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ABSTRACT
We would like to compute RSA signatures with the help of a Hard-

ware Security Module (HSM). But what can we do when we want

to use a certain public exponent that the HSM does not allow or

support? Surprisingly, this scenario comes up in real-world settings

such as code-signing of Intel SGX enclaves. Intel SGX enclaves have

to be signed in order to execute in release mode, using 3072-bit RSA

signature scheme with a particular public exponent. However, we

encountered commercial hardware security modules that do not

support storing RSA keys corresponding to this exponent.

We ask whether it is possible to overcome such a limitation of an

HSM and answer it in the affirmative (under stated assumptions).

We show how to convert RSA signatures corresponding to one

public exponent, to valid RSA signatures corresponding to another

exponent. We define security and show that it is not compromised

by the additional public knowledge available to an adversary in

this setting.

CCS CONCEPTS
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1 INTRODUCTION
We examine a peculiar but realistic problem. We would like to com-

pute RSA signatures with the help of a Hardware Security Module

(HSM).
1
But what can we do when we want to use a certain public

exponent e that the HSM does not allow or support? Surprisingly,

this scenario comes up in real-world settings.

1
Or some other cryptographic key-management solution.
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One setting in which we encounter this problem is related to

Intel’s implementation of secure enclaves. Secure enclaves are exe-

cution units that are isolated from any other code running at similar

or higher privilege levels. Such isolation, along with attestation of

the enclave’s state, effectively provides a trusted execution envi-

ronment (TEE) inside the CPU. Intel realized this concept as part

of Software Guard Extensions (SGX) that were introduced with the

Skylake architecture [13].

Intel SGX enclaves have to be signed in order to run in production

mode. The enclave signature is verified by an architectural enclave

called the Launching Enclave (LE). The LE checks that the public

key is approved and whitelisted by Intel, and uses it to verify the

enclave signature. If verification passes it would execute the enclave,

or reject it otherwise. It is currently mandatory that enclaves are

signed using 3072-bit RSA with public exponent e = 3.

An organization that would like to secure the private key used

to sign its enclaves would often turn to Hardware Security Modules

(HSM) as a solution for securely storing and using cryptographic

keys. Moreover, such precaution is in fact recommended by Intel in

its signing and whitelisting instructions for Intel SGX enclaves [14].

However, not all HSMs enable arbitrary parameters.

1.1 Background
The choice of a small public exponent enables faster and less com-

putationally intensive verification of RSA signatures. This could

be especially important for small low-power devices with modest

processing budget.

While there are practical attacks on encryption and signing using

low private exponent [18], there are no practical attacks that break

a correct implementation of RSA encryption or signing using a

small public exponent. Boneh [6] provides a useful survey of the

main attacks that emerged after years of research.

A well-known theoretic attack on RSA encryption and sign-

ing using a low public-exponent is due to Coppersmith’s theo-

rem [6, 9]. Coppersmith’s LLL-based technique provides an efficient

algorithm for finding small roots of polynomial equations modulo

N . Shimizu [17] applied this algorithm to an old attack due to Hås-

tad [12] for recovering a message encrypted to multiple recipients,

each having their own RSA public key, when padding is either not

used or done improperly. Franklin et al. [10] attack the encryption of

related messages under the same modulus. Coppersmith proposes

an improved attack on encryption with short padding [9]. However,

those attacks are mitigated by proper padding of the encrypted mes-

sage, and use of standard and widely-used cryptographic libraries

easily prevents them.

Boneh et al. [7] showed that if an attacker is able to somehow

recover some of the bits of the private key, she would be able to

recover the entire private key if the public exponent is low (e <
√
N ).

It is therefore important to safeguard the entire RSA private key.
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In practice, attackers are likely to either fail to obtain access to the

private key whatsoever, or manage to get all its bits. Some cases

where the concern about partial bits exposure makes sense is side-

channel attacks such as power-analysis or cache-timing attacks

where the attacker might be able to read some bits with reasonable

probability, but encounter noise that makes it somewhat harder (or

more time consuming) to extract all bits of the key. In this case,

using a larger exponent can make it harder for the attacker to

succeed.

Therefore, despite the arguments in favor of using RSA with

small public exponents (given sound message padding such as in

RSAES-OAEP or RSASSA-PSS, or Schemes 2 or 3 from ISO/IEC

9796-2), vendors may choose to restrict support to larger exponents.

