
Enhanced Security of
Attribute-Based Signatures

Johannes Blömer Fabian Eidens Jakob Juhnke
September 28, 2018

Department of Computer Science
Paderborn University, Germany

{bloemer,feidens, juhnke}@mail.uni-paderborn.de

Abstract

Despite the recent advances in attribute-based signatures (ABS), no schemes have yet been
considered under a strong privacy definition. We enhance the security of ABS by presenting
a strengthened simulation-based privacy definition and the first attribute-based signature
functionality in the framework of universal composability (UC). Additionally, we show that
the UC definition is equivalent to our strengthened experiment-based security definitions. To
achieve this we rely on a general unforgeability and a simulation-based privacy definition
that is stronger than standard indistinguishability-based privacy. Further, we show that
two extant concrete ABS constructions satisfy this simulation-based privacy definition and
are therefore UC secure. The two concrete constructions are the schemes by Sakai et al.
(PKC’16) and by Maji et al. (CT-RSA’11). Additionally, we identify the common feature
that allows these schemes to meet our privacy definition, giving us further insights into the
security requirements of ABS.

Keywords: Attribute-Based Signatures, Privacy, Universal Composability

The authors were partially supported by the German Research Foundation (DFG) within the Collaborative
Research Centre On-The-Fly Computing (SFB 901).
The authors were partially supported by the Ministry of Education and Research, grant 16SV7055, project
“KogniHome”.

1

mailto:bloemer@mail.uni-paderborn.de
mailto:feidens@mail.uni-paderborn.de
mailto:juhnke@mail.uni-paderborn.de


Contents
1 Introduction 3

1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Attribute-Based Signatures 5
2.1 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Standard Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Simulation Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 On the Security of Existing Schemes . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Generic ABS Construction by Sakai et al. [SAH16] . . . . . . . . . . . . . 10
2.2.2 Generic ABS Construction by Maji et al. [MPR11] . . . . . . . . . . . . . 11

3 Universal Composable Attribute-based Signature Schemes 12
3.1 Preliminaries: Universal Composability Framework . . . . . . . . . . . . . . . . . 12
3.2 Ideal ABS Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Description of FABS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Security of FABS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Security 19
4.1 Experiment-Based Security implies UC Security . . . . . . . . . . . . . . . . . . . 19
4.2 UC Security implies Experiment-Based Security . . . . . . . . . . . . . . . . . . . 26

4.2.1 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.2 Unforgeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2



1 Introduction
Attribute-based signature schemes and an experiment-based security definition were introduced
by Maji, Prabhakaran and Rosulek [MPR11]. The concept of attribute-based signatures considers
several signers and an authority that issues secret keys to them. Secret keys encode an attribute
set. Attribute-based signatures are computed on message-policy pairs under a secret key. Policies
are for example Boolean formulas over the attributes. To generate a valid signature a signer
has to possess a secret key where the encoded attributes satisfy the given policy. Given an
attribute-based signature everyone is able to verify whether it was generated by a signer that
possesses attributes satisfying the given policy. The validity of a signature is therefore not
bound to a single signer’s identity but rather to a group of signers, namely those with satisfying
attributes.

A secure ABS must be unforgeable and (perfectly) private. Unforgeability means that a valid
signature on a message-policy pair can only be generated by a signer, whose attributes satisfy
the policy. Further, no group of colluding signers can generate a signature on a message-policy
pair if none of them has attributes satisfying the policy. Privacy captures that a signature is
independent of the secret key used to generate it.

1.1 Related Work

Throughout the literature experiment-based security definitions covering unforgeability and
privacy for ABS schemes have been proposed, cf. [BF14; EHM11; MPR11; OT14; SAH16].
A general unforgeability definition is given by Okamoto and Takashima [OT14], where the
definitions in [EHM11; MPR11; SAH16] are restricted to specific policy classes.

Regarding privacy there are two definitions, perfect and computational privacy. Computational
privacy is defined by an experiment with explicit capabilities of bounded adversaries, cf. [BF14;
EHM11; Her16]. For unbounded adversaries perfect privacy is defined considering distributions
of signatures [MPR08; MPR11; OT14; SAH16]. In particular one demands that the distributions
are independent of the secret keys. Another notion of privacy is called simulation-based privacy
and was originally presented by Bellare and Fuchsbauer [BF14] in the context of policy-based
signatures, a more general concept than ABS. The authors [BF14] also show that policy-based
signatures imply attribute-based signatures in the model of Maji et al. [MPR11]. Hence their
security definitions can be specialized to ABS.
Recent advances in ABS led to efficient schemes that support large classes of policies. The

recent scheme by Sakai et al. [SAH16] supports arbitrary circuits of unbounded size and depth.
A further efficient scheme is presented by Okamoto and Takashima [OT14], supporting non-
monotone span programs as policies. A generic ABS construction with monotone span programs
as policies is presented by Maji et al. [MPR11]. All these ABS schemes and security definitions
look at ABS as an isolated primitive. However, in real applications ABS is combined and
composed with other cryptographic primitives to achieve more comprehensive security goals.
For example, ABS can be deployed as an authentication mechanism for service providers, i.e.
in a challenge-response protocol. In such a protocol the user is asked to sign a policy and a
nonce given by the service provider. Such authentication mechanisms are deployed in large scale
applications. Canetti [Can01] introduced the universal composable framework (UC) to describe

3



and prove security for such applications. UC guarantees security even if an arbitrary number of
cryptographic primitives are executed concurrently and it is based on the simulation-paradigm.
Regarding the experiment-based and UC security of a cryptographic primitive there are four

questions that have to be answered. First, is there a general experiment-based security definition
that precisely captures the security aspect of the cryptographic primitive? Second, whether there
exist schemes that are secure with respect to the experiment-based security definition. The third
question is, how to define security for that primitive in the UC framework? The last question is,
whether the experiment-based security definition and the UC security definition are equivalent.
With respect to ABS the first question can be answered by the general unforgeability definition
in [OT14] and the simulation-based privacy definition presented in [BF14]. However, the answer
is not yet satisfactory for achieving UC security. To the best of our knowledge, no one has yet
answered the remaining three questions in the context of ABS. However the three questions have
been considered for other related primitives. With respect to the third question Ateniese et
al. [Ate+05] construct a UC secure group signature scheme and Camenisch et al. [Cam+15]
present a UC secure anonymous credential system. Regarding the fourth question Canetti shows
in [Can03] that his ideal digital signature functionality is equivalent to the standard security
definition (EUF-CMA) [GMR88].

1.2 Our Contribution

In this paper we answer the four questions for attribute-based signatures. First, we give a
strengthened experiment-based security definition using a simulation-based privacy definition.
Second, we show that existing schemes satisfy this definition. Third, we model the first (to
our knowledge) universally composable attribute-based signature functionality. Considering the
fourth question, our main theorem shows the equivalence of the experiment-based and UC security
of attribute-based signatures under standard requirements on the environment. The theorem
is shown considering adaptive corruption of parties with erasure of ephemeral randomness and
secure communication channels. We explain the requirements in detail in Section 3.1. Our results
show that existing ABS schemes achieve UC security with only minor modifications.

In this paper we argue that the security definitions for ABS used so far do not guarantee the
desired privacy and as a consequence our definition should be used. Our experiment-based security
definition is based on existing unforgeability and privacy definitions. It incorporates the general
ABS unforgeability definition by Okamoto and Takashima [OT14]. For our perfect simulation-
based privacy definition we use as a basis the computational simulation privacy definition by
Bellare and Fuchsbauer [BF14]. The authors [BF14] show for policy-based signatures that
computational simulation privacy is stronger than computational privacy used in [AAS16; EHM11;
MPR08; MPR11; OT14; SAH16]. Based on our security definitions for ABS we show that perfect
simulation privacy is stronger than perfect privacy.

Our UC ideal ABS functionality is based on the ideal digital signatures from Canetti [Can03],
extended to support multiple signing parties and signature creation on message-policy pairs
under secret keys with attributes. Therefore, our ideal ABS functionality is one of a few
functionalities that consider multiple parties concurrently executing cryptographic tasks. Other
such functionalities include the multi-commitments by Lindell [Lin11], the group signatures by

4



Ateniese et al. [Ate+05], and the anonymous credentials by Camenisch et al. [Cam+15].
Further, we show that our experiment-based security definition implies UC security for

attribute-based signature schemes with minimal restrictions on the environment. In our proof the
simulation aspect of the privacy definition is the essential ingredient. We also show the reverse
direction, i.e. a UC secure ABS scheme also satisfies our experiment-based security definition.
The proof of this result is inspired by the work of Abe and Ohkubo [AO12] on UC secure blind
signature schemes. To show the applicability of our results we prove that the generic ABS
constructions by Sakai et al. [SAH16] and by Maji et al. [MPR11] satisfy our simulation-based
privacy definition and therefore achieve UC security. Since originally for both schemes weaker
privacy guarantees were shown, we think that simulation-based privacy is interesting on its own.

2 Attribute-Based Signatures
In the following we formally define attribute-based signature (ABS) schemes and their experiment-
based security notions.

Definition 2.1. An ABS scheme ΠABS consists of four algorithms:

Setup(1λ) Probabilistic algorithm that takes as input security parameter 1λ and outputs public
parameters and master secret (pp,msk), where pp includes a description of the attribute
universe denoted by U(pp).

KeyGen(pp,msk,A) Probabilistic algorithm that takes as input pp, msk, and a set of attributes
A ⊆ U(pp). It outputs a signing key skA .

Sign(pp, skA ,m,P) Probabilistic algorithm that takes as input public parameters pp, a message
m, a policy P over the attributes of U(pp), and a signing key skA , such that P(A) = 1. It
outputs a signature σ.

Verify(pp,m,P, σ) Probabilistic algorithm that takes as input pp, a message m, a policy P,
and a signature σ. It outputs b ∈ {0, 1}; valid = 1, invalid = 0.

How the universe, attributes, and policies are encoded and interpreted depends on the concrete
scheme. We denote attributes A as subsets of U(pp) and a policy P is a map P : 2U(pp) → {0, 1}.
Alternatively, we could also write A ∈ U(pp) and P : U(pp)→ {0, 1} which is better suited for
ABS schemes supporting attribute vectors of fixed length as in [SAH16]. With P ∈ U(pp) we
denote that the policy P is defined over the attributes of the universe U(pp).

Definition 2.2 (Correctness). An scheme ΠABS is correct, if for all (pp,msk)← Setup(1λ), all
m, all attribute sets A ⊆ U(pp), all skA ← KeyGen(pp,msk,A), all policies P ∈ U(pp) such that
P(A) = 1, and all σ ← Sign (pp, skA ,m,P), it holds that Verify(pp,m,P, σ) = 0 with at most
negligible probability ε (λ) where the probability is over the random choices of Sign and Verify.

Correctness guarantees under honestly generated setup parameters, that signatures, computed
with honestly generated secret keys, on message-policy pairs are valid with overwhelming
probability.

