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Abstract

Group signature is a useful cryptographic primitive, which makes every group member sign mes-

sages on behalf of a group they belong to. Namely group signature allows that group member anony-

mously signs any message without revealing his/her specific identity. However, group signature may

make the signers abuse their signing rights if there are no measures of keeping them from abusing

signing rights in the group signature schemes. So, group manager must be able to trace (or reveal) the

identity of the signer by the signature when the result of the signature needs to be arbitrated, and some

revoked group members must fully lose their capability of signing a message on behalf of the group they

belong to. A practical model meeting the requirement is verifier-local revocation, which supports the

revocation of group member. In this model, the verifiers receive the group member revocation messages

from the trusted authority when the relevant signatures need to be verified.

Although currently many group signature schemes have been proposed, most of them are constructed

on pairings. In this paper, we present an efficient group signature scheme without pairings under the

model of verifier-local revocation, which is based on the modified EDL signature (first proposed by D.

Chaum et al. in Crypto 92). Compared with other group signature schemes, the proposed scheme does

not employ pairing computation and has the constant signing time and signature size, whose security

can be reduced to the computational Diffie-Hellman (CDH) assumption in the random oracle model.

Also, we give a formal security model for group signature and prove that the proposed scheme has the

properties of traceability and anonymity.
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I. INTRODUCTION

A. Background

Group signature [1] allows group member (signer) to hide his identifying information to a group

when group member signs messages, thus group signature only reveals the fact that a message

was signed by possible one of group members (a list of possible signers). Additionally, in a

practical group signature scheme, the group must be constructed by a group manager, who can

revoke the anonymity of any signer or identify the real group signer. Because a list of possible

signers must be constructed to form a group, some intricate problems need to be solved, such as

joining the new members and the revocation of group members. Ateniese et al. [2] first proposed

an efficient and provably coalition-resistant group signature scheme. However, the security of

coalition-resistant group signature was not formalized. In [3], Bellare et al. summarized the

requirements of group signature and showed the security definitions of group signature. Boneh

et al. [4] proposed a short group signature scheme in the random oracle model.

In public key cryptography, the management of public keys is a critical problem. For example,

certificate authority (CA) generates a digital certificate, which assures that public key belongs to

the corresponding user. Then, in a group signature scheme based on public key cryptography, a

group public key is corresponding to multi-distributing private keys (signing keys), the joining

and revocation of group member is an intricate problem [5,6,7,8]. For large group, it is inefficient

to update group public key and distributing private keys when a user joins or exits a group.

Bresson et al. [5] proposed that the signer may prove that his group certificate does not belong

to a list of revoked certificates. However, the length of group signature is proportional to the

number of revoked group members. Camenisch et al. [7] proposed a different way to handle this

problem by using accumulators1. However, in some pairing-based accumulators [9,10], the size

of public keys linearly grows with the maximal number of accumulations.

The method of verifier-local revocation was proposed by Brickell in [11]. Boneh et al. [8]

gave the formal definitions of verifier-local revocation. In this kind of approaches [12,13,14,15],

the verifiers receive the revocation list of group members from the authority (such as private key

generator) when a signature needs to be verified, and non-revoked group members do not need to

1An accumulator is a kind of ”hash” function mapping a set of values to a short, constant-size string while allowing to

efficiently prove that a specific value was accumulated.
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update their distributing private keys. So, the length of signature does not depend on the number

of revoked group members in this model, and the verifiers only need to perform an additional

computing to test that whether the signature was signed by a revoked group member on the

revocation list of group members. Of course, this kind of approaches increase the verification

cost being proportional to the size of the revocation list.

In 2009, Nakanishi et al. [16] proposed a revocable group signature scheme with constant com-

plexities for signing and verifying. Also, group members do not need to update their distributing

private keys. However, the size of public keys linearly grows with the maximal number N of

users in their scheme. In 2012, Libert et al. [17,18] proposed two group signature schemes based

on public key cryptography, which have many useful properties [18]: O(logN)-size group public

keys, revocation lists of size O(r) ((r) is the number of revoked users), constant membership

certificate size, constant signature size and verification time. However, their schemes need to

employ pairing computation.

Additionally, with a rapid development of identity-based cryptography [21,22,23,24], some

researchers proposed many identity-based signature schemes in the random oracle model or

standard model [23,25,26,27]. So, with these identity-based signature (IBS) schemes, a lot of

variants, such as the identity-based ring signature schemes [28,29,30], the identity-based group

signature schemes [19,20], etc, have also been proposed. In 2011, Ibraimi et al. [19] proposed

an identity-based group signature with membership revocation in the standard model. However,

their security model is not enough complete for identity-based group signature, some notions

are confused. And their scheme is not fully identity-based group signature scheme, the master

key of the system is still constructed on public key cryptography. In 2014, Emura et al. [20]

proposed an γ-hiding revocable group signature scheme in the random oracle model. Because

their scheme introduces the notion of attributes, their scheme is enough complex and inefficient.

EDL signature

The EDL signature [31] and its variant [32] are respectively proposed in 1992 and 1999.

Because the computations of the EDL signature do not employ pairings, the efficiency of the

schemes is very high. In 2003, Goh et al. [33] proved the security of the EDL signature may be

reduced to the CDH assumption in the random oracle model. In 2005, Chevallier-Mames [34]

further improved the efficiency of the EDL signature by offline/online computation and signature

coupon [35], whose security may also be reduced to the CDH assumption in the random oracle
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model.

B. Our Contributions

In this paper, we present a public key-based group signature scheme without pairings under the

model of verifier-local revocation. Also, we give the formal security models for group signature.

Under our security models, the proposed scheme is proved to have the properties of anonymity

and traceability with enough security in the random oracle model. In this paper, our contributions

are as follows:

• We present a public key-based (and verifier-local revocation) group signature scheme without

pairings, which is based on the modified EDL signature. By modifying the EDL signature

from [33,34], we twice use the modified EDL signature to build a complete group signature

scheme: a) we first use the modified EDL signature to construct the partial member private

keys when the users join a group; b) we again use the modified EDL signature to generate

the valid signatures.

• We present a framework for group signature and show a detailed security model. We

introduce the Libert et al.’s models [18,19] to our security model. In our security model, we

consider three situations for the security of group signature. Under our security model, the

proposed group signature scheme is proved to be secure and has a security reduction to the

simple standard assumption (computational Diffie-Hellman assumption) in the random ora-

cle model. So, no poly-time adversary can produce a valid group signature on any messages

when the adversary may adaptively be permitted to choose messages after executing group-

setup oracle, join-user oracle, revoke-user oracle, signature oracle and trace-user oracle.

• Compared with other group signature schemes proposed by [12,14,18,19,20], the proposed

group signature scheme is not based on pairing computation, and has the constant signing

time and signature size (the comparisons of the schemes are given in Section 6).

C. Outline

The rest of this paper is organized as follows. In Section 2, we review the bilinear pairings

and complexity assumptions on which we build. In Section 3, we show a framework for group

signature. In Section 4, we set up the security models for group signature. In Section 5, we

propose a group signature scheme under our proposed signature framework. In Section 6, we
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analyze the efficiency and security of the proposed scheme. Finally, we draw our conclusions in

Section 7.

II. PRELIMINARIES

Definition 2.1 Computational Diffie-Hellman (CDH) Problem: Let G1 be a group of prime order

q and g be a generator of G1; for all (g, ga, gb) ∈ G1, with a, b ∈ Zq, the CDH problem is to

compute ga·b.

Definition 2.2 The (~, ε)-CDH assumption holds if no ~-time algorithm can solve the CDH

problem with probability at least ε.

III. A FRAMEWORK FOR GROUP SIGNATURE

Definition 3.1 Group Signature Scheme: Let GS=(System-Setup, Generate-Key, Group-Setup,

Join-User, Revoke-User, Sign, Verify, Trace-User) be a group signature scheme. In GS, all

algorithms are described as follows:

1) System-Setup: The randomized algorithm run by the trusted authority inputs a security

parameter 1k, and then outputs all system parameters GK on the security parameter

1k.

2) Generate-Key: The randomized algorithm run by a group member generates his pub-

lic/private key pair (pki, ski) with i ∈ {1, 2......n}, where n is the maximal number of

users in a group, pki is the public key of the group member i and ski is the private

key of the group member i.

3) Group-Setup: The randomized algorithm run by the trusted authority inputs (GK,

Infor ∈ {0, 1}∗), and then outputs a group private key skg to a group manager, where

Infor is a group public identity information (or Infor is seen as the public key of

group), skg is a group private key on the management of the group manager.

4) Join-User: The randomized algorithm run by the group manager inputs (GK, skg,

pki), and then outputs a member private key cski to a group member, where cski is

the member private key of the group member and i ∈ {1, 2......n}.

5) Revoke-User: The randomized algorithm run by the group manager inputs (GK, skg,

pki, RLt
pk), and then outputs an updated revocation list RLt+1

pk , where pki is the public

key of the revoked user, RLt
pk = {...(pkj,<pkj)...} is a revocation list in the duration t
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(pkj is the public key of the revoked user and <pkj is a credential on the corresponding

public key).

6) Sign: The randomized algorithm is a standard group signature algorithm. Signer needs

to sign a message M ∈ {0, 1}∗. The algorithm run by a group member inputs (GK,

cski, M), and then outputs a signature σ, where σ ∈ {0, 1}∗∪{⊥}, cski is the member

private key of the group member with i ∈ {1, 2......n}.

7) Verify: The signature receivers verify a standard group signature σ. The deterministic

algorithm run by a signature verifier inputs (GK, M, Infor, σ, RLt
pk), and then

outputs the boolean value, accept or reject.

