
Classical Proofs for the Quantum Collapsing
Property of Classical Hash Functions?

Serge Fehr

Centrum Wiskunde & Informatica – CWI (serge.fehr@cwi.nl), and
Mathematical Institute, Leiden University, The Netherlands

Abstract. Hash functions are of fundamental importance in theoretical
and in practical cryptography, and with the threat of quantum computers
possibly emerging in the future, it is an urgent objective to understand
the security of hash functions in the light of potential future quantum
attacks. To this end, we reconsider the collapsing property of hash func-
tions, as introduced by Unruh, which replaces the notion of collision
resistance when considering quantum attacks. Our contribution is a for-
malism and a framework that offers significantly simpler proofs for the
collapsing property of hash functions. With our framework, we can prove
the collapsing property for hash domain extension constructions entirely
by means of decomposing the iteration function into suitable elementary
composition operations. In particular, given our framework, one can ar-
gue purely classically about the quantum-security of hash functions; this
is in contrast to previous proofs which are in terms of sophisticated
quantum-information-theoretic and quantum-algorithmic reasoning.

1 Introduction

Background. Given the threat of possible future quantum computing capabil-
ities, it is an important and urgent objective to evaluate the security of classical
cryptographic schemes against quantum attacks. There are different places where
security can break down when using quantum computing techniques to attack a
cryptographic scheme that was designed to withstand standard classical attacks.
The most prominent place is the computational hardness assumption, which is
typically well justified to hold for classical models of computation but may be
false with respect to quantum computation. Another place is the security proof,
which may use techniques that fail to work in the context of a quantum attacker,
like proofs that rely on rewinding techniques. Finally, another place where things
can go wrong is the security definition, which may not capture anymore what it
is supposed to capture when allowing quantum attacks.

An example of the latter is the computational binding property of a commit-
ment scheme. Our intuitive understanding of what a commitment should achieve
is that once a commitment is “on the table” there should be no freedom left for
the (computationally bounded) committer in choosing the value to which he can
open the commitment. The formal definition of the binding property expresses
this requirement by demanding that no (computationally bounded) dishonest

? c©IACR 2018. This article is the final version submitted by the author to the IACR
and to Springer-Verlag in September 2018. The published version is available from
the proceedings of Theory of Cryptography Conference – TCC 2018.

committer should be able to open a commitment in two distinct ways. While
for classical committers this captures precisely what we want, it fails to do so
for quantum committers. Indeed, a quantum committer can potentially open a
commitment to one value that he freely chooses after he has put the commitment
“on the table”, without contradicting the requirement of being unable to pro-
duce two distinct openings; this is because producing the opening information
may involve a destructive quantum measurement that can only be applied once.

We stress that being able to open a given commitment to an arbitrary value
that one can freely choose renders a commitment scheme useless in essentially all
applications. So, when considering the security of commitment schemes against
quantum attacks, it is essential that one uses a stronger notion of security than
the standard computational binding property extended to quantum attackers.

A similar and related example is the collision resistance of hash functions.
Also here, in the presence of a quantum attacker, the standard formal require-
ment that it should be computationally hard to produce two colliding inputs
does not capture our intuitive understanding of a hash value as acting as a “fin-
gerprint” that removes any freedom in the message to which it fits. As such, also
here, when considering security against quantum attacks, the standard security
notion, i.e. collision resistance, needs to be replaced by something stronger.

The Collapsing Property. Unruh [5] proposed the notion of collapsing; in
the context of commitment schemes as a counterpart for the computational
binding property when considering quantum attacks, and in the context of hash
functions as a counterpart for collision resistance. In essence, for hash functions,
the collapsing property requires that for any computationally bounded adversary
that outpus a hash value together with a quantum superposition of corresponding
preimages, he should not be able to tell if the superposition gets measured or not.
The details of the notion, and why it indeed restores the right security properties
when considering quantum attacks, are not so important for the discussion here.
In terms of achievability, Unruh proved that the random oracle is collapsing as
a hash function, and thus that simple hash-function-based commitment schemes
are collapsing in the random oracle model. In the context of hash functions,
he proved in a follow-up work [6] that the Merkle-Damg̊ard construction for
hash functions is collapsing (under some mild restriction on the padding) if the
underlying compression function is. Given that the random oracle is collapsing,
this in particular implies that the Merkle-Damg̊ard construction is collapsing in
the random oracle model, and thus gives heuristic evidence that certain practical
hash functions like SHA-2 are collapsing. Recently, Czajkowski et al. [2] showed
a similar result for the Sponge construction [1], which for instance underlies the
hash function standard SHA-3: the Sponge construction is collapsing if both
parts of the underlying round function, i.e., the so-called inner and outer parts,
are collapsing, and if the inner part is “zero-preimage resistant”.1

1 This again implies security in the random oracle model, but a subtle issue here is that
if the round function is efficiently invertible then the assumptions on the two parts are
not satisfied. Hence, this is not so strong evidence yet that e.g. SHA-3 is collapsing.

2

Our Contribution. In this work, we introduce a new formalism and a new
framework for arguing about the collapsing property of (hash) functions. The
advantage of our new approach is that it allows for significantly simper proofs
compared to the previous work above.

At the heart of our new formalism is a pseudo-metric that abstracts away
computational aspects, and which allows for an “algebraic” formulation of the
collapsing property. This in turn allows for simple proofs of basic composability
results for the collapsing property. Some of those have already been claimed and
proven in the work mentioned above; however, our proofs are much simpler.
For instance, proving that the collapsing property is preserved under nested
composition takes 2 full pages in [5] (see Lemma 27 in the full version of [5]), with
various quantum circuits depicted; our proof (see Lemma 5) is a few lines. The
main reason for this difference lies in the “algebraic” nature of our formulation,
compared to the “algorithmic” approach used in prior work. This means that
instead of specifying quantum reduction algorithms and arguing that they “do
the job”, our proofs are almost entirely by means of term-manipulations, where
we manipulate the terms of interest by using a small set of basic rules that come
along with our formalism. This not only results in very compact proofs, these
proofs are also mathematically very clean in that in every term-manipulation
step we can — and typically do — specify what basic rule was used.

These composability results for the collapsing property, together with a cou-
ple of basic features when “disallowing” certain inputs, form what we call our
framework. With this framework, proving the collapsing property of hash domain
extensions boils down to decomposing the iteration function under consideration
into a few simple composition operations.

We demonstrate this new proof methodology on various examples. Applied
to Merkle-Damg̊ard, we obtain a proof of the collapsing property without any
restriction on the padding as in [6], but with the additional assumption on the
compression function to be “iv-preimage resistant” (which is satisfied in the ran-
dom oracle model). We can also recover Unruh’s original result, which requires
a restriction on the padding but avoids the “iv-preimage resistance”. By adding
a counter and “salt” to the compression function but otherwise using the same
kind of reasoning, we get a proof of the collapsing property of HAIFA [3], as pro-
posed by Biham and Dunkelman. Applied to the Sponge construction, we recover
the result from [2] up to an insignificant difference in the exact parameter.

The distinguishing feature of our proofs lies in their conceptual simplicity
and low technical complexity. Our proofs are entirely in terms of decomposing
the iteration function into elementary composition operations that are ensured
to preserve the collapsing property. In particular, our proofs are purely classical.
In contrast, the proofs provided in [6, 2] are in terms of lengthy hybrid arguments
that consider sequences of “quantum games” and in terms of quantum informa-
tion theoretic arguments and quantum reduction algorithms for reasoning that
every game in the sequence behaves similarly to its predecessor.

As such, even though the collapsing property of HAIFA is new, we consider
our main contribution more in terms of offering a simple understanding of why

3

certain hash function are collapsing, and in providing a tool to easily check if
similar results also hold for other hash functions (as we demonstrate on HAIFA).

The Framework in Action. To give a better idea, we illustrate here on the
various examples how our framework enables to argue for the collapsing prop-
erty by means of decomposing the iteration function into suitable elementary
decomposition operations, and thus in particular by means of purely classical
reasoning. We challenge the reader to compare our proofs with those in [6, 2].