5



Definition 2.3 (Consistency). An ABS scheme ΠABS is consistent, if for all m, P, and σ it holds
that there exists b ∈ {0, 1} such that Pr[(pp,msk)← Setup(1λ) : Verify(pp,m,P, σ) 6= b] ≤ ε (λ),
where ε (λ) is negligible in λ and the probability is over randomness of Setup and Verify.

Our definition of ABS considers a probabilistic Verify algorithm. Therefore, consistency
guarantees that a signature that was once declared by Verify as valid will be declared as invalid
by an independent run of Verify only with negligible probability (and vice versa).

Definition 2.4. For a forger F , we define the experiment ExpUF
F (λ) as follows:

1. Run (pp,msk)← Setup(1λ), start F (pp).

2. F may adaptively make queries of the following type:
OKeyGen

pp,msk (Ai) : On i-th query, given attribute set Ai ⊆ U(pp) the oracle generates skAi ←
KeyGen(pp,msk,Ai) and records (i, skAi).

OReveal(i) : Given i specifying an already queried secret key for Ai, it outputs the corre-
sponding secret key skAi .

OSign
pp,msk(i,mj ,Pj) : On j-th query, given (i,mj ,Pj) for an already queried Ai where Pj(Ai) =

1, Pj ∈ U(pp), it returns σ ← Sign (pp, skAi ,mj ,Pj) for message mj , policy Pj and
secret key skAi .

3. Eventually F outputs a triple (m∗,P∗, σ∗)

4. The output is 1, if all of the following conditions hold, else it is 0,
a) a signature for (m∗,P∗) was never queried and
b) for all Ai, where the corresponding secret key skAi was output by the reveal oracle
OReveal , it holds that P∗(Ai) 6= 1, and

c) Verify(pp,m∗,P∗, σ∗) = 1 .

Definition 2.5 (Unforgeability). An ABS scheme is unforgeable regarding an adaptive attack if
for all ppt forger F , Pr

[
ExpUF

F (λ) = 1
]
is negligible in λ.

The above definition originally presented in [OT14] guarantees collusion resistance in the
following sense. The adversary can get secret keys on attribute sets of his choice by first querying
OKeyGen

pp,msk and then OReveal . Even with secret keys of his choice he can not output a valid signature
for P∗ if none of the revealed secret keys (representing a group of colluding signers) would be
sufficient to satisfy P∗.

2.1 Privacy

We present two privacy definitions. The first one captures that an adversary choosing two secret
keys should not be able to tell which secret key was used to generate a signature. The second
definition is simulation-based and requires that even the attributes used to generate a signature
are hidden. For both definitions we specialize the definitions for policy-based signatures presented
in [BF14] to ABS.

6



2.1.1 Standard Privacy

Contrary to the privacy definition based on distributions of signatures used in [Her16; MPR11;
OT14; SAH16] we define an experiment similar to [BF14], where the capabilities of the adversary
are explicitly stated.

Definition 2.6. For an ABS scheme ΠABS = (Setup,KeyGen, Sign,Verify) and dist. D we
define the privacy experiment PΠABS

D (λ, b) for b ∈ {0, 1} as follows.

PΠABS
D (λ, b):
(pp,msk)← Setup(1λ)

b̃← DO
b
pp,msk(pp,msk)

return b̃

Obpp,msk(m,P,A0,A1) :
If P(A0) = 1, P(A1) = 1, and P ∈ U(pp), it
generates:

skA0 ← KeyGen(pp,msk,A0),
skA1 ← KeyGen(pp,msk,A1),
σ ← Sign (pp, skAb

,m,P),
and returns (σ, skA0 , skA1)

Definition 2.7 (Privacy). For an ABS scheme ΠABS = (Setup, KeyGen, Sign, Verify) we define:

Perfect Privacy ΠABS is PP if for every distinguisher D it holds that

AdvPP
D (λ) =

∣∣∣Pr
[
PΠABS
D (λ, 0) = 1

]
− Pr

[
PΠABS
D (λ, 1) = 1

]∣∣∣ = 0 .

Computational Privacy ΠABS is CP, if for every ppt dist. D it holds that

AdvCP
D (λ) =

∣∣∣Pr
[
PΠABS
D (λ, 0) = 1

]
− Pr

[
PΠABS
D (λ, 1) = 1

]∣∣∣ = ε(λ) ,

where ε(λ) is a negligible function in λ.

The privacy in Definition 2.7 only states that the relation between the signature and the secret
keys is hidden. In particular, an adversary can not determine which signer issued a signature.
Another way to describe privacy, is that given a valid signature σ on a policy P an adversary
should not be able to learn which attributes are necessary to satisfy P from σ, except for what it
can compute from P. Simulation privacy achieves this privacy level. To argue why simulation
privacy is desirable in practice consider the following example. A similar example is presented
in [BF14] for policy-based signatures. For the example assume a perfectly private ABS scheme
according to Definition 2.7. Additionally, assume for every P there is just one satisfying attribute
set A. Hence, given a policy P the adversary knows the corresponding satisfying A. Therefore,
the adversary in experiment PΠABS has to input A0 = A1 for P to its challenge oracle Obpp,msk.
Let us modify algorithm Sign such that it appends the attribute set to each signature. As a
result, the returned signatures are still indistinguishable as required in Definition 2.7, but the
used attribute set is known after a signature is shown. This is not the desired privacy guarantee
in a real world application, where the attributes are secret or the satisfying set of a policy is a
secret or hard to compute. To achieve the privacy level that is demanded in such applications we
define simulation privacy.

7



2.1.2 Simulation Privacy

With the simulation-based definition of privacy we require that the signatures are independent of
the used attributes. Therefore, simulation privacy is based on a simulation signature algorithm.
The normal signature algorithm in ABS gets a secret key for an attribute set as an input,
whereas the simulation signature algorithm does not. No adversary should be able to distinguish
whether a signature was generated by the normal signature algorithm or by the simulation
signature algorithm. Obviously, if signatures can be simulated without a given secret key for
satisfying attributes (regarding the given policy), then the signatures themselves does not leak any
information about the attributes used to generate it. The following simulation-based definition
is originally presented in [BF14] for policy-based signatures.

Definition 2.8. For an ABS scheme ΠABS = (Setup,KeyGen,Sign,Verify), a 3-tuple of ppt
algorithms (SimSetup,SimKeyGen, SimSign) and distinguisherD we define the simulation privacy
experiment SPΠABS

D (λ, b) for b ∈ {0, 1} as follows.

SPΠABS
D (λ, 1):

(pp,msk)← Setup(1λ)

b̃← DO
KeyGen1
pp,msk ,OSign1

pp,msk(pp,msk)
return b̃

SPΠABS
D (λ, 0):

(pp,msk)← SimSetup(1λ)

b̃← DO
KeyGen0
pp,msk ,OSign0

pp,msk(pp,msk)
return b̃

OKeyGen1
pp,msk (Ai) : On i-th query, given attribute set Ai ⊆ U(pp) it outputs

skAi ← KeyGen(pp,msk,Ai) and records (i, skAi).

OKeyGen0
pp,msk (Ai) : On i-th query, given attribute set Ai ⊆ U(pp) it outputs

skAi ← SimKeyGen(pp,msk,Ai) and records (i, skAi).

OSign1
pp,msk(i,mj ,Pj) : On j-th query, given (i,mj ,Pj) for an already recorded i where Pj(Ai) = 1,

and Pj ∈ U(pp) it returns σ ← Sign (pp, skAi ,mj ,Pj).

OSign0
pp,msk(i,mj ,Pj) : On j-th query, given (i,mj ,Pj) for an already recorded i where Pj(Ai) = 1,

and Pj ∈ U(pp) it ignores Ai and skAi . It returns signature σ ← SimSign (pp,msk,mj ,Pj).

Definition 2.9 (Simulation Privacy). For an attribute-based signature scheme ΠABS = (Setup,
KeyGen,Sign,Verify) we define:

Perfect Simulation Privacy ΠABS is PSimP if there exists a 3-tuple of ppt algorithms called
(SimSetup, SimKeyGen,SimSign) such that for all distinguisher D it holds that

AdvPSimP
D (λ) =

∣∣∣Pr
[
SPΠABS

D (λ, 0) = 1
]
− Pr

[
SPΠABS

D (λ, 1) = 1
]∣∣∣ = 0 .

Comp. Simulation Privacy ΠABS is CSimP if there exists a 3-tuple of ppt algorithms called
(SimSetup, SimKeyGen,SimSign) such that for all ppt distinguisher D it holds that

AdvCSimP
D (λ) =

∣∣∣Pr
[
SPΠABS

D (λ, 0) = 1
]
− Pr

[
SPΠABS

D (λ, 1) = 1
]∣∣∣ = ε(λ) ,

8



where ε(λ) is a negligible function in λ.

Theorem 2.1. An ABS scheme ΠABS that is perfectly simulation private (Definition 2.9) is also
perfectly private (Definition 2.7).

Proof. Assume that ΠABS is not perfectly private then there is a dist. A such that the advantage
AdvPP

A (λ) =Pr[PΠABS
A (λ, 1) = 1]− Pr[PΠABS

A (λ, 0) = 1] > 0. We construct a distinguisher D for
PSimP using A as a black-box. D in SPΠABS

D (λ, b) works as follows.

1. Given (pp,msk) from challenger C of SPΠABS
D (λ, b), D runs A(pp,msk).

2. D flips a coin d← {0, 1}.

3. D on the k-th oracle query (m,P,A0,A1) where A0,A1 ⊆ U(pp):
a) It checks whether Pi(A∗0) = 1 and Pi(A∗1) = 1 hold, if not ignore query

b) Get skA0 ← O
KeyGenb
pp,msk (A0) and skA1 ← O

KeyGenb
pp,msk (A1)

c) Get σd ← O
Signb
pp,msk(2k − 1 + d,m,P)

d) Return (σd, skA0 , skA1)

4. Eventually A outputs d̃.

5. D sets b̃ := 1 if d = d̃, otherwise b̃ := 0 and outputs b̃.

Let us analyze the advantage of D, AdvPSimP
D (λ) = |Pr[SPΠABS

D (λ, 0) = 1]−Pr[SPΠABS
D (λ, 1) = 1]|.

Let us first analyze the case where D is in the experiment SPΠABS
D (λ, b = 1). With b = 1 the

challenger and the provided oracles use the normal algorithms (Setup,KeyGen,Sign). Hence, we
get the following.

Pr
[
b̃ = 1

]
= Pr

[
d̃ = 1 | d = 1

]
· Pr [d = 1] + Pr

[
d̃ = 0 | d = 0

]
· Pr [d = 0]

= 1
2
(
Pr
[
d̃ = 1 | d = 1

]
− Pr

[
d̃ = 1 | d = 0

])
+ 1

2
= 1

2
(
Pr
[
PΠABS
A (λ, 1) = 1

]
− Pr

[
PΠABS
A (λ, 0) = 1

])
+ 1

2
= 1

2AdvPP
A (λ) + 1

2

In the other case SPΠABS
D (λ, b = 0), the signatures are generated independently from the bit d

that D chooses. The signature oracle OSign0
pp,msk generates signatures with SimSign(pp,msk,m,P).