8) Trace-User: The group manager traces a real group member (signer) on group signa-

ture σ. The deterministic algorithm run by the group manager inputs (GK, M, Infor,

skg, σ, RLt
pk), and then outputs the corresponding public key of the real signer or ⊥.

The correctness of GS requires that for any GK ←System-Setup(1k), skg ← Group-Setup(GK,

Infor ∈ {0, 1}∗), cski ←Join-User(GK, skg, pki) for all i with i ∈ {1, 2......n}, M ∈ {0, 1}∗,

then

Pr[Verify(GK, M, Infor, Sign(GK, cski, M), RLt
pk)=1]=1.

The traceability of GS requires that for any GK ←System-Setup(1k), skg ← Group-Setup(GK,

Infor ∈ {0, 1}∗), cski ←Join-User(GK, skg, pki) for all i with i ∈ {1, 2......n}, M ∈ {0, 1}∗,

then

Pr[Trace-User(GK, M, Infor, skg, Sign(GK, cski, M), RLt
pk)=pki]=1,

where the public key pki belongs to the group named by the identity information Infor.

IV. SECURITY MODEL

According to [18,19], we consider that a secure group signature scheme must meet the following

three security requirements:

1) Unforgeability: A valid group signature must be signed by a valid group member (signer).

Therefore, no poly-time adversary can produce a valid group signature on any messages

when the adversary may adaptively be permitted to choose messages after executing group
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setup oracle, joining user oracle, revoking user oracle, signature oracle and tracing user

oracle.

2) Anonymity: A valid group signature can only reveal that one group identity possessed

by a group manager satisfies the signature. It means a valid group signature can hide the

identifying information of real signer to one group.

3) Traceability: In some situations, a valid group signature needs to reveal the identity (or

public key) of real signer from one group. It means a valid group signature can trace a real

signer. Then we split the requirement to the following two small security notions2 [18]:

a) the first one is called security against misidentification attacks, which requires

that even if the adversary can introduce (or corrupt) and revoke any user, a valid

group signature can not reveal the identifying information outside the set of the

identities of unrevoked adversarially-controlled users.

b) the second one is called security against framing attacks, which requires that an

honest user is only responsible for the messages that he signed, namely there is

no situation that a valid group signature can reveal the identity of a real group

member (signer) but this signer did not sign this signature.

Based on the above three situations, we propose a complete security model for group signature.

To make our security model easier to understand, we construct several algorithms interacting

with adversary, which may make attack experiments to the group signature schemes in the above

three situations. In our security model, we maximize adversary’s advantage, and assume that all

attacking conditions needed by adversary hold and adversary may forge signatures after limitedly

querying oracles in the above three situations.

In our security model, we assume there are n users in a group signature scheme (n ∈ N is

a maximal number of group members), and at least one user u∗ of n users is not corrupted

by adversary. And we maximize adversary’s advantage, where adversary can get all useful

information except for the private key of u∗.

All symbols and parameters are defined as follows in the algorithms:

(1) Ua is a set of users that were registered by an adversary in this game, where the user

uai ∈ Ua with i ∈ {1, 2......}, pkai is the public key of the user uai .

2The two security notions are more detailedly expanded from the correctness of traceability.
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(2) U b is a set of honest users when an adversary acts a dishonest group manager in this

game, where the user ubi ∈ U b with i ∈ {1, 2......}, pkbi is the public key of the user ubi .

(3) k is a secure parameter, A represents an adversary.

Definition 4.1 Unforgeability of A Group Signature Scheme: Let GS=(System-Setup, Generate-

Key, Group-Setup, Join-User, Revoke-User, Sign, Verify, Trace-User) be a group signature

scheme. Additionally, we set that k is a secure parameter, and Pr(BU GS(k,A)=1) is the proba-

bility that the algorithm BU GS returns 1. Then the advantage that the adversary A breaks GS

is defined as follows:

Advu gs−uf
GS (k, qg, qj, qs, ~)=Pr(Bu gs(k,A)=1),

where qg is the maximal number of ”Group-Setup” oracle queries, qj is the maximal number

of ”Join-User” oracle queries, qs is the maximal number of ”Sign” oracle queries and ~ is the

running time of B. If the advantage that the adversary breaks GS is negligible, then the scheme

GS is secure.

According to the Definition 4.1, the algorithm BU GS is described as follows:

1.Setup: Running System-Setup, GK ←System-Setup(1k), and then GK is passed to A.

2.Queries: A makes queries to the following oracles for polynomially many times:

• Group-Setup(): Given the public parameters GK and the identity information Infor of the

group, the oracle returns a group private key skg to A.

• Join-User(): Given the public parameters GK, the group private key skg (or the identity

Infor) and the public key pki of the group member, the oracle returns a group member

private key cski to A, where skg is a group private key on the identity Infor of the group.

• Sign(): Given the public parameters GK, the group member private key cski (or the public

key pki) and the message M, the oracle returns a signature σ to A, where σ ∈ {0, 1}∗∪{⊥}.

3.Forgery: A outputs its forgery, (M∗, σ∗) for Infor∗ and RLt
pk∗ , where the identity Infor∗

and the revocation list RLt
pk∗ are arbitrary forgeries generated by A. It succeeds if

(a) 1←Verify(GK, M∗, Infor∗, σ∗, RLt
pk∗);

(b) A did not query Group-Setup on input Infor∗, did not query Join-User on inputs sk∗g
and pk∗, and did not query Sign on inputs csk∗ and M∗, where the public key pk∗

belongs to the group named by the identity Infor∗.
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Definition 4.2 Traceability of A Group Signature Scheme: Let GS=(System-Setup, Generate-

Key, Group-Setup, Join-User, Revoke-User, Sign, Verify, Trace-User) be a group signature

scheme, which meets the requirement of unforgeability. GS is traceable if the following conditions

can be satisfied:

1) For all valid generated GK ←System-Setup(1k), skg ←Group-Setup(GK, Infor), cski ←

Join-User(GK, skg, pki) with i ∈ {0, 1}, then σ0 =Sign(GK, csk0, M) and σ1 =Sign(GK,

csk1, M), the outputs of Trace-User(GK, M, Infor, skg, σ0, RLt
pk) and Trace-User(GK,

M, Infor, skg, σ1, RLt
pk) are distinguishable in polynomially many times.

2) We set that k is a secure parameter, and Pr(BTM GS(k,A)=1) is the probability that the

algorithm BTM GS returns 1, and that Pr(BTF GS(k,A)=1) is the probability that the

algorithm BTF GS returns 1. Then the advantage that the adversary A breaks GS is

defined as follows:

Advt gs−mf

GS (k, qg, qj, qr, qs, ~)=Pr(Btm gs(k,A)=1)‖Pr(Btf gs(k,A)=1),

where qg is the maximal number of ”Group-Setup” oracle queries, qj is the maximal

number of ”Join-User” oracle queries, qr is the maximal number of ”Revoke-User” oracle

queries, qs is the maximal number of ”Sign” oracle queries and ~ is the running time of

B. If the advantage that the adversary breaks GS is negligible, then the scheme GS is

secure.

According to the Definition 4.2, the algorithm BTM GS is described as follows:

1.Setup: Running System-Setup, GK ←System-Setup(1k), and then GK is passed to A.

2.Queries: A makes queries to the following oracles for polynomially many times:

• Join-User(): Given the public parameters GK, the group private key skg (or the identity

Infor) and the public key pkua
i

of the group member uai , the oracle returns a group member

private key cskua
i

to A, where skg is a group private key on the identity Infor of the group

and the user (group member) uai is added to the set Ua.

• Revoke-User(): Given the public parameters GK, the group private key skg (or the identity

Infor), the public key pkua
i

of the revoked group member uai and the revocation list RLt
pk

of the last duration t, the oracle returns an updated revocation list RLt+1
pk .

• Sign(): Given the public parameters GK, the group member private key cskua
i

(or the public
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key pkua
i
) and the message M, the oracle returns a signature σ toA, where σ ∈ {0, 1}∗∪{⊥},

and the user uai is added to the set Ua if uai /∈ Ua.

3.Forgery: A outputs its forgery, (M∗, σ∗) for Infor∗ and RLt
pk∗ , where the identity Infor∗

and the revocation list RLt
pk∗ are arbitrary forgeries generated by A. It succeeds if

(a) 1←Verify(GK, M∗, Infor∗, σ∗, RLt
pk∗);

(b) A did not query Join-User on inputs sk∗g and pk∗, did not query Revoke-User on

inputs sk∗g , pk∗ and RLt−1
pk∗ , and did not query Sign on inputs csk∗ and M∗, where the

public key pk∗ of the user upk∗ belongs to the group named by the identity Infor∗

and upk∗ /∈ Ua \ {uapki | pki ∈ RL
t
pk∗};

(c) pk∗ ←Trace-User(GK, M∗, Infor∗, sk∗g , σ∗, RLt
pk∗).

And then the algorithm BTF GS is described as follows:

1.Setup: Running System-Setup, GK ←System-Setup(1k), and then GK is passed to A.

2.Queries: A makes queries to the following oracles for polynomially many times:

• Group-Setup(): Given the public parameters GK and the identity Infor of the group, the

oracle returns a group private key skg to A.

• Join-User(): Given the public parameters GK, the group private key skg (or the identity

Infor) and the public key pkub
i

of the group member ubi , the oracle returns a group member

private key cskub
i

to A, where skg is a group private key on the identity Infor of the group

and the user (group member) ubi is added to the set U b where U b 6= ∅.

• Revoke-User(): Given the public parameters GK, the group private key skg (or the identity

Infor), the public key pkub
i

of the revoked group member ubi and the revocation list RLt
pk

of the last duration t, the oracle returns an updated revocation list RLt+1
pk .

• Sign(): Given the public parameters GK, the group member private key cskub
i

(or the public

key pkub
i
) and the message M, the oracle returns a signature σ toA, where σ ∈ {0, 1}∗∪{⊥},

and the user ubi is added to the set U b if ubi /∈ U b.

