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Abstract. Hardware masked AES designs usually rely on Boolean masking and
perform the computation of the S-box using the tower-field decomposition. On the
other hand, splitting sensitive variables in a multiplicative way is more amenable
for the computation of the AES S-box, as noted by Akkar and Giraud. However,
multiplicative masking needs to be implemented carefully not to be vulnerable to
first-order DPA with a zero-value power model. Up to now, sound higher-order
multiplicative masking schemes have been implemented only in software. In this work,
we demonstrate the first hardware implementation of AES using multiplicative masks.
The method is tailored to be secure even if the underlying gates are not ideal and
glitches occur in the circuit. We detail the design process of first- and second-order
secure AES-128 cores, which result in the smallest die area to date among previous
state-of-the-art masked AES implementations with comparable randomness cost and
latency. The first- and second-order masked implementations improve resp. 29%
and 18% over these designs. We deploy our construction on a Spartan-6 FPGA and
perform a side-channel evaluation. No leakage is detected with up to 50 million traces
for both our first- and second-order implementation. For the latter, this holds both
for univariate and bivariate analysis.
Keywords: DPA · Masking · Glitches · Sharing · Adaptive · Boolean · Multiplicative
· AES · S-box · Side-channel

1 Introduction
Cryptographic primitives are designed to resist mathematical attacks such as linear or
differential cryptanalysis. The designer typically assumes a classic adversarial model, where
encryption is treated as a black box, only revealing inputs and outputs to adversaries.
When these primitives are deployed in embedded devices, unintended signals such as the
instantaneous power consumption or electromagnetic radiation leak sensitive information,
effectively turning the black box into a gray box. Side-channel analysis is a cheap and
scalable technique that allows the adversary to exploit these signals and extract secret
keys or passwords. Hence, cryptography deployed into embedded devices needs not only
mathematical but also physical security.

One particularly powerful attack, differential power analysis (DPA) was introduced
in 1999 by Kocher et al. [KJJ99]. In this type of attack, the adversary feeds different
plaintexts to an encryption algorithm using the same key and extracts sensitive information
from the power traces he collects. Today, we aim at providing security against dth-order
DPA. In a dth-order DPA attack, the adversary exploits any statistical moment of the power
consumption up to order d. Since statistical moments are exponentially harder to estimate
with the order d given sufficient noise (both in terms of numbers of samples and computa-
tional time), having a moderate security target d = 1, 2 often suffices in practice, especially
when used in conjunction with complementary countermeasures [HOM06, CCD00].
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In a side-channel secure implementation, the goal is to make the leakages of the
values handled in the implementation independent of the sensitive inputs and sensitive
intermediate variables. At the architectural level this is typically achieved by masking,
which means the processed data is probabilistically split into multiple shares in such a
way that one can only recover the sensitive data if all of its shares are known. Recovering
secrets from shares is exponentially more difficult as noise increases; as this corresponds to
estimating higher-order statistical moments with increasing noise levels [CJRR99, GP99].

Previous Work. The earliest masking schemes [GP99, Tri03, ISW03] were shown to
be unsuitable for hardware implementations by Mangard et al. [MPG05, MPO05]. The
vulnerability arises when unintended transitions of a signal or glitches occur, caused by
non-idealities such as logic gates with non-zero propagation delays or routing imbalances.
The glitches problem can be addressed at many levels: either by equalizing signal paths
(which normally requires manual access to low-level routing details and a careful char-
acterization of the logic library), by adding synchronization elements (such as registers
or signal gating) or by using a masking scheme that is inherently secure under glitches.
Extensive research has been done on countermeasures based on secret sharing and multi-
party computation that are provably secure even in the presence of glitches. The prevailing
schemes are those of Prouff and Roche [PR11] and Threshold Implementations (TI) by
Nikova et al. [NRS11] which use polynomial and Boolean masking respectively. The latter
was extended to higher-order security by Bilgin et al. (higher-order TI) [BGN+14a]. The
similarities and differences between TI and the Private Circuits scheme [ISW03], which
provides provable security if the circuit behaves ideally (no glitches), were analysed by
Reparaz et al. (Consolidated Masking Schemes) [RBN+15]. Reparaz et al. also discuss
how ISW can be implemented to provide security on hardware. More recently, Gross et
al. presented Domain Oriented Masking [GMK16], which is also related to the original
Private Circuits scheme [ISW03] with additional registers againts glitches and a different
randomness consumption. These masking schemes have all been applied to Canright’s
tower-field AES S-box [Can05] due to its small foot-print and structure, resulting in a mul-
titude of masked AES implementations [MPL+11, BGN+14b, CRB+16, GMK17, UHA17].
Those of Ueno et al. [UHA17], De Cnudde et al. [CRB+16] and Gross et al. [GMK17] are
the smallest to date, with the latter requiring much less randomness.