SimSign generates the signature in both cases (d = 0, d = 1) only with the public parameters,
master secret, message and policy as input. Hence, independent of the secret key for the attribute
set A∗d. Consequently, the view of A is independent of d. Therefore, Pr[b̃ = 1] = Pr[d = d̃] = 1

2 .
Consequently, it holds that AdvPSimP

D (λ) = 1
2AdvPP

A (λ).

The following corollary originally shown in [BF14] follows from Theorem2.1 and that the
reduction given in the proof of Theorem2.1 is efficient.

9



Corollary 2.1. An ABS scheme ΠABS that is computationally simulation private (Definition 2.9)
is also computationally private (Definition 2.7).

For policy-based signatures the authors show in [BF14] that without restricting the polices
the reverse direction of Corollary 2.1 does not hold, by presenting a counterexample. Since,
ABS is a special variant of policy-based signatures, the counterexample can also be applied to
the reverse direction of Theorem2.1. In the following we will restate the counterexample. To
see that simulation-based privacy is a stronger notion than standard privacy, let us consider
our example scheme above, where the Sign algorithms appends the used attribute set to the
signature. Assume a policy class where computing a satisfying attribute set is computationally
hard (satisfiability of CNF formulas). Obviously, the example scheme with this policy class
is not perfectly simulation private, since under usual assumptions there is no probabilistic
polynomial-time algorithm SimSign that given just the master secret and message, computes the
satisfying attribute set and appends it to the signature.

2.2 On the Security of Existing Schemes

In Section 3 we present a wrapper protocol that transforms an ABS scheme to be UC compatible.
Our main result Theorem4.1 shows that if and only if the wrapped ABS scheme is correct,
consistent, unforgeable, and simulation private then the wrapper protocol achieves UC security.

In the following we show for two existing ABS schemes [MPR11; SAH16] that they satisfy our
perfect simulation privacy definition. Therefore, our main theorem (Theorem4.1) shows that
the two schemes can be used in the wrapper protocol to achieve UC security. Both schemes
were originally shown to satisfy correctness, consistency, unforgeability, and the weaker notion
perfect privacy. To show that an ABS schemes is perfectly simulation private we have to define
three algorithms (SimSetup, SimKeyGen, SimSign) and prove that they satisfy Definition 2.9.
To achieve this for the ABS schemes [MPR11; SAH16] we only apply minor modifications to
the signature algorithms to define simulation signature algorithms SimSign. In particular these
modifications do not imply changes to the setup and key generation algorithms.
Both ABS schemes [MPR11; SAH16] are generic constructions. To define a SimSign for the

schemes, we exploit a commonality in the normal signature algorithms of both schemes. The
normal signature algorithms fulfill two basic properties. First, the signature on a message-policy
pair proves that the signer knows a valid secret key on attributes satisfying the policy. Second,
it binds the policy to the signed message. In detail for [MPR11; SAH16], a signature on a
message-policy pair (m,P) of the normal signature algorithm Sign, proves that the signer knows
a secret key for attributes satisfying the given policy P OR that he knows a special signature
on (m,P). We exploit the second property to define the SimSign algorithms for both schemes
[MPR11; SAH16].

2.2.1 Generic ABS Construction by Sakai et al. [SAH16]

The SimSign algorithm that we present is implicitly given in the unforgeability proof in [SAH16]
(Theorem 1 Game 2). For simplicity we just give a high-level description of the algorithm. The
scheme [SAH16] uses a non-interactive perfect witness indistinguishable (NIWI) proof system, a

10



collision-resistant hash function H, a secure structure-preserving signature scheme and supports
circuits C as policies. For further details especially for the NIWI proofs we refer to [SAH16].
Basically, SimSign is the original signature algorithm Sign of the ABS scheme [SAH16] executed
with a special secret key generated on the hash value of the message-policy pair (m,C). This
can only be done with the master secret.

SimSign (pp,msk,m,C) On input public parameter pp, master secret msk, message m and
policy C (policy is a circuit): Step 1 of Sign is modified such that it first computes a special
secret key skx∗ . Therefore, it first computes h← H(hk, 〈m,C〉), sets h := (h1 ‖ . . . ‖ hlH)
and x∗ := (g1, gh1 , . . . , ghlH , 1, . . . , 1) ∈ Gl+1

1 . Then it computes a structure-preserving
signature θ∗ on x∗ and sets skx∗ := (x∗, θ∗). Then it expands the circuit C to Ĉ as in Sign,
goes on with steps 2− 10 of Sign and generates a NIWI proof π with θ∗ as the witness. At
the end of step 10 it outputs signature σ := π.

Changes to Setup and KeyGen are not necessary, since SimSign uses the master secret msk which
is already output by Setup. Therefore, we use Setup as SimSetup and KeyGen as SimKeyGen.

Theorem 2.2. ΠSakai from [SAH16] combined with (SimSetup,SimKeyGen, SimSign) as defined
above is perfectly simulation private (Definition 2.9).

Proof. Since SimSetup is Setup and SimKeyGen is KeyGen their distribution is unchanged.
What is left to show is, that SimSign generates the same distribution as Sign. The output of
SimSign and Sign is a proof π that was generated by a perfectly witness indistinguishable proof
system. Sign uses the secret key of the signer as the witness, whereas SimSign generates a special
secret key x∗, θ∗ on-demand with the help of the master secret msk and uses this secret key
as the witness. Notice, that both algorithms expand the given circuit C such that it is also
satisfied by the hash value used to compute the special secret key. From the perfect witness
indistinguishability of the proof system it follows that the distributions of SimSign and Sign are
equivalent.

2.2.2 Generic ABS Construction by Maji et al. [MPR11]

Maji, Prabhakaran and Rosulek present in [MPR11] a generic construction of ABS supporting
monotone boolean functions as policies. The construction is based on a NIWI proof systems and
so called credential bundles. A secure credential bundle CB = {Setup,Gen,Ver}, in its simplest
from, can be instantiated with a secure digital signature scheme, cf. [MPR11]. The approach of
the SimSign algorithm for this construction is similar to the one that we used above for [SAH16].
Again it is possible to generate a special element using the master secret. The scheme [MPR11]
supports a universe of attributes that contains a pseudo-attribute for every message-policy pair
(m,P). The scheme in [MPR11] defines a normal signature algorithm Sign that on input (m,P)
and a secret key sk first extends the policy to P′ := P ∨ “pseudo-attribute (m,P)”. Second, it
uses the signers secret key sk to generate the signature. For the simulation signature algorithm
SimSign we use the master secret to issue a special secret key sk∗ for the pseudo-attribute (m,P)
and use the extended P′ to generate a signature in the same way as Sign generates it.
First we adapt the syntax and then present the SimSign algorithm in detail. The generic

ABS construction in [MPR11] describes five algorithms TSetup, ASetup, AttrGen, Sign and

11



Verify. They define two setup algorithms to separate the setup of the NIWI proofs from the
setup for key generation. We define Setup such that it combines TSetup and ASetup in one
algorithm. Further, let KeyGen run AttrGen. Accordingly, we define the ABS scheme as
ΠMaji = (Setup,KeyGen,Sign,Verify). Let U be the universe of attributes. Let U′ denote the
space of pseudo-attributes, where U ∩ U′ = ∅. One pseudo-attribute am,Υ ∈ U′ is added for
each pair of message m and policy Υ. A policy is defined as a monotone boolean function
Υ: 2U → {0, 1}. For perfect simulation privacy we have to provide a SimSetup, SimKeyGen,
and SimSign algorithm. We use Setup as SimSetup and KeyGen as SimKeyGen. The following
SimSign algorithm is partially given in the proof of Theorem 1 in the original work [MPR11].

SimSign (pp, tsk,m,Υ) On input public parameter pp, master secret tsk, message m and policy
Υ: Generate a special secret key sk∗ with the pseudo-attribute am,Υ for (m,Υ), sk∗ :=
(τ, ς)← CB.Gen(tsk, am,Υ) output π ← Sign(pp, sk∗,m,Υ).

Theorem 2.3. ΠMaji from [MPR11] combined with (SimSetup,SimKeyGen, SimSign) as defined
above is perfectly simulation private (Definition 2.9).

The signatures generated by Sign and SimSign are NIWI proofs with different witnesses. Hence,
as in Theorem2.2 the above theorem follows from the perfect witness indistinguishability of the
proof system.

3 Universal Composable Attribute-based Signature Schemes
We first give a brief introduction to Canetti’s Universal Composability framework [Can01] and
responsive environments [Cam+16]. Based on this we present our universally composable ideal
functionality for attribute-based signatures. After that we introduce a wrapper protocol that
transforms ABS schemes into an UC compatible formulation. In Section 4 we show that the
wrapper protocol is a secure UC-realization of our ideal ABS functionality if and only if the
wrapped ABS scheme is correct, consistent, unforgeable and computationally simulation private.

3.1 Preliminaries: Universal Composability Framework

We briefly summarize the important parts of the Universal Composability framework [Can01]. For
a detailed description we refer to [Can13]. In the UC framework a task or a scheme is described as
an ideal functionality F and compared to a execution of a protocol π. The protocol π involves an
adversary and parties that handle their tasks on their own. Each of the parties runs an instance
of the protocol. The ideal functionality models a trusted party that handles all tasks in the name
of all other parties. Here the parties are just dummies. In both settings, there is an environment
E that controls the input and activations of parties. The environment is considered as the
execution environment of the tasks, since in reality protocols do not exist in a vacuum. The UC
security is based on a simulation paradigm. Protocol π is called UC secure, if for every adversary
A against the protocol π, there exists a simulator S considered as the ideal adversary against F ,
such that no environment E can distinguish if it talks to F with S or to π with A. To be more
precise, let the random variable E [π,A] (λ, z) denote the output of E when interacting with π

12



and A with security parameter λ ∈ N on input z ∈ {0, 1}∗. Accordingly, let E
[
F ,SA

]
(λ, z) be

the random variable that denotes the output of E when interacting with F and SA with λ ∈ N
on input z ∈ {0, 1}∗, where SA denotes black-box access to adversary A. The former random
variable is defined over the randomness of all parties and A and the latter is defined over the
randomness of SA. For an ideal functionality F and protocol π, we say π realizes F (short π
is UC secure) if for all adversaries A, there is a simulator SA such that, for all environments
E and all z ∈ {0, 1}∗, E

[
F ,SA

]
(λ, z) and E [π,A] (λ, z) are computationally indistinguishable

in λ. In the following we assume that E , A, S(·) are probabilistic polynomial-time algorithms
with respect to the security parameter λ. In our notation we omit the security parameter λ and
input z. We refer to an interaction of E with [F ,S(·)] as the ideal setting and with [π,A] as the
real setting. For simplicity one can always assume the so called standard (dummy) adversary
A, that forwards every message received with no delay and is inactive apart from that. Canetti
[Can01] showed that the standard adversary is the strongest adversary in UC, since E takes over
the responsibilities of A.
We consider adaptive corruption in the sense that at any time the adversary A can trigger a

corruption of a party. A is in full control of a corrupted party. We restrict the corruption such
that the party responsible for the setup of the scheme can only be corrupted after an honest
setup was completed. This restriction is denoted as adaptive* and is explained in more detail
in Section 4. Further, we consider the erasure model, where honest parties erase ephemeral
randomness immediately after usage. This means that on corruption the adversary A only
gets the result of previous computations but not the randomness used. For communication
between the parties to send secret information such as secret keys, we rely on secure channels.
Accordingly our results are shown in an adaptive*, erasure, secure channels model, denoted as
F [adaptive*, erasure, secure channels].
In UC the ideal functionality and simulator often exchange some meta-data for modeling

reasons. Typically protocol designers assume that the simulator answers immediately where
according to the UC framework the simulator can do anything he likes after receiving a message
from the ideal functionality. This introduces not anticipated state changes of parties and
unexpected behavior of the ideal functionality. Therefore, the handling of the exchanged data,
and responses of the simulator makes the description of the ideal functionality more complex for
protocol designers. Then again the side effects of meta-data exchanges should not be ignored as
Camenisch et al. highlight in [Cam+16]. To circumvent the problems the authors [Cam+16]
define responsive environments where the adversary and the environment are bound to answer
to so called restricting messages immediately. We model or ideal functionality for responsive
environments. Therefore, we employ the generic restriction defined by Camenisch et al. [Cam+16]
where every message prefixed with “Respond” is restricting.