3.Forgery: A outputs its forgery, (M∗, σ∗) for Infor∗ and RLt
pk∗ , where the identity Infor∗

and the revocation list RLt
pk∗ are arbitrary forgeries generated by A. It succeeds if

(a) 1←Verify(GK, M∗, Infor∗, σ∗, RLt
pk∗);

(b) A did not query Group-Setup on input Infor∗, did not query Join-User on inputs sk∗g
and pk∗, did not query Revoke-User on inputs sk∗g , pk∗ and RLt−1

pk∗ , and did not query
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Sign on inputs csk∗ and M∗, where the public key pk∗ of the user ubpk∗ belongs to the

group named by the identity Infor∗ and ubpk∗ ∈ U b;

(c) pk∗ ←Trace-User(GK, M∗, Infor∗, sk∗g , σ∗, RLt
pk∗).

Definition 4.3 Anonymity of A Group Signature Scheme: Let GS=(System-Setup, Generate-Key,

Group-Setup, Join-User, Revoke-User, Sign, Verify, Trace-User) be a group signature scheme.

Additionally, we set that k is a secure parameter, and Pr(BA GS(k,A)=1) is the probability that

the algorithm BA GS returns 1. Then the advantage that the adversary A breaks GS is defined

as follows:

Adva gs

GS (k, qg, qj, qr, qs, ~)=|Pr(Ba gs(k,A)=1)−1
2
|,

where qg is the maximal number of ”Group-Setup” oracle queries, qj is the maximal number of

”Join-User” oracle queries, qr is the maximal number of ”Revoke-User” oracle queries, qs is

the maximal number of ”Sign” oracle queries and ~ is the running time of B. If the advantage

that the adversary breaks GS is negligible, then the scheme GS is secure.

According to the Definition 4.3, the algorithm BA GS is described as follows:

1.Setup: Running System-Setup, GK ←System-Setup(1k), and then GK is passed to A.

2.Queries Phase 1: A makes queries to the following oracles for polynomially many times:

• Group-Setup(): Given the public parameters GK and the identity information Infor of the

group, the oracle returns a group private key skg to A.

• Join-User(): Given the public parameters GK, the group private key skg (or the identity

Infor) and the public key pki of the group member, the oracle returns a group member

private key cski to A, where skg is a group private key on the identity Infor of the group.

• Revoke-User(): Given the public parameters GK, the group private key skg (or the identity

Infor), the public key pki of the revoked group member and the revocation list RLt
pk of

the last duration t, the oracle returns an updated revocation list RLt+1
pk .

• Sign(): Given the public parameters GK, the group member private key cski (or the public

key pki) and the message M, the oracle returns a signature σ to A, where σ ∈ {0, 1}∗∪{⊥}.

3.Challenge: A sends to the challenger its forgeries (M∗, Infor∗, RLt
pk∗) and two group member

public keys pk∗0 and pk∗1 that belong to the group named by the group identity Infor∗. The

forgeries satisfy the following conditions:

(a) A did not query Group-Setup on input Infor∗;
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(b) A did not query Join-User on inputs Infor∗, pk∗0 (and pk∗1);

(c) A did not query Revoke-User on inputs Infor∗, pk∗0 (and pk∗1) and RLt−1
pk∗ .

The challenger picks a random bit x ∈ {0, 1}, and then runs and outputs σ∗ ←Sign(GK,

csk∗x, M∗) to A.

4.Queries Phase 2: A makes queries to the following oracles for polynomially many times

again:

• Group-Setup(): Given the public parameters GK and the identity information Infor of the

group (where Infor 6= Infor∗), the oracle returns a group private key skg to A.

• Join-User(): Given the public parameters GK, the group private key skg (or the identity

Infor) and the public key pki of the group member (where skg 6= sk∗g and pki /∈ {pk∗0, pk∗1}),

the oracle returns a group member private key cski to A, where skg is a group private key

on the identity Infor of the group.

• Revoke-User(): Given the public parameters GK, the group private key skg (or the identity

Infor), the public key pki of the revoked group member and the revocation list RLt
pk of

the last duration t, the oracle returns an updated revocation list RLt+1
pk (where A did not

query Revoke-User on inputs sk∗g , pk∗0 (and pk∗1)).

• Sign(): Given the public parameters GK, the group member private key cski (or the public

key pki) and the message M, the oracle returns a signature σ to A, where σ ∈ {0, 1}∗∪{⊥}.

5.Guess: A outputs a bit x′ ∈ {0, 1} and succeeds if x′ = x.

V. GROUP SIGNATURE SCHEME BASED ON EDL SIGNATURE

Let GS=(System-Setup, Generate-Key, Group-Setup, Join-User, Revoke-User, Sign, Verify,

Trace-User) be a group signature scheme. In GS, all algorithms are described as follows:

1) GS.System-Setup: The algorithm run by the trusted authority inputs a security parame-

ter 1k. Then, let G1 be group of prime order q and module p, and g be a generator of G1.

The size of the group is determined by the security parameter. And four hash functions,

H0 : {0, 1}∗ → Z∗q , H1 : G1 → G1, H2 : G4
1×{0, 1}∗ → Z∗q and H3 : G3

1×{0, 1}∗ → Z∗q
can be defined. Finally, the algorithm outputs the public parameters GK=(G1, g, H0,

H1, H2, H3).

2) GS.Generate-Key: The algorithm run by a group member generates his public/private

key pair (pkl, skl) with l ∈ {1, 2......n}, where n is the maximal number of users in a
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group. The algorithm randomly chooses skl ∈ Z∗q , and then computes pkl = gskl .

3) GS.Group-Setup: The algorithm run by the trusted authority inputs (GK, Infor ∈

{0, 1}∗), where Infor is a group public identity information. The algorithm randomly

chooses d ∈ Z∗q , computes and outputs a group private key skg = d ·H0(Infor) to a

group manager, and then publishes the group public key pkg = gd.

4) GS.Join-User: The algorithm run by the group manager inputs (GK, skg, pkl), and

then the following steps are finished:

a) The algorithm run by the group manager randomly chooses a ∈ Z∗q , computes

u1 = ga, h1 = H1(u1),

x1 = h
skg
1 , v1 = ha1,

c1 = H2(u1, x1, v1, pkg, Infor), r = a+ c1 · skg.

The algorithm outputs a partial member private key δ = (x1, c1, r) to a group

member whose public key is pkl, and then saves the tuple (pkl, u1), where u1

is used to trace the real signer.

b) The algorithm run by a group member with the public key pkl and the private

key skl verifies the partial member private key δ = (x1, c1, r) by the following

computations:

u′1 = gr · (pkg)−c1·H0(Infor),

h′1 = H1(u
′
1), v

′
1 = (h′1)

r · (x1)−c1 ,

c′1 = H2(u
′
1, x1, v

′
1, pkg, Infor),

and then checks c′1 = c1. If the equation c′1 = c1 is correct, the group

member accepts δ, otherwise the group member requires that the group man-

ager must resend δ. Finally, the algorithm computes and outputs the group

member private key cskl = {u′1, δ = (x1, c1, r)} to the group member, where

u′1 = u1 = ga.

5) GS.Revoke-User: The algorithm run by the group manager inputs (GK, skg, pkl, RLt
pk),

where pkl is the public key of the revoked user. The algorithm computes rvl = (pkl)
1
c1 ,

where rvl is a credential on the corresponding public key pkl. Finally, the algorithm

outputs and adds a tuple [pkl, rvl] to the revocation list RLt
pk, and then an updated

revocation list RLt+1
pk is published by a secure approach.
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6) GS.Sign: A group member with the group member private key cskl needs to sign a

message M ∈ {0, 1}∗. The algorithm run by the group member inputs (GK, cskl, M),

and then randomly chooses k, f ∈ Z∗q , computes3

u2 = gk · (u′1)f , h2 = H1(u2), v2 = hf ·r+k
2 ,

c′′1 = c1 · f , c2 = H3(u2, v2, pkg, c
′′
1,M, Infor),

y = f · r + c2 · f · skl,

x2 = skl · f − k
c2

, x3 = gk, x4 = gskl·f .

Finally, the algorithm outputs a signature σ = {c′′1, c2, x2, x3, x4, y}.

7) GS.Verify: The signature receivers verify a group signature σ. The algorithm run by a

signature verifier inputs (GK, M, Infor, σ, RLt
pk), and then the following steps are

finished:

a) The algorithm computes the following equations:

u′2 = gy · (pkg)−c
′′
1 ·H0(Infor) · g−x2·c2 ,

h′2 = H1(u
′
2), v

′
2 = (h′2)

y · (h′2)−x2·c2 ,

c′2 = H3(u
′
2, v
′
2, pkg, c

′′
1,M, Infor),

and then checks c′2 = c2. If the equation c′2 = c2 is correct, then the algorithm

runs into the next step, otherwise the algorithm outputs the boolean value

reject.

b) The algorithm finishes the following steps on the revocation list RLt
pk:

• Check the equation gx2 = (x3)
− 1

c2 · x4; if the equation is correct, then

the algorithm continues, otherwise the algorithm outputs the boolean value

reject;

• Compute the equation u′′2 = gy ·(pkg)−c
′′
1 ·H0(Infor) ·x3 ·(x4)−c2 , then check the

equation u′′2 = u′2; if the equation is correct, then the algorithm continues,

otherwise the algorithm outputs the boolean value reject;

• Compute rv′l = (rvl)
c′′1 ·c2 = (pkl)

1
c1
·c1·f ·c2 = (pkl)

c2·f = gskl·c2·f , and rv′′l =

gx2·c2 · x3 = gskl·f ·c2−k · x3 = gskl·c2·f , and then check rv′l = rv′′l ; if

the equation rv′l = rv′′l is correct, then the algorithm directly outputs the

boolean value reject; otherwise, if the algorithm does not find the correcting

3c′′1 may be also seen as {0, 1}∗ in the computation of H3().
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equation rv′l = rv′′l on the revocation list RLt
pk, then the algorithm outputs

the boolean value accept.

