (h, ~ct) which is accepted by P in the
FORGE game. We let n + 1 be the number of components in ~ct. We assume without loss of
generality that upd is accepted, is a forgery, and is a non-trivial forgery (otherwise, we know that
FORGE game returns 0).

P P

t

t
upd ′

upd ′′

upd

no EXPst

Fig. 8: Forgery

We first assume that P successfully received a message upd ′ from P before upd. (See Fig. 8.)

Due to the definition of a forgery, receivedPmsg(t) = sentPmsg(t) for some time t for P when P had

a RATCH(P, send) → upd ′ call. Since the forgery upd is non-trivial, this call starts a ratcheting
period for P with no state exposure. This ratcheting period may either never end, or end with
some RATCH(P, send)→ upd ′′ call.

The RATCH(P, send)→ upd ′ call at time t for P defines some value u and some states stsend,u
P

and st
rec,u
P . During this call, stsend,u

P
is updated with some st ′S generated by uni.Send. Inside st ′S,

there is a sk ′S generated by SC.GenS in uni.Send. This sk ′S will be our signing key of interest. It
comes with a verifying key pk ′S of interest. This pk ′S is put in st ′R and encrypted in the returned
~ct. The RATCH(P, rec, upd ′) call at time t for P decrypts it. Due to the matching status and

correctness, st ′R is well decrypted and stored in some strec,i
′+n′−1

P with i ′+n ′−1 = u. There could
be some sent messages by P between time t and the reception of the forgery upd. This can only
add more receive states. In any case, when upd arrives, the first receive state to be used is strec,iP

with i = u containing pk ′S.
We observe that the signing key of interest sk ′S stays stored in P until it is used and erased by

the RATCH(P, send)→ upd ′′ call. It is unused otherwise. Namely, there is no EXPst revealing it.
Thanks to the structure of the FORGE game, upd ′′ (if any) is released before upd is delivered

to P. Hence, we observe that since upd is a forgery, we have upd 6= upd ′′. Hence, either we have a
collision on H or we have a forgery for SC with our key of interest.

Similarly, if P received no upd ′ before upd, we can do the same with t = 0 and u = 1. We have
a key of interest which is generated by SC.GenS in BARK.Gen for P.

To prove FORGE security, we transform the FORGE game into many EF-OTCPA games (follow-
ing Def. 27) with adversaries Ai. For the ith use of (SC.GenS, SC.GenR), Ai simulates the FORGE
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game except the ith executions of SC.GenS and SC.GenR. Instead, it takes input skR, pkS, pkR in
the EF-OTCPA game. Hence, only skS is missing. The simulation continues until the key skS is
needed. It can only be needed by at most one SC.Enc operation, which can be simulated by a
one-time chosen plaintext attack in the EF-OTCPA game, or by an EXPst call. If such a call occurs,
Ai aborts. Similarly, if after the end of the simulation, it appears that the FORGE game returns
0 or the missing key skS is not the signing key of interest, Ai aborts. What comes out from our
previous discussion is that if FORGE returns 1, then there exists one i such that Ai can output a
forgery in the EF-OTCPA game. Since there are at most 2(q+ 1) such Ai, we can conclude. ⊓⊔

Theorem 24 (KIND Security). For any λ,q, T , ε, assuming that PKC is (λ, T ′, ε)-IND-CCA-
secure and Sym is (λ, T ′, ε ′)-IND-OTCCA-secure, then BARK in Fig. 7 is (λ,q, T , 2q2ε + 2q(q +

1)ε ′)-(Cleak ∧CA
forge ∧CB

forge)-KIND-secure. Here, T
′ = T + TInit + qTSend,Receive where TInit denotes a

complexity upper bound of Setup and Initall and TSend,Receive denotes a complexity upper bound of
both Send and Receive.

Due to Th. 16, Th. 23, and Th. 24, we deduce (Cleak∧CA
trivial forge∧CB

trivial forge)-KIND-security. The

advantage of treating (Cleak ∧CA
forge ∧CB

forge)-KIND-security specifically is that we clearly separate
the required security assumptions for DSS and PKC.

Due to Th. 19, Th. 21, and Th. 24, we deduce (Cleak ∧ Cratchet)-KIND-security.

Proof. It is quite clear that SC is (λ, T ′, ε)-IND-CCA-secure if and only if PKC is (λ, T ′, ε)-IND-CCA-
secure.

We take a KIND game which we denote by Γb. The idea of the following proof is that we will
identify which decryption keys are “critical” for TEST to be indistinguishable, in the sense that
the leakage of any of these keys would allow the adversary to decrypt updtest. We will then apply
the IND-CCA reduction on those critical keys.

Let assume that P is the sending participant of updtest in Γb and that Γb is clean. Let t be the
time for P just after sending updtest. Due to cleanness, P is in a matching status at time t (as he
received no forgery). We assume that time t for P originates from time t for P. By looking at the
sequence of all RATCH calls with P, we further let c be the number of consecutive RATCH(P, send)
until sending updtest. If c = 0, it means that the previous RATCH call with P before sending updtest
was a reception or that there were no previous RATCH call with P. Fig. 9 represents a case with
c = 2.