For example, Yubico’s YubiHSMv2 does not allow storage of RSA

signing keys with public exponent e = 3.
2
Yubico replied to our

inquiry about the lack of support for this exponent and stated that:

“While there are no conclusive proofs of its unsuitability, the
use of public exponent e = 3 is discouraged, especially when
used in conjunction with padding schemes like PKCS#1 v1.5.
We chose not to add support for other exponents than F4 =
2
16 + 1 which is the de-facto industry standard.”

1.2 Our Contribution
Our goal is to allow using such restricted equipment while enabling

to use RSA exponents unsupported by the hardware. In our setting

we have short term access to the private key, that enables us to

compute a certain transformation. Once we compute it we upload

the new private key obtained via the transformation to a secure

storage such as a HSM, and “forget” it. From that point on, we no

longer have access to the private key.

1.3 Related Work
Our setting is similar to proxy re-signatures, first introduced by

Blaze et al. [5], and later revisited by Ateniese and Hohenberger [1].

In this setting, a semi-trusted proxy is used to convert a signature

from Alice to a signature from Bob on the same message, without

the need for the proxy to possess Alice’s or Bob’s private keys.

However, these works assume that both public keys are known,

and therefore realization with RSA using a common modulus N ,

and public e and e ′, are not secure. We work around the issue of

having a proxy re-signature scheme that translates between two

publicly verifiable RSA signatures sharing the same modulus, by

not requiring one of the signatures to be publicly verifiable.

2 KEY TRANSFORM
We start by recalling the general construction of the RSA-based

signature schemes. We use a general padding function

µ : M → ZN ,m 7→ µ(m)

where M denotes the message space. Commonly used padding

schemes include Full-Domain Hash (FDH) [2] and Probabilistic

Signature Scheme (PSS) [4].

2
Our proposal does not apply in the particular case of YubiHSMv2 since they are

limited to a single public exponent (e = 2
16 + 1), but it can be helpful when certain

public exponents, or a certain range, are prohibited.

Definition 2.1 (RSA-based signature scheme). The signature scheme

is given by three algorithms:

KeyGen(k) On input of a security parameter k , the algorithm
outputs a public key pk = {N , e} where N is a composite

integer of unknown factorization, and a private key sk = {d},
such that

3 e · d ≡ 1 (mod φ(N )).

Sign(N ,d,m) Output σ = µ(m)d mod N .

Verify(N , e,m) If µ(m) ≡ σe (mod N ), output true; otherwise
output false.

2.1 Construction
Let e be the actual exponent we want to use. We generate a public

modulus N as a multiple of primes (as prescribed for RSA), pick a

random exponent t
R
← T , where

T =
{
t ∈ Z | 0 < t < N and gcd(t ,φ(N )) = 1

}
.

We compute e ′ = e · t mod φ(N ), and check that e ′ is supported
by the HSM. Finally, we compute

d ′ = (e ′)−1 mod φ(N )

and store d ′ in the HSM. As will become apparent in Sect. 3.1,

it is mandatory that e ′ is not made public, and that it has
sufficient entropy.

On input a messagem, the HSM issues an RSA signature σ ′ =

µ(m)d
′

mod N .

Remark 1. It is worth noting that (e ′,d ′) is a valid RSA key pair.

By definition, the value of t satisfies gcd(t ,φ(N )) = 1. Hence, since

e ∈ Z∗φ(N ), it follows that e
′ = e · t mod φ(N ) ∈ Z∗φ(N ) and, conse-

quently, d ′ = (e ′)−1 mod φ(N ) ∈ Z∗φ(N ).

Integer t is called the key-transform exponent and is public. An

HSM-generated signature σ ′ can be publicly converted into an

original signature σ as

σ = (σ ′)t mod N .

It is easily verified that (σ ′)t ≡
[
µ(m)d

′ ]t
≡

[
µ(m)

1

e′
]t
≡

µ(m)
1

e ≡ µ(m)d ≡ σ (mod N ).

We prove in the next section that the additional knowledge of

t does not compromise the security of the scheme. It inherits the

security guarantees as the original scheme.

3 SECURITY ANALYSIS
3.1 A Key Recovery Attack
We show that it is important to keep e ′ secret. Indeed, suppose
that someone were able to retrieve the value of e ′. Then, assuming

that gcd(e, e ′) = 1, the extended Euclidean algorithm would yield

integers a and b such

a · e + b · e ′ = 1 .