Remark: rv′l = rv′′l can denote whether the group member (signer) has been

revoked.

8) GS.Trace-User: The group manager traces a real group member (signer) on group

signature σ, which can be verified by GS.Verify. The algorithm run by the group

manager computes the following equation:

[ gc1·(y−x2·c2)

(pkg)
c′′1 ·c1 ·(x3)c1

]
1
c′′1 = [ gc1·(f ·r+k)

(pkg)
c′′1 ·c1 ·(x3)c1

]
1
c′′1 = [g

c1·f ·(a+c1·skg)+c1·k

(pkg)
c′′1 ·c1 ·(x3)c1

]
1
c′′1 = [g

c′′1 ·a·gskg ·c
′′
1 ·c1 ·gk·c1

(pkg)
c′′1 ·c1 ·(x3)c1

]
1
c′′1

= ga = u1.

Finally, the algorithm finds and outputs the corresponding public key pkl by u1.

VI. ANALYSIS OF THE PROPOSED SCHEME

A. Efficiency

In the proposed scheme, σ = {c′′1, c2, x2, x3, x4, y}, where

c′′1 = c1 · f , c2 = H3(u2, v2, pkg, c
′′
1,M, Infor),

y = f · r + c2 · f · skl, x2 = skl · f − k
c2

,

x3 = gk and x4 = gskl·f .

Thus, the length of signature is 2 · |G1| + 4 · |Z∗q|, where |G1| is the size of element in G1

and |Z∗q| is the size of element in Z∗q . Additionally, the signing and verifying procedure is

mainly based on integer multiplication and hash computation, so if we assume that the time

for integer multiplication and hash computation can be ignored, then signing a message for a

group signature only needs to compute 5 exponentiations in G1 and 1 multiplication in G1, and

verification requires at most 2 · Lr + 8 exponentiations in G1 and Lr + 6 multiplications in G1,

where Lr is the number of the revoked users in the revocation list RLt
pk

4.

In this paper, we compare the proposed scheme (the scheme of Section 5) with the other group

signature schemes [12,14,18,19,20]. Table 1 shows the comparisons of the schemes. Compared

4We only consider the bad thing that the revoked user is the last one in the revocation list when verification starts from the

first one to the last one.
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with other schemes, although our scheme is constructed in the random oracle model, our scheme

does not employ pairing computation and has the constant signing time and signature size.

TABLE I

COMPARISONS OF THE SIX SCHEMES

Signature Size Signature Cost Verification Cost Model

Scheme [12] O(1) O(1) O(Lr) random oracle

Scheme [14] O(1) O(1) O(Lr) without random oracle

Scheme [18] O(1) O(1) O(1) without random oracle

Scheme [19] O(1) O(Lm) O(Lm + Lk) without random oracle

Scheme [20] O(1) O(Lm) O(1) random oracle

Our Scheme O(1) O(1) O(Lr) random oracle

caption: Lm is the length of signed message, Lk is the length of user identity,

Lr is the number of revoked users in the revocation list.

B. Security

In the section, we show the proposed scheme (the scheme of Section 5) has the unforgeability,

traceability and anonymity under the adaptive chosen message attacks, which can be reduced to

the CDH assumption. Our proofs for the following theorems are based on the security models

of Section 4 (We defer the proofs to Appendix A).

Theorem 6.1 The scheme of Section 5 is (~, ε, qg, qj , qs)-unforgeable (according to the Definition

4.1), assuming that the (~′, ε′)-CDH assumption holds in G1, where:

ε′ = ε− qg
2nq − qj · ( 1

2nq + 2·qh
2nq )− qs·qh

26·nq −
qs·(qh+qs)

2nq ,

~′ = ~+O((qh + qg + 4 · qj + 12 · qs) · Cexp + 4 · qs · Cmul),

and qh is the maximal number of ”Hash” oracle queries, qg is the maximal number of ”Group-

Setup” oracle queries, qj is the maximal number of ”Join-User” oracle queries, qs is the maximal

number of ”Sign” oracle queries, Cmul and Cexp are respectively the time for a multiplication

and an exponentiation in G1.

Theorem 6.2 The scheme of Section 5 is a traceable group signature scheme when it is un-

forgeable (Theorem 6.1 holds) and satisfies the following conditions (according to the Definition
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4.2):

a) The outputs of ”Trace-User” oracle are distinguishable in polynomially many times;

b) The scheme of Section 5 is (~′′, ε′′, qg, qj , qr, qs)-secure, assuming that the (~′, ε′)-CDH

assumption holds in G1, where:

ε′′ = [ε′ + qj · ( 1
2nq + 2·qh

2nq ) + qr · ( 1
2nq + 2·qh

2nq ) +
qs·qh
26·nq + qs·(qh+qs)

2nq ] ‖

[ε′ + qg
2nq + qj · ( 1

2nq + 2·qh
2nq ) + qr · ( 1

2nq + 2·qh
2nq ) +

qs·qh
26·nq + qs·(qh+qs)

2nq ],

~′′ =MAX{~′ −O((qh + 4 · qj + 5 · qr + 12 · qs) · Cexp + 4 · qs · Cmul), ~′ −O((qh +

gg + 4 · qj + 5 · qr + 12 · qs) · Cexp + 4 · qs · Cmul)}.

and qh is the maximal number of ”Hash” oracle queries, qg is the maximal number of

”Group-Setup” oracle queries, qj is the maximal number of ”Join-User” oracle queries,

qr is the maximal number of ”Revoke-User” oracle queries, qs is the maximal number

of ”Sign” oracle queries, Cmul and Cexp are respectively the time for a multiplication

and an exponentiation in G1.

Theorem 6.3 The scheme of Section 5 is (~, ε, qg, qj , qr, qs)-anonymous (according to the

Definition 4.3), assuming that the (~′, ε′)-CDH assumption holds in G1, where:

ε′ = ε− qg1+qg2
2nq −(qj1+qj2)·( 1

2nq +
2·qh
2nq )−(qr1+qr2)·( 1

2nq +
2·qh
2nq )−

(qs1+qs2 )·qh
26·nq − (qs1+qs2 )·(2·qh+qs1+qs2 )

2nq ,

~′ = ~+O((qh+qg1+qg2+4·(qj1+qj2)+5·(qr1+qr2)+12·(qs1+qs2))·Cexp+4·(qs1+qs2)·Cmul),

and qh is the maximal number of ”Hash” oracle queries, qg1 and qg2 are respectively the

maximal numbers of ”Group-Setup” oracle queries in the Queries Phase 1 and 2, qj1 and

qj2 are respectively the maximal numbers of ”Join-User” oracle queries in the Queries Phase

1 and 2, qr1 and qr2 are respectively the maximal numbers of ”Revoke-User” oracle queries

in the Queries Phase 1 and 2, qs1 and qs2 are respectively the maximal numbers of ”Sign”

oracle queries in the Queries Phase 1 and 2, Cmul and Cexp are respectively the time for a

multiplication and an exponentiation in G1.

VII. CONCLUSIONS

In this paper, by modifying the EDL signature, we present a public key-based group signature

scheme in the random oracle, which is based on the model of verifier-local revocation. Also, we

give the security models for group signature. Under our security models, the proposed scheme
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is proved to have the properties of anonymity and traceability with enough security. Compared

with other group signature schemes proposed by [12,14,18,19,20], the proposed group signature

scheme does not employ pairing computation and has the constant signature size, so the proposed

scheme is efficient. However, because the proposed scheme is not enough efficient in revoking

verification of signatures, the work about group signature still needs to be further progressed.
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APPENDIX A

SECURITY PROOF

(Proof of Theorem 6.1).

Proof: Let GS be a group signature scheme of Section 5. Additionally, let A be an (~, ε, qg,

qj , qs)-adversary attacking GS. From the adversary A, we construct an algorithm B, for (g, ga,

gb)∈ G1, the algorithm B is able to use A to compute ga·b. Thus, we assume the algorithm B can

solve the CDH with probability at least ε′ and in time at most ~′, contradicting the (~′, ε′)-CDH

assumption. Such a simulation may be created in the following way:

Setup: The trusted authority system inputs a security parameter 1k. Then, let G1 be group of

prime order q and module p, and g be a generator of G1. The size of the group is determined

by the security parameter. Also, H0 : {0, 1}∗ → Z∗q can directly be computed on no querying.

H1 : G1 → G1, H2 : G4
1 × {0, 1}∗ → Z∗q and H3 : G3

1 × {0, 1}∗ → Z∗q can be simulated by the

algorithms H1 Queries, H2 Queries and H3 Queries, where we set that gb (B does not know b) is

used to answer the query on H1 Queries. Additionally, we assume that the user u∗ is a challenger,

whose public key is pk∗ = ga (B does not know a where a is seen as the corresponding private

key). Finally, the algorithm outputs the public parameters GK=(G1, g, H0).

Queries: When running the adversary A, the relevant queries can occur according to the Defi-

nition 4.1. The algorithm B answers these in the following way:

• H 1 Queries: If this query is fresh, then the algorithm chooses random s ∈ Z∗q , computes

and outputs (gb)s = gb·s to the adversary A; otherwise the algorithm returns the same result.

Also, the algorithm saves the new tuple (s, gb·s) to U List.
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• H 2 Queries: If this query is fresh, then the algorithm outputs the new result to the adversary

A; otherwise the algorithm returns the same result.

• H 3 Queries: If this query is fresh, then the algorithm outputs the new result to the adversary

A; otherwise the algorithm returns the same result.