P P

t

t
upd ′

upd1

upd2

updtest

no rec no EXPst

Fig. 9: A clean TEST

Let us first consider the case that P sends a message upd ′ at time t. This RATCH(P, send) →
upd ′ call at time t defines a (stS, stR) pair using uni.Init in Step 3 of BARK.Send. The stS state
is encrypted in upd ′ and stR remains in the state of P. It is the new st

rec,v

P
element. This element

contains a decryption key which is critical. In the other case, there is no sending at time t. This
means that t = 0, since time t originates from time t. Hence, the value of strec,v

P
(with v = 1,
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actually) is set up at the initialization Initall in a similar way and is critical as well. The st
rec,v

P
state is enough to simulate BARK.Receive hence decrypt all messages from P until updtest.

In both cases, the value stR of strec,v
P

at time t is associated to a value stS of stsend,uP at a time
just before a series of c+ 1 consecutive RATCH(P, send) calls ending with updtest. By definition, if
P has no indirect leakage at time t, it means that there is no EXPst(P) after time t for P and until
updtest is received by P. The reception of any message erases this stR. Due to cleanness, it is the
case that the decryption key in stR remains local and never leaks.

Next, each of the c RATCH(P, send) before sending updtest defines in uni.Send a new pair
(st ′S, st

′
R) of associated states. The decryption state st ′R is encrypted with the previously set en-

cryption state and sent encrypted. Thanks to the previous discussion, those st ′R do not leak either.
The idea of the proof below is that we will sequentially apply the IND-CCA reduction to each

of these keys. Then, we will deduce that the Sym key k selected in onion.Enc to encrypt updtest is
indistinguishable from random. Then, we will use the IND-OTCCA security of Sym to deduce that
ktest is indistinguishable from random.

We define games Γb,P,ℓ,c with integers ℓ and c and a participant P as follows. Essentially, the
parameters (P, ℓ, c) anticipate which RATCH call will send updtest. The game will output ⊥ if this
is not the case. During the game, a register critical will be used. Initially, the game sets critical = 0.
If any EXPst(P) occurs while critical > 0, the game stops and output ⊥.

– In a first phase, the game works exactly like in Γb, until the ℓth sending RATCH call by P is
made in the ℓ > 0 case. Let upd ′ denote the sent message in this call RATCH(P, send)→ upd ′.
We denote by t the time for P right after this call. The game sets critical← c+ 1.
In the ℓ = 0 case, the game just sets t = 0 and critical← c+ 1 and skips the rest of this phase.

– In a second phase, the game continues like in Γb until there is a RATCH(P, rec, upd ′) to receive
upd ′ which outputs acc = true in the ℓ > 0 case.
In the ℓ = 0 case, this phase is also skipped.

– In a third phase, the game continues like in Γb by observing every RATCH call on P. It counts
the number of sending RATCH calls until a receiving RATCH call is made or the game stops.
We denote by updj the jth message in this sequence of RATCH(P, send)→ updj calls.

Every time a message among upd1, . . . , updc+1 is received and accepted by P, the register
critical is decreased by 1.

– In a fourth phase, the game continues like in Γb.
– At the end of the game, if updc+1 is not defined or updtest 6= updc+1, the game outputs ⊥.

Otherwise, the game outputs like in Γb.

Clearly, assuming that the (P, ℓ, c) parameters correctly “anticipated” which RATCH call sends
updtest, the only active modifications of the game are the ones returning ⊥ but they all occur
in cases which would eventually end up with Γb returning ⊥ as well due to non-cleanness. The
changes induce no behavior difference from the point of view of the adversary. Hence, for every
set of random coins $, we have the following property:

– either Γb[$]→ ⊥ and for all (P, ℓ, c) we have Γb,P,ℓ,c[$]→ ⊥;
– or Γb[$] → z ∈ {0, 1}, there exists a unique (P, ℓ, c) (anticipating the right updtest) such that

Γb,P,ℓ,c[$]→ z, and for all (P ′, ℓ ′, c ′) 6= (P, ℓ, c), we have Γb,P ′,ℓ′,c′ [$]→ ⊥.

Hence, Pr[Γb → 1] =
∑

P,ℓ,c Pr[Γb,P,ℓ,c → 1]. Another property of Γb,P,ℓ,c is that no EXPst reveals
any of the critical decryption keys to the adversary.

Next, we define hybrid games Γ ′b,P,ℓ,c,c′ and Γ ′′b,P,ℓ,c,c′ by changing onion.Enc and onion.Dec as
in Fig. 10.

Clearly, for c ′ = 0, we can see that there is no change between Γb,P,ℓ,c and Γ ′b,P,ℓ,c,0.