3.2 Ideal ABS Functionality

The ideal functionality for ABS models a scheme with an unique setup party PSetup. After
a Setup activation through PSetup was completed any party P can ask for a secret key. All
activations are instantiated by the environment E . The activation to query a secret key, given an
attribute set, is called Key Generation. A signing party can generate a signature on a message

13



and a policy by a Signature activation and any party can verify a signature through a Verify
activation.
In Figure 1 the ideal ABS functionality FABS with access to a simulator S is given. The

algorithms S.Setup,S.KG, S.Sign and S.Verify output by S are stateless ppt algorithms.

3.2.1 Description of FABS

We describe each activation of FABS (Figure 1) in detail. After that we will concentrate on
the security guarantees of FABS. We start with the explanation of general UC mechanisms.
In the UC framework each ideal functionality instance has a unique session id sid. The sid
can be determined in several ways (cf. [Can13], Section 3.1.3). For simplicity we let the first
Setup activation determine the sid, which consists of the party’s identifier and a unique session
identifier sid′. Therefore, the sid also determines the unique party responsible for the setup and
key generation. An instance of the functionality stores the sid in the first Setup activation and
ignores all activations with a different sid′. The inputs for the Setup, Key Generation, Signature
and Verify activations are determined by the environment E . Note, messages prefixed with
“Respond” are answered immediately by the simulator [Cam+16] and a public delayed output is
an output to a party that first has to be acknowledged by the simulator.

Setup: In the Setup activation the simulator S is responsible for providing ppt algorithms
S.Setup, S.KG, S.Sign, and S.Verify. These have to be stateless ppt algorithms such
that the outputs of FABS generated with these algorithms are independent of the internal
state of the simulator and previous activations. Further, this modeling allows us to give
a technically sound equivalence proof in Section 4). The algorithm S.Setup is used to
generate and fix the public parameters pp and the master secret msk of the functionality
instance. The algorithm S.KG and S.Sign always take as input the recorded (pp,msk).
They are only given as an explicit input to highlight that we use the recorded pair.

Key Generation: This activation models an exchange between a party Pi that just queries a
key on a given attribute set (KeyGenRequest) and the party PSetup responsible for the
actual key generation (KeyGen). The activation for PSetup models that it is triggered after
receiving the output (KeyGenRequest, sid, kid, pp,A, Pi) from the activation of Pi; telling
the setup party that Pi asks for a key on A. This modeling also encompasses that PSetup
can decide whether to answer a key generation request. PSetup proceeds only if there is
an unprocessed key generation request with the key identifier kid for the party Pi. For
honest PSetup the ideal functionality FABS first checks that the attribute set is valid and
then it uses the algorithm S.KG provided by S to generate the secret key for A. Next,
S is informed about the key generation. This is necessary since S has to simulate the
transmission of the secret key to the party Pi. If the final output to Pi is delivered, FABS is
assured that the simulator transmitted the secret key and FABS can record a successful key
generation for Pi. In the case of corrupted PSetup, FABS records a key generation request
(⊥ for unknown). Therefore, in the Signature activation FABS can ask the simulator S to
sign the message. This is delegated to S since if PSetup is corrupt FABS can not record the
generated secret keys.

14



Setup On input (Setup, sid) from a party PSetup

1. If sid = (PSetup, sid′) for some sid′ continue, else ignore.
2. If there is no record (sid′, PSetup, pp,msk), send (Respond, (Setup, sid)) to S. Upon receiving

(Setup, sid,S.Setup, S.KG, S.Sign, S.Verify) from S do:
a) Generate (pp,msk)← S.Setup
b) Record (sid′, PSetup, pp,msk) and (S.Setup, S.KG, S.Sign,S.Verify).

3. Else, use recorded (sid′, PSetup, pp,msk).
4. In both cases output (Public Params, sid, pp) to PSetup.

Key Generation On input (KeyGenRequest, sid, kid,A) from party Pi

1. If sid = (PSetup, sid′) continue, else ignore. Mark the request as unprocessed.
2. Send public delayed output (KeyGenRequest, sid, kid, pp,A, Pi) to PSetup

Key Generation On input (KeyGen, sid, kid) from party PSetup

1. If sid = (PSetup, sid′) and there is an unprocessed (KeyGenRequest, sid, kid,A) from party Pi, mark
it processed and continue. Else ignore.

2. If PSetup is corrupt then record (KeyGen, sid, kid,⊥,⊥,A,⊥) and send as a public delayed output
(KeyGen, sid, kid,A) to Pi.

3. Else, check A ⊆ U(pp) for recorded (sid′, PSetup, pp,msk), if not ignore.
a) Generate secret key skA ← S.KG(pp,msk,A) and record (KeyGen, sid, kid,⊥, pp,A, skA). Send

(Respond,KeyGen, sid, kid,A, Pi, skA) to S.
b) Upon receiving (KeyGen, sid, kid,A, Pi, skA , 1) from S send (KeyGen, sid, kid,A) as a public

delayed output to Pi.
4. When (KeyGen, sid, kid,A) is delivered to Pi update the record by adding the party to

(KeyGen, sid, kid, Pi, ·,A, ·)

Signature On input (Signature, sid, kid, pp′,A,m,P) from some party Pi

1. If sid = (PSetup, sid′), A ⊆ U(pp′) and P ∈ U(pp′) continue, else ignore.
2. Check for (KeyGen, sid, kid, Pi, pp′,A, ·) where P (A) = 1, if not ignore.
3. If pp′ = pp, run S.Sign(pp,msk,m,P) and get σ. (guarantees privacy)
4. Else, send (Respond, (Signature, sid, kid, pp′,A,m,P)) to S and receive the answer (Signature,

sid, kid, pp′,A,m,P, σ) from S.
5. If a record (Signature, sid, kid, pp′,m,P, σ, 0) exists, output error and halt.
6. Else, record (Signature, sid, kid, pp′,m,P, σ, 1) and output (Signature, sid, kid,A,m,P, σ) to Pi.

Verify On input (Verify, sid, pp′,m,P, σ) from some party P
1. Get b← S.Verify(pp′,m,P, σ)

I. If pp′ = pp for recorded pp then
i. If (Signature, sid, kid, pp,m,P, σ, f) recorded for any f , then set fout := f (guarantees

correctness/consistency)
ii. Else, if for any σ′ entry (Signature, sid, kid, pp,m,P, σ′, 1) exists or PSetup is corrupt or

there exists at least one corrupted Pi with a record (KeyGen, sid, kid, Pi, pp,A′, ·) where
P(A′) = 1, then set fout := b and record (Signature, sid,⊥, pp,m,P, σ, fout)

iii. Else, set bit fout := 0 and record (Signature, sid,⊥, pp,m,P, σ, 0). (guarantees unforge-
ability)

II. If pp′ 6= pp for recorded pp then
i. If (Signature, sid, kid, pp′,m,P, σ, f) is recorded, set fout := f

ii. Else fout := b and record (Signature, sid,⊥, pp′,m,P, σ, fout)
2. Output (Verified, sid,m,P, σ, fout) to P

Figure 1: Attribute-Based Signature Ideal Functionality FABS

15



Signature: After a check if the inputs are valid the Signature activation checks if the activated
party has a satisfying secret key for the given policy. If the activation is under registered
pp, it utilizes S.Sign to output a signature without using the secret key of the party and
without the activated party’s identity as an input to S.Sign. Otherwise it asks S for a
signature under unregistered public parameters. In general, each signature generated in
FABS is recorded as valid.

Verify: In this activation we handle any public parameters. Hence, we cover the cases where
pp′ is invalid or belongs to another instance, even if the activated party is honest. The
simplest verify case is if there is no corrupt party. Then FABS verifies all signatures where
the corresponding message and policy was not signed in a Signature activation as invalid
(Verify I.iii, fout := 0). Verify step I.ii handles two cases. First, a presumably manipulated
signature (e.g. randomized) that was not recorded in a Signature activation. Second, the
existence of corrupted parties. In any case, to decide whether a signature is valid we use
the algorithm S.Verify, provided by S, and the results is recorded by FABS.

Every party can be corrupted in our adaptive* model, with the restriction that the setup party
PSetup can only be corrupted after a finished Setup activation. We explain this in more detail in
Section 4. On a high level and assuming the standard adversary A, the environment can trigger
a corruption of any party P by sending (corrupt, P ). In case of a corruption of PSetup, E gets
the master secret stored in PSetup. Hence, E can issue arbitrary secret keys. This includes the
issuing of secret keys to honest parties. For this case, FABS also keeps records of successful key
generations with an honest party Pi and corrupted PSetup. Additionally, FABS only generates
signatures for Pi if such a record exists.

3.2.2 Security of FABS

In the following we explain the security guarantees modeled by FABS. This includes the description
of the scope of the guarantees and how the keys are managed.

Scope of Security: The signatures functionality by Canetti [Can03] supports the verification
under any public key. This allows the functionality to be more modular and to be used
in different applications. FABS is based on that idea and supports Signature and Verify
activations with unregistered public parameters pp′. FABS only guarantees security under
the registered public parameters. Therefore we have to check in Key Generation, Signature
and Verify if the given public parameters pp′ are equal to the registered public parameters
pp. For unregistered public parameters in the Signature activation (step 4) we ask the
simulator S or we rely on the algorithm given by S in the Verify activation (step 1). In this
case the guarantees are determined by S. We also allow the corruption of any party with
the restriction that PSetup can only be corrupted after the Setup activation was executed
once.