In this paper we follow a different avenue. We do not apply Boolean masking to
Canright’s tower-field decomposition, but instead, we revisit the well-known concept of
switching between different types of masking. Boolean masking schemes are compatible
with linear operations but difficult to work out for non-linear functions. Akkar and
Giraud [AG01] were the first to propose an adaptive masking scheme for AES at CHES
2001. The idea is to use Boolean masks for the affine operations and multiplicatively
masked values for multiplications (or in the case of AES, inversion) and convert between
the two types when necessary. At CHES 2002 [TSG02, GT02] an inherent weakness of
multiplicative masking was presented, namely that it is vulnerable to first-order DPA
because the zero element cannot be effectively masked multiplicatively. As a solution to
this zero problem, they proposed to map each zero element to a non-zero element. The
adaptive masking scheme was studied in depth and extended to higher-order security by
Genelle et al. [GPQ11b]. So far, it has only been used in software implementations.

Our Contribution. We present the first hardware implementation of an adaptively masked
AES. We describe glitch-resistant modules that convert between Boolean and multiplicative
masking and that attend to the zero problem, based on the algorithmic descriptions provided
for software in [GPQ10, GPQ11a, GPQ11b]. While this work focuses on the AES S-box,
the methodology can be used to mask any inverse or power map-based S-box [AGR+16].
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We optimize the number of inversions used and the randomness cost for first-order and
second-order resistant AES, which both achieve a smaller area than the current state-of-
the-art masked hardware AES implementations of [CRB+16] and [GMK17], while having
comparable randomness and latency requirement. We formally discuss the security of our
S-box and its components up to the level current state-of-the-art tools and methods allow.
We also deploy our implementations into an FPGA for side-channel evaluation using a
non-specific leakage assessment test to analyse practical security in a lab environment with
low noise. No leakage is detected with up to 50 million traces, confirming that the security
claims hold empirically.

2 Preliminaries
Notation. Multiplication and addition in the field Fq = GF(2k) are denoted by ⊗ and ⊕
respectively. We use & for multiplication in the field GF(2) (i.e. the AND operation). For
ease of notation, we sometimes omit ⊗ and &. Square brackets [·] in formulas indicate
where synchronization via registers or memory elements are used. An element r ∈ Fq

drawn uniformly at random from Fq is shown as r $← Fq. We denote F∗q = Fq \ {0}. The
expected value of x is denoted E[x].

2.1 Adversarial Model
We consider a physical adversary model, in which an attacker can probe and observe
up to d intermediate wires in each time period. This model is known as the d-probing
model [ISW03]. To account for non-ideal (glitchy) circuits, we assume that any probed
wire carrying a function output also leaks information about all function inputs up to the
last register [RBN+15]. It has been shown in [FRR+10, RP10, DDF14] that security in
the d-probing model implies security against dth-order DPA as well given the independent
leakage assumption of each share and its corresponding logic from the others.

2.2 Boolean and Multiplicative Masking
A popular countermeasure against dth-order DPA is masking sensitive values by proba-
bilistically splitting them into d+ 1 shares. Let � be some group operation. Then for any
x ∈ Fq we process the sharing x = (s0, . . . , sd) with s0 � s1 � . . . � sd = x instead of x itself.
Similarly, f(x) = (f0(x), . . . , fd(x)) is a shared representation of a function f(x).