• Group-Setup Queries: Given the public parameters GK and the identity information Infor

of the group, the algorithm randomly chooses d ∈ Z∗q , computes and outputs a group private

key skg = d ·H0(Infor) and a group public key pkg = gd to A.

• Join-User Queries: Given the public parameters GK and the group identity Infor, the

algorithm randomly chooses t, d ∈ Z∗q , computes

u1 = gt, h1 = H1(u1),

x1 = h
d·H0(Infor)
1 , v1 = ht1,

c1 = H2(u1, x1, v1, g
d, Infor), r = t+ c1 · d ·H0(Infor).

The algorithm outputs a partial member private key δ = (x1, c1, r) to A. Because the

algorithm does not know the private key of the queried group member, the algorithm only

outputs a partial member private key to A. However, the adversary A is easy to compute

out the complete group member private key when the adversary A corrupted some group

members or registered some controlled group member to the simulation system.

• Sign Queries: Given the public parameters GK, the identity information Infor of the

group, the public key pkl and the message M, the following setups are finished:

a) The algorithm randomly chooses t, d ∈ Z∗q , computes

u1 = gt, h1 = H1(u1), x1 = h
d·H0(Infor)
1 ,

v1 = ht1, c1 = H2(u1, x1, v1, g
d, Infor).

b) The algorithm randomly chooses c2, y, f, k ∈ Z∗q , computes

u2 = gy · g−d·c1·f ·H0(Infor) · g−k,

and then queries the oracle H 1 Queries for u2, if u2 has been queried, then the

algorithm aborts; otherwise the algorithm continues.

c) The algorithm randomly chooses j ∈ Z∗q , computes

v2 = hy2 · g−k·j ,

where we set h2 = H1(u2) = gj (satisfy the condition that DLh2((h2)
k) =

DLg(g
k) = k).
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d) The algorithm queries the oracle H 3 Queries, if the tuple (u2, v2, gd, c1·f,M, Infor)

has been queried, then the algorithm aborts; otherwise the algorithm continues.

e) The algorithm computes x2 = k
c2

, x3 = g−k · (pkl)f , x4 = (pkl)
f
c2 , and then outputs

a group signature σ = {c′′1, c2, x2, x3, x4, y} to the adversary A, and saves the tuple

(t, d, c2, f, k) to S List.

Forgery: If the algorithm B does not abort as a consequence of one of the queries above, the

adversary A will, with probability at least ε, return a forgery (M∗, σ∗, Infor∗, RLt
pk∗) for the

challenger u∗, where the identity Infor∗ and the revocation list RLt
pk∗ are arbitrary forgeries

generated by A. And the forgery satisfies the following condition:

(a) 1←Verify(GK, M∗, Infor∗, σ∗, RLt
pk∗);

(b) A did not query Group-Setup on input Infor∗, did not query Join-User on input

Infor∗, and did not query Sign on inputs Infor∗, pk∗ and M∗ where the public key

pk∗ of the challenger u∗ belongs to the group named by the identity Infor∗.

Then, if the adversary A did not query the oracle H 1 Queries, or U List is empty or S List

is empty, then the algorithm B aborts.

Otherwise, the algorithm B can get h2 = H1(∗) = gb·s. So, when the condition DLh2((h2)
a·f ·c2−k) =

DLg(g
a·f ·c2−k) = a · f · c2 − k holds, we can get the followings:

hx2·c2
2 = (h2)

(a·f− k
c2

)·c2 = (gb·s)
(a·f− k

c2
)·c2 = (gb·s)(a·f ·c2−k)= ga·b·s·f ·c2−b·s·k,

then B computes and outputs (hx2·c2
2 · gb·s·k)

1
c2·s·f = ga·b, which is the solution to the given CDH

problem.

Now, we analyze the probability of the algorithm B not aborting. For the simulation to complete

without aborting, we require that all Group-Setup queries and all Join-User queries are fresh,

and all Sign queries do not abort. So, if the algorithm B does not abort, then the following

conditions must hold:

(a) All Group-Setup queries are fresh, because H0 : {0, 1}∗ → Z∗q is uniformly distributed

in Zq, the collision probability of H0 is 1
2nq , then the failure probability of the queries

is at most qg
2nq .

(b) All Join-User queries are fresh, similarly the collision probability of H0 is 1
2nq , and

because t, d ∈ Z∗q are uniformly distributed in Zq, the collision probability of H1 is

qh · 1
2nq = qh

2nq and the collision probability of H2 is qh · 1
2nq = qh

2nq , then the failure
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probability of the queries is at most qj · ( 1
2nq + 2·qh

2nq ).

(c) All Sign queries do not abort, then we may get the followings:

• The algorithm may abort in the setup b), namely u2 has been queried on the

oracle H 1 Queries. So, as t, d, c2, y, f, k ∈ Z∗q are uniformly distributed in Z6
q ,

the collision probability of H1 is qh · 1
26·nq = qh

26·nq , then the failure probability of

the queries is at most qs·qh
26·nq ;

• The algorithm may abort in the setup d), namely the tuple (u2, v2, gd, c1·f,M, Infor)

has been queried on the oracle H 3 Queries. So, as j ∈ Z∗q is uniformly distributed

in Zq, the collision probability of H3 is (qh + qs) · 1
2nq = qh+qs

2nq , then the failure

probability of the queries is at most qs·(qh+qs)
2nq .

Therefore, from the above analysis, we get that the algorithm B can compute ga·b from the

forgery as shown above, with probability at least ε′ = ε− qg
2nq −qj ·( 1

2nq +
2·qh
2nq )− qs·qh

26·nq −
qs·(qh+qs)

2nq .

The time complexity of the algorithm B is ~′ = ~+O((qh+qg+4·qj+12·qs)·Cexp+4·qs ·Cmul),

where we assume that the time for integer addition, integer multiplication and hash computation

can both be ignored.

Thus, Theorem 6.1 follows.

(Proof of Theorem 6.2).

Proof: According to the Definition 4.2, we need to divide the proof to the following three parts:

1) Correctness (the outputs of ”Trace-User” oracle are distinguishable):

From the algorithm GS.Trace-User, we may know that

[ gc1·(y−x2·c2)

(pkg)
c′′1 ·c1 ·(x3)c1

]
1
c′′1 = [ gc1·(f ·r+k)

(pkg)
c′′1 ·c1 ·(x3)c1

]
1
c′′1 = [g

c1·f ·(a+c1·skg)+c1·k

(pkg)
c′′1 ·c1 ·(x3)c1

]
1
c′′1 = [g

c′′1 ·a·gskg ·c
′′
1 ·c1 ·gk·c1

(pkg)
c′′1 ·c1 ·(x3)c1

]
1
c′′1

= ga = u1.

So, for any potential public key pkl, the algorithm GS.Trace-User run by the group

manager can find and output the corresponding public key pkl by u1.

2) Misidentification Attacks:

Let GS be a group signature scheme of Section 5. Additionally, let A be an (~, ε, qj ,

qr, qs)-adversary attacking GS. From the adversary A, we construct an algorithm B,

for (g, ga, gb)∈ G1, the algorithm B is able to use A to compute ga·b. Thus, we assume

the algorithm B can solve the CDH with probability at least ε′ and in time at most ~′,
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contradicting the (~′, ε′)-CDH assumption. Such a simulation may be created in the

following way:

Setup: The trusted authority system inputs a security parameter 1k. Then, let G1 be

group of prime order q and module p, and g be a generator of G1. The size of the

group is determined by the security parameter. Also, H0 : {0, 1}∗ → Z∗q can directly

be computed on no querying. H1 : G1 → G1, H2 : G4
1 × {0, 1}∗ → Z∗q and H3 :

G3
1 × {0, 1}∗ → Z∗q can be simulated by the algorithms H1 Queries, H2 Queries and

H3 Queries, where we set that gb (B does not know b) is used to answer the query on

H1 Queries. Additionally, we assume that the user u∗ is a challenger, whose public key

is pk∗ = ga (B does not know a where a is seen as the corresponding private key).

Finally, the algorithm outputs the public parameters GK=(G1, g, H0).

Queries: When running the adversary A, the relevant queries can occur according to

the algorithm BTM GS of the Definition 4.2. The algorithm B answers these in the

following way:

• H 1 Queries: If this query is fresh, then the algorithm chooses random s ∈ Z∗q ,

computes and outputs (gb)s = gb·s to the adversary A; otherwise the algorithm

returns the same result. Also, the algorithm saves the new tuple (s, gb·s) to U List.

• H 2 Queries: If this query is fresh, then the algorithm outputs the new result to

the adversary A; otherwise the algorithm returns the same result.

• H 3 Queries: If this query is fresh, then the algorithm outputs the new result to

the adversary A; otherwise the algorithm returns the same result.

• Join-User Queries: Given the public parameters GK and the group identity Infor,

the algorithm randomly chooses t, d ∈ Z∗q , computes

u1 = gt, h1 = H1(u1),

x1 = h
d·H0(Infor)
1 , v1 = ht1,

c1 = H2(u1, x1, v1, g
d, Infor), r = t+ c1 · d ·H0(Infor).

The algorithm outputs a partial member private key δ = (x1, c1, r) to A. Similarly,

because the algorithm does not know the private key of the queried group member,

the algorithm only outputs a partial member private key to A. However, the adver-

sary A is easy to compute out the complete group member private key when the
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adversary A corrupted some group members or registered some controlled group

member to the simulation system, and the users (group members) uai are added to

the set Ua.

• Revoke-User Queries: Given the public parameters GK, the group identity Infor,

the public key pkua
i

of the revoked group member and the revocation list RLt
pk of

the last duration t, the algorithm randomly chooses t, d ∈ Z∗q , computes

u1 = gt, h1 = H1(u1),

x1 = h
d·H0(Infor)
1 , v1 = ht1,

c1 = H2(u1, x1, v1, g
d, Infor).