In turn, since e ′ = e ·t mod φ(N ), this would imply 1 ≡ a ·e+b ·e ·t ≡
e (a + b · t) (mod φ(N )) and thus

D := a + b · t ≡ e−1 ≡ d (mod φ(N )) .

3
RSA exponents are defined modulo Euler’s totient function, φ(N ). They can similarly

be defined modulo Carmichael’s function, λ(N ).



The adversary can now produce a valid signature on a messagem
by computing

µ(m)D ≡ µ(m)a+bt ≡ µ(m)d (mod N ) .

This is essentially equivalent to the statement in [1] that a

proxy re-signature scheme cannot translate between two publicly-

verifiable RSA signatures sharing the same modulus.

3.2 Key Transform Security
We prove by simulation that the construction given in Sect. 2 is

existentially unforgeable against chosen-message attacks (EUF-
CMA), reducing to the RSA assumption in the random-oracle model.

For concreteness, we instantiate the signature scheme with RSA-

FDH. In this case, the padding µ is defined by a cryptographic hash

functionH : M → ZN . Extensions to other padding schemes are

discussed in Sect. 4.

Assumption 1 (RSA). Given a modulus N of unknown factoriza-
tion, an integer e ∈ Z∗φ(N ) and a randomly sampled integery

R
← ZN ,

a polynomial-time adversary has negligible probability of finding x
such that xe ≡ y (mod N ).

We assume that there exists an EUF-CMA adversary A against

the proposed signature scheme, that returns a signature forgery

with probability ϵA and within polynomial time τA . We will use

this adversary to solve a given instance of the RSA problem with

success probability ϵ and within polynomial time τ .

RSA Challenge. On input an RSA public key {N , e} and an inte-

ger y
R
← ZN , the goal is to find x ∈ ZN such that y ≡ xe (mod N ).

Simulation. We describe below the simulation of the key gener-

ation algorithm, the hash oracle (random oracle) and the signing

oracle. A history list Hist[H] is maintained. It will consist of tu-

ples of the form (mi , ri ,hi ,bi ) ∈ M ×ZN ×ZN × {0, 1}; Hist[H] is
initially set to ∅. At the beginning of the simulation, the reduction al-

gorithm selects a subsetL of ℓ (different) integers,L = {j1, . . . , jℓ},
at random in the set {1, . . . ,qH + qS }. It also sets a counter i to 0.

qH denotes the number of hash queries that are not later followed

by a signature query on the same message; qS denotes the number

of signature queries.

Key generation Public RSA exponent and modulus are set by

the values (e,N ) given in the RSA challenge. An odd integer

t is chosen at random in [1,N ). The corresponding public

key pk = {e,N } and transform-exponent t are given to A.

Random oracle Letm denote an input message to hash function

H , modeled as a random oracle.

• Ifm ∈ Hist[H] then hi is returned as the hash value ofm,

H(m) := hi , where (m, ri ,hi ,bi ) is the entry in Hist[H]

corresponding tom;

• Ifm < Hist[H] then counter i is incremented, i ← i + 1,
and

– If i < L then hi is defined as hi = ri
et

mod N for a

random integer ri ∈ ZN . Tuple (m, ri ,hi , 0) is added
to Hist[H] and hi is returned as the hash value ofm,

H(m) := hi .
– If i ∈ L then hi is defined as hi = ri

e · y mod N for

a random integer ri ∈ ZN . Tuple (m, ri ,hi , 1) is added

to Hist[H] and hi is returned as the hash value ofm,

H(m) := hi .
Signing oracle Letm denote a chosen input message queried

by A.

• Ifm < Hist[H] then hash oracleH is invoked.

• Let (m, ri ,hi ,bi ) be the entry in Hist[H] corresponding

to input messagem:

– if bi = 1 then signing oracle fails and stops;

– if bi = 0 then it returns σ ′i = ri as the signature on

messagem.

Reduction. Within time τA and with probability ϵA , adversary

A returns a forgery σ ∗ = H(m∗)d mod N on a messagem∗, after
(at most) qH hash queries and qS signature queries, andm∗ was
not submitted to the signing oracle.

Without loss of generality, we assume that A has queriedm∗

to the random oracle, that is, that m∗ ∈ Hist[H]. If m∗ = mj
for some j ∈ L then there exists a tuple (m∗, r j ,hj , 1) ∈ L with

hj = H(m
∗) = r j

e · y mod N . Therefore, it follows that σ ∗ ≡

(r j
e y)d ≡ r j y

d (mod N ). Hence, x := σ ∗/r j mod N is a solution

to the RSA challenge since xe ≡ y (mod N ).