For c ′ > 0, the game Γ ′b,P,ℓ,c,c′ follows Γ ′′b,P,ℓ,c,c′−1 but for the RATCH(P, send) → updc′ call

and the possible RATCH(P, rec, updc′) call. For the RATCH call sending updc′ , we change the
cti ← SC.Enc(stiS, adi,ki) in Step 7 of onion.Enc as follows:

1: if i = n [and this execution is to compute updc′ ] then
2: pick k∗ ∈ {0, 1}Sym.kl(λ)
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onion.Enc(1λ, hk, st1S, . . . , st
n
S , ad, pt)

in Γ ′b,P,ℓ,c,c′ (resp. Γ ′′b,P,ℓ,c,c′)
1: if sending participant is P then

2: set j such that this execution is to compute
updj (j = ⊥ if none)

3: else

4: j← ⊥
5: end if

6: pick k1, . . . , kn in {0, 1}Sym.kl(λ)

7: k← k1 ⊕ · · · ⊕ kn

8: if j 6= ⊥ and j < c ′ (resp. j 6 c ′) then
9: pick a random pt ′ of same size as pt
10: ctn+1 ← Sym.Enc(k, pt ′)
11: store D[j]← (ctn+1, pt)
12: else

13: ctn+1 ← Sym.Enc(k, pt)
14: end if

15: adn+1 ← ad

16: for i = n down to 1 do

17: adi ← H.Eval(hk, adi+1, cti+1)

18: if i = n and j 6 c ′ then

19: pick k∗ ∈ {0, 1}Sym.kl

20: cti ← SC.Enc(stiS, adi,k
∗)

21: store E[j]← (adi, cti,ki)

22: else

23: cti ← SC.Enc(stiS, adi,ki)

24: end if

25: end for

26: return (ct1, . . . , ctn+1)

onion.Dec(hk, st1R, . . . , st
n
R , ad, ~ct)

in Γ ′b,P,ℓ,c,c′ (resp. Γ ′′b,P,ℓ,c,c′)

1: if receiving participant is P then

2: j← c+ 2− critical

3: else

4: j← ⊥
5: end if

6: if |~ct| 6= n+ 1 then return ⊥
7: parse ~ct = (ct1, . . . , ctn+1)

8: adn+1 ← ad

9: for i = n down to 1 do

10: adi ← H.Eval(hk, adi+1, cti+1)

11: if i = n and j 6= ⊥ and j 6 c ′ then

12: parse E[j] = (ad, ct, k)
13: if (adi, cti) = (ad, ct) then
14: ki ← k

15: else

16: SC.Dec(stiR, adi, cti)→ ki

17: end if

18: else

19: SC.Dec(stiR, adi, cti)→ ki

20: end if

21: if ki = ⊥ then return ⊥
22: end for

23: k← k1 ⊕ · · · ⊕ kn

24: if j 6= ⊥ and j < c ′ (resp. j 6 c ′) then
25: parse D[j] = (ct, pt∗)
26: if ctn+1 = ct then

27: pt← pt∗

28: else

29: pt← Sym.Dec(k, ctn+1)

30: end if

31: else

32: pt← Sym.Dec(k, ctn+1)

33: end if

34: return pt

Fig. 10: New onion in Γ ′b,P,ℓ,c,c′ and Γ ′′b,P,ℓ,c,c′
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3: cti ← SC.Enc(stiS, adi, k
∗)

4: store E[c ′]← (adi, cti, ki)

5: else

6: cti ← SC.Enc(stiS, adi, ki)

7: end if

It only affects i = n, i.e. the SC.Enc using the last sending state. Similarly, we replace SC.Dec(stiR, adi, cti)→
ki in Step 6 of onion.Dec as follows:

1: if i = n and c+ 2− critical = c ′ then

2: parse E[c ′] = (ad, ct, k)
3: if (adi, cti) = (ad, ct) then
4: ki ← k

5: else

6: SC.Dec(stiR, adi, cti)→ ki

7: end if

8: else

9: SC.Dec(stiR, adi, cti)→ ki

10: end if

It only affects i = n, i.e. the SC.Dec using the last receiving state, and critical = c + 2 − c ′, i.e.
the onion.Dec using the critical state stnR associated to the c ′

th update. Hence, this only affects
the RATCH call receiving updc′ . By this change, the game simply bypasses the encryption of kn
in the transmission but makes the adversary still see a ciphertext which encrypts some junk k∗.

The game Γ ′′b,P,ℓ,c,c′ follows Γ ′b,P,ℓ,c,c′ but makes an additional change in the RATCH(P, send)→

updc′ call and the possible reception of updc′ by P. For this call, we change the line ctn+1 ←
Sym.Enc(k, pt) in Step 3 of onion.Enc as follows:

1: if this execution is to compute updc′ then

2: pick a random pt ′ of same size as pt
3: ctn+1 ← Sym.Enc(k, pt ′)
4: store D[c ′]← (ctn+1, pt)
5: else

6: ctn+1 ← Sym.Enc(k, pt)
7: end if

Similarly, in a onion.Dec involving a critical state stnR associated to the c ′
th update, we replace

pt← Sym.Dec(k, ctn+1) in Step 10 of onion.Dec as follows:

1: parse D[c ′] = (ct, pt∗)
2: if ctn+1 = ct and critical = c+ 2− c ′ then

3: pt← pt∗

4: else

5: pt← Sym.Dec(k, ctn+1)