Masked representations. We can distinguish different masked representations based on
the splitting operation �. A common choice is the exclusive-or operation ⊕, resulting in a
Boolean sharing. We use bx

i to denote Boolean shares of x: i.e.

x = (bx
0 , . . . , b

x
d) ⇔ x =

d⊕
i=0

bx
i

In this paper we also use multiplicative sharing, which in a side-channel context is typically
defined as

x = (px
0 , . . . , p

x
d) ⇔ x =

( d−1⊗
i=0

(px
i )−1)⊗ px

d

We refer to this sharing as a type-I multiplicative sharing. We further define a type-II
multiplicative sharing:

x = (qx
0 , . . . , q

x
d ) ⇔ x =

d⊗
i=0

qx
i
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This notation is more common in secret-sharing. We omit the superscript x when it is
clear from context.

Masked operations. In Boolean masking, linear operations can trivially be applied locally
on each share:

x⊕ y = (bx
0 , . . . , b

x
d)⊕ (by

0, . . . , b
y
d) = (bx

0 ⊕ b
y
0, . . . , b

x
d ⊕ b

y
d)

Non-linear operations such as a multiplication on the other hand are less straightforward
and much more costly to implement. The opposite situation arises if one uses multiplicative
masking. In that case, linear operations are non-trivial but multiplication is local:

x⊗ y = (px
0 , . . . , p

x
d)⊗ (py

0, . . . , p
y
d) = (px

0 ⊗ p
y
0, . . . , p

x
d ⊗ p

y
d)

Finding an efficient but glitch-resistant way to process Boolean shares in a non-linear
operation has been a hot topic in the last years. A natural strategy is to switch back and
forth between masked representations and perform each operation in its most compatible
setting.

The zero-value problem. The fundamental security flaw of multiplicative masking was
first pointed out by Trichina [TSG02] and Golić and Tymen [GT02]. Multiplicative masking
cannot securely encode the value 0. The mean power consumption of a single share px

i

reveals whether the underlying secret is zero or non-zero, since E[px
i |x = 0] 6= E[px

i |x 6= 0]
for any share index i. This means that for any number of shares, the original multiplicative
masking scheme is vulnerable to first-order DPA.

2.3 Masking in Hardware
Masking in hardware requires special care. The seminal work of Mangard et al. [MPG05,
MPO05] showed that glitches can reveal sensitive information in hardware masked imple-
mentations that otherwise were expected to be secure.

Non-completeness. The concept of non-completeness appears in the work of Nikova
et al. [NRS11] and follow-up works on higher-order security [BGN+14a, RBN+15]. Non-
completeness between register stages has become a fundamental property for constructing
provable-secure hardware implementations even if the underlying logic gates glitch. We
recall here the definition of non-completeness: for any shared implementation f operating
on a shared input x, dth-order non-completeness is satisfied if any combination of up to d
shares of f is independent of at least one input share.

Masked Multiplier. Reparaz et al. [RBN+15] showed that a dth-order masked multipli-
cation in hardware can be constructed using only d+ 1 shares if the sharings of the inputs
are independent (so as to not break non-completeness). One approach to do this is detailed
in [GMK16] and is referred to as Domain Oriented Masking (DOM).

Our work uses as a masked AND gate the DOM-indep multiplier from [GMK16]. Let
x = (bx

0 , b
x
1) and y = (by

0, b
y
1) be first-order Boolean sharings of bits x and y. A sharing

of the multiplication result z = x&y is obtained by first calculating four partial products
tij = bx

i &by
j , i, j ∈ {0, 1} as in [ISW03]. When i 6= j, tij is called a cross-domain term

and must be refreshed with a randomly drawn bit r $← GF(2). After a register stage for
synchronization, the shares (bz

0, b
z
1) are computed.

bz
0 = bx

0&by
0 ⊕ [bx

0&by
1 ⊕ r]

bz
1 = bx

1&by
1 ⊕ [bx

1&by
0 ⊕ r]

(1)
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The second-order multiplier uses three bits of randomness r $← (GF(2))3. The inputs
and outputs have three shares and there are nine partial products tij .

bz
0 = bx

0&by
0 ⊕ [bx

0&by
2 ⊕ r1]⊕ [bx

0&by
1 ⊕ r0]

bz
1 = [bx

1&by
0 ⊕ r0]⊕ bx

1&by
1 ⊕ [bx

1&by
2 ⊕ r2]

bz
2 = [bx

2&by
0 ⊕ r1]⊕ [bx

2&by
1 ⊕ r2]⊕ bx

2&by
2

Note that we employ the special version of the DOM-indep multiplier where only the
cross-domain terms are synchronized in registers. For efficiency, these registers are clocked
on the negative edge as is done in [GSM17]. This is illustrated for the first-order multiplier
in Figure 1.