Merkle-Damg̊ard. The Merkle-Damg̊ard hash of a message x1, . . . , xi, con-
sisting of i blocks, is given by IHi(x1, . . . , xi), where IHi is iteratively defined as

IHi(x1, . . . , xi) := f
(
IHi−1(x1, . . . , xi−1), xi

)
with IH0() = iv. The round function f is assumed to be collapsing. We observe
that IHi is the nested composition of f with the concurrent composition of IHi−1

with the identity xi 7→ xi. Our framework ensures that these compositions pre-
serve the collapsing property; thus, by recursive application, given that IH0 is
trivially collapsing, we get that IHL is collapsing for every fixed L, and hence
the Merkle-Damg̊ard hash is collapsing when restricted to inputs of fixed size.

In order to deal with messages of variable size, we allow in the definition of
IHi(x1, . . . , xi) the left-most message blocks to be “empty”, i.e., x1 up to some
xj may be ⊥, and we set IHi(⊥, . . . ,⊥) := iv (for any i) and keep to recursive
definition above if xi 6= ⊥. This extended version of IHi is then the disjoint union
of the trivial function {⊥i} → {iv} and the restriction of IHi to inputs different
than ⊥i, if we “disallow” non-⊥i inputs that are mapped to iv.2 Thus, as long
as we “disallow” such inputs (which is something our framework can capture),
we still have that the recursive definition of IHi decomposes into composition
operations that are covered by our framework, and thus we can conclude that
IHL is collapsing for every fixed L, but now for inputs that may have ⊥-prefixes,
i.e., variable length. Finally, by the assumed “iv-preimage resistant” of f , inputs
(6= ⊥i) that IHi maps to iv are hard to find, and therefore “disallowing” those
has no noticeable effect.

HAIFA. The HAFIA hash function is a variant of Merkle-Damg̊ard that in-
cludes a counter in the iteration function, and it uses a “salt” (which we though
treat as ordinary input). Formally,

IHi(salt, x1, . . . , xi) := f
(
salt, IHi−1(salt, x1, . . . , xi−1), xi, i

)
.

Here, we can reason exactly as above, except that now the iteration function is
a nested composition of the function f(·, ·, ·, i), which is collapsing if f is, with
the parallel composition of the projection function (salt, x1, . . . , xi) 7→ salt with
the concurrent composition of IHi−1 with the identity function xi 7→ xi. All

2 The latter is because (our notion of) the disjoint union of two functions requires not
only the two respective domains but also the two respective ranges to be disjoint.

4

these composition operations are covered by our framework, and so the collaps-
ing property follows as for the original Merkle-Damg̊ard construction, assuming
again that f is “iv-preimage resistance” in case of arbitrary length messages.

Sponge. The Sponge hash3 of a message x1, . . . , xi of i blocks is given by
S0
i (x1, . . . , xi), where Sbi is iteratively defined as

Sbi (x1, . . . , xi) := f b
(
S0
i−1(x1, . . . , xi−1)⊕ xi, S1

i−1(x1, . . . , xi−1)
)

for b ∈ {0, 1}, with S0
0() = 0 = S1

0(), and it is assumed that both components of
the round function f = (f0, f1) are collapsing. Here, Sbi is the nested composition
of f b with a function that is yet another composition of the functions S0

i−1 and
S1
i−1, and our framework immediately ensures that S0

i and S1
i stay collapsing as

long as S1
i−1 is. Thus, again, the iteration function decomposes into composition

operations that are ensured to preserve the collapsing property, and so by recur-
sive application we get that S1

1 , . . . , S
1
L−1 and eventually S0

L are collapsing. The

only difference to above is that here, we have to set Sbi (⊥, . . . ,⊥) := Sb0() = 0
to ensure that S0

L acts correctly on messages of smaller block size, i.e., that
Sbj (x1, . . . , xj) = SbL(⊥, . . . ,⊥, x1, . . . , xj). As a consequence, for the recursive

reasoning, to have S1
i be the disjoint union of the trivial function {⊥i} → {0}

and the restriction of S1
i to non-⊥i inputs, we need to “disallow” inputs (6= ⊥i)

which S1
i maps to 0; this has no noticeable effect though if f1 is “zero-preimage

resistant”.

2 Preliminaries

2.1 Basic Quantum Formalism

Knowledge of basic concepts of quantum information science is necessary in order
to prove “correctness” of our framework (but not to apply the framework); we
fix here some notation and conventions, which both are not fully standard.

Typically, the state of a quantum system with state space H is given by a
density matrix ρ, i.e., by a trace-1 positive-semidefinite matrix that acts on H,
and a quantum operation is expressed by a CPTP map T which maps a state ρ to
a new state T(ρ) over a possibly different state space. In this work, for technical
reasons, we allow states to be subnormalized, and we consider the more general
notion of completely-positive trace-nonincreasing (CPTN) maps, which are of
the form T =

∑
i Ti with Ti : ρ 7→ TiρT

†
i and

∑
i T
†
i Ti ≤ I (the identity on H).4

For the purpose of this work, a measurement is a CPTN map P =
∑
i Pi

with Pi : ρ 7→ PiρP
†
i as above, but with the restriction that the Pi’s are mutually

orthogonal Hermitian projections on H. If P is in fact a CPTP map, i.e.,
∑
i Pi =

3 For simplicity, we consider one block of output only; multiple output blocks are
argued by means of composition too.

4 This can be understood in that quantum operations may “abort”, and the trace
tr(ρ) ≤ 1 expresses the probability that the process that produces ρ does not abort.

5

I, then we speak of a total measurement, and otherwise of a partial measurement.
The individual “components” Pi of such a (partial or total) measurement are
sometimes also referred to as measurements with post-selection.

We write Pr[P(ρ) = i] for tr ◦ Pi(ρ) = tr(PiρPi), i.e., the probability that
“outcome i is observed”. An elementary property of any (projective, as consid-
ered here) measurement P, is Winter’s “gentle-measurement lemma” [8], which
captures that the measurement does not disturb the state much if the outcome
is almost certain.5 Formally, for any state ρ and any β ≥ 0:

∃ i : Pr[P(ρ)= i] ≥ tr(ρ)− β =⇒ δ
(
P(ρ), ρ

)
≤
√
β + β . (1)

where δ is the trace distance, given by δ(ρ, σ) := 1
2‖ρ− σ‖tr.

Different quantum systems are identified by means of “labels” X,Y etc., and
we write ρX for the state of system X and HX for its state space, etc. For a
CPTN map T, we may write TX to emphasize that it acts on system X, and
TX→X′ to additionally emphasize that it maps into system X ′. For simplicity,
we tend to write ρT(X)Y rather than

(
TX ⊗ IY

)
(ρXY).

For any state space we consider a fixed orthonormal basis, referred to as the
computational basis. For state spaces HX and HY with respective computational
bases {|x〉}x∈X and {|y〉}y∈Y , we associate to any function f : X → Y the
CPTP “evaluation” map E[f]X→XY : ρ 7→ V [f] ρ V [f]† given by the isometry
V [f] : |x〉 7→ |x〉|f(x)〉. Here, we also write ρXf(X)Z instead of ρE[f](X)Z .6 We
note that E[f] admits a left inverse, i.e., a CPTP map Einv[f]XY→X such that
Einv[f] ◦ E[f] = IX .

The composition trY ◦E[f]X→XY of a CPTP evaluation map with the partial
trace trY equals the measurement M[f] =

∑
yM[f = y], where M[f = y] is the

CPTN map given by the projection into the span of {|x〉 | f(x)=y}. To simplify
notation, we may also write ρXfZ instead of ρM[f](X)Z , and, similarly, ρXf=yZ
instead of ρM[f=y](X)Z .

The usual “measurement in the computational basis”, given by the projec-
tions |x〉〈x|, is simply denoted by M. For lighter notation, we often use (·) instead
of M and write ρX̄Y instead of ρM(X)Y . A quantum system X of a (possibly)
joint state ρXY is called classical if ρX̄Y = ρXY .

When the state is clear from the context, then we may do the “arithmetic”
on the labels. For instance, using this convention, we can then say that any state
ρXZ satisfies

X̄f(X)Z = X̄f(X̄)Z = X̄f(X̄)Z = X̄f(X)Z , (2)

to express that MX and E[f]X commute, and that f(X̄) is classical given that
X̄ is. Similarly, we may then write Pr

[
M[f](X) = y

]
= Pr

[
M
(
f(X)

)
= y

]
=

Pr
[
f(X̄) = y

]
, which may be interpreted differently but coincide.

5 This bound can e.g. be derived from [9]. [2] claims the bound
√
β, but their proof has

a small flaw; fixing it gives
√

2β instead (but only works for total measurements).
6 A subtle issue with this notation is that trY (ρXf(X)Z) 6= ρXZ , but rather = ρM[f](X)Z

(see below).