Then, the algorithm computes rvua
i
= (pkua

i
)

1
c1 , where rvua

i
is a credential on the

corresponding public key pkua
i
. Finally, the algorithm outputs and adds a tuple

[pkua
i
, rvua

i
] to the revocation list RLt

pk, and then an updated revocation list RLt+1
pk

is published to the adversary A.

• Sign Queries: Given the public parameters GK, the identity information Infor

of the group, the public key pkua
i

and the message M, the following setups are

finished:

a) The algorithm randomly chooses t, d ∈ Z∗q , computes

u1 = gt, h1 = H1(u1), x1 = h
d·H0(Infor)
1 ,

v1 = ht1, c1 = H2(u1, x1, v1, g
d, Infor).

b) The algorithm randomly chooses c2, y, f, k ∈ Z∗q , computes

u2 = gy · g−d·c1·f ·H0(Infor) · g−k,

and then queries the oracle H 1 Queries for u2, if u2 has been queried,

then the algorithm aborts; otherwise the algorithm continues.

c) The algorithm randomly chooses j ∈ Z∗q , computes

v2 = hy2 · g−k·j ,

where we set h2 = H1(u2) = gj (satisfy the condition that DLh2((h2)
k) =

DLg(g
k) = k).

d) The algorithm queries the oracle H 3 Queries, if the tuple (u2, v2, g
d, c1 ·

f,M, Infor) has been queried, then the algorithm aborts; otherwise the

algorithm continues.
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e) The algorithm computes x2 = k
c2

, x3 = g−k · (pkua
i
)f , x4 = (pkua

i
)

f
c2 , and

then outputs a group signature σ = {c′′1, c2, x2, x3, x4, y} to the adversary A,

saves the tuple (t, d, c2, f, k) to S List, and the user uai is added to the set

Ua if uai /∈ Ua.

Forgery: If the algorithm B does not abort as a consequence of one of the queries

above, the adversary A will, with probability at least ε, return a forgery (M∗, σ∗,

Infor∗, RLt
pk∗) for the challenger u∗, where the identity Infor∗ and the revocation

list RLt
pk∗ are arbitrary forgeries generated by A. And the forgery satisfies the following

condition:

(a) 1←Verify(GK, M∗, Infor∗, σ∗, RLt
pk∗);

(b) A did not query Join-User on input Infor∗, did not query Revoke-User on

inputs Infor∗, pk∗ and RLt−1
pk∗ , and did not query Sign on inputs Infor∗, pk∗

and M∗, where the public key pk∗ belongs to the group named by the identity

Infor∗ and u∗ /∈ Ua \ {uapki | pki ∈ RL
t
pk∗};

(c) pk∗ ←Trace-User(GK, M∗, Infor∗, *, σ∗, RLt
pk∗).

Then, if the adversary A did not query the oracle H 1 Queries, or U List is empty

or S List is empty, then the algorithm B aborts.

Otherwise, the algorithm B can get h2 = H1(∗) = gb·s. So, when the condition

DLh2((h2)
a·f ·c2−k) = DLg(g

a·f ·c2−k) = a · f · c2 − k holds, we can get the followings:

hx2·c2
2 = (h2)

(a·f− k
c2

)·c2 = (gb·s)
(a·f− k

c2
)·c2 = (gb·s)(a·f ·c2−k)= ga·b·s·f ·c2−b·s·k,

then B computes and outputs (hx2·c2
2 · gb·s·k)

1
c2·s·f = ga·b, which is the solution to the

given CDH problem.

Now, we analyze the probability of the algorithm B not aborting. For the simulation to

complete without aborting, we require that all Join-User queries and all Revoke-User

queries are fresh, and all Sign queries do not abort. So, if the algorithm B does not

abort, then the following conditions must hold:

(a) All Join-User queries are fresh, the collision probability of H0 is 1
2nq , and

because t, d ∈ Z∗q are uniformly distributed in Zq, the collision probability of

H1 is qh · 1
2nq = qh

2nq and the collision probability of H2 is qh · 1
2nq = qh

2nq , then

the failure probability of the queries is at most qj · ( 1
2nq + 2·qh

2nq ).
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(b) All Revoke-User queries are fresh, similarly the collision probability of H0

is 1
2nq , and because t, d ∈ Z∗q are uniformly distributed in Zq, the collision

probability of H1 is qh· 1
2nq = qh

2nq and the collision probability of H2 is qh· 1
2nq =

qh
2nq , then the failure probability of the queries is at most qr · ( 1

2nq + 2·qh
2nq ).

(c) All Sign queries do not abort, then we may get the followings:

• The algorithm may abort in the setup b), namely u2 has been queried on the

oracle H 1 Queries. So, as t, d, c2, y, f, k ∈ Z∗q are uniformly distributed

in Z6
q , the collision probability of H1 is qh · 1

26·nq = qh
26·nq , then the failure

probability of the queries is at most qs·qh
26·nq ;

• The algorithm may abort in the setup d), namely the tuple (u2, v2, g
d, c1 ·

f,M, Infor) has been queried on the oracle H 3 Queries. So, as j ∈ Z∗q is

uniformly distributed in Zq, the collision probability of H3 is (qh+qs)· 1
2nq =

qh+qs
2nq , then the failure probability of the queries is at most qs·(qh+qs)

2nq .

Therefore, from the above analysis, we get that the algorithm B can compute ga·b

from the forgery as shown above, with probability at least ε′ = ε− qj · ( 1
2nq + 2·qh

2nq )−

qr · ( 1
2nq + 2·qh

2nq ) − qs·qh
26·nq −

qs·(qh+qs)
2nq . The time complexity of the algorithm B is ~′ =

~+O((qh+4 · qj +5 · qr +12 · qs) ·Cexp+4 · qs ·Cmul), where we assume that the time

for integer addition, integer multiplication and hash computation can both be ignored.

3) framing attacks:

Let GS be a group signature scheme of Section 5. Additionally, let A be an (~, ε, qg,

qj , qr, qs)-adversary attacking GS. From the adversary A, we construct an algorithm

B, for (g, ga, gb)∈ G1, the algorithm B is able to use A to compute ga·b. Thus, we

assume the algorithm B can solve the CDH with probability at least ε′ and in time at

most ~′, contradicting the (~′, ε′)-CDH assumption. Such a simulation may be created

in the following way:

Setup: The trusted authority system inputs a security parameter 1k. Then, let G1 be

group of prime order q and module p, and g be a generator of G1. The size of the

group is determined by the security parameter. Also, H0 : {0, 1}∗ → Z∗q can directly

be computed on no querying. H1 : G1 → G1, H2 : G4
1 × {0, 1}∗ → Z∗q and H3 :

G3
1 × {0, 1}∗ → Z∗q can be simulated by the algorithms H1 Queries, H2 Queries and
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H3 Queries, where we set that gb (B does not know b) is used to answer the query on

H1 Queries. Additionally, we assume that the user u∗ is a challenger, whose public key

is pk∗ = ga (B does not know a where a is seen as the corresponding private key).

Finally, the algorithm outputs the public parameters GK=(G1, g, H0).

Queries: When running the adversary A, the relevant queries can occur according to

the algorithm BTF GS of the Definition 4.2. The algorithm B answers these in the

following way:

• H 1 Queries: If this query is fresh, then the algorithm chooses random s ∈ Z∗q ,

computes and outputs (gb)s = gb·s to the adversary A; otherwise the algorithm

returns the same result. Also, the algorithm saves the new tuple (s, gb·s) to U List.

• H 2 Queries: If this query is fresh, then the algorithm outputs the new result to

the adversary A; otherwise the algorithm returns the same result.

• H 3 Queries: If this query is fresh, then the algorithm outputs the new result to

the adversary A; otherwise the algorithm returns the same result.

• Group-Setup Queries: Given the public parameters GK and the identity informa-

tion Infor of the group, the algorithm randomly chooses d ∈ Z∗q , computes and

outputs a group private key skg = d ·H0(Infor) and a group public key pkg = gd

to A.

• Join-User Queries: Given the public parameters GK and the group identity Infor,

the algorithm randomly chooses t, d ∈ Z∗q , computes

u1 = gt, h1 = H1(u1),

x1 = h
d·H0(Infor)
1 , v1 = ht1,

c1 = H2(u1, x1, v1, g
d, Infor), r = t+ c1 · d ·H0(Infor).

The algorithm outputs a partial member private key δ = (x1, c1, r) to A, which is

related to the honest user ubi . And the user ubi is added to the set U b where U b 6= ∅.

• Revoke-User Queries: Given the public parameters GK, the group identity Infor,

the public key pkub
i

of the revoked group member and the revocation list RLt
pk of

the last duration t, the algorithm randomly chooses t, d ∈ Z∗q , computes

u1 = gt, h1 = H1(u1),

x1 = h
d·H0(Infor)
1 , v1 = ht1,
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c1 = H2(u1, x1, v1, g
d, Infor).

Then, the algorithm computes rvub
i
= (pkub

i
)

1
c1 , where rvub

i
is a credential on the

corresponding public key pkub
i
. Finally, the algorithm outputs and adds a tuple

[pkub
i
, rvub

i
] to the revocation list RLt

pk, and then an updated revocation list RLt+1
pk

is published to the adversary A.