6: end if

By this change, the game simply bypasses the encryption of pt in the transmission but makes the
adversary still see a ciphertext which encrypts some junk pt ′. The main point is that the game no
longer needs to encrypt the c ′

th critical decryption key as encryption is bypassed.
Because the c ′

th critical key needs no encryption and does not leak, it is only used to decrypt.
Hence, the difference between Γ ′′b,P,ℓ,c,c′−1 and Γ ′b,P,ℓ,c,c′ can be simulated by an IND-CCA game on
PKC. Similarly, the difference between Γ ′b,P,ℓ,c,c′ and Γ ′′b,P,ℓ,c,c′ can be simulated by an IND-OTCCA
game on Sym. We have

Pr[Γb,P,ℓ,c → 1] − Pr[Γ ′b,P,ℓ,c,0 → 1] = 0

|Pr[Γ ′′b,P,ℓ,c,c′−1 → 1] − Pr[Γ ′b,P,ℓ,c,c′ → 1]| 6 ε

|Pr[Γ ′b,P,ℓ,c,c′ → 1] − Pr[Γ ′′b,P,ℓ,c,c′ → 1]| 6 ε ′

Hence,
|Pr[Γb,P,ℓ,c → 1] − Pr[Γ ′′b,P,ℓ,c,c → 1]| 6 cε+ (c+ 1)ε ′

In Γ ′′b,P,ℓ,c,c, the value of ktest is also replaced in the encryption. Hence, if it does not leak from
EXPkey, it is actually never used. Γ ′′1,P,ℓ,c,c reveals in TEST this never used value. Γ ′′0,P,ℓ,c,c reveals
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in TEST another never used value. We deduce

Pr[Γ ′′0,P,ℓ,c,c → 1] = Pr[Γ ′′1,P,ℓ,c,c → 1]

Hence,
|Pr[Γ0,P,ℓ,c → 1] − Pr[Γ1,P,ℓ,c → 1]| 6 2cε+ 2(c+ 1)ε ′

We then use Pr[Γb → 1] =
∑

P,ℓ,c Pr[Γb,P,ℓ,c → 1]. Given P, each (ℓ, c) pair maps to a unique
updtest sent by P. Hence, the number of (P, ℓ, c) triplets is bounded by q. Since c 6 q, we obtain

|Pr[Γ0 → 1] = Pr[Γ1 → 1]| 6 2q2ε+ 2q(q+ 1)ε ′

⊓⊔

6 Conclusion

We studied the BARK protocol and its security. For security, we marked three important security
objectives: the BARK protocol should be KIND-secure; the BARK protocol should be resistant to
forgery attacks (FORGE-security), and the BARK protocol should not self-heal after impersonation
(RECOVER-security). By relaxing the cleanness notion in KIND-security, we designed a protocol
based on an IND-CCA-secure cryptosystem and a one-time signature scheme. We used neither
random oracle nor key-update primitives.
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A Used Definitions

Function families and collision-resistant hash functions. A function family H defines a polynomi-
ally bounded algorithm H.Gen(1λ) which generates a key hk (we may denote its length as H.kl) and
a deterministic algorithm H.Eval(hk,m) which takes a key hk and a message m to produce a digest
of fixed length (we may denote it by H.ln). We will need a collision-resistant hash function H. It
should be intractable, given a honestly generated hashing key hk, to find two different messages
m and m ′ such that H.Eval(hk,m) = H.Eval(hk,m ′).

Definition 25 (Collision-resistant hash function). We say that a function family H is (λ, T , ε)-
collision resistant if for any adversary A limited to time complexity T , the probability to win is
bounded by ε.

1: H.Gen(1λ)
$
−→ hk

2: A(hk)
$
−→ (m1,m2)

3: if H.Eval(hk,m1) = H.Eval(hk,m2) and m1 6= m2 then win

Signcryption. Our construction is based on signcryption. Actually, we do not use a strong sign-
cryption scheme as defined by Dodis et al. [8] but rather a naive combination of signature and
encryption. We only want that it encrypts and authenticates at the same time. We take the
following definition for our naive signcryption scheme.

Definition 26 (Signcryption scheme). A signcryption scheme SC consists of four polynomi-

ally bounded algorithms: two key generation algorithms GenS(1
λ)

$
−→ (skS, pkS); and GenR(1

λ)
$
−→
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(skR, pkR); an encryption algorithm Enc(skS, pkR, ad, pt)
$
−→ ct; a deterministic decryption algo-

rithm Dec(skR, pkS, ad, ct)→ pt returning a plaintext or ⊥. The correctness property is that for all
pt and ad,

Pr[Dec(skR, pkS, ad,Enc(skS, pkR, ad, pt)) = pt] = 1

when the keys are generated with Gen.

This notion comes with two security notions.

Definition 27 (EF-OTCPA). A signcryption scheme (λ, T , ε)-resists to existential forgeries under
one-time chosen plaintext attacks (EF-OTCPA) if for any adversary A limited to time complexity
T playing the following game, the probability to win is bounded by ε.