Correctness/Consistency: For an honest signer, a Signature activation like (Signature, sid, kid,
pp′,A,m,P) always records (Signature, sid, kid, pp′,m,P, σ, f := 1). This leads to a verifica-
tion output with fout = 1 in a corresponding Verify activation (step I.i). Thus, correctness

16



is guaranteed. Consistency is captured by the steps I.i and II.i. There we just output what
is recorded. To verify (m,P, σ) where FABS already generated a different signature σ′ for
(m,P) we employ step I.ii and use the bit output by S.Verify. The step I.ii also handles the
case of corrupted parties. Corrupted parties generate signatures without the involvement
of FABS and may share their secret keys. In these cases, we have to use the output b of
S.Verify. Hence, the guarantees are those provided by the simulator S and the algorithms
that S outputs.

Non Colluding: Is handled in the Signature activation step 2. There we check if the activated
party has a single secret key for attributes that satisfy the given policy.

Privacy: Privacy for honest users under registered public parameters is guaranteed by the input
restriction on the algorithms returned by S. In particular, the S.Sign generates signatures
with the public parameters, the master secret, a message, and a policy as input. Therefore
it generates signatures without the parties secret key or attributes as an input. Hence, for
honest signing parties and under the registered pp we guarantee that the signatures output
by FABS are independent of the attribute sets encoded in the secret keys of the signing
parties. Therefore, the signatures can not be linked to a party, an attribute set, and to a
secret key by an adversary. Since, FABS only guarantees privacy under the registered public
parameters pp, we can ask S for a signature under unregistered public parameters pp′ or if
PSetup was already corrupted during the corresponding key generation (Signature activation
step 4). In a Key Generation activation with honest PSetup we guarantee, that the secret
key is independent of the party’s identifier. Therefore, we use the S.KG algorithm where
the identifier Pi is not an input. Even if PSetup is corrupted after a successful key generation
with party Pi, we require that a signature can be generated without the knowledge of Pi’s
secret key by using S.Sign with the registered (pp,msk) pair.

Unforgeability: It is guaranteed through the Verify step I.iii. Here we set the bit fout to 0, if all
parties are honest and we have checked that the corresponding message and policy was not
signed by FABS in a Signature activation.

3.3 Protocol

We present our ABS wrapper protocol πABS in Figure 2. It serves as a generic transformation of
an ABS scheme ΠABS to the UC framework. The protocol activations Setup, Key Generation,
Signature and Verify use the algorithms of ΠABS as a black-box. We will show that the protocol
πABS realizes the ideal functionality FABS. The Setup activation of the protocol is run by a
unique party with the identifier PSetup, it also runs the corresponding side of the Key Generation.
The other side of Key Generation as well as the Signature and Verify protocol parts can be
executed by any party. Each party runs an instance of the protocol. For example, a party P
that is triggered by the environment and wants to generate a signature, executes the Signature
protocol part, given in Figure 2. Notice, secret keys are never output to E in the protocol πABS,
since in a real world application a honest party should never reveal its secret keys.

17



Setup When party PSetup receives first input (Setup, sid) from E
1. If sid =

(
PSetup, sid′

)
for some sid′ continue, else ignore.

2. PSetup runs (pp,msk)← Setup
(
1λ
)
and records (sid′, PSetup, pp,msk).

3. Outputs (Public Params, sid, pp) to E .

Key Generation
When party Pi receives (KeyGenRequest, sid, kid,A) from E

1. If sid has the form
(
PSetup, sid′

)
continue, else ignore.

2. Pi sends (KeyGenRequest, sid, kid,A) to PSetup.
3. On receiving (KeyGenRequest, sid, kid,A), PSetup records request from Pi and

outputs (KeyGenRequest, sid, kid, pp,A, Pi) to E .
4. On receiving (KeyGen, sid, kid, pp,A, skA) as an answer from PSetup

a) If (skA ,A) is valid under received pp, Pi appends record (KeyGen,
sid, kid, pp,A, skA) and outputs (KeyGen, sid, kid,A) to E .

When party PSetup receives (KeyGen, sid, kid) from E
1. If sid =

(
PSetup, sid′

)
continue, else ignore.

2. Look up request record (KeyGenRequest, sid, kid,A) from Pi.
3. If (sid′, PSetup, pp,msk) is not recorded by PSetup or A * U(pp) ignore.
4. Else PSetup computes skA ← KeyGen (pp,msk,A) and sends (KeyGen,

sid, kid, pp,A, skA) to Pi.

Signature When party Pi receives (Signature, sid, kid, pp′,A,m,P) from E
1. If sid =

(
PSetup, sid′

)
, A ⊆ U(pp′) and P ∈ U(pp′) continue, else ignore;

2. Pi looks up last record (KeyGen, sid, kid, pp′,A, skA) where P (A) = 1.
3. If there is no record, then Pi ignores the activation.
4. Else, Pi computes signature σ ← Sign(pp′, skA ,m,P) and outputs (Signature,

sid, kid, A,m,P, σ) to E

Verify When party Pi receives (Verify, sid, pp′,m,P, σ) from E
1. Pi runs b← Verify (pp′,m,P, σ) and outputs (Verified, sid,m,P, σ, b)

Figure 2: Attribute-based Signature Protocol πABS

18



4 Security
The UC-realization is proven under the assumption that the setup party can only be corrupted
after the setup activation was executed once. This is a restriction on the UC environment and is
denoted as adaptive*. It models the guarantees of our privacy definitions (Definition 2.7 and
2.9) and mirrors existing experiment-based secure ABS schemes that are defined with an honest
setup [AAS16; EHM11; MPR08; MPR11; OT14; SAH16]. The restrictions can be avoided by
defining ABS in the CRS model, similar to the blind signatures by Abe and Ohkubo [AO12].
Similar environment restrictions regarding the setup of schemes are present in other UC-

realizations. In the work of Buan et al. [BGK06] the signer also can only be corrupted after the
key generation. For UC non-committing blind signatures [AO12] the environment is restricted to
activate the key generation only once.

Theorem 4.1. ABS scheme ΠABS is correct, consistent, unforgeable and computationally simu-
lation private if and only if πABS realizes FABS[adaptive*,erasure, secure channels].

We split the theorem in two parts and proof them separately. To shorten notation we will
omit the assumptions [adaptive*, erasure, secure channels] in textual descriptions.

4.1 Experiment-Based Security implies UC Security

In this section we show that an correct, consistent, unforgeable, and computationally simulation
private attribute-based signature scheme ΠABS is also UC secure. The UC security is shown with
respect to our ideal ABS functionality FABS (Figure 1) and the ABS protocol πABS (Figure 2)
which is a wrapper for an ABS scheme ΠABS.

Theorem 4.2. If ΠABS is correct, consistent, unforgeable and comp. simulation private, then
FABS [adaptive*, erasure, secure channels] is realized by πABS.

In the following we define one simulator S(·) that, for any given adversary A, interacts with
FABS such that for all environments E , it holds that [FABS,SA0 ] and [πABS,A] are indistinguishable.
For an ABS scheme ΠABS = (Setup,KeyGen,Sign, Verify, SimKeyGen, SimSetup,SimSign), any
adversary A and FABS we define the simulator SA0 in Figure 3, where SA0 has black-box access to
A. In case of a corruption of PSetup, E gets the master secret stored in PSetup. Hence, E can issue
arbitrary secret keys. This includes the issuing of secret keys to honest parties. If a corrupted
party interacts with a honest party the interaction is handled by SA0 as described in Figure 3.

The proof of Theorem4.2 is done through a sequence of games. Starting in Game 0 with the
ideal setting and ending in Game 5 with the real setting. In particular, if E can distinguish the
ideal setting and the real setting then it has to distinguish one of the consecutive games. In
the sequence of games we gradually modify FABS and SA0 in each step. Thereby, every game
expands the modifications introduced in the games before.

With each modification we show that if an environment E can distinguish Game i-1 and Game
i, then there is an adversary that breaks one of the security guarantees of ABS.

In Figure 4 we present the sequence of games and the related security guarantees; computational
simulation privacy, unforgeability, correctness and consistency.

19



Setup On input (Respond, (Setup, sid)) from FABS

1. Send (Setup, sid,SimSetup(1λ),SimKeyGen, SimSign,Verify) to FABS

Key Generation: If Pi is honest
1. On seeing public delayed output (KeyGenRequest, sid, kid, pp,A, Pi) for PSetup by
FABS send (KeyGenRequest, sid, kid,A) from Pi to PSetup

Key Generation: If PSetup is honest
• On receiving message (Respond, (KeyGen, sid, kid,A, Pi, skA)) from FABS record

(KeyGen, sid, kid, pp,A, Pi, skA) and send (KeyGen, sid, kid,A, Pi, skA , 1) to FABS.

1. On seeing the public delayed output (KeyGen, sid, kid,A) for Pi by FABS simulate
the PSetup key generation part:

2. Check for the existence of record (KeyGen, sid, kid, pp,A, Pi, skA). If it exists then
send (KeyGen, sid, kid, pp,A, skA) from PSetup to Pi.

Key Generation: If Pi is corrupt
1. On receiving (KeyGenRequest, sid, kid,A) sent to PSetup from Pi (controlled by A).

Send (KeyGenRequest, sid, kid,A) on behalf of Pi to FABS.

Key Generation: If PSetup is corrupt
1. On (KeyGen, sid, kid, pp′,A, sk) from PSetup (controlled by A). If (sk,A) is valid

under pp′, send (KeyGen, sid, kid) on behalf of PSetup to FABS.
2. On seeing the public delayed output (KeyGen, sid, kid,A) for Pi by FABS record

(KeyGen, sid, kid, pp′,A, Pi, sk)

Signature On input (Respond, (Signature, sid, kid, pp′,A,m,P)) from FABS

1. Check for record (KeyGen, sid, kid, pp′,A, Pi, skA), if not ignore. Else, σ ←
Sign(pp′, skA ,m,P) and send (Signature, sid, kid, pp′,A,m,P, σ) to FABS.

Others
• On (corrupt,Pi) from A. Inform FABS with (corrupt,Pi), to get all input, output

and exchanged messages including (KeyGen, sid, pp,Aj , Pi) messages. Send it all to
A.
• Public delayed output send to honest parties is delivered after the steps are processed.
For corrupted parties it is never delivered.

Figure 3: Simulator SA0

Game 0: Let FABS from Figure 1 be F0. E interacts with F0 and the simulator SA0 from Figure 3.

20



ideal Game 0 Game 1 Game 2 Game 3 Game 4 Game 5 real

≡ CSimP unforg corr & cons corr & cons ≡ ≡
Figure 4: Sequence of Games

Therefore, the probability that E outputs 1 is the same as in the ideal setting. Hence, the
following lemma follows.

Lemma 4.1. For all ppt adversaries A and all ppt environments E, it holds that

Pr
[
E
[
FABS,SA0

]
= 1

]
= Pr

[
E
[
F0,SA0

]
= 1

]
.