• Sign Queries: Given the public parameters GK, the identity information Infor

of the group, the public key pkub
i

and the message M, the following setups are

finished:

a) The algorithm randomly chooses t, d ∈ Z∗q , computes

u1 = gt, h1 = H1(u1), x1 = h
d·H0(Infor)
1 ,

v1 = ht1, c1 = H2(u1, x1, v1, g
d, Infor).

b) The algorithm randomly chooses c2, y, f, k ∈ Z∗q , computes

u2 = gy · g−d·c1·f ·H0(Infor) · g−k,

and then queries the oracle H 1 Queries for u2, if u2 has been queried,

then the algorithm aborts; otherwise the algorithm continues.

c) The algorithm randomly chooses j ∈ Z∗q , computes

v2 = hy2 · g−k·j ,

where we set h2 = H1(u2) = gj (satisfy the condition that DLh2((h2)
k) =

DLg(g
k) = k).

d) The algorithm queries the oracle H 3 Queries, if the tuple (u2, v2, g
d, c1 ·

f,M, Infor) has been queried, then the algorithm aborts; otherwise the

algorithm continues.

e) The algorithm computes x2 = k
c2

, x3 = g−k · (pkub
i
)f , x4 = (pkub

i
)

f
c2 , and

then outputs a group signature σ = {c′′1, c2, x2, x3, x4, y} to the adversary A,

saves the tuple (t, d, c2, f, k) to S List, and the user ubi is added to the set

U b if ubi /∈ U b.

Forgery: If the algorithm B does not abort as a consequence of one of the queries

above, the adversary A will, with probability at least ε, return a forgery (M∗, σ∗,

Infor∗, RLt
pk∗) for the challenger u∗, where the identity Infor∗ and the revocation

list RLt
pk∗ are arbitrary forgeries generated by A. And the forgery satisfies the following
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condition:

(a) 1←Verify(GK, M∗, Infor∗, σ∗, RLt
pk∗);

(b) A did not query Group-Setup on input Infor∗, did not query Join-User on

input Infor∗, did not query Revoke-User on inputs Infor∗, pk∗ and RLt−1
pk∗ ,

and did not query Sign on inputs Infor∗, pk∗ and M∗, where the public key

pk∗ belongs to the group named by the identity Infor∗ and u∗ ∈ U b;

(c) pk∗ ←Trace-User(GK, M∗, Infor∗, *, σ∗, RLt
pk∗).

Then, if the adversary A did not query the oracle H 1 Queries, or U List is empty

or S List is empty, then the algorithm B aborts.

Otherwise, the algorithm B can get h2 = H1(∗) = gb·s. So, when the condition

DLh2((h2)
a·f ·c2−k) = DLg(g

a·f ·c2−k) = a · f · c2 − k holds, we can get the followings:

hx2·c2
2 = (h2)

(a·f− k
c2

)·c2 = (gb·s)
(a·f− k

c2
)·c2 = (gb·s)(a·f ·c2−k)= ga·b·s·f ·c2−b·s·k,

then B computes and outputs (hx2·c2
2 · gb·s·k)

1
c2·s·f = ga·b, which is the solution to the

given CDH problem.

Now, we analyze the probability of the algorithm B not aborting. For the simulation

to complete without aborting, we require that all Group-Setup queries, all Join-User

queries and all Revoke-User queries are fresh, and all Sign queries do not abort. So,

if the algorithm B does not abort, then the following conditions must hold:

(a) All Group-Setup queries are fresh, because H0 : {0, 1}∗ → Z∗q is uniform-

ly distributed in Zq, the collision probability of H0 is 1
2nq , then the failure

probability of the queries is at most qg
2nq .

(b) All Join-User queries are fresh, the collision probability of H0 is 1
2nq , and

because t, d ∈ Z∗q are uniformly distributed in Zq, the collision probability of

H1 is qh · 1
2nq = qh

2nq and the collision probability of H2 is qh · 1
2nq = qh

2nq , then

the failure probability of the queries is at most qj · ( 1
2nq + 2·qh

2nq ).

(c) All Revoke-User queries are fresh, similarly the collision probability of H0

is 1
2nq , and because t, d ∈ Z∗q are uniformly distributed in Zq, the collision

probability of H1 is qh· 1
2nq = qh

2nq and the collision probability of H2 is qh· 1
2nq =

qh
2nq , then the failure probability of the queries is at most qr · ( 1

2nq + 2·qh
2nq ).

(d) All Sign queries do not abort, then we may get the followings:
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• The algorithm may abort in the setup b), namely u2 has been queried on the

oracle H 1 Queries. So, as t, d, c2, y, f, k ∈ Z∗q are uniformly distributed

in Z6
q , the collision probability of H1 is qh · 1

26·nq = qh
26·nq , then the failure

probability of the queries is at most qs·qh
26·nq ;

• The algorithm may abort in the setup d), namely the tuple (u2, v2, g
d, c1 ·

f,M, Infor) has been queried on the oracle H 3 Queries. So, as j ∈ Z∗q is

uniformly distributed in Zq, the collision probability of H3 is (qh+qs)· 1
2nq =

qh+qs
2nq , then the failure probability of the queries is at most qs·(qh+qs)

2nq .

Therefore, from the above analysis, we get that the algorithm B can compute ga·b

from the forgery as shown above, with probability at least ε′ = ε − qg
2nq − qj · ( 1

2nq +

2·qh
2nq )− qr · ( 1

2nq + 2·qh
2nq )− qs·qh

26·nq −
qs·(qh+qs)

2nq . The time complexity of the algorithm B is

~′ = ~+O((qh+ gg+4 · qj +5 · qr+12 · qs) ·Cexp+4 · qs ·Cmul), where we assume that

the time for integer addition, integer multiplication and hash computation can both be

ignored.

So, from the above proofs, we may get that

ε′′ = [ε′ + qj · ( 1
2nq + 2·qh

2nq ) + qr · ( 1
2nq + 2·qh

2nq ) +
qs·qh
26·nq + qs·(qh+qs)

2nq ] ‖

[ε′ + qg
2nq + qj · ( 1

2nq + 2·qh
2nq ) + qr · ( 1

2nq + 2·qh
2nq ) +

qs·qh
26·nq + qs·(qh+qs)

2nq ],

~′′ =MAX{~′ −O((qh + 4 · qj + 5 · qr + 12 · qs) · Cexp + 4 · qs · Cmul), ~′ −O((qh + gg + 4 ·

qj + 5 · qr + 12 · qs) · Cexp + 4 · qs · Cmul)}.

Thus, Theorem 6.2 follows.

(Proof of Theorem 6.3).

Proof: Let GS be a group signature scheme of Section 5. Additionally, let A be an (~, ε, qg, qj ,

qr, qs)-adversary attacking GS. From the adversary A, we construct an algorithm B, for (g, ga0 ,

gb) or (g, ga1 , gb) ∈ G1, the algorithm B is able to use A to compute ga0·b or ga1·b. Thus, we

assume the algorithm B can solve the CDH with probability at least ε′ and in time at most ~′,

contradicting the (~′, ε′)-CDH assumption. Such a simulation may be created in the following

way:

Setup: The trusted authority system inputs a security parameter 1k. Then, let G1 be group of

prime order q and module p, and g be a generator of G1. The size of the group is determined
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by the security parameter. Also, H0 : {0, 1}∗ → Z∗q can directly be computed on no querying.

H1 : G1 → G1, H2 : G4
1 × {0, 1}∗ → Z∗q and H3 : G3

1 × {0, 1}∗ → Z∗q can be simulated by the

algorithms H1 Queries, H2 Queries and H3 Queries, where we set that gb (B does not know

b) is used to answer the query on H1 Queries. Additionally, we assume that the users u∗0 and

u∗1 are two challengers, whose public keys respectively are pk∗0 = ga0 and pk∗1 = ga1 (B does

not know a0 and a1 where a0 and a1 are seen as the corresponding private keys). Finally, the

algorithm outputs the public parameters GK=(G1, g, H0).

Queries Phase 1: When running the adversary A, the relevant queries can occur according to

the Definition 4.3. The algorithm B answers these in the following way:

• H 1 Queries: If this query is fresh, then the algorithm chooses random s ∈ Z∗q , computes

and outputs (gb)s = gb·s to the adversary A; otherwise the algorithm returns the same result.

Also, the algorithm saves the new tuple (s, gb·s) to U List.

• H 2 Queries: If this query is fresh, then the algorithm outputs the new result to the adversary

A; otherwise the algorithm returns the same result.

• H 3 Queries: If this query is fresh, then the algorithm outputs the new result to the adversary

A; otherwise the algorithm returns the same result.

• Group-Setup Queries: Given the public parameters GK and the identity information Infor

of the group, the algorithm randomly chooses d ∈ Z∗q , computes and outputs a group private

key skg = d ·H0(Infor) and a group public key pkg = gd to A.

• Join-User Queries: Given the public parameters GK and the group identity Infor, the

algorithm randomly chooses t, d ∈ Z∗q , computes

u1 = gt, h1 = H1(u1),

x1 = h
d·H0(Infor)
1 , v1 = ht1,

c1 = H2(u1, x1, v1, g
d, Infor), r = t+ c1 · d ·H0(Infor).

The algorithm outputs a partial member private key δ = (x1, c1, r) to A. Similarly, the

adversary A is easy to compute out the complete group member private key when the

adversary A corrupted some group members or registered some controlled group member

to the simulation system.

• Revoke-User Queries: Given the public parameters GK, the group identity Infor, the

public key pkl of the revoked group member and the revocation list RLt
pk of the last
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duration t, the algorithm randomly chooses t, d ∈ Z∗q , computes

u1 = gt, h1 = H1(u1),

x1 = h
d·H0(Infor)
1 , v1 = ht1,

c1 = H2(u1, x1, v1, g
d, Infor).

Then, the algorithm computes rvl = (pkl)
1
c1 , where rvl is a credential on the corresponding

public key pkl. Finally, the algorithm outputs and adds a tuple [pkl, rvl] to the revocation

list RLt
pk, and then an updated revocation list RLt+1

pk is published to the adversary A.