6

2.2 Randomized Functions and States, and their Complexity

In Appendix A, we offer a formal discussion of randomized functions, randomized
CPTN maps, and randomized quantum states. As one would expect, these are
simply functions, CPTN maps and states that depend on some global random-
ness r, which is randomly chosen once and for all from some finite set R.

Informally, when considering randomized functions, one can make the fol-
lowing distinction. In one case, r is given as input to the function f (or to the
algorithm that computes f , if you prefer); one then typically speaks of keyed or
seeded functions. In the other case, f makes queries to an oracle that computes
every reply dependent on r, in which case one refers to f as an oracle function.
A similar distinction can be made for randomized CPTN maps, and thus for
randomized states, which are simply randomized CPTN maps that act on the
trivial state space C.

Formally, the way the two variants differ is by the way complexity is captured:
for keyed functions one consider the computational complexity of computing the
function whereas for oracle functions one considers the query complexity.

Our results apply to both variants in that we consider an abstract complexity
measure c that assigns to every randomized function f a non-negative integer
c(f), also denoted cf , and similarly for randomized CPTN maps, and which
satisfies natural properties that one would expect from a complexity measure.
The details of this are given in Appendix B. The computational complexity and
the query complexity are then just specific instantiations.

2.3 The Distinguishing Advantage

The following parameterized indistinguishability measure, and our understand-
ing of it as an abstract metric, is one of the central notions of our formalism.

Definition 1. For randomized states ρX and ρY (with randomness r) over a
common Hilbert space HX = HY , and for any non-negative integer q, we set

δq
(
ρX , ρY

)
:= sup

T

1

|R|
∑
r

∣∣Pr
[
M
(
T(X)

)
=0
]
− Pr

[
M
(
T(Y)

)
=0
]∣∣

= sup
T

1

|R|
∑
r

δ
(
M ◦ T(ρX),M ◦ T(ρY)

)
,

where the supremum is over all randomized CPTN maps T (with randomness r)
that map into the two-dimensional qubit state space and have complexity c(T) ≤ q
and, by convention, M is the measurement in the computational basis.

Following the convention of doing the “arithmetic” on the labels, we typically
write δq(X,Y) instead of δq

(
ρX , ρY

)
. Also, we write δq(X,Y |Z) as a short hand

for δq
(
ρXZ , ρY Z

)
.

We emphasize that δq is a pseudometric: it is non-negative, symmetric, and
satisfies triangle inequality, but it may potentially vanish for non-identical states.

7

Furthermore, δq is upper bounded by the trace distance δ, and it coincides with
δ in case q = ∞, i.e., there is no restriction on c(T). Finally, δq inherits several
properties from the ordinary trace distance, which can easily be verified. For
instance, it is monotone under randomized CPTN maps as

δq
(
T(X),T(Y)

)
≤ δq+c(T)(X,Y) ,

and for any randomized CPTN map T =
∑
i Ti, we have subadditivity as

δq
(
T(X),T(Y)

)
≤
∑
i

δq
(
Ti(X),Ti(Y)

)
.

To simplify terminology, from now on we drop on the word “randomized” and
take it as understood that functions, CPTN maps and states may be randomized,
either in the form of keyed functions or as oracle functions, etc.

3 The Collapsing Property

We state here (a slight variation of) the definition of the collapsing property
of functions, as proposed by Unruh [5], but using the formalism introduced
above. In Section 3.2 we then discuss the straightforward extension to partial
functions, which will turn out to be useful, and in Section 3.3 we show that the
collapsing property behaves nicely under various composition operations. These
composability results are all rather natural, and — with our formalism! — have
simple short proofs. All together, this section then stands as “the framework”
that we propose for arguing about the collapsing property of hash functions.

3.1 The Definition

The original formulation of the collapsing property for a function h is by means
of two “games”, where an “adversary” produces a (normalized) state ρXYE of
a certain form, namely Y must be classical and equal to h(X), and then in one
game X is measured in the computation basis whereas in the other game it is
left untouched instead, and the definition requires that it should be hard for any
“distinguisher” to distinguish between the two games.

As for the notion of collision resistance, the collapsing property is meaningful
only for randomized functions h.7 In case of a keyed variant of such a function,
one can aim for conditional results that state that h is collapsing (against compu-
tationally bounded adversaries) under some computational hardness assumption.
In case of an oracle function and aiming for unconditional results, there is no
exploitable effect in restricting the computational power of the parties, as long
as the query complexity is limited. Our approach of using an abstract complexity
notion allows us to cover both these settings simultaneously.

7 See the discussion in Appendix C for an exception to the rule.

8

Our formal definition of the collapsing property is given below. Compared
to the original definition by Unruh (which comes in a couple of different flavors,
which we discuss in Appendix C), we use a somewhat different terminology and
formalism. For instance we do not explicitly speak of “games”, and instead of
quantifying over the possible adversaries we quantify over the states that may
possibly be prepared by an adversary, and the quantification over the distin-
guishers is absorbed into the pseudometric δq. These modifications to the math-
ematical language have obviously no effect on the notion. There are a few more
differences compared to the definition proposed by Unruh, but they all have no
more than a small quantitative effect, as we discuss below.

Definition 2. A function h : X → Y is called ε(q)-collapsing if

cAdv[h](q) := sup
ρXYE

δq
(
X, X̄ | Ȳ E

)
≤ ε(q)

for all q, where the supremum is over all states8 ρXYE = ρXh(X)E with complex-
ity c(ρXYE) ≤ q. The measure cAdv[h] is called the collapsing advantage of h.

Beyond the change in mathematical language, another difference is that
in the original definition the system Y of the state ρXYE , as produced by
the adversary, is required to be classical, whereas in Definition 2 we allow
it to be non-classical but then “make it classical” by measuring it; this is
obviously equivalent (given that measuring has zero complexity). A slightly
more substantial difference is that we allow the state ρXYE to be subnormal-
ized; i.e., we allow the adversary to abort. However, the collapsing advantage
δq
(
X, X̄ | Ȳ E

)
of any subnormalized state ρXYE is the same as of the normalized

state ρ̃XYE := ρXYE + (1− tr(ρXYE))|x◦〉〈x◦| ⊗ |h(x◦)〉〈h(x◦)| ⊗ |0〉〈0| for an ar-
bitrary choice of x◦ ∈ X on which h is defined. Since c(ρ̃XYE) ≤ c(ρXYE)+ c(h),
this has only a small quantitative effect that is insignificant if c(h) is insignificant
compared to q. In other words, we can easily transform an adversary that aborts
into one that does not abort but outputs x◦ and y◦ = h(x◦) instead.

Finally, in the original definition, the complexity of the adversary and the
distinguisher together is bounded (by q), whereas we bound the individual com-
plexities (both by q). This is merely for simplicity, and has only a factor-2 quan-
titative effect.

3.2 Partial versus Total Functions

In Definition 2, we implicitly considered the function h : X → Y to be a total
function, i.e., a function that is defined on its entire domain X . However, it will
be useful to extend the definition to partial functions, which are defined only
on a subset Xeff ⊆ X of the domain.9 In the context of randomized functions,

8 We recall that the requirement ρXY E = ρXh(X)E is a shorthand for asking ρXY E to
be equal to a state obtained by applying E[h] to system X.

9 This may be understood in that the computation of h “fails” on inputs not in Xeff.

9

as considered here, we allow Xeff to depend on the global randomness r; this is
what distinguishes such a partial function from a total function with a smaller
domain, since the domain X of a function is declared fixed and independent of r.

Definition 2 applies directly to such partial functions as well, given that the
definition of the evaluation map E[h] is naturally extended to partial functions
h by having the defining operator V [h] map |x〉 to 0 for any x 6∈ Xeff. The effect
of this is that the requirement ρXYE = ρXh(X)E enforces X to contain no inputs
from outside of Xeff. Hence, considering partial functions in Definition 2 serves
as a convenient way to “disallow” certain inputs.

Formally, consider a function h : X → Y (which may be partial but let us
think of it as a total function for now), and let π : X → {0, 1} be a predicate,
which will always be understood to be a total function. Then, we define h|π to
be the partial function h|π : X → Y that is undefined for x ∈ X with π(x) = 0,
and that coincides with h for the remaining x ∈ X . The collapsing advantage
of h|π then coincides with the collapsing advantage of h modified in that the
quantification over ρXYE is restricted to states for which Pr[π(X̄)=0] = 0.