Game 1: (Remove simulation algorithms) In this step we modify F0 to F1 and SA0 to SA1 . The
goal is to use the algorithms Setup, KeyGen, and Sign instead of SimSetup, SimKeyGen
and SimSign of ΠABS.
• In Setup: SA1 does not send algorithms SimSetup(1λ),SimKeyGen and SimSign

instead it sends Setup(1λ),KeyGen and Sign to F1.
• In Signature: Step 4 and 3 (Figure 1) are modified. Step 4 is omitted completely. As

a result, F1 never asks SA1 for a signature. In step 3 the check (pp′ = pp) is omitted and
the rest is changed such that F1 looks up last recorded entry (KeyGen, Pi, pp′,A, skA)
with P (A) = 1 and generates the signature as Sign(pp′, skA ,m,P) instead of using
SimSign as in F0.

We change the setting of E from Game 0 to Game 1, thus from a game with simulated setup,
simulated keys and simulated signatures to one with the signatures, keys and setup of πABS.

Lemma 4.2. If ΠABS is a computationally simulation private CSimP attribute-bases signa-
ture scheme, then for all ppt adversaries A and all ppt environments E, |Pr

[
E
[
F0,SA0

]
= 1

]
−Pr

[
E
[
F1,SA1

]
= 1

]
| ≤ ε0,1(λ), where advantage ε0,1(·) is negligible in λ.

Proof. We show that if environment E distinguishes
[
F0,SA0

]
and

[
F1,SA1

]
with non-negligible

probability, then it distinguishes the output of the simulation algorithms from the output of
the real algorithms. Let us look at the view of E in both settings. In

[
F0,SA0

]
the instances

resulting from the Setup activations are simulated, involving SimSetup, SimKeyGen and SimSign.
In
[
F1,SA1

]
the instances run the algorithms Setup, KeyGen and Sign. Notice, all algorithms

are defined by ΠABS. Given an E and A that distinguishes
[
F0,SA0

]
from

[
F1,SA1

]
, we define

algorithm D to attack computational simulation privacy CSimP (Definition 2.9).
In the following definition of D, we define how D emulates for E the behavior of [Fb,SAb ] by

interacting with its challenger from the experiment SPΠABS
D (λ, b). In the definition of D we omit

sid and parameter checks, and to shorten the description we leave out the concrete format of the
input and output messages, and recording of entries. Further, we refer to Figure 3 to see how
corruption works in D. To emulate [Fb,SAb ], D follows the input and output behavior determined
by the ideal functionality, i.e. the message formats for inputs and outputs.

21



Initialization: D on input (pp,msk) from SPΠABS
D (λ, b), D first runs E and A. If E and A want

to exchange messages, i.e. activations and results of a corruptions, then D lets them
communicate. Overall, whenever FABS would use the algorithms S.KG or S.Sign provided
by a simulator, D will relate it to SPΠABS

D (λ, b) and form responses using the provided
oracles.

Setup: On E sending (Setup, sid) to PSetup, D outputs (Public Params, sid, pp) where pp is given
by the experiment

Key Generation: On E sending (KeyGenRequest, sid, kid,Al) to a party P .
• D behaves like [F0,SA0 ] (not changed in [F1,SA1 ])

Key Generation: On E sending (KeyGen, sid, kid) to party PSetup.
• If P and PSetup are honest, D behaves like [F0,SA0 ] but for key generations it queries
oracle OKeyGenb

pp,msk (Al).

• If P is corrupt and PSetup is honest, D first queries OKeyGenb
pp,msk (Al) and then queries

OReveal(l) to get skAl
, and outputs (KeyGen, sid, kid, pp,Al, skAl

) to A for P .
• If Pi is honest and PSetup is corrupt, D follows the steps of SA0 in Figure 3 (not changed
in SA1 ) to simulate the communication with the corrupted party. This includes the
recording of (KeyGen, sid, kid, pp′,Al, Pi, skAl

).

Signature: If E sends (Signature, sid, pp′,Ai,mj ,Pj) for a corrupted party Pl, D lets A handle
it as the simulator SAb would do. If Pl is honest and

• pp′ = pp: D answers with a signature from OSignb
pp,msk(i,mj ,Pj)

• pp′ 6= pp: If (Pl, pp′,Ai, skAi) is recorded, D answers with a signature by running
Sign(pp′, skAi ,mj ,Pj).

Verification: If E sends (Verify, sid, pp,m,P, σ) to a corrupted Pl, D lets A handle it. If Pl is
honest, then D executes the verification steps of F0 (same as in F1).

Output: If E outputs a bit b̃, D outputs it as well.

Analysis: First of all, the view of E regarding the verification was not altered at all, since the
Verify activation was not changed from F0 to F1. In the case of pp′ 6= pp in a Signature
activations, [F0,SA0 ] and [F1,SA1 ] use Sign to generate a signature under pp′. The same
holds for D. All the other steps of D also perfectly emulate the behavior of [F0,SA0 ] and
[F1,SA1 ].
If D is taking part in SPΠABS

D (λ, 0), then the public parameters given by the game are output
by SimSetup, keys returned by OKeyGen0

pp,msk are generated by SimKeyGen, and signatures
returned by the OSign0

pp,msk are computed using SimSign. Therefore, the view of E in this case
is distributed as in

[
F0,SA0

]
. Suppose that D is taking part in SPΠABS

D (λ, 1), then the given
public parameters are the output of Setup, keys returned by OKeyGen1

pp,msk are generated by

22



KeyGen, and the signatures returned by OSign1
pp,msk are computed using the Sign algorithm.

Hence the view of E is distributed as in
[
F1,SA1

]
. At the end the final output of D is the

output of E (0 or 1). Overall, for a computationally simulation private ABS scheme ΠABS
we can conclude that,

∣∣∣Pr
[
E
[
F0,SA0

]
= 1

]
− Pr

[
E
[
F1,SA1

]
= 1

]∣∣∣ ≤ |Pr[SPΠABS
D (λ, 0) =

1]− Pr[SPΠABS
D (λ, 1) = 1]| = AdvCSimP

D (λ), where the advantage AdvCSimP
D (λ) is negligible

in λ.

Game 2: (Remove absolute unforgeability) With absolute unforgeability we refer to the prop-
erty that for honest parties under registered pp our ideal ABS functionality guarantees
unforgability with probability 1. In this step we modify [F1,SA1 ] and denote the result as
[F2,SA2 ], where we only modify F1 and the simulator is not changed, SA1 = SA2 . To define
F2, we introduce one modification to the Verify step I.iii. (see Figure 1, the step was not
changed up to now), where fout := 0 is set. This step is changed to fout := b, where b is the
output of the verification done with S.Verify.

Lemma 4.3. If ΠABS is unforgeable (Definition 2.5), then for all ppt adversaries A and all ppt
environments E, |Pr

[
E
[
F1,SA1

]
= 1

]
− Pr[E

[
F2,SA2

]
= 1]| ≤ ε1,2(λ), where advantage ε1,2(·) is

negligible in λ.

Proof. Notice that the modification of Game 2 introduces a difference to Game 1 in Verify step
I.iii only if b = 1, i.e. f = 1, holds at this step. We will show that this event only appears if
the unforgeability of the scheme was broken. Let us denote the event that b = 1 holds in step
I.iii. with EventForge. First, let us make clear what it means if Verify step I.iii. of F1 (same
step as in Figure 1) is reached and EventForge happens for input (Verify, sid, pp,m,P, σ). If the
verification of F1 and F2 reaches step I.iii. we know that the conditions for the previous steps
did not hold. In particular, we know that the signature on (m,P) was not generated by the ideal
functionality and it was not verified in a previous Verify activation (step I.i.). Further, we know
that (m,P) was never signed (step I.ii.). Importantly, from step I.ii. it follows that PSetup is
honest. Hence, as in ExpUF

F (λ) the master secret is kept secret. Furthermore, from step I.ii. it
follows that there is no corrupted signer Pi with a record (KeyGen, sid, kid, Pi, pp,A′, ·) where
P(A′) = 1. Therefore, no corrupted party could have legitimately generated the signature. We
can conclude that if EventForge happens, then the signature is one of a party without a satisfying
secret key for P and the signature was not generated by FABS, i.e. it is a forgery.

Let us define the forger F for an adversary A and environment E . Similar to the distinguisher
from Lemma4.2, forger F behaves like the ideal functionality and simulator [F1],SA1 . We just
describe the situations where F behaves differently to trigger the event. Overall, F follows the
input and output message format as defined by FABS in Figure 1 (same as in F1 and F2). Also,
F uses the oracle access provided by the unforgeability experiment ExpUF

F (λ) to answer E ’s Sign
and Key Generation activations, instead of using the algorithms provided by the simulator. To
shorten the description we omit the output messages, sid and parameter checks, and details of
the corruption. They are the same as in Figure 1 and 3.

23



Initialization: On input pp from ExpUF
F (λ), F runs E and A. Messages between A and E are

forwarded by F . F emulates FABS and S as described in the following.

Setup: If E sends (Setup, sid) to PSetup, F returns (Public Params, sid, pp)

Key Generation Ai: F while simulating the key generation part of PSetup. For honest party Pi, F
queries the oracle OKeyGen

pp,msk (Ai) and returns (KeyGen, sid, kid,Ai). If Pi is corrupt, F queries
OKeyGen

pp,msk (Ai) gets skAi by querying OReveal(i) and outputs (KeyGen, sid, kid, pp,Ai, skAi)
to A for Pi.

Signature: If E sends (Signature, sid, pp,Ai,mj ,Pj) to a corrupted party Pl, F lets A handle
it. If Pl is honest and a key for (Ai,Pl) with Pj(Ai) = 1 was generated, F computes the
signature with a query to OSignb

pp,msk(i,mj ,Pj), otherwise F ignores the activation.

Verification/Output: If E sends (Verify, sid, pp′,m,P, σ) to a corrupted party Pl, F lets A
handle it. If Pl is honest, F executes the verification steps of FABS. If EventForge happens
during the verification checks, F outputs (m,P, σ) as its forgery.

F answers the activation send by E with cryptographic elements generated by the oracles. The
oracles use the same algorithms (Setup,KeyGen, Sign,Verify) as the simulator SA2 of the current
Game 2. From the argumentation above it follows that if E causes EventForge forger F outputs a
forgery and wins ExpUF

F (λ).

Game 3: (Verification with algorithm Verify) To define [F3,SA3 ] we modify [F2,SA2 ] such that
the interaction between them works as follows.
F3 on input (Verify, sid, pp′,m,P, σ) from some party P
1. Send (Verify, sid, pp′,m,P, σ) to SA3 and SA3 runs b← Verify(pp′,m,P, σ) and sends

(Verified, sid, pp′,m,P, σ, b) to F3.
2. Upon (Verified, sid, pp′,m,P, σ, b) from SA3 record (Signature, sid, pp′,m, P, σ, b) and

output (Verified, sid,m,P, σ, b) to P .
This removes the verification checks that were present in F2.

Lemma 4.4. For ppt adversaries A and all ppt environments E it holds that

|Pr
[
E
[
F2,SA2

]
= 1

]
− Pr

[
E
[
F3,SA3

]
= 1

]
| ≤ ε2,3(λ) ,

where ε2,3(·) is negligible in λ.