Complexity Analysis. The success probability ϵ of the reduction

satisfies

ϵ ≥ Pr[perfect simulations] · ϵA · Pr[m
∗ =mj for some j ∈ L]

≥ Pt · 1 ·
(
1 −

ℓ qS
qS + qH

)
· ϵA ·

ℓ

qS + qH − qS

= Pt ·
ℓ
[
(1 − ℓ)qS + qH

]
qH (qS + qH )

· ϵA (†)

by noting that the simulation of the random oracle is perfect and

thatm∗ was not submitted to the signing oracle. The term Pt de-
notes the probability that transform exponent t —drawn as an odd

integer in [1,N )— actually lies in T .

Lemma 3.1. For any integer n ≥ 2
59, we have

φ(n) > n/(2 log logn) .

Proof. Let γ = 0.5772 . . . denote the Euler-Mascheroni con-

stant. It is known that Euler’s totient function satisfies the inequal-

ity

φ(n) >
n

eγ log logn + 3

log logn

.

Lemma follows by noting that for n ≥ 2
59
, eγ log logn + 3

log logn <

2 log logn. □

Since T ⊃
{
t ∈ Z | 0 < t < φ(N ) and gcd(t ,φ(N )) = 1

}
, we

therefore get

Pt =
#T

# odd integers in [1,N )
>

φ
(
φ(N )

)
(N − 1)/2

>
φ(N )

log logφ(N )
·

1

N − 1
>

φ(N )

log logN
·
1

N

>
1

2 (log logN )2
.



Analogously to [11], we now determine the optimal value for ℓ.

From Eq. (†), we obtain

(1 − ℓ)qS + qH + ℓ(−qS ) = 0 =⇒ ℓ =
qS + qH
2qS

.

This yields

ϵ ≥ Pt
qS + qH
4qSqH

ϵA ≥
Pt · ϵA
2qS

>
ϵA

4qS (log logN )2
,

assuming that qS ≤ qH . The required time is τ ≤ τA + (qS +
qH )O(k

3) where k denotes the security parameter defining the

scheme.

As an example, for a 3072-bit RSA modulus, the extra factor

Pt , incurred in the security bound, amounts to less than 7 bits of

security:
1

2
(log log 23072)2 < 2

7
.

4 NOTES AND EXTENSIONS
4.1 Performance
The cost of our transformation is a single exponentiation. Since ex-

ponent t is public, there is no need to apply any special side-channel
countermeasures. Any exponentiation method is acceptable.

4.2 Application to Additional RSA-Based
Signature Schemes

The proposed construction readily extends to additional signature

schemes based on the RSA assumption, such as RSA-PSS due to

Bellare and Rogaway [4], and the variant of RSA-FDH due to Katz

and Wang [15], which uses an additional random bit as an input

to the hash function to achieve a tight proof of security. As we

showed for RSA-FDH, there will be likewise an additional factor in

the security bound, namely Pt , due to publication of t .

4.3 Application along with QVRSA
SGX uses QVRSA —a method that speeds up verification of RSA

signatures using auxiliary values computed from the public key

and the signature, which is explained in [8]. Our method does not

interfere with the QVRSA verification scheme. It is completely

oblivious to the transformation we perform in the backend in order

to produce the signature, and we can nevertheless generate the

auxiliary values Q1 and Q2 from the public key {N , e}.

4.4 Extension to RSA Encryption
The transformation in Sect. 2 extends to RSA encryption [3, 16].

In case we would like to decrypt ciphertexts corresponding to

encryption under a public key unsupported by the HSM, we could

generate a key-transform exponent in a similar way, and use it to

transform one RSA ciphertext encrypted using the desired public

key, to another, encrypted under a randompublic key corresponding

to a private key stored in the HSM.

We note that contrary to proxy re-encryption, here we do not

have the constraint that both “public” exponents are expected to

be public. By removing e ′ from the adversarial view we are able to

obtain extremely simple RSA-based re-encryption (we do not call it

proxy re-encryption, to avoid confusion with a setting where both

public keys are known).

5 CONCLUSIONS
We proposed a simple method that can be useful to work around

limitations of certain cryptographic hardware modules. It enables

obtaining RSA signatures verifiable using a given public exponent,

when the cryptographic module does not support it. Using the

RSA-FDH signature scheme as an example, we defined and proved

security in the random-oracle model. We also discussed extensions

and generalizations thereof.
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