Below, in Lemma 1 and 2, we show how cAdv[h] and cAdv[h|π] relate to each
other. Lemma 1 follows trivially from the above observation, i.e., that ρXYE =
ρXh|π(X)E implies ρXYE = ρXh(X)E .

Lemma 1. If h is ε(q)-collapsing then so is h|π, i.e., cAdv[h|π] ≤ cAdv[h].

Applied to h of the form h|τ , and noting that (h|τ)|π = h|π∧τ , we get the
following, which captures that disallowing more inputs can only decrease the
collapsing advantage.

Corollary 1. For any predicates π and τ , it holds that cAdv[h|π∧τ] ≤ cAdv[h|τ].
In particular, if π implies τ , i.e. π(x)=1⇒ τ(x)=1, then cAdv[h|π] ≤ cAdv[h|τ].

For the other direction, disallowing some inputs has little effect if those are hard
to find. For the formal statement, we need the following definition.

Definition 3. A predicate π : X → {0, 1} is called β(q)-almost-certain if it
holds that Pr[π(X̄)=0] ≤ β(q) for any state ρX with complexity q.

Lemma 2. If π is β(q)-almost-certain then

cAdv[h](q) ≤ cAdv[h|π](q + cπ) +
√
β(q) ·min

{√
2, 1+

√
β(q)

}
.

Proof. Let ρXY Z = ρXh(X)E be with complexity q. Consider the measurement
P = P0 + P1 given by P0 := M ◦M[π = 0] and P1 := M[π = 1].10 By triangle
inequality and since M = P ◦M, we have

δq
(
X,X̄ | Ȳ E

)
≤ δq

(
X,P(X) | Ȳ E

)
+ δq

(
P(X),P(X̄) | Ȳ E

)
≤ δ
(
X,P(X) | Ȳ E

)
+ δq

(
Xπ=1, X̄π=1 | Ȳ E

)
+ δq

(
X̄π=0, X̄π=0 | Ȳ E

)
≤
√
β(q) + β(q) + cAdv[h|π](q + cπ) ,

10 I.e., P first performs the measurement M[π], and then measures the resulting state
in the computation basis if (and only if) the measurement outcome was 0.

10

where the second inequality is because δq ≤ δ, and by subadditivity and choice
of P, and the last inequality is by the “gentle-measurement lemma” (1), plus
footnote 5, given that Pr

[
P(X) = 1

]
= Pr

[
π(X̄) = 1

]
≥ tr(ρX) − β(q), plus the

observation that ρXπ=1Y E has complexity q + cπ. ut

We conclude with the following simple observation, which follows from the fact
that under the given assumptions, Pr[τ(X̄)=0] ≤ Pr[π ◦λ(X̄)=0] ≤ β(q+ c(λ))
for any state ρX with complexity q.

Lemma 3. Consider predicates π : X ′ → {0, 1} and τ : X → {0, 1} and a total
function λ : X ′ → X such that π ◦ λ implies τ , i.e., π(λ(x)) = 1 ⇒ τ(x) = 1. If
π is β(q)-almost-certain then τ is β(q + c(λ))-almost-certain.

3.3 Composability Properties

We show composability of the collapsing property under different means of com-
posing functions. In one or another form, some of these composability properties
are also present in previous work (see e.g. Lemma 27 in the full version of [5]
for the corresponding claim on nested composition); we cover them here for
completeness and since our notion differs in minor ways, but also in order to
demonstrate how succinctly these composability properties can be phrased and
proven using our formalism.

We take it as understood that for partial functions g and h, the considered
composition is defined whenever g and h are both defined on their respective
inputs.

Lemma 4 (Concurrent composition). For g : X → Y and h : W → Z, the
concurrent composition g‖h : X ×W → Y ×Z, (x,w) 7→

(
g(x), h(w)

)
satisfies

cAdv[g‖h] ≤ cAdv[g] + cAdv[h] .

Proof. Let ρXWY ZE = ρXWg(X)h(W)E be with complexity q. Then, by triangle
inequality,

δq
(
XW, X̄W̄ |Ȳ Z̄E

)
≤ δq

(
XW,XW̄ |Ȳ Z̄E

)
+ δq

(
XW̄, X̄W̄ |Ȳ Z̄E

)
= δq

(
W, W̄ |Z̄XȲ E

)
+ δq

(
X, X̄|Ȳ W̄ Z̄E

)
≤ cAdv[g](q) + cAdv[h](q) . ut

Lemma 5 (Nested composition). For g : X → Y and h : Y → Z, the nested
(or sequential) composition h ◦ g : X → Z, x 7→ h

(
g(x)

)
satisfies

cAdv[h ◦ g](q) ≤ cAdv[g](q + cg) + cAdv[h](q + cg) .

Proof. Let ρXZE = ρX(h◦g)(X)E be with complexity q. Then, ρXY ZE = ρXg(X)ZE

has complexity at most q + cg. Recalling that ρXZE is recovered from ρXY ZE

11

by applying Einv[g]XY→X , we get

δq
(
X, X̄|Z̄E

)
≤ δq+cg

(
XY, X̄Y |Z̄E

)
(monotonicity)

≤ δq+cg

(
XY,XȲ |Z̄E

)
+ δq+cg

(
XȲ , X̄Y |Z̄E

)
(4 inequality)

≤ δq+cg

(
Y, Ȳ |Z̄XE

)
+ δq+cg

(
X, X̄|Ȳ Z̄E

)
(X̄Y =X̄Ȳ by (2))

≤ cAdv[g](q + cg) + cAdv[h](q + cg) . ut

Lemma 6. For g : X → Y and h : W × X → Z, where the latter function is
such that h(·, x) is injective for any x ∈ X , the composition f :W×X → Y×Z,
(w, x) 7→

(
g(x), h(w, x)

)
satisfies

cAdv[f] ≤ cAdv[g] .

We emphasize that the statement includes the special case where W is empty,
i.e., h : X → Z, in which case the the injectivity requirement becomes void, so
that in particular the following holds.

Corollary 2 (Parallel composition). For g : X → Y and h : X → Z, the
parallel composition (g, h) : X → Y ×Z, x 7→

(
g(x), h(x)

)
satisfies

cAdv[(g, h)] ≤ min
{
cAdv[g], cAdv[h]

}
.

Proof (of Lemma 6). Let ρWXY ZE = ρWXg(X)h(W,X)E be with complexity q.
Then, using that W̄ X̄Z̄ = WX̄Z̄, which holds by (2) because w is a function of
x and z = h(w, x),

δq
(
WX, W̄X̄|Ȳ Z̄E

)
= δq

(
X, X̄|Ȳ Z̄WE

)
≤ cAdv[g](q) . ut

Lemma 7 (Disjoint union). For g : X → Y and h : W → Z with disjoint
domains and images, the disjoint union g t h : X ∪ W → Y ∪ Z, which maps
x ∈ X to g(x) and w ∈ W to h(w), satisfies

cAdv[g t h] ≤ cAdv[g] + cAdv[h] .

Proof. Let ρUV E = ρU(g th)(U)E , and consider the “distinguishing function”
dis : X ∪W → {0, 1} that maps x ∈ X to 1 and w ∈ W to 0. By our convention
on function domains being recognizable, dis has zero complexity. Furthermore,
ρUdisV E = ρM[dis](U)V E is of the form

ρUdisV E = ρUdis=0V E + ρUdis=1V E = ρXg(X)E + ρWh(W)E

and, by the disjointness of the images, ρUV̄ E = ρUdisV̄ E , and so it follows from
subadditivity that

δq
(
U, Ū |V̄ E

)
= δq

(
Udis, Ūdis|V̄ E

)
≤ δq

(
X, X̄|Ȳ E

)
+ δq

(
W, W̄ |Z̄E

)
which is bounded by cAdv[g] + cAdv[h]. ut

12

4 Application I: Merkle-Damg̊ard and HAIFA

We demonstrate the usefulness of our framework. Here, we do so by (re)proving
the collapsing property Merkle-Damg̊ard, and by showing that the proof trivially
translates to the HAIFA variation [3]. In the subsequent section we analyze the
Sponge construction [1]. Our proofs argue entirely by means of decomposing the
iteration function under consideration into a few composition operations.

Here and in the remainder, for b ∈ {0, 1,⊥} and positive integer i ∈ N, we
write bi ∈ {0, 1,⊥}i for the i-fold concatenation (b, . . . , b) of b with itself.