!"#

!"$

!%$
!%#

	&

	&

	&
	&

!"(

!%(

)

Figure 1: First-order DOM-indep multiplier

3 Design of an Adaptively Masked AES S-box
The AES S-box is an inversion in GF(28), followed by an affine transformation over bits.
We adopt the idea of adaptive masking, where we use Boolean sharings for linear operations
and multiplicative masks for non-linear operations. We thus implement the inversion by
first converting the input from Boolean to multiplicative masking. The inversion then
becomes a local operation on the individual shares:

x = (p0, . . . , pd)⇔ x−1 = (p−1
0 , . . . , p−1

d )

We convert back to a Boolean masking to do the affine transformation.
In what follows, we first describe the conversion circuits between Boolean and multi-

plicative masking. We address the zero problem in § 3.3. An overview of the S-box can be
found in Figure 5. While this section is written with AES in mind, the methodology can
be applied to any S-box constructed from inversion or another power map in Fq.

3.1 Masking Conversions
Following the strategy of [GPQ11b], we intuitively describe a higher-order conversion
between Boolean and multiplicative shares with the following steps. Note that this
description is not final and we will deviate from them slightly in § 3.2.

For k = 1, . . . , d:

(a) Expansion: extend the sharing x with a new share of the target masking type.
The number of target shares is augmented by one and the total number of
shares is now d+ 2.

(b) Synchronize the shares in a register
(c) Compression: Remove one share from the source sharing by partially unmasking.

The number of source shares shrinks by one and the total number of shares is
again d+ 1.
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Boolean to Multiplicative. More specifically, consider a conversion from Boolean to
type-I multiplicative shares. After k iterations of the above steps, we have an intermediate
sharing

x = (p0, . . . , pk−1, bk, . . . , bd) where x =
( k−1⊗

i=0
p−1

i

)
⊗
( d⊕

i=k

bi

)
The number of target (multiplicative) shares is k and the number of source (Boolean)
shares is d+ 1− k. In the expansion phase, we add a new multiplicative share by drawing
a random pk and multiplying it with all Boolean shares:

b′i = pk ⊗ bi for i = k, . . . , d (2)

We now obtain a d+ 2 sharing

x = (p0, . . . , pk, b
′
k, . . . , b

′
d) where x =

( k⊗
i=0

p−1
i

)
⊗
( d⊕

i=k

b′i
)

In the compression phase, we remove Boolean share b′k by adding it to another Boolean
share b′k+1:

b′′k+1 = b′k ⊕ b′k+1 (3)

which brings us to a d+ 1 sharing

x = (p0, . . . , pk, b
′′
k+1, b

′
k+2, . . . , b

′
d)

with k+1 target (multiplicative) shares and d−k source (Boolean) shares. After d iterations,
the sharing has been converted to x = (p0, . . . , pd−1, bd) such that x =

(⊗d−1
i=0 p

−1
i

)
⊗ bd,

which is equivalent to a type-I multiplicative sharing of x with pd = bd.