• Sign Queries: Given the public parameters GK, the identity information Infor of the

group, the public key pkl and the message M, the following setups are finished:

a) The algorithm randomly chooses t, d ∈ Z∗q , computes

u1 = gt, h1 = H1(u1), x1 = h
d·H0(Infor)
1 ,

v1 = ht1, c1 = H2(u1, x1, v1, g
d, Infor).

b) The algorithm randomly chooses c2, y, f, k ∈ Z∗q , computes

u2 = gy · g−d·c1·f ·H0(Infor) · g−k,

and then queries the oracle H 1 Queries for u2, if u2 has been queried, then the

algorithm aborts; otherwise the algorithm continues.

c) The algorithm randomly chooses j ∈ Z∗q , computes

v2 = hy2 · g−k·j ,

where we set h2 = H1(u2) = gj (satisfy the condition that DLh2((h2)
k) =

DLg(g
k) = k).

d) The algorithm queries the oracle H 3 Queries, if the tuple (u2, v2, gd, c1·f,M, Infor)

has been queried, then the algorithm aborts; otherwise the algorithm continues.

e) The algorithm computes x2 = k
c2

, x3 = g−k · (pkl)f , x4 = (pkl)
f
c2 , and then outputs

a group signature σ = {c′′1, c2, x2, x3, x4, y} to the adversary A, and saves the tuple

(t, d, c2, f, k) to S List.

Challenge: A sends to the challengers its forgeries (M∗, Infor∗, RLt
pk∗) and two group member

public keys pk∗0 and pk∗1 that belong to the group named by the group identity Infor∗. The

forgeries satisfy the following conditions:

(a) A did not query Group-Setup on input Infor∗;

(b) A did not query Join-User on inputs Infor∗;
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(c) A did not query Revoke-User on inputs Infor∗, pk∗0 (and pk∗1) and RLt−1
pk∗ .

The challengers pick a random bit x ∈ {0, 1}, and then run and output σ∗ ←Sign(GK, csk∗x,

M∗) to A.

Queries Phase 2: When running the adversary A, the relevant queries can occur according to

the Definition 4.3. The algorithm B answers these in the following way:

• H 1 Queries: If this query is fresh, then the algorithm chooses random s ∈ Z∗q , computes

and outputs (gb)s = gb·s to the adversary A; otherwise the algorithm returns the same result.

Also, the algorithm saves the new tuple (s, gb·s) to U List.

• H 2 Queries: If this query is fresh, then the algorithm outputs the new result to the adversary

A; otherwise the algorithm returns the same result.

• H 3 Queries: If this query is fresh, then the algorithm outputs the new result to the adversary

A; otherwise the algorithm returns the same result.

• Group-Setup Queries: Given the public parameters GK and the identity information Infor

of the group, the algorithm randomly chooses d ∈ Z∗q , computes and outputs a group private

key skg = d ·H0(Infor) and a group public key pkg = gd to A.

• Join-User Queries: Given the public parameters GK and the group identity Infor, the

algorithm randomly chooses t, d ∈ Z∗q , computes

u1 = gt, h1 = H1(u1),

x1 = h
d·H0(Infor)
1 , v1 = ht1,

c1 = H2(u1, x1, v1, g
d, Infor), r = t+ c1 · d ·H0(Infor).

The algorithm outputs a partial member private key δ = (x1, c1, r) to A.

• Revoke-User Queries: Given the public parameters GK, the group identity Infor, the

public key pkl of the revoked group member and the revocation list RLt
pk of the last

duration t, the algorithm randomly chooses t, d ∈ Z∗q , computes

u1 = gt, h1 = H1(u1),

x1 = h
d·H0(Infor)
1 , v1 = ht1,

c1 = H2(u1, x1, v1, g
d, Infor).

Then, the algorithm computes rvl = (pkl)
1
c1 , where rvl is a credential on the corresponding

public key pkl. Finally, the algorithm outputs and adds a tuple [pkl, rvl] to the revocation

list RLt
pk, and then an updated revocation list RLt+1

pk is published to the adversary A, where
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A did not query Revoke-User Queries on inputs Infor∗, pk∗0 (and pk∗1).

• Sign Queries: Given the public parameters GK, the identity information Infor of the

group, the public key pkl and the message M, the following setups are finished:

a) The algorithm randomly chooses t, d ∈ Z∗q , computes

u1 = gt, h1 = H1(u1), x1 = h
d·H0(Infor)
1 ,

v1 = ht1, c1 = H2(u1, x1, v1, g
d, Infor).

b) The algorithm randomly chooses c2, y, f, k ∈ Z∗q , computes

u2 = gy · g−d·c1·f ·H0(Infor) · g−k,

and then queries the oracle H 1 Queries for u2, if u2 has been queried, then the

algorithm aborts; otherwise the algorithm continues.

c) The algorithm randomly chooses j ∈ Z∗q , computes

v2 = hy2 · g−k·j ,

where we set h2 = H1(u2) = gj (satisfy the condition that DLh2((h2)
k) =

DLg(g
k) = k).

d) The algorithm queries the oracle H 3 Queries, if the tuple (u2, v2, gd, c1·f,M, Infor)

has been queried, then the algorithm aborts; otherwise the algorithm continues.

e) The algorithm computes x2 = k
c2

, x3 = g−k · (pkl)f , x4 = (pkl)
f
c2 , and then outputs

a group signature σ = {c′′1, c2, x2, x3, x4, y} to the adversary A, and saves the tuple

(t, d, c2, f, k) to S List.

Guess: If the algorithm B does not abort as a consequence of one of the queries above, the

adversary A will, with probability at least ε, output a bit x′ ∈ {0, 1}, and succeed (x′ = x) and

return a valid forgery (M∗, σ∗, Infor∗, RLt
pk∗) for the challengers u∗0 and u∗1, where the identity

Infor∗ and the revocation list RLt
pk∗ are arbitrary forgeries generated by A.

Then, if the adversary A did not query the oracle H 1 Queries, or U List is empty or S List

is empty, then the algorithm B aborts.

Otherwise, the algorithm B can get h2 = H1(∗) = gb·s. So, when the condition DLh2((h2)
ax′ ·f ·c2−k) =

DLg(g
ax′ ·f ·c2−k) = ax′ · f · c2 − k holds, we can get the followings:

hx2·c2
2 = (h2)

(ax′ ·f−
k
c2

)·c2 = (gb·s)
(ax′ ·f−

k
c2

)·c2 = (gb·s)(ax′ ·f ·c2−k)= gax′ ·b·s·f ·c2−b·s·k,

then B computes and outputs (hx2·c2
2 ·gb·s·k)

1
c2·s·f = gax′ ·b, which is the solution to the given CDH

problem.
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Now, we analyze the probability of the algorithm B not aborting. For the simulation to complete

without aborting, we require that all Group-Setup queries, all Join-User queries and all Revoke-

User queries are fresh, and all Sign queries do not abort in the Queries Phase 1 and 2. So, if

the algorithm B does not abort, then the following conditions must hold:

(a) All Group-Setup queries are fresh in the Queries Phase 1 and 2, because H0 : {0, 1}∗ →

Z∗q is uniformly distributed in Zq, the collision probability of H0 is 1
2nq , then the failure

probability of the queries is at most qg1+qg2
2nq .

(b) All Join-User queries are fresh in the Queries Phase 1 and 2, the collision probability

of H0 is 1
2nq , and because t, d ∈ Z∗q are uniformly distributed in Zq, the collision

probability of H1 is qh · 1
2nq = qh

2nq and the collision probability of H2 is qh · 1
2nq = qh

2nq ,

then the failure probability of the queries is at most (qj1 + qj2) · ( 1
2nq + 2·qh

2nq ).

(c) All Revoke-User queries are fresh in the Queries Phase 1 and 2, similarly the collision

probability of H0 is 1
2nq , and because t, d ∈ Z∗q are uniformly distributed in Zq, the

collision probability of H1 is qh · 1
2nq = qh

2nq and the collision probability of H2 is

qh· 1
2nq = qh

2nq , then the failure probability of the queries is at most (qr1+qr2)·( 1
2nq +

2·qh
2nq ).

(d) All Sign queries do not abort in the Queries Phase 1 and 2, then we may get the

followings:

• The algorithm may abort in the setup b), namely u2 has been queried on the

oracle H 1 Queries. So, as t, d, c2, y, f, k ∈ Z∗q are uniformly distributed in Z6
q ,

the collision probability of H1 is qh · 1
26·nq = qh

26·nq , then the failure probability of

the queries is at most (qs1+qs2 )·qh
26·nq ;

• The algorithm may abort in the setup d), namely the tuple (u2, v2, gd, c1·f,M, Infor)

has been queried on the oracle H 3 Queries. So, as j ∈ Z∗q is uniformly distributed

in Zq, the collision probability of H3 is (2 · qh+ qs1 + qs2) · 1
2nq =

2·qh+qs1+qs2
2nq , then

the failure probability of the queries is at most (qs1+qs2 )·(2·qh+qs1+qs2 )

2nq .

Therefore, from the above analysis, we get that the algorithm B can compute ga·b from the

forgery as shown above, with probability at least ε′ = ε− qg1+qg2
2nq −(qj1+qj2)·( 1

2nq +
2·qh
2nq )−(qr1+

qr2) · ( 1
2nq +

2·qh
2nq )−

(qs1+qs2 )·qh
26·nq − (qs1+qs2 )·(2·qh+qs1+qs2 )

2nq . The time complexity of the algorithm B is

~′ = ~+O((qh+qg1+qg2+4·(qj1+qj2)+5·(qr1+qr2)+12·(qs1+qs2))·Cexp+4·(qs1+qs2)·Cmul),

where we assume that the time for integer addition, integer multiplication and hash computation
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can both be ignored.

Thus, Theorem 6.3 follows.
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