4.1 The Construction

Let f : {0, 1}c × {0, 1}r → {0, 1}c be a (total) function, which will act as the
round function in the Merkle-Damg̊ard construction. For any positive integer i,

we consider the function IHi :
(
{0, 1}r

)i → {0, 1}c given recursively by

IHi(x1, . . . , xi) := f
(
IHi−1(x1, . . . , xi−1), xi

)
(3)

with IH0() := iv, some fixed string in {0, 1}c called the initialization vector. The
Merkle-Damg̊ard hash function is then formally given by11

MD :
(
{0, 1}r

)∗ → {0, 1}c, (x1, . . . , xi) 7→ IHi(x1, . . . , xi) .

For technical reasons, we extend the domain of IHi above to

Xi :=
{

(x1, . . . , xi) ∈
(
{⊥} ∪ {0, 1}r

)i ∣∣xj=⊥ ⇒ x1 = · · ·=xj=⊥
}

by setting IHi(⊥, . . . ,⊥) := iv and keeping the recursive definition (3) for xi 6= ⊥.
We can now apply IHL to messages of size i < L blocks by pre-padding it with
⊥’s: IHi(x1, . . . , xi) = IHi+1(⊥, x1, . . . , xi) = · · · = IHL(⊥, . . . ,⊥, x1, . . . , xi),
and thus the restriction of MD to messages of block size 0 ≤ i ≤ L can be
expressed as MD≤L(x1, . . . , xi) = IHL(⊥, . . . ,⊥, x1, . . . , xi).

4.2 The Analysis

Using our framework, we will now prove the following security statement for
Merkle-Damg̊ard. The assumption on c(f) is simply for normalization, and for
f to be β-iv-preimage-resistant means, by definition, that the predicate 1f(y)6=iv,
which is 1 if y satisfies f(y) 6= iv and 0 otherwise, is β-almost-certain.

Theorem 1. If f has complexity c(f) = 1, is ε-collapsing and β-iv-preimage-
resistant, then, for any integer L ≥ 0, the function MD≤L is γ-collapsing with

γ(q) = L · ε
(
q + 1

2L(L+ 1)
)

+
√

2β(q + L) .
11 Since the bit size of the input to MD must be an integer multiple of r, the Merkle-

Damg̊ard construction usually comes with a padding that maps a string of arbitrary
size into a sequence of blocks of bit size r. We can safely ignore this since any injective
padding preserves the collapsing property by Lemma 5.

13

For the purpose of the proof, we define for any i the predicate πi : Xi → {0, 1} as

πi(x1, . . . , xi) = 1 ⇐⇒ ∀ j ∈ {1, . . . , i} : xj = ⊥ ∨ IHj(x1, . . . , xj) 6= iv ,

i.e., the bit is set unless the input is a non-trivial iv-preimage of some IHj . In
particular, if πi(x1, . . . , xi) = 0 then it must be that IHj(x1, . . . , xj) = iv for
some j with xj 6= ⊥, and thus y :=

(
IHj−1(x1, . . . , xj−1), xj

)
satisfies f(y) =

IHj(x1, . . . , xj) = iv by (3). So, by Lemma 3, the following holds.

Lemma 8. If f is β-iv-preimage-resistant then πi is β(q+cIHi−1
)-almost-certain.

Recall that IHi|πi is the partial function that is defined only for the inputs
which satisfy πi. The heart of the proof of Theorem 2 is the following recursive
statement, which ensures that if IHi−1|πi−1

is collapsing then so is IHi|πi . By
repeated application, we then get that IHL|πL is collapsing, and since πL is
almost-certain, IHL is collapsing as well (by Lemma 2).

Proposition 1. For any positive integer i:

cAdv
[
IHi|πi

]
(q) ≤ cAdv

[
IHi−1|πi−1

](
q + cIHi−1

)
+ ε
(
q + cIHi−1

)
.

Proof. We let ˙IHi and π̇i be the respective restrictions of IHi and πi to the
domain Ẋi := Xi \ {⊥i}. Then, we see that IHi|πi is the disjoint union of the
trivial function {⊥i} → {iv} and ˙IHi|π̇i ; the crucial observation here is that the
image of ˙IHi|π̇i is disjoint with {iv}. Therefore, by Lemma 7,

cAdv
[
IHi|πi

]
(q) ≤ cAdv

[
˙IHi|π̇i

]
(q) ≤ cAdv

[
˙IHi|πi−1

]
(q) ,

where the latter inequality is by Lemma 1, given that π̇i implies πi−1.12 Fur-
thermore, since

˙IHi(x1, . . . , xi) = f
(
IHi−1(x1, . . . , xi−1), xi

)
on its domain Ẋi, i.e., it is the nested composition of f with the concurrent
composition of IHi−1 and the identity function xi 7→ xi, Lemma 4 and 5 imply

cAdv
[

˙IHi|πi−1

]
(q) ≤ cAdv

[
IHi−1|πi−1

](
q + cIHi−1

)
+ cAdv

[
f
](
q + cIHi−1

)
,

which completes the proof. ut

Proof (of Theorem 1). IH0|π0 = IH0 is trivially 0-collapsing. For convenience,
we let ni be the sum of integers ni := 1 + 2 + · · · i = 1

2 i(i + 1). Assuming by
induction that cAdv[IHi|πi](q) ≤ i · ε(q + ni−1), we get from Proposition 1 that

cAdv
[
IH1

i+1|πi+1

]
(q) ≤ ε(q + i) + i · ε(q + ni−1 + i) ≤ (i+ 1) · ε(q + ni) ,

using that cIHi = i · cf = i and ni−1 + i = ni. Hence, the induction assumption
holds for all i, and

cAdv
[
IHL

]
(q) ≤ cAdv

[
IHL|πL

]
(q + L) +

√
2β(q + L) (Lemma 2 & 8)

≤ L · ε
(
q + L+ nL−1

)
+
√

2β(q + L) . ut
12 Here, we understand πi−1 as πi−1 : Ẋi → {0, 1}, (x1, . . . , xi) 7→ πi−1(x1, . . . , xi−1).

14

4.3 Instantiation with a Random Oracle

If f is a random oracle, which formally means that we consider the oracle O

that is a uniformly random function {0, 1}c × {0, 1}r → {0, 1}c and f is the
trivial oracle function that outputs whatever O outputs on the given input,
then, as shown by Unruh in [5], f is O

(√
q3/2c

)
-collapsing.13 Furthermore, by

the results on the hardness of quantum search from [4, Thm. 1], applied to the
oracle function F : {0, 1}c × {0, 1}r → {0, 1} given by F (y) = 1 if and only if
f(y) = iv, we immediately get that f is 8(q+1)2/2c -iv-preimage-resistant. As
such, we obtain that for messages of block-size at most L, the Merkle-Damg̊ard
hash function MD≤L is ε-collapsing with

ε(q) = O
(
L
√

(q + L2)3/2c
)
.

As far as we understand, the results of [6] imply a collapsing advantage of
O
(
L
√

(q + L)3/2c
)
, which is slightly better because of the L2 that we have

in our bound, but this is insignificant in typical settings where q � L.

4.4 HAIFA

Along the very same lines as for the original Merkle-Damg̊ard construction, we
can easily show that also HAIFA, a variant proposed by Biham and Dunkel-
mann [3], is collapsing, under the same assumptions. HAIFA works similarly to
Merkle-Damg̊ard except that

IHi(salt, x1, . . . , xi) := f
(
salt, IHi−1(salt, x1, . . . , xi−1), xi, i

)
i.e., the round function takes as additional inputs the round number i and some
salt (that is the same for every round).14 Proposition 1 immediately extends to
HAIFA; the only thing that changes in the proof is that f becomes fi = f(·, ·, ·, i),
which is collapsing if f is, and we also have to use Corollary 2 to argue that the
parallel composition of (salt, x1, . . . , xi) 7→ salt with the concurrent composition
of IHi−1 and xi 7→ xi stays collapsing. The collapsing property of HAIFA then
follows easily by inductively applying this variation of Proposition 1 as in the
proof of Theorem 1.

4.5 Merkle-Damg̊ard Without iv-Preimage-Resistance

We can also recover Unruh’s original result on MD, which does not require f to
be iv-preimage-resistant but instead restricts the set of inputs to be suffix-free.

13 Even though our definition of the collapsing property differs slightly from the defi-
nition in [5], these differences disappear in such asymptotic statements, as discussed
in Section 3. See also Appendix C.