Multiplicative to Boolean. For the opposite conversion from multiplicative to Boolean
shares, we consider a type-II multiplicative sharing, but the procedure for type-I is identical,
apart from d additional inversions. Note that the first iteration starts with k = 1 and
b′′d = qd. In iteration k, we have the intermediate sharing

x = (q0, . . . , qd−k, b
′
d−k+1, . . . , b

′
d−1, b

′′
d)

with k target (Boolean) shares and d+1−k source (multiplicative) shares. In the expansion
phase, a new Boolean share b′d−k is added by splitting b′′d into b′d⊕b′d−k with b′d−k randomly
drawn. The d+ 2 shares of x are then

x = (q0, . . . , qd−k, b
′
d−k, . . . , b

′
d) where x =

( d−k⊗
i=0

qi

)
⊗
( d⊕

i=d−k

b′i
)

In the compression phase, multiplicative share qd−k is removed by multiplication with all
Boolean shares:

bi = qd−k ⊗ b′i for i = d− k, . . . , d

resulting in the d+ 1 sharing

x = (q0, . . . , qd−k−1, bd−k, . . . , bd) where x =
( d−k−1⊗

i=0
qi

)
⊗
( d⊕

i=d−k

bi

)
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with k + 1 target (Boolean) shares and d− k source (multiplicative) shares.
We provide high-level descriptions for both conversions in pseudocode below. These

pseudocodes are slightly different from the higher-order generalizations in [GPQ11b]
(Algorithms 1 and 2) but representative of their first- and second-order descriptions.

Algorithm 1 Boolean to Multiplicative
Input: x = (b0, . . . , bd)
Output: x = (p0, . . . , pd)

for i = 0 to d− 1 do
pi

$← F∗q
for j = i to d do

bj ← bj ⊗ pi

end for
**Register Stage**
bi+1 ← bi+1 ⊕ bi

end for
pd ← bd

Algorithm 2 Multiplicative to Boolean
Input: x = (q0, . . . , qd)
Output: x = (b0, . . . , bd)

bd ← qd

for i = d− 1 downto 0 do
bi

$← Fq

bd ← bd ⊕ bi

**Register Stage**
for j = i to d do

bj ← bj ⊗ qi

end for
end for

Conversions in Hardware: Dealing with glitches. The register stage between the expan-
sion and compression phases is necessary because of the presence of glitches in hardware
circuits. Without this register, the non-completeness of the conversion is broken and we
have no security guarantees. Consider for example equations (2) and (3). Together, they
compute the following

b′′k+1 = [pkbk]⊕ [pkbk+1]
= pk(bk ⊕ bk+1)

Without a register, the signal pk might arrive late to the multiplication. As a result, two
of the shares of x are combined on one wire bk ⊕ bk+1 and the security is reduced by one
order.

3.2 Specific Inversion Circuits
Why we use two types of multiplicative masking: Consider a type-I multiplicative
masking, i.e. x = (px

0 , p
x
1 , . . . , p

x
d)⇔ x =

(⊗d−1
i=0 (px

i )−1)⊗ px
d . To obtain a type-I masking

of its inverse x−1, we can locally invert all shares px
i using d + 1 unshared Fq inverters.

Converting back to Boolean masking then requires d more Fq inverters. However, the
following formula shows that we can do the entire masked inversion with only one unshared
Fq inverter:

x−1 =
(( d−1⊗

i=0
(px

i )−1)⊗ px
d

)−1
=
( d−1⊗

i=0
px

i

)
⊗ (px

d)−1

Indeed, by only locally inverting the last share px
d of a type-I multiplicative masking of

x, we obtain a type-II multiplicative sharing of its inverse x−1:

x−1 = (q(x−1)
0 , q

(x−1)
1 , . . . , q

(x−1)
d ) = (px

0 , p
x
1 , . . . , (px

d)−1)

Note that regardless of the security order d, only one unshared inverter is required this
way.
We now look in more detail at the first- and second-order implementations of the conversions.
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First-order. The complete first-order masked inversion including the resulting circuits for
first-order conversions between Boolean and multiplicative masking is shown in Figure 2.
The left side of the figure converts a Boolean sharing x = (b0, b1) to a type-I multiplicative
sharing (p0, p1) such that x = p−1

0 p1. With a non-zero r0
$← F∗q , the multiplicative shares

are calculated as

p0 = r0

p1 = [b0r0]⊕ [b1r0]

The right side of the circuit converts a type-II multiplicative masking of x−1 into a Boolean
masking. This requires another random r1

$← Fq:

b′0 = r1q0

b′1 = [q1 ⊕ r1]q0

These procedures are identical to those described in Algorithms 1 and 2.

!"