1: GenS(1
λ)

$
−→ (skS, pkS)

2: GenR(1
λ)

$
−→ (skR, pkR)

3: A(skR, pkS, pkR)
$
−→ (st, ad, pt)

4: Enc(skS, pkR, ad, pt)
$
−→ ct

5: A(st, ct)
$
−→ (ad ′, ct ′)

6: if (ad, ct) = (ad ′, ct ′) then abort
7: Dec(skR, pkS, ad

′, ct ′)→ pt ′

8: if pt ′ = ⊥ then abort
9: the adversary wins

Definition 28 (IND-CCA). A signcryption scheme is (λ,q, T , ε)-IND-CCA-secure if for any ad-
versary A limited to q queries and time complexity T , playing the following game, the advantage

Pr[IND-CCAA
0

$
−→ 1] − Pr[IND-CCAA

1
$
−→ 1] is bounded by ε.

Game IND-CCAA
b

1: challenge = ⊥

2: GenS(1
λ)

$
−→ (skS, pkS)

3: GenR(1
λ)

$
−→ (skR, pkR)

4: ACh,Dec(skS, pkS, pkR)
$
−→ b ′

5: return b ′

Oracle Dec(ad, ct)
6: if (ad, ct) = challenge then abort
7: Dec(skR, pkS, ad, ct)→ pt

8: return pt

Oracle Ch(ad, pt)
1: if challenge 6= ⊥ then abort
2: if b = 0 then replace pt by a random message

of same length

3: Enc(skS, pkR, ad, pt)
$
−→ ct

4: challenge← (ad, ct)
5: return ct

Public-key cryptosystem. We define a PKC.

Definition 29 (PKC scheme). A public-key cryptosystem scheme PKC consists of three poly-

nomially bounded algorithms: one key generation algorithm Gen(1λ)
$
−→ (sk, pk); an encryption

algorithm Enc(pk, pt)
$
−→ ct; a deterministic decryption algorithm Dec(sk, ct) → pt returning a

plaintext or ⊥. The correctness property is that for all pt,

Pr[Dec(sk,Enc(pk, pt)) = pt] = 1

when the keys are generated with Gen.

Definition 30 (IND-CCA). A PKC is (λ,q, T , ε)-IND-CCA-secure if for any adversary A limited

to q queries and time complexity T , playing the following game, the advantage Pr[IND-CCAA
0

$
−→

1] − Pr[IND-CCAA
1

$
−→ 1] is bounded by ε.

Game IND-CCAA
b

1: challenge = ⊥

2: Gen(1λ)
$
−→ (sk, pk)

3: ACh,Dec(pk)
$
−→ b ′

4: return b ′

Oracle Dec(ct)

5: if ct = challenge then abort
6: Dec(sk, ct)→ pt

7: return pt

Oracle Ch(pt)

1: if challenge 6= ⊥ then abort
2: if b = 0 then replace pt by a random message

of same length

3: Enc(pk, pt)
$
−→ ct

4: challenge← ct

5: return ct
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Digital signature scheme. We define a DSS.

Definition 31 (DSS scheme). A digital signature scheme DSS consists of three polynomially

bounded algorithms: one key generation algorithm Gen(1λ)
$
−→ (sk, pk) which generates a key pair;

a signing algorithm Sign(sk, x)
$
−→ σ; a deterministic verification algorithm Verify(pk, x,σ) returning

a bit. The correctness property is that for all x,

Pr[Verify(pk, x, Sign(sk, x)) = 1] = 1

when the keys are generated with Gen.

Definition 32 (SEF-OTCMA). A DSS (λ, T , ε)-resists to strong existential forgeries under one-
time chosen message attacks (SEF-OTCMA) if for any adversary A limited to time complexity T

playing the following game, the probability to win is bounded by ε.

1: Gen(1λ)
$
−→ (sk, pk)

2: A(pk)
$
−→ (st, x)

3: Sign(sk, x)
$
−→ σ

4: A(st,σ)
$
−→ x ′,σ ′

5: if (x,σ) = (x ′,σ ′) then abort
6: Verify(pk, x ′,σ ′)→ b

7: if b = 0 then abort
8: the adversary wins

One-time symmetric encryption. We use a symmetric encryption scheme Sym which defines a
key length Sym.kl(λ), a plaintext domain Sym.D(λ), and two polynomially bounded deterministic
algorithms Sym.Enc and Sym.Dec satisfying

Sym.Dec(k, Sym.Enc(k, pt)) = pt

for any key k in {0, 1}Sym.kl and any bitstring pt in Sym.D ⊆ {0, 1}∗. It must satisfy one-time
security.

Definition 33 (One-time IND-OTCCA). A symmetric encryption scheme is (λ, T , ε)-IND-OTCCA-
secure if for any adversary A limited to time complexity T , playing the following game, the advan-

tage Pr[IND-OTCCAA
0

$
−→ 1] − Pr[IND-OTCCAA

1
$
−→ 1] is bounded by ε.

Game IND-OTCCAA
b

1: challenge = ⊥
2: pick k in {0, 1}Sym.kl

3: ACh,Dec()
$
−→ b ′

4: return b ′

Oracle Dec(ct)

5: if ct = challenge then abort
6: return Sym.Dec(k, ct)

Oracle Ch(pt)

1: if challenge 6= ⊥ then abort
2: if b = 0 then replace pt by a random message

of same length
3: Sym.Enc(k, pt)→ ct

4: challenge← ct

5: return ct

KEM. We finally define KEM.