14 For the purpose of collisions and the collapsing property, we can think of the salt
simply as part of the input: we do not want collisions even for different choices of
the salt.

15

For that, given a fixed integer L > 0 and arbitrary 0 ≤ i ≤ L, consider the map
IH∗i given by

IH∗i : (x1, . . . , xL) 7→
(
IHi(x1, . . . , xi), xi+1, . . . , xL

)
,

defined on the considered suffix-free inputs of size at most L blocks, left-padded
with ⊥’s, and we argue the following variant of Proposition 1: if IH∗i |xi 6=⊥ is
collapsing then IH∗i+1|xi+1 6=⊥ is collapsing too (for i < L). This variant of Propo-
sition 1 follows from the observation that the latter is obtained as the nested
composition IH∗i+1|xi+1 6=⊥ = (f‖id) ◦ IH∗i |xi+1 6=⊥ of IH∗i |xi+1 6=⊥ with the concur-
rent composition of f and the identity id acting on xi+2, . . . , xL. Furthermore,

IH∗i |xi+1 6=⊥(x1,..., xL) =

{
IH∗i |xi 6=⊥(x1,..., xL) =

(
IHi(x1,..., xi), xi+1,..., xL

)
if xi 6= ⊥(

iv, xi+1, xi+2,..., xL
)

if xi = ⊥

and therefore IH∗i |xi+1 6=⊥ is the disjoint union of IH∗i |xi 6=⊥ and the function
(⊥i, xi+1, . . . , xL) 7→ (iv, xi+1, xi+2, . . . , xL). Here, we are using the suffix-freeness
of the considered inputs x1, . . . , xL; this ensures that not only the domains but
also the images of the two functions are disjoint: if (⊥i, xi+1, . . . , xL) is “allowed”
then (x1, . . . , xL) is not unless x1 up to xi are all ⊥. The above variant of Propo-
sition 1 then follows from the preservation of the collapsing property under the
different compositions, and then, by inductively applying this variant of Propo-
sition 1, we obtain that IH∗L|xL 6=⊥ is collapsing, and thus MD≤L is, given that
the input is from a suffix-free set.

5 Application II: The Sponge

Here, we apply our framework to the Sponge construction [1]. As one can see,
we follow the exact same blueprint as in Section 4.

5.1 The Construction

Let f = (f0, f1) : {0, 1}r×{0, 1}c → {0, 1}r×{0, 1}c be a (total) function, which
will act as the round function in the Sponge construction. For any positive integer
i, consider the function

Si = (S0
i , S

1
i) :

(
{0, 1}r

)i → {0, 1}r × {0, 1}c
given recursively by

Si(x1, . . . , xi) := f
(
S0
i−1(x1, . . . , xi−1)⊕ xi, S1

i−1(x1, . . . , xi−1)
)

(4)

with S0() := 0. The sponge function (with s rounds of “squeezing”) is then
formally given by15

Sponge[s] :
(
{0, 1}r

)∗ → (
{0, 1}r

)s
(x1,..., xi) 7→

(
S0
i (x1,..., xi), S

0
i+1(x1,..., xi, 0

r),..., S0
i+s−1(x1,..., xi, 0

r,..., 0r)
)
.

15 Like for Merkle-Damg̊ard, we can safely ignore the padding here.

16

For technical reasons, we extend the domain of Si above to

Xi :=
{

(x1, . . . , xi) ∈
(
{⊥} ∪ {0, 1}r

)i ∣∣xj=⊥ ⇒ x1 = · · ·=xj=⊥
}

i.e., to strings that may have ⊥-prefixes. We do so by setting

Si(⊥, . . . ,⊥) := 0r+c

and keeping the recursive definition (4) for xi 6= ⊥. This extension allows us to
apply SL to messages (x1, . . . , xi) ∈ ({0, 1}r)i of size i < L blocks by pre-padding
it with⊥’s: Si(x1, . . . , xi) = Si+1(⊥, x1, . . . , xi) = · · · = SL(⊥, . . . ,⊥, x1, . . . , xi),
and thus the restriction of Sponge[s] to messages of block size 1 ≤ i ≤ L can be
expressed as:

Sponge[s]≤L(x1,..., xi) =
(
S0
L(⊥L−i, x1,..., xi), S

0
L+1(⊥L−i, x1,..., xi, 0

r),...
)

(5)

where we note that we insist here on i ≥ 1, i.e., the message is non-empty.

5.2 The Analysis

Here, we prove the following. Also here, the assumption on c(f) is simply for
normalization, and for f1 to be β-zero-preimage-resistant means, by definition,
that the predicate 1f1(y)6=0c is β-almost-certain.

Theorem 2. If f has complexity 1, and f0 and f1 are ε0- and ε1-collapsing,
and f1 is β-zero-preimage-resistant, then, for any integer L ≥ 0, the Sponge
function Sponge[s]≤L is γ-collapsing with

γ(q) ≤ ε0(q + 2L− 1) + (L− 1) · ε1
(
q + 1

2L(L+1)
)

+
√

2β(q + L) .

For the purpose of the proof, we define for any i the predicate πi : Xi → {0, 1} as

πi(x1, . . . , xi) = 1 ⇐⇒ ∀ j ∈ {1, . . . , i} : xj = ⊥ ∨ S1
j (x1, . . . , xj) 6= 0c ,

i.e., the bit is set unless the input is a non-trivial zero-preimage of some S1
j .

In particular, if πi(x1, . . . , xi) = 0 then S1
j (x1, . . . , xj) = 0c for some j with

xj 6= ⊥, and thus y :=
(
S0
j−1(x1, . . . , xj−1) ⊕ xj , S

1
j−1(x1, . . . , xj−1)

)
satisfies

f1(y) = S1
j (x1, . . . , xj) = 0c by (4). Thus, by Lemma 3, the following holds.

Lemma 9. If f1 is β-zero-preimage-resistant then πi is β(q + cSi−1)-almost-
certain, and the same holds for π̇i, defined as below.

For any i, let Ṡbi and π̇i be the respective restrictions of Sbi and πi to the domain
Ẋi := Xi \ {⊥i}. The heart of the proof of Theorem 2 is the following recursive
statement, which ensures that if S1

i−1|πi−1
is collapsing then so are Ṡ0

i |π̇i and
S1
i |πi . By repeated application, we then get that Ṡ0

L|π̇L is collapsing, and since
π̇L is almost-certain, Ṡ0

L is collapsing as well (by Lemma 2).

17

Proposition 2. For any positive integer i:

cAdv
[
Ṡ0
i |π̇i

]
(q), cAdv

[
S1
i |πi

]
(q) ≤ cAdv

[
S1
i−1|πi−1

](
q + cSi−1

)
+ εb

(
q + cSi−1

)
.

Proof. We note that S1
i |πi is the disjoint union of the trivial function {⊥i} →

{0c} and Ṡ1
i |π̇i ; the crucial observation here is that the image of Ṡ1

i does not
contain 0c. Therefore, by Lemma 7,

cAdv
[
S1
i |πi

]
(q) ≤ cAdv

[
Ṡ1
i |π̇i

]
(q) ≤ cAdv

[
Ṡ1
i |πi−1

]
(q) .

where the latter inequality is by Lemma 1, given that π̇i implies πi−1.16 Fur-
thermore, since

Ṡ1
i (x1, . . . , xi) = f1

(
S0
i−1(x1, . . . , xi−1)⊕ xi, S1

i−1(x1, . . . , xi−1)
)

on its domain Ẋi, i.e., it is a nested composition of f1 with a function that is
obtained as a composition as considered in Lemma 6, Lemma 5 and 6 imply that

cAdv
[
Ṡ1
i |πi−1

]
(q) ≤ cAdv

[
S1
i−1|πi−1

](
q + cSi−1

)
+ cAdv

[
f b
](
q + cSi−1

)
,

which was to be proven. The reasoning for Ṡ0
i |π̇i is exactly as for Ṡ1

i |π̇i above. ut

Proof (of Theorem 2). S1
0 |π0

= S1
0 is trivially 0-collapsing. For convenience, we

let ni be the sum of integers ni := 1+2+· · · i = 1
2 i(i+1). Assuming by induction

that cAdv[S1
i |πi](q) ≤ i · ε1(q + ni−1), we get from Proposition 2 that

cAdv
[
S1
i+1|πi+1

]
(q) ≤ ε1(q + i) + i · ε1(q + ni−1 + i) ≤ (i+ 1) · ε1(q + ni) ,

using that cSi = i · cf = i and ni−1 + i = ni. Hence, the induction assumption
holds for all i, and

cAdv
[
Ṡ0
L

]
(q) ≤ cAdv

[
Ṡ0
L|π̇L

]
(q + L) +

√
β(q + L)