Proof. We have to show that for every possible verification input to F2 the verification result
already was equal to the output that algorithm Verify, used in F3, would have produced. First, we
have to observe that correctness and consistency may fail with negligible probability. Therefore,
we show that every step in the verification of F2 followed the output bit b of Verify. The steps
I.ii., I.iii., and II.ii. in F2 (see Figure 1) already set fout = b, for b the output of Verify.

24



The critical steps are I.i. and II.i. In both steps the bit fout is set to a previously recorded bit
f , but due to the changes in Game 3 we now use the bit b of Verify in F3. The bit f could have
been previously recorded in two cases. First during the corresponding Signature activation (step
6 of Signature in Figure 1) and second in a Verification activation. In the first case, for honest
signers, it follows from the correctness that f 6= b only occurs with negligible probability. For
corrupted signers the same follows from the consistency. In the second case, we can conclude
that f was recorded in step I.ii., I.iii. or II.ii., thus the bit b was already used in F2 of Game 2.
Overall, the environment E can distinguish only if the correctness or consistency fails.

Game 4: (Remove halting condition in Signature activation) We use
[
F3,SA3

]
as a starting point

and modify them to define
[
F4,SA4

]
. We remove from F3 the halting condition in step 5

of the Signature activation (was still unchanged from F0 in Figure 1) and directly record
(Signature, sid, pp,m,P, σ, 1) and output (Signature, sid,A,m,P, σ) to Pi in step 6. The
simulator is unchanged (SA4 = SA3 ).

Lemma 4.5. For all ppt adversaries A and all environments E it holds that

|Pr
[
E
[
F3,SA3

]
= 1

]
− Pr

[
E
[
F4,SA4

]
= 1

]
| ≤ ε3,4(λ) ,

where ε3,4(·) is negligible in λ.
Proof. In Signature step 5 (Figure 1) the condition that a record (Signature, sid, pp,m, P, σ, 0)
exists can only hold if previously a Verification activation (Verify, sid, pp,m, P, σ) recorded
fout = 0. However, this would mean that the output of Verify(pp,m,P, σ) was b = 0. Since
correctness holds, we can conclude that signatures for honest signers generated by the algorithm
Sign are verified by algorithm Verify with b = 0 only with negligible probability. From the
consistency we can conclude the following. If the same signature σ was previously generated by
a corrupted signer and verified by a Verification activation (in other words by Verify) the result
fout = 0 would have been recorded only with negligible probability.

Game 5: (Remove records for signatures) Game 5 is a modification of Game 4 where SA5 =
SA4 . Only F4 is modified to F5, such that it does not create records for signatures like
(Signature, sid, pp′,m′,P′, σ′, b′) in Signature and Verification activations.

Lemma 4.6. For all ppt adversaries A and all ppt environments E it holds that

Pr
[
E
[
F4,SA4

]
= 1

]
= Pr

[
E
[
F5,SA5

]
= 1

]
.

Proof. F5 performs only parameter and sid checks, asks SA5 and returns what SA5 and the
algorithms produced as output. The same algorithms as in πABS are used. Through the
modifications in Game 4 the records of the signatures were never read by F4. Hence, the view
for a E is not changed; we just removed unused records.

At this point F5 in comparison to F0 is just an parameter checker and every behavior and
output is determined by the simulator. The simulator SA0 was modified such that is resembles
πABS in SA5 .

25



Lemma 4.7. For all ppt adversaries A and all ppt environments E it holds that

Pr
[
E
[
F5,SA5

]
= 1

]
= Pr [E [πABS,A] = 1] .

Proof. For every activation the output of F5 is described by the output of SA5 and the algorithms
(Setup,KeyGen,Sign,Verify) used in the simulator, where SA5 simulates the communication of
the honest parties with A. Overall, the same algorithms with the same inputs are used as in πABS.
Further, as in πABS the simulator SA5 let A determine the behavior and output of corrupted
parties. Consequently, the view of E in

[
F5,SA5

]
is equal to the view of E in [πABS,A].

Proof of Theorem 4.2: From Lemmas 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7 it follows

|Pr
[
E
[
FABS,SA0

]
= 1

]
−Pr [E [πABS,A] (λ) = 1] |

≤ ε0,1(λ) + ε1,2(λ) + ε2,3(λ) + ε3,4(λ)
≤ ν(λ)

where ν(·) is negligible. Hence, the protocol πABS realizes the ideal ABS functionality
FABS[adaptive*, erasure, secure channels].

4.2 UC Security implies Experiment-Based Security

We show the second part of Theorem4.1 in the following.

Theorem 4.3. If πABS realizes FABS [adaptive*, erasure, secure channels], then ΠABS is correct,
consistent, unforgeable and computationally simulation private.

The theorem follows from the lemmas 4.8, 4.9, 4.10 and 4.11 stated below. Regarding the
lemmas we use the contraposition of Theorem4.3; ΠABS is not (correct ∧ consistent ∧ unforgeable
∧ computationally simulation private) implies that πABS does not realize FABS. Where πABS
does not realize FABS denotes, that there is an adversary A such that for all simulators S,
there exists an environment E such that E [FABS,S] and E [πABS,A] are not computationally
indistinguishable in respect to the security parameter.

Lemma 4.8. Assume the ABS scheme ΠABS is not correct, then πABS does not realize the ideal
functionality FABS [adaptive*, erasure, secure channels].

Proof. If ΠABS is not correct (Definition 2.2) then there exists a message m, attribute set
A and policy P such that, Pr

[
(pp,msk) ← Setup

(
1λ
)

; skA ← KeyGen (pp,msk,A) ;σ ←
Sign (pp, skA ,m,P) : Verify (pp,m,P, σ) = 0

]
= τ(λ) is non-negligible. The environment E works

as follows in this case. E first sets sid = (PSetup, 0) and runs the setup through PSetup with input
(Setup, sid) and obtains as a result the public parameter pp. Secondly, E activates some party P
with (KeyGenRequest, sid, kid,A) and then sends to corresponding activation (KeyGen, sid, kid)
to PSetup. After that it activates the same party P with (Signature, sid, pp,A,m,P) and ob-
tains the signature σ. At last E activates a party PV with (Verify, sid, pp,m,P, σ) to verify

26



the signature and outputs the result. Observe that E will always output 1 in the ideal setting
[FABS,S], but outputs 0 with non-negligible probability in the real setting [πABS,A]. Hence,∣∣Pr [E [πABS,A] (λ) = 1]− Pr [E [FABS,S] (λ) = 1]

∣∣ = τ(λ).

Lemma 4.9. Assume ΠABS is not consistent, then πABS does not realize the ideal functionality
FABS [adaptive*, erasure, secure channels].

Proof. To make it short, it is a similar argument as in the proof of Lemma4.8 and E works the
same way as defined there, except that it activates PV twice with (Verify, sid, pp,m,P, σ). E
outputs 1 if and only if the two returned verification values are equal. If we analyze the ideal
setting [FABS,S], then E always outputs 1, because the ideal verification guarantees absolute
consistency. In the real setting [πABS,A] the environment E outputs 0 with non-negligible
probability, since ΠABS used in πABS is not consistent.

4.2.1 Privacy

To show simulation privacy we define an environment that distinguishes the output of the
simulation algorithms and the non-simulation algorithms.

Lemma 4.10. Assume ΠABS is correct and consistent, but not computationally simulation
private CSimP, then πABS does not realize FABS[adaptive*, erasure, secure channels].

Let us first outline the proof. Since we assume that ΠABS is not CSimP, it holds that for
all tuples of ppt algorithms (SimSetup,SimKeyGen, SimSign) according to Definition 2.9, there
exists a distinguisher D that distinguishes the experiment SPΠABS

D (λ, 0) from SPΠABS
D (λ, 1) with

non-negligible advantage.
For a fixed adversary A and for every simulator SA we show how to define such a tuple

of algorithms (SimSetup, SimKeyGen, SimSign). Since ΠABS is not CSimP, there exists a
distinguisher DSA for these three algorithms (SimSetup, SimKeyGen, SimSign). We use this
distinguisher DSA to define an environment E that distinguishes the two settings

[
FABS,SA

]
and [πABS,A].

Proof. In the following we use a specialized adversary A that corrupts the setup party PSetup
after the Setup activation. That means if it sees the output (Public Params, sid, pp) from PSetup
it corrupts PSetup and outputs (pp,msk) to the environment. After that it lets the environment
handle PSetup and therefore forwards every message for PSetup to the environment. Additionally, A
corrupts every party Pi after a completed Key Generation activation, i.e. if A sees public delayed
output (KeyGen, sid, kid,A). For every other message it behaves as the standard adversary.
In the following we set sid = (PSetup, 0). As defined through FABS the simulator SA has to

send, among other things, stateless ppt algorithms (S.Setup,S.KG, S.Sign) to FABS. For the
following algorithms fix randomness r.

SimSetup
(
1λ
)
: On input security parameter 1λ, SimSetup starts SA with randomness r

and sends (Setup, sid) to SA. Upon receiving (Setup, sid, S.Setup, S.KG, S.Sign, S.Verify)
from SA, SimSetup generates (pp,msk) with S.Setup and outputs (Public Params, sid, pp).
Subsequently SA corrupts PSetup and SA outputs (pp,msk). SimSetup outputs (pp,msk).

27



SimKeyGen (pp,msk,Ai): The algorithm runs the steps of SimSetup up to the point where
PSetup gets corrupted. Next, SimKeyGen executes the steps of the Key Generation
activation (KeyGenRequest, sid, kid,Ai) for a honest party Pi and an unique kid as in
[FABS,SA0 ]. Therefore, it delegates public delayed output to SA including the request
(KeyGenRequest, sid, kid, pp,A, Pi). Upon public delayed output (KeyGen, sid, kid,Ai), SA
corrupts Pi. SimKeyGen gets skAi from the output of the corruption and outputs skAi .

SimSign (pp,msk,m,P): The algorithm runs the steps of SimSetup up to the point where PSetup
gets corrupted. Then SimSign uses the Signature activation of FABS to get the signature on
(m,P). Eventually the output (Signature, sid,A,m,P, σ) is created and SimSign outputs σ.

Notice that SimSetup,SimKeyGen and SimSign are getting the same algorithms from SA,
since they use the same fixed randomness r to run SA.
From the assumption we know ΠABS is not CSimP. Hence for the algorithms (SimSetup,

SimKeyGen, SimSign) as defined above, there exists a distinguisher DSA that distinguishes
SPΠABS

DSA
(λ, b = 0) and SPΠABS

DSA
(λ, b = 1) with non-negligible advantage AdvCSimP

DSA
(λ). Next, we

define the environment E , for A and arbitrary but fixed SA. Note, E takes the role of PSetup
as A will forward every message for PSetup after the corruption of PSetup. Important is that E
will act as an honest PSetup and answers to requests as described in FABS. The setup party is
corrupted only to get the master secret.

1. E sends (Setup, sid) to PSetup and gets (Public Params, sid, pp) back. From the corruption
of PSetup it gets (pp,msk).