Definition 34 (KEM scheme). A KEM scheme consists of three polynomially bounded algo-

rithms: a key pair generation Gen(1λ)
$
−→ (sk, pk), an encapsulation algorithm Enc(pk)

$
−→ (k, ct),

and a decapsulation algorithm Dec(sk, ct) → k. It is correct if Pr[Dec(sk, ct) = k] = 1 when the
keys are generated with Gen and Enc(pk)→ (k, ct).

This notion comes with a security notion.

Definition 35 (IND-CPA security for KEM). A KEM scheme is (λ, T , ε)-IND-CPA secure if
for any adversary A limited to time complexity T , playing the following game, the advantage

Pr[IND-CPAA
0

$
−→ 1] − Pr[IND-CPAA

1
$
−→ 1] is bounded by ε.

Game IND-CPAA
b
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1: Gen(1λ)
$
−→ (sk, pk)

2: Enc(pk)
$
−→ (k, ct)

3: if b = 0 then replace k by a random key of same length

4: A(pk, ct,k)
$
−→ b ′

5: return b ′

B C
Ptest

forge Forbids More Than Necessary

Let us consider SC.Enc(skS, pkR, pt) = PKC.Enc(pkR, pt) (which does not use skS/pkS), where
PKC is an IND-CCA-secure cryptosystem without the plaintext aware (PA) security. Hence, there
exists an algorithm C(pkR; r) = ct such that (pkR, r,PKC.Dec(skR, ct)) and (pkR, r, random) are
indistinguishable.7 We can show that the uniARK obtained from the onion of Fig. 7 has (Cleak ∧

CPtest

forge)-KIND security. We can consider the following adversary:

1: EXPst(S)→ pkR
2: pick r; C(pkR; r)→ ct

3: RATCH(R, rec, ct)→ true

4: TEST(R)→ K∗

Due to the non-PA security, we do have privacy for the tested key. However, this adversary is
ruled out by CPtest

forge. Hence, this cleanness predicate does forbid more than necessary: we have
KIND security for more attacks than allowed.

C Comparison with Other Protocols

C.1 Comparison with Bellare et al. [2]

Bellare et al. [2] consider uniARK (unidirectional BARK). They consider the KIND security defined
by the game in Fig. 11 (with slightly adapted notations). This game has a single exposure oracle
revealing the state st, the key k, and also the last used coins, but for the sender only. It also allows
multiple TEST queries.

In the KIND game, the restricted flag is set when there is a trivial forgery. (It could be unset by
receiving a genuine upd but we can ignore it for schemes with RECOVER security.) We can easily see
that the cleanness notion required by the TEST queries corresponds to Cleak∧CPtest

trivial forge∧CnoEXP(R).

Game KINDA
b

1: is ← 0; ir ← 0

2: Init(1λ)
$
−→ (stS, stR, z)

3: pick k

4: ks ← k ; kR ← k

5: b ′
$
←− ARATSEND,RATREC,EXP,CHSEND,CHREC(z)

6: return b ′

Oracle EXP

1: if op[is] =“ch” then return ⊥
2: op[is] =“exp”
3: return (r, stS, kS)

Oracle RATSEND

1: pick r; (st ′S, updS, kS)← Send(stS; r)
2: auth[is]← upd; is ← is + 1
3: return upd

Oracle RATREC(upd)

1: (acc, stR,kR)← Receive(stR, upd)
2: if not acc then return false

3: if op[ir] =“exp” then restricted← true

4: if upd = auth[ir] then restricted← false

5: ir ← ir + 1; return true

Oracle CHSEND

1: if op[is] =“exp” then return ⊥
2: op[is]← “ch”

3: if rkey[is] = ⊥ then rkey[is]
$
←− {0, 1}kl

4: if b = 1 then return ks else return rkey[is]

Oracle CHREC

1: if restricted then return kR

2: if op[ir] =“exp” then return ⊥
3: op[ir]← “ch”

4: if rkey[ir] = ⊥ then rkey[ir]
$
←− {0, 1}kl

5: if b = 1 then return kR else return rkey[ir]

Fig. 11: The security game in Bellare et al. [2].

7 As an example, we can start from an IND-CCA-secure PKC0 and add a ciphertext in the public key to
define PKC. PKC.Gen: PKC0.Gen → (sk, pk0); pick x; PKC0.Enc(pk, x) → y; pk ← (pk0,y). Set Enc and
Dec the same in PKC0 and PKC. Then C(pk; r) = y. PKC is also IND-CCA-secure and C has the required
property.
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C.2 Comparison with Poettering-Rösler [16]

Poettering and Rösler [16] have a different way to define correctness. Unfortunately, their definition
is not complete as it takes schemes doing nothing as correct [19]. Indeed, the trivial scheme letting
all states equal to ⊥ and doing nothing is correct (and obviously secure).