≤ ε0(q + 2L− 1) + cAdv
[
S1
L−1|πL−1

]
(q + 2L− 1) +

√
2β(q + L)

≤ ε0(q + 2L− 1) + (L− 1) · ε1
(
q + nL

)
+
√

2β(q + L) .

where the first inequality is by Lemma 2 and 9, and the second by Proposition 2.
The claim on Sponge[s]≤L follows now from (5) and Corollary 2. ut

5.3 Instantiation with a Random Oracle

If f = (f0, f1) is a random oracle, then it follows easily from the work of Un-
ruh in [5] on the collapsing property of the random oracle that f0 and f1 are
respectively O

(√
q3/2r

)
- and O

(√
q3/2c

)
-collapsing. Furthermore, as pointed

out in [2], by the results on the hardness of quantum search from [4, Thm. 1]
to the oracle function F : {0, 1}r × {0, 1}c → {0, 1} given by F (y) = 1 if and

16 Here, we understand πi−1 as πi−1 : Ẋi → {0, 1}, (x1, . . . , xi) 7→ πi−1(x1, . . . , xi−1).

18

only if f1(y) = 0c, we immediately get that the function f1 is 8(q+ 1)2/2c-zero-
preimage-resistant. Therefore, we get that for messages of block-size at most L,
the sponge function Sponge[s]≤L, with the round function modeled by a random
oracle, is ε-collapsing with

ε(q) = O
(√

(q + L)3/2r + L
√

(q + L2)3/2c
)
.

This matches with single-execution-variant (i.e. t = 1) of Theorem 33 of [2],
except for the square in the L2 term. When considering a t-fold parallel com-
position Sponge[s]≤L‖ · · · ‖Sponge[s]≤L, it follows immediately from Lemma 6
that the collapsing parameter grows linearly with t, i.e., as

O
(
t
√

(q + L)3/2r + tL
√

(q + L2)3/2c
)
,

which is comparable to Theorem 33 of [2] with a general t, which states a col-
lapsing advantage of

O
(
t
√

(q + tL)3/2r + tL
√

(q + tL)3/2c
)
.

6 Conclusion

We consider the quantum collapsing property of classical hash functions, which
replaces the notion of collision resistance in the presence of quantum attacks,
and we propose a formalism and a framework that enables to argue about the
collapsing property of hash domain extension constructions simply by means of
decomposing the iteration function under consideration into elementary com-
position operations. In particular, our framework allows us to argue by purely
classical means that hash functions are secure against quantum attacks.

We demonstrate this proof methodology on several examples. For Merkle-
Damg̊ard and the Sponge construction, we recover what has already been proven
in [6] and [2], up to insignificant differences, whereas our result for HAIFA is,
strictly speaking, new. It is well possible that the respective proof provided in [6]
extends to HAIFA as well; however, this is cumbersome to verify (we challenge
the reader to do so). With our approach, on the other hand, it is trivial to see
that our proof for Merkle-Damg̊ard extends to this variation: the only thing that
needs to be verified is that the modified iteration function still decomposes into
composition operations that are covered by our framework.

We think it is fair to say that, compared to previous work which proves that
some hash domain extension constructions are collapsing, our approach gives
much more insight into why they are collapsing. Furthermore, our framework
should be a helpful tool when designing new hash functions that are meant to
withstand quantum attacks.

Last but not least, from a conceptual perspective, we find it particularly in-
teresting to see that our simplified proofs are the result of departing from the
common methodology of proving a conditional security statement by means of

19

an algorithmic reduction. Instead of assuming an attack against the construc-
tion and then building an attack against the underlying component, we argue
directly — and in some sense “algebraically” — that if the underlying component
is secure then so is the construction.

References

1. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles van Assche. On the
Indifferentiability of the Sponge Construction. In EUROCRYPT 2008, vol. 4965
of LNCS, pp. 181–197 (2008).

2. Jan Czajkowski, Leon Groot Bruinderink, Andreas Hülsing, Christian Schaffner,
and Dominique Unruh. Post-quantum security of the sponge construction. To ap-
pear in PQCrypto 2018. Available at: https://eprint.iacr.org/2017/771.pdf.

3. Eli Biham, and Orr Dunkelman. A Framework for Iterative Hash Functions —
HAIFA. Second NIST Cryptographic Hash Workshop (2006). Available at:
https://eprint.iacr.org/2007/278.pdf.

4. Andreas Hülsing and Joost Rijneveld and Fang Song. Mitigating Multi-Target
Attacks in Hash-based Signatures. In PKC 2017, vol. 9614 of LNCS, pp. 387–416
(2017). Available at: hhttps://eprint.iacr.org/2015/1256.

5. Dominique Unruh. Computationally Binding Quantum Commitments. In EURO-
CRYPT 2016, vol. 9666 of LNCS, pp. 497–527 (2016).

6. Dominique Unruh. Collapse-Binding Quantum Commitments Without Random
Oracles. In ASIACRYPT 2016, vol. 10032 of LNCS, pp. 166–195 (2016).

7. Hongjun Wu. The Hash Function JH. NIST SHA-3 Competition Finalist (2011).
Available at: http://www3.ntu.edu.sg/home/wuhj/research/jh/jh round3.pdf.

8. Andreas Winter. Coding Theorem and Strong Converse for Quantum Chan-
nels. IEEE Trans. Inf. Theory 45(7):2481-2485 (1999). Available at:
https://arxiv.org/abs/1409.2536.

9. Mark Wilde. From Classical to Quantum Shannon Theory. Manuscript, 2nd edition
(2016). Available at: https://arxiv.org/abs/1106.1445.

A Randomized Functions and CPTN Maps

In this work, we will consider two variants of the notion of a randomized func-
tion, and our techniques will apply to both. Formally, a randomized function is
a function f : R×X → Y for a fixed choice of the (finite) set R, and it is under-
stood that r ∈ R is chosen uniformly at random once-and-for-all. Informally, we
think of such a randomized function as a function f : X → Y that produces its
output f(x) = f(r, x) for any input x dependent on some “global randomness”
r, which is the same for all inputs and all randomized functions considered at a
time.

Informally, the two variants we consider in this work differ in the way the
randomness r is accessed by the function. In one case, r is explicitly given as
input to the function f (or to the algorithm that computes f , if you prefer);
one then typically speaks of keyed (or seeded) functions. In the other case, r
is not explicitly given to f but instead, f makes oracle queries to a designated

20

randomized function O, called the oracle, which computes every reply dependent
on r. This latter case is typically referred to as an oracle function.

We point out that from a mathematical perspective, there is no distinction yet
between a keyed and an oracle function, in that both are merely functions that
additionally act on some global randomness r. The way the two variants differ
formally is by the way we capture complexity: for keyed functions we consider
the computational complexity whereas for oracle functions we consider the query
complexity.17 We address this in more detail in the subsequent section.

In line with the above, we can also consider the notion of a randomized
CPTN map T, which is a CPTN map whose action on a quantum state depends
on the global randomness r, and we can distinguish between keyed CPTN maps
that have direct access to r, and oracle CPTN maps that have quantum oracle
access to a designated randomized function O : R × U → V. Here, “quantum
oracle access” means that T can query O in superposition, i.e., it may ask to
have the unitary |u〉|v〉 7→ |u〉|v + O(r, u)〉 applied to any state (of appropriate
dimension). Again, the formal distinction between the two variants is in terms
of the complexity measure.

We point out that by considering randomized CPTN maps T (of either flavor)
that act on the empty system with trivial one-dimensional state space, we may
also speak of randomized states (of either flavor) as the states ρ produced as
ρ = T(1) for such a randomized CPTN map. We take it as understood here
that the description of such a randomized state includes the dependency on the
randomness r.