#"

#$

%$

%" = '"

!$

#$(

#"(

%$)$ = '$)$

Figure 2: First-order shared implementation of an inversion in Fq. The dashed lines depict
registers.

Second-order. Adopting the same algorithms for d + 1 = 3 shares does not provide
second-order secure conversions (see Appendix A). We require an extra refreshing of
additive shares. Figure 3 depicts our circuit for the second-order shared inversion in Fq.
The conversion from a Boolean to a type-I multiplicative sharing is depicted on the left
side of the figure. The conversion requires three units of randomness: r0, r1

$← F∗q and the
extra refreshing u $← Fq. The multiplicative shares are as follows:

p0 = r0

p1 = r1

p2 =
[
r1
(
[r0b0]⊕ [r0b1 ⊕ u]

)]
⊕
[
r1
(
[r0b2]⊕ u

)]
For the opposite conversion (shown on the right side of Figure 3), we start from a

type-II multiplicative masking. This means we only need to invert the last share, p2. We
calculate the Boolean shares of x−1 as

b′0 = [r3 ⊕ u]q0

b′1 = [r2q1 ⊕ u]q0

b′2 =
[
[q2 ⊕ r2]q1 ⊕ r3

]
q0

The conversion again uses three units of randomness, r2, r3, u
$← Fq, although we can recycle

the refreshing mask u from the Boolean to multiplicative conversion. Each conversion thus
uses only 2.5 units of randomness.
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Figure 3: Second-order shared implementation of an inversion in Fq. The dashed lines
depict registers.

Our procedures differ slightly from those of Genelle et al. [GPQ11b], especially in the
smaller use of randomness (we expand on this in Appendix A). For a general randomness
strategy for higher-order conversions, we refer to [GPQ11b], but we note that their
randomness cost is not necessarily optimal for each target security order d. A custom
approach can result in a lower cost.

3.3 The Zero Problem
We now describe how to circumvent the zero problem of multiplicative masking. Both in
MPC literature [DK10] and in software masking [GPQ10], it has been proposed to map
each zero element in Fq to a non-zero element in F∗q using a Kronecker Delta function
before converting to multiplicative masks.

In the AES S-box, we need to do an inversion in Fq. Both the zero and unit element of
Fq are their own inverses:

x−1 = x for x ∈ {0, 1}

It is therefore sufficient to replace each zero element by a “one” before the inversion and
change it back afterwards. Consider a Kronecker delta function δ(x):

δ(x) =
{

1 if x = 0
0 if x 6= 0

We can write the inversion of any x ∈ Fq as follows:

x−1 = (x⊕ δ(x))−1 ⊕ δ(x)

We thus require a circuit that computes a shared Kronecker delta function δ(x). Its
output (a sharing of “zero” or a sharing of “one”) is to be added to the input of the
conversion from Boolean to multiplicative masking and to the output of the conversion
from multiplicative to Boolean masking (see Figure 5). This way, any zero element goes
through the Fq inversion as a “one” and is thus never shared multiplicatively.

The Kronecker delta function δ(x) can be calculated with an n-input AND, or equiva-
lently, a log2(n)-level 2-input AND tree with the inverted bits of x as input:

δ(x) = x̄0&x̄1&x̄2& . . .&x̄n−1

The circuit is shown for n = 8 in Figure 4 with xi a sharing of the ith bit of x. In software,
it has been realized using masked table lookups [GPQ10] and bit-slicing [GPQ11a]. We
implement each AND gate with a DOM-indep multiplier [GMK16]. We denote by rj the
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randomness needed for each gate. As each multiplier requires one register stage, the entire
circuit of Figure 4 takes three clock cycles (regardless of the number of shares).

!"#
!"$
!"%
!"&
!"'
!"(

!")
!"*

+(")

./

.0

.1

.2

.3

.4

.5

Figure 4: Circuit for the shared Kronecker delta function δ(x) for n = 8

We note that a trade-off can be made here between latency and area. It is possible
to reduce the depth of the tree (and thus the number of clock cycles) at the cost of a
larger fan-in for the AND gates, which results in a considerable increase in area for shared
implementations. In this paper, we choose to work only with 2-input AND gates in order
to minimize circuit area.