The Poettering-Rösler construction allows to generate keys while treating “associated data”
ad at the same time. However, their security notion does not seem to imply authentication of ad
although their proposed protocol does. Like ours, this construction method starts from unidirec-
tional, but their unidirectional scheme is not FORGE-secure as the state of the receiver allows to
forge messages. Another important difference is that their scheme erases the state of the receiver
as soon as the reception of an upd fails, instead of just rejecting it and waiting for a correct one.
This makes their scheme vulnerable to denial-of-services attack.

The scheme construction uses no encryption. It also accumulates many keys in states, but
instead of using an onion encryption, it does many parallel KEM and combines all generated keys
as input to a random oracle. They feed the random oracle with the local history of communication
as well (instead of using a collision-resistant hash function). It uses a KEM with a special additional
property which could be realized with a hierarchical identity-based encryption (HIBE). Instead, we
use a signcryption scheme. Finally, it uses the output of the random oracle to generate a new sk/pk

pair. One of the participants erases sk and keeps pk while the other keeps sk. In our construction,
one participant generates the pair, sends sk to the other, and erases it.

Game KINDA

b

1: for P ∈ {A,B} do

2: sP, rP ← 0
3: ⊲ number of sent and received messages
4: eP ← 0
5: ⊲ eP: number of in-sync received messages
6: EPP[·]←⊥ ⊲ EPP[s]: value of eP at the sth send
7: E⊢

P,E⊣

P ← 0

8: ⊲ E⊢

P: number of in-sync sent acked by P

9: ⊲ E⊣

P ← 0: number of in-sync sent messages
10: adcP[·]←⊥ ⊲ list of sent (ad, upd)
11: isP ← true ⊲ isP says if P is in-sync
12: kP[·]←⊥, XPP ← ∅ ⊲ list of s during EXPst(P)
13: TRP ← ∅ ⊲ list of forbidden TEST(P, . . .)
14: CHP ← ∅ ⊲ list of TEST(P, . . .) made
15: end for

16: Init(1λ)
$
−→ (stA, stB)

17: b′ ←ARATSEND,RATREC,EXPst,EXTkey,TEST()
18: if TRA ∩ CHA 6= ∅ or TRB ∩ CHB 6= ∅ then abort
19: if TRB ∩ CHB 6= ∅ or TRB ∩ CHB 6= ∅ then abort
20: return b′

Oracle RATSEND(P, ad)
1: if SP =⊥ then abort
2: (stP,k, upd)← Send(stP, ad)
3: if isP then

4: adcP[sP]← (ad, upd)
5: EPP[sP]← eP

6: E⊣

P ← E⊣

P + 1
7: end if

8: kP[P,eP,sP]← k
9: sP ← sP + 1
10: return upd

Oracle EXPkey(P, role,e,s)
1: if kP[role,e,s] ∈ {⊥,⋄} then abort ⊲ not allowed if kP is not defined or

is available from kP

2: k← kP[role,e,s]
3: kP[role,e,s]← ⋄
4: return k

Oracle RATREC(P, ad, upd)
1: if SP =⊥ then abort
2: if isP ∧ adcP[rP] 6= (ad, upd) then ⊲ first forgery
3: isP ← false
4: if rP ∈ XPP then ⊲ trivial forgery
5: TRP ← TRP ∪ {send}× {0, 1, . . .}× {sP,sP + 1, . . .}
6: TRP ← TRP ∪ {rec}× {0, 1, . . .}× {rP, rP + 1, . . .}
7: end if

8: end if

9: if isP then

10: E⊢

P ← EPP[rP]
11: eP ← eP + 1
12: end if

13: (stP,k)← Receive(stP, ad, upd)
14: if stP =⊥ then return ⊥
15: if isP then k← ⋄ ⊲ k is already available on P
16: kP[rec,E⊢

P, rP]← k
17: rP ← rP + 1
18: return

Oracle EXPst(P)
1: TRP ← TRP ∪ {rec}× {E⊢

P, . . . ,E⊣

P}× {rP, rP + 1, . . .}
2: if isP then

3: XPP ← XPP ∪ {sP}
4: TRP ← TRP ∪ {send}× {E⊢

P, . . . ,E⊣

P}× {rP, rP + 1, . . .}
5: end if

6: return stP

Oracle TEST(P, role,e,s)
1: if kP[role,e,s] ∈ {⊥,⋄} then abort
2: k← kP[role,e,s]
3: if b = 0 then k← random
4: kP[role,e,s]← ⋄
5: CHP ← CHP ∪ {(role,e,s)}
6: return k

Fig. 12: The KIND game of Poettering-Rösler [16].

We recall the KIND game of Poettering-Rösler [16] in Fig. 12 (with slightly adapted notations).
The adversary can make several TEST queries. Furthermore, TEST(P) queries are not necessarily
on the last active kP but can be on any previously generated kP value. For this reason, TEST
takes as input the index (a triplet (role, e, s)) of the tested key. This does not change the security
notion.
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The KIND game keeps a flag isP stating if P is “in-sync”. It means that P did not receive
any forgery. This is a bit weaker than our matching status. However, assuming that a protocol is
such that participants who received a forgery are no longer able to send valid messages to their
counterparts, in-sync is equivalent to the matching status. As we can see, a key kP produced during
a reception is erased if P is in-sync, because it is available on the P side from where it could be
tested. This is one way to rule out some trivial attacks.