B Complexity

We introduce here the abstract notion of complexity that we consider in this work
and discuss below the two main instantiations that are relevant for us. In the
context of randomized functions f : X → Y, we consider a map that assigns to
any such function a non-negative integer c(f), called the complexity of f , which
is meant to express how hard it is to “compute” f . We assume that our abstract
notion satisfies natural properties, like that the identity function on any set has
zero complexity, and that it behaves well under composition, so that

c(g ◦ f) ≤ c(f) + c(g) and c(f‖g) ≤ c(f) + c(g)

for any f and g with appropriate domain/range, where g ◦ f : x 7→ g
(
f(x)

)
and f‖g : (x,w) 7→

(
f(x), g(w)

)
. For simplicity, we additionally assume that

certain “simple” functions have zero complexity. These are: constants, copying,
deleting, swapping, checking equality, as well as bit-wise XOR. Also, to avoid
certain technical complications, once c is fixed we only consider randomized

17 For the latter, one could actually consider both simultaneously.

21

functions f : X → Y for which X can be recognized with zero complexity.18 For
lighter notation, we may also write cf instead of c(f).

We also consider a notion of complexity for randomized CPTN maps, which,
as above, assigns a non-negative integer c(T) to any randomized CPTN map T.
Similarly to above, we assume that the identity I has zero complexity, that

c(S ◦ T) ≤ c(T) + c(S) and c(T⊗ S) ≤ c(T) + c(S) ,

and that certain “simple” maps have zero complexity, namely: the preparation of
states in the computational basis, measurements (with or without post-selection)
in the computational basis, partial traces, and swapping registers. On top, we
assume the complexity notion for CPTN maps to be consistent with that of
functions, in that we require that

c
(
E[f]

)
, c
(
Einv[f]

)
, c
(
M[f]

)
, c
(
M[f=y]

)
≤ c(f)

where the latter two actually follow from the first, given that partial traces and
measurements in the computational basis are “for free”.

Given such a notion of complexity (for randomized CPTN maps), we can
define the complexity of a randomized state ρ as c(ρ) := c(T) where T is the
randomized CPTN map with minimal complexity that produces ρ as ρ = T(1).
It obviously holds that c

(
T(ρ)

)
≤ c(ρ) + c(T) for any randomized CPTN map.

A last requirement we pose onto our abstract complexity measure c is that
c
(
ρ+

(
1−tr(ρ)

)
σ
)
≤ c(ρ) + c(σ) for all randomized states.19

Example 1. An important class of examples for such a complexity measure arises
by considering keyed functions and keyed CPTN maps and writing them as
circuits that get the global randomness as additional input. The complexity can
then be specified to be the minimal number of gates (of certain types) of any
such circuit representation. For instance, writing any randomized function f as
a binary circuit with AND and XOR gates, one may define ccomp(f) to be the
minimal necessary number of AND gates.20 Similarly for randomized CPTN
maps, where one could for instance count the number of gates (or the number
of non-Clifford gates) with respect to a fixed universal set of gates. These kinds
of notions of complexity are referred to as computational complexity.

Example 2. Another example that is relevant for us is the query complexity cquery

for oracle functions and oracle CPTN maps, which counts the number of (quan-
tum) oracle queries that the function or CPTN map makes to the oracle O.

We note that this abstract treatment of complexity allows us to explicitly
cover computational complexity and query complexity in one go, using one lan-
guage. Also, all results expressed using this language do explicitly not depend

18 Meaning that for any X ′ ⊃ X , the function X ′ → {0, 1} that maps x ∈ X to 1 and
x ∈ X ′ \ X to 0 has zero complexity. This is trivially satisfied for any function f in
case of cquery (given in Example 2).

19 This is in line with our interpretation of tr(ρ) < 1 as capturing an “abort” of the
preparation process.

20 Remember that we want XOR’s to be “for free”.

22

on the technical details of any model of computation. Related to the latter, this
approach allows us to reason about functions (and CPTN maps etc.), which are
unambiguously defined objects that do not depend on any model of computation.

C On the Definitions of the Collapsing Property in [5, 6]

As already mentioned in Section 3, the definition of the collapsing property in-
troduced by Unruh comes in a few different variations in [5, 6], which we want
to briefly recall here, and we discuss how they compare to our definition. Some
differences (like allowing non-normalized states), which have some minor quan-
titative impact, have already been discussed in Section 3; here, we focus on some
technical differences that are orthogonal to those.

The definition originally proposed in [5, Def. 20] (respectively Def. 23 in the
full version) is of asymptotic nature and for a deterministic function h (that
depends on a security parameter κ): it requires that every (uniform) quantum-
polynomial time adversary has a negligible collapsing advantage. Note that it
makes sense to consider a deterministic hash function h in this case since a uni-
form model of computation is considered, i.e., the adversary that has a collision
hard-wired into its code (for any κ) is not allowed. In the formal statement
on the collapsing property of a random oracle [5, Thm. 31], which bounds the
advantage by O(q3/size of the range), an obvious variation (in terms of oracle
algorithms, and with the randomness also over the oracle’s random choices) of
this definition is then (implicitly) considered. It also remains implicit that the
bound (and in particular the hidden constant) is independent of the running time
of the adversary; indeed, the proof considers “q-query adversaries”, which have
bounded query complexity but (possibly) unbounded running time. As such, the
bound O(q3/size of the range) carries over to our non-asymptotic definition of
the collapsing property (with the complexity measure being the query complex-
ity), with the understanding that the bound includes a hidden constant and only
applies for a large enough range of h (compared to q).

In terms of comparing Unruh’s original definition [5, Def. 20] with our Def-
inition 2, though being similar in spirit (up small differences as discussed in
Section 3), they are technically incomparable: an asymptotic definition as [5,
Def. 20] makes no meaningful statement about a fixed instance, while, on the
other hand, our non-asymptotic definition is meaningless for a deterministic hash
function, for instance. If we consider an asymptotic variant of our Definition 2,
which would ask cAdv[hκ](q(κ)) to be negligible in the security parameter κ for
any polynomially bounded function q, we get a non-uniform (and thus stronger)
variant of [5, Def. 20]. It is easy to see that all our results directly carry over to
such an asymptotic variant.

In [6, Def. 8], Unruh also considers a non-asymptotic “concrete security” vari-
ant of his original definition, which considers a keyed hash function (using our
terminology) and defines the “collapsing advantage” of an arbitrary but fixed
adversary in the obvious way, as the advantage of this adversary distinguishing

23

the two games.21 For a function h being ε(q)-collapsing according to our defini-
tion thus immediately implies that the “collapsing advantage” according to [6,
Def. 8] is bounded by ε(q) (up to a small constant factor, as explained in Sec-
tion 3) for any adversary that is bounded by q, and vice versa. In that sense, our
Definition 2 and Unruh’s “concrete security” variant [6, Def. 8] are equivalent
(again, up to negligible quantitative differences).

However, formalized as in [6], i.e., not as a security property of h but as a
property of an arbitrary but fixed adversary that is attacking h, security state-
ments are bound to be in reductionistic form. Indeed, all the concrete-security
statements in [6] are like:

“Let A be a q-time (or query) adversary with collapsing advantage ε
against function h, then there exists a 2q-time (or query) adversary A′

with collapsing advantage ε2 against h′ ”

where we consider concrete example functions for the “security loss”. On the
other hand, our definition allows us to express such a statement simply as:

“If the function h′ is ε′(q′)-collapsing then h is
√
ε′(2q)-collapsing”

or even more compactly as

cAdv[h](q) ≤
√
cAdv[h](2q) .

Again, these statements are equivalent (up to the minor quantitative differences
discussed in Section 3), so it is merely a matter of taste what sort of language
one prefers.

A more crucial difference is that we not only can state but also prove these
kinds of security claims “in the forward direction”, i.e., not via the counter
position of assuming an attacker A that breaks the target primitive and turning
it into an attacker A′ that breaks something else. Indeed, we have “algebraic”
proofs that avoid reasoning about algorithms altogether. On the other hand, the
proofs in [5, 6, 2] are typically constructive, in that the adversary A′ is explicitly
constructed from the adversary A. One can then for instance easily check that
A′ does not rely on any non-uniform auxiliary information, and thus that the
reductions are uniform. Our proofs do not spell out the reductions; however,
if desired, they could still be extracted by backtracking the proofs all the way
down to the basic properties of the pseudometric δq upon which the proofs rely,
and which all have simple — uniform — reduction proofs. This ensures that also
our implicitly defined reductions are uniform.

21 As a matter of fact, [6, Def. 8] considers a t-fold parallel repetition of the game, where
t is an additional parameter of the definition. We ignore this for the discussion here,
recalling that we obtain immediately a similar variant of our definition by means of
concurrent composition.

24