2. E starts DSA on input (pp,msk) and answers DSA ’s oracle queries as follows.

OKeyGenb
pp,msk (Ai) : On i-th query input Ai, environment E activates a new party Pi with

(KeyGen, sid, kid,Ai) and takes the role of corrupted PSetup. Therefore, E eventually
gets message (KeyGenRequest, sid, kid,Ai) for PSetup from Pi forwarded by A. E gen-
erates skAi ← KeyGen(pp,msk,Ai), and sends message (KeyGen, sid, kid, pp,Ai, skAi)
to Pi. After that E outputs skAi to DSA .

OSignb
pp,msk(i,mj ,Pj) : On j-th query, environment E checks if Ai was queried, that Pj(Ai) =

1 holds and that Pj ∈ U(pp). If not, it ignores the query. Otherwise, E acti-
vates a party Pi with (Signature, sid, pp,Ai,mj ,Pj , ), eventually party Pi returns
(Signature, sid,Ai,mj ,Pj , σj) and E outputs σj to DSA .

3. Eventually DSA outputs b̃ and E outputs it.

Analysis: We will now relate the advantage of E to the advantage of DSA in the computational
simulation private experiment SPΠABS

DSA
. We analyze the real and the ideal settings separately.

Case [πABS,A]: From the definition of πABS (Figure 2) we get the following. The tuple (pp,msk)
is generated by Setup(1λ) and the secret keys skAi are generated by the algorithm KeyGen
with input pp, msk and attribute set Ai. The signatures σj are generated by an execution
of Sign (pp, skAi ,mj ,Pj). Thus the view of DSA is equal to the view in SPΠABS

DSA
(λ, 1), with

algorithms Setup, KeyGen, Sign, and Verify as defined by ΠABS, which is used in πABS.

28



Case
[
FABS,SA

]
: In this case the tuple (pp,msk) is generated by the algorithm S.Setup output

by SA. The same algorithm is used in our SimSetup above. Further, the Signature
activations from E result in signatures generated by S.Sign in FABS. This is the same
process as specified by SimSign above. The Key Generation activations are answered by
E , with the use of KeyGen. In the setting [FABS,SA] with a corrupted PSetup the secret
keys are also generated by E , due to the definition of our adversary A that hands the
responsibility for PSetup to E . Hence, the key generation is done as specified by SimKeyGen.
Consequently, the view of DSA is equal to the view in SPΠABS

DSA
(λ, 0), for the above defined

ppt algorithms SimSetup, SimKeyGen, and SimSign.

From the analysis it follows that,∣∣∣∣Pr
[
E
[
FABS,SA

]
= 1

]
− Pr [E [πABS,A] = 1]

∣∣∣∣
=
∣∣∣∣Pr

[
SPΠABS

DSA
(λ, 0) = 1

]
− Pr

[
SPΠABS

DSA
(λ, 1) = 1

] ∣∣∣∣
=AdvCSimP

DSA
(λ) .

4.2.2 Unforgeability

For showing unforgeability we will construct an environment E that uses a forger to distinguish
the real and the ideal setting.

Lemma 4.11. Assume ΠABS is correct, consistent, computationally simulation private, but not
unforgeable, then πABS does not realize FABS[adaptive*, erasure, secure channels].

Proof. If ΠABS is not unforgeable as defined in Definition 2.5 but correct, consistent and CSimP,
there is a ppt forger F with non-negligible success probability τ(λ) in ExpUF

F (λ). We construct
environment E and A in the following. Consider A as the standard adversary. Note, if E wants
to corrupts a party, A outputs the list of the secret keys of the corrupted party to E . Hence,
every simulator S has to do the same for corrupted parties. If not, then the settings are easy to
distinguish.
E first runs the setup through some party PSetup with (Setup, sid), where sid := (PSetup, 0),

and obtains as a result (passed on by PSetup) the public parameters pp. Environment E runs
a copy of forger F with pp. Let us describe the interaction of E with F , which involves the
description of how E answers F ’s oracle queries. Initially counters i and j are 0.

OKeyGen
pp,msk (Ai) : On i-th query input Ai, environment E activates a party Pi with a key generation

(KeyGenRequest, sid, kid,Ai). Eventually E gets (KeyGen, sid, kid,A, Pi) back for a finished
key generation by PSetup and stores it. E increments i.

OReveal(i) : On input i, if there was an i-th KeyGen query, then E corrupts Pi, gets the secret
key skAi , stores it, and outputs skAi to F . If there was no i-th KeyGen query E ignores the
Reveal query.

29



OSign
pp,msk(i,mj ,Pj) : On j-th query, if the corresponding secret key skAi was generated in a KeyGen

query and not revealed, E activates Pi with (Signature, sid, pp,Ai,mj ,Pj). Eventually E
gets (Signature, sid,Aj ,mj ,Pj , σj) back and returns σj to F . If secret key skAi was not
generated in a KeyGen query ignore this signature query. In the case that skAi was
revealed, the corresponding party was corrupted and E generates the signature with
σj ← Sign (pp, skAi ,mj ,Pj) and returns it to F .

Eventually F outputs a triple (m∗,P∗, σ∗). If (m∗,P∗) was signed in a query or policy P∗ accepts
any Ai where the corresponding secret key skAi was revealed to F , E outputs 0 and aborts. Else
E activates a new and not corrupted party PV with (Verify, sid, pp, m∗, P∗, σ∗) and outputs the
result.

Analysis: For analyzing E ’s success we only have to consider its final output.

• If E interacts with
[
FABS,S(·)

]
every Verification activation for a signature under

fixed public parameter pp, where the signature was not generated by the functionality,
results in output 0, because FABS guarantees unforgeability. This is the case if the
last step of E is reached. Hence, we get Pr

[
E
[
FABS,S(·)

]
(λ) = 1

]
= 0.

• If E interacts with [πABS,A], the view of forger F is distributed as in the experiment
ExpUF

F (λ). We denote with “F wins” the event ExpUF
F (λ) = 1 and with “F fails” the

event ExpUF
F (λ) = 0. Accordingly, the following holds.

Pr [E [πABS,A] (λ) = 1] = Pr [E outputs 1 | F wins] · Pr [F wins]
+ Pr [E outputs 1 | F fails] · Pr [F fails]

= 1 · τ(λ) + 0 · (1− τ (λ))
= τ(λ)

Overall, we get that |Pr [E [πABS,A] (λ) = 1]− Pr
[
E
[
FABS,S(·)

]
(λ) = 1

]
| = τ(λ), where

τ(λ) is the non-negligible success probability of F in ExpUF
F (λ).

References
[AO12] Masayuki Abe and Miyako Ohkubo. “A framework for universally composable

non-committing blind signatures”. In: IJACT 2.3 (2012).
[AAS16] Hiroaki Anada, Seiko Arita, and Kouichi Sakurai. “Proof of Knowledge on Monotone

Predicates and its Application to Attribute-Based Identifications and Signatures”.
In: IACR ePrint 2016 (2016), p. 483.

[Ate+05] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and Breno de Medeiros.
“Practical Group Signatures without Random Oracles”. In: IACR ePrint 2005 (2005).
url: http://ia.cr/2005/385.

30

http://ia.cr/2005/385


[BF14] Mihir Bellare and Georg Fuchsbauer. “Policy-Based Signatures”. In: Public Key
Cryptography. Vol. 8383. LNCS. Springer, 2014, pp. 520–537.

[BGK06] Aslak Bakke Buan, Kristian Gjøsteen, and Lillian Kråkmo. “Universally Composable
Blind Signatures in the Plain Model”. In: IACR ePrint 2006 (2006). url: http:
//ia.cr/2006/405.

[Cam+15] Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf Kohlweiss.
“Composable and Modular Anonymous Credentials: Definitions and Practical Con-
structions”. In: ASIACRYPT (2). Vol. 9453. LNCS. Springer, 2015, pp. 262–288.

[Cam+16] Jan Camenisch, Robert R. Enderlein, Stephan Krenn, Ralf Küsters, and Daniel
Rausch. “Universal Composition with Responsive Environments”. In: ASIACRYPT
(2). Vol. 10032. LNCS. 2016, pp. 807–840.

[Can01] Ran Canetti. “Universally Composable Security: A New Paradigm for Cryptographic
Protocols”. In: FOCS. IEEE Computer Society, 2001, pp. 136–145.

[Can03] Ran Canetti. “Universally Composable Signatures, Certification and Authentication”.
In: IACR ePrint 2003 (2003). url: http://ia.cr/2003/239.

[Can13] Ran Canetti. “Universally Composable Security: A New Paradigm for Cryptographic
Protocols”. In: IACR ePrint 2013 (2013). url: http://ia.cr/2000/067.

[EHM11] Alex Escala, Javier Herranz, and Paz Morillo. “Revocable Attribute-Based Signatures
with Adaptive Security in the Standard Model”. In: AFRICACRYPT 2011. Vol. 6737.
LNCS. Springer, 2011, pp. 224–241.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. “A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks”. In: SIAM J. Comput. 17.2
(1988), pp. 281–308.

[Her16] Javier Herranz. “Attribute-based versions of Schnorr and ElGamal”. In: Appl. Algebra
Eng. Commun. Comput. 27.1 (2016).

[Lin11] Yehuda Lindell. “Highly-Efficient Universally-Composable Commitments Based on
the DDH Assumption”. In: EUROCRYPT. Vol. 6632. LNCS. Springer, 2011, pp. 446–
466.

[MPR08] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. “Attribute-Based Signa-
tures: Achieving Attribute-Privacy and Collusion-Resistance”. In: IACR ePrint 2008
(2008). url: http://ia.cr/2008/328.

[MPR11] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. “Attribute-Based Signa-
tures”. In: CT-RSA. Vol. 6558. Lecture Notes in Computer Science. Springer, 2011,
pp. 376–392.

[OT14] Tatsuaki Okamoto and Katsuyuki Takashima. “Efficient Attribute-Based Signatures
for Non-Monotone Predicates in the Standard Model”. In: IEEE Trans. Cloud
Computing 2.4 (2014).

31

http://ia.cr/2006/405
http://ia.cr/2006/405
http://ia.cr/2003/239
http://ia.cr/2000/067
http://ia.cr/2008/328


[SAH16] Yusuke Sakai, Nuttapong Attrapadung, and Goichiro Hanaoka. “Attribute-Based Sig-
natures for Circuits from Bilinear Map”. In: Public Key Cryptography (1). Vol. 9614.
LNCS. Springer, 2016, pp. 283–300.

32


	Introduction
	Related Work
	Our Contribution

	Attribute-Based Signatures
	Privacy
	Standard Privacy
	Simulation Privacy

	On the Security of Existing Schemes
	Generic ABS Construction by Sakai et al. DBLP:conf/pkc/SakaiAH16
	Generic ABS Construction by Maji et al. DBLP:conf/ctrsa/MajiPR11


	Universal Composable Attribute-based Signature Schemes
	Preliminaries: Universal Composability Framework
	Ideal ABS Functionality
	Description of FABS
	Security of FABS

	Protocol

	Security
	Experiment-Based Security implies UC Security
	UC Security implies Experiment-Based Security
	Privacy
	Unforgeability