The other way is to mark a TEST as forbidden in a TR list. We can see in the KIND game
(Step 2–8 in RATREC) that if P receives a trivial forgery (this is deduced by rP ∈ XPP), then no

further TEST(P) is allowed. This means that CPtest

trivial forge is included in the cleanness predicate of
this KIND game.

We can easily check that Cleak is included in the cleanness predicate. Hence, this KIND game
looks equivalent to ours with cleanness predicate Cleak ∧ CPtest

trivial forge.

This security notion does not seem to imply FORGE security.

C.3 Comparison with Jaeger-Stepanovs [11]

We recall the AEAC game of Jaeger-Stepanovs [11] in Fig. 13 (with slightly adapted notations). The
RATSEND oracle implements the left-or-right challenge at the same time. Hence, the adversary can
make several challenges. Additionally, the RATREC oracle implements a decrypt-or-silent oracle
which leaks b in the case of a non-trivial forgery. (The oracle always decrypts after a trivial
forgery and never decrypts if no forgery. Its behavior changes only in the presence of a non-trivial
forgery and with no previous trivial forgery.) Hence, FORGE security is implied by AEAC security.
A novelty here is that the adversary can get the next random coins to be used: zP for sending
or ηP for receiving. (Bellare et al. [2] allowed to expose the last coins.) This is managed by all
instructions in gray in Fig. 13. Extracting these coins must be followed by the appropriate oracle
query (enforced by the nextop state).

We cannot challenge P after P received a trivial forgery (due to the restrictedP flag). Hence, we
have some kind of CPtest

trivial forge condition for cleanness. Since Cleak is necessary, we can say that this

model includes the Cleak ∧ CPtest

trivial forge predicate.

Game AEACA

b

1: for P ∈ {A,B} do

2: sP, rP ← 0
3: restrictedP ← false ⊲ P received a trivial forgery
4: forgeP[·]← nontrivial ⊲ forgeP[r] says if rth reception could be a trivial

forgery
5: XP ← 0 ⊲ challenge forbidden if rP < XP because some EXPst(P)

occurred
6: pick zP,ηP

7: end for

8: (stA, stB)← Init(1λ)
9: b′ ←ARATSEND,RATREC,EXPst()
10: return b′

Oracle RATSEND(P, pt0, pt1, ad)
1: if nextop 6∈ {(P, send),⊥} then return ⊥
2: if |pt0| 6= |pt1| then return ⊥
3: if (rP < XP ∨ restrictedP ∨ chP[sP + 1] = forbidden) ∧ pt0 6= pt1 then

return ⊥
4: (stP, ct)← Send(stP, ad, ptb;zP)
5: nextop←⊥, sP ← sP + 1, pick zP

6: if ¬restrictedP then ctableP[sP]← (ct, ad)
7: ⊲ register ct if P had no trivial forgery
8: if pt0 6= pt1 then chP[sP]← done
9: ⊲ challenge was done for the sth send
10: return ct

Oracle RATREC(P, ct, ad)
1: if nextop 6∈ {(P, rec),⊥} then return ⊥
2: (stP, pt)← Receive(stP, ad, ct;ηP)
3: nextop←⊥, pick ηP

4: if pt = ⊥ then return ⊥
5: rP ← rP + 1
6: if forgeP[rP] = trivial∧ (ct, ad) 6= ctableP[rP] then restrictedP ← true ⊲

trivial forgery
7: if restrictedP ∨ (b = 0∧ (ct, ad) 6= ctableP[rP]) then return pt ⊲ return

pt only after trivial forgeries
8: ⊲ (b = 0 case) return pt for a non-trivial forgery
9: return ⊥

Oracle EXPst(P, coins)
1: if nextop 6= ⊥ then return ⊥
2: if restrictedP then return (stP,zP,ηP)
3: if ∃i : rP < i 6 sP ∧ chP[i] = done then return ⊥

4: ⊲ challenge from P was done but not received yet
5: forgeP[sP + 1]← trivial, z,η←⊥, XP ← sP + 1
6: if coins = send then

7: nextop← (P, send), z← zP, XP ← sP + 2
8: forgeP[sP + 1]← trivial, chP[sP + 2]← forbidden
9: else if coins = rec then

10: nextop← (P, rec), η← ηP

11: end if

12: return (stP,z,η)

Fig. 13: The AEAC game of Jaeger-Stepanovs [11].

31



D Errata

Due to some email problems, some last-minute changes in the paper did not make it through the
proceedings version [9]. We list them here:

– Th. 20 [9] needs the assumption Sym.kl = Ω(λ) for PREDICT-security.
(In the current version, Th. 22 is the analog version with exact security instead of asymptotic.)

– In Fig.6 [9], onion.Enc should have 1λ as input and pass it to Sym.kl.
(See Fig. 7 in the current version.)

– In Fig.6 [9], onion.Enc and onion.Dec should hash n in adi with the instruction
adi ← H.Eval(hk.adi+1,n, cti+1)

(See Fig. 7 in the current version.)

32