First-order optimizations. In a straightforward first-order secure implementation of δ(x),
each input bit has two shares and each DOM-AND gate requires 1 extra random bit
rj

$← GF(2). The circuit thus receives a total of 23 bits. That is a lot of entropy for a
function that outputs only 2 bits. In order to bring down the randomness cost of the
circuit, we decide to recycle some of the bits across the multiplication gates. A theoretical
framework for this was presented in [FPS17]. Following this would result in a total
randomness cost of 5 units: one bit in each of the three layers and one bit each for the
refreshing after layer 1 and after layer 2. We now push the cost even further by using
custom optimizations.

We rewrite the DOM equations (1) and note that they have a special property:

bz
i = bx

i b
y
i ⊕ [bx

i b
y
i⊕1 ⊕ r]

= bx
i y ⊕ r

The DOM gate thus uses its inputs somewhat asymmetrically since the output shares
depend only on the unmasked second input y and not on its sharing. This means that any
randomness that has been used to mask y before arriving at this gate, disappears from its
output sharing z. Hence, we can reuse this randomness in the next layer. In our case, we
use the more significant bit (depicted as the lower input to an AND gate in Fig. 4) as the
“second input” and we conclude that the second layer of the Kronecker implementation
removes any dependence of the data on r2 and r4. In contrast, reusing r1 (or r3) in layer
two is not advisable. Moreover, for a first-order implementation (only univariate matters),
the upper and lower two gates in the first layer have independent inputs and outputs, and
can therefore use the same randomness as long as layer two does not.
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We propose the following use of randomness:

r1 = r3
$← GF(2) r5

$← GF(2) r7 = r1

r2 = r4
$← GF(2) r6 = [r5 ⊕ r2]

We are thus able to reduce the randomness consumption of the first-order Kronecker
delta implementation from 7 to only 3 bits. We refer to Appendix C for the probability
distributions of intermediate and output wires of this circuit with our randomness opti-
mization. We verified that these probability distributions are independent of the secret
input. Moreover, we note that these probability distributions are the same as in the circuit
without randomness optimization.

Second-order optimizations. A second-order implementation uses three bits of random-
ness per multiplication: rj = (rj0, rj1, rj2) $← (GF(2))3. Again, instead of consuming 21
bits of extra randomness in the circuit, we propose a recycling of the bits. Following the
framework of [FPS17] would require five groups of three fresh random bits, i.e. 15 bits.
Our customization is more restricted in the higher-order case because of the possibility of
multivariate leakage. We still have the special composability property of the DOM gates,
but the gates in the first layer can no longer be considered independent. We propose the
following:

r1, r2, r3, r4
$← (GF(2))3

r50 = r30, r51 = r41, r52 = [r32 ⊕ r42]
r60 = r10, r61 = r21, r62 = [r12 ⊕ r22]

r70 = [r11 ⊕ r31], r71 = [r20 ⊕ r40], r72
$← GF(2)

We thus reduce the randomness consumption of the second-order Kronecker delta imple-
mentation from 21 to 13 bits. The probability distributions of relevant (pairs of) wires can
again be found in Appendix C.

3.4 The S-box
We summarize the AES S-box circuit in Figure 5. The local inversion is based on the smallest
unshared AES S-box implementation to date by Boyar, Matthews and Peralta [BMP13].
More details on our adaptation of this circuit are given in Appendix B. The registers are
depicted with grey dotted lines. In a first-order implementation each conversion has a
latency of one cycle, whereas in a second-order implementation, it is two clock cycles. The

!
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(+$, … , +')
-(!)

.$, … , .'
			→	

(#$, … , #')
/(!)	 01	

Figure 5: First-order adaptive masking implementation of the AES S-box. The dotted
grey lines depict registers.
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S-box input needs to be fed to the δ(x) circuit three clock cycles before the first conversion.
This could cost us three cycles of S-box latency as well as three stages of 8× (d+ 1)-bit
registers. Instead, we reorganize the state array and key schedule such that the Kronecker
delta function can be precomputed. We describe this in the next Section.

4 AES Architecture and Control
The ShiftRows, MixColumns and AddRoundKey stages in AES are all linear and thus
trivially masked by instantiating d + 1 copies, one for each share of the state and key
schedule. Following previous masked AES implementations, we use a byte-serialized
architecture with a pipelined S-box as shown in Figure 5. Note that instead of the
serialized architecture from [MPL+11], we use a similar architecture to that of [GMK16,
Fig. 5] since it exhibits a more compact and efficient datapath. We adapt [GMK16] to
accommodate for our S-box that needs a three-cycle precomputation of the Kronecker
delta function.

4.1 State Array
The byte-serialized architecture from [GMK16] is very efficient in terms of clock cycles,
since it performs the MixColumns, ShiftRows and AddRoundKey operations in parallel to
SubBytes. Figure 6 (left) shows the state array with its normal meandering movement
during the SubBytes operation in black full lines and the ShiftRows functionality in blue
dotted lines. The column of registers that is the input of the MixColumns operation is
indicated by a red striped frame, whereas the registers receiving the output of MixColumns
once cycle later are specified by a full red frame.

The S-box input is taken from State 00, while the Kronecker delta input starts computing
three cycles beforehand on State 30. In order to have State 30 ready for the Kronecker
function, we have to put the MixColumns operation in the second column (instead of the
first column as in [GMK16]). ShiftRows is performed when the sixteenth and last S-box
output enters the state. We also adapt the ShiftRows connections such that all bytes end
up one column to the right of the actual ShiftRows result. This means that the normally
first column is the first MixColumns input (state bytes 01,11,21,31) and the normally last
column now occupies state bytes 00,10,20 and 30. During the next four clock cycles, we
rotate the state by returning byte 00 to the state input (33) untouched. After those four
cycles, the state columns are restored to their correct order and the first S-box input is

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33
Kronecker in

State out

State inState in

Normal operation
ShiftRows
MixCol In
MixCol Out

Round Key Key in PT in

S-box in

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

S-box in

Round Key

Key out

Kronecker in

Key in

Figure 6: State and Key Array

12



ready in State 00. Moreover, its output to the Kronecker function is also ready at this
point. The key schedule is synchronized with the state in a way that the partial Round
Key to be used in that clock cycle corresponds to State 30. The AddRoundKey stage is
embedded in the connection between State 30 and State 20 and its output is the input to
the Kronecker delta function.

4.2 Key Array
The key array is depicted in Figure 6 (right) and is identical to that of [GMK16, Fig. 5].
The normal meandering operation is indicated in black full arrows, while the rotating
movement is illustrated by green dotted arrows. The key state rotates in order to put its last
column through the AES S-box. Note that this key array requires a lot fewer multiplexers
than that of [MPL+11] because the direction of the normal operation corresponds to
that of the rotations. The Round Key byte that is used in the AddRoundKey stage is
constructed in three different ways, depending on which state byte it is added to:

Key 00⊕ S-box Out⊕ RCon for the first state byte
Key 00⊕ S-box Out for the next three bytes
Key 00⊕Key 03 for the remaining 12 bytes

The result is fed back into the key state as Key 33.

4.3 Control
We now go into more detail on the scheduling of the 24 clock cycles (0 to 23) that make
up one encryption round when the S-box latency is four cycles (as in our second-order
implementation). Table 1 details the control of the register movement and Table 2 shows
how various inputs to the states and the S-box change.

The 16 bytes of the state register are fed to the S-box in cycles 3 to 18 of each round of
encryption. This means the Kronecker delta function receives the same 16 bytes three cycles
before that: in cycles 0 to 15. During these cycles, the key state follows its meandering
movement and Key 00 is used to construct the Round Key byte. In the remaining clock
cycles (from cycle 16 until cycle 23), the key array is rotating. The last column of the
array is fed through the Kronecker delta function in cycles 17 to 20 and through the S-box
in cycles 20 to 23, which means their outputs are ready for the first four Round Key
calculations four cycles later: in cycles 0 to 3.

The state receives its S-box outputs in cycles 7 to 22. In the last cycle (22), we do
the adapted ShiftRows that puts each state byte one extra column to the right. The first
MixColumns operation is in the next cycle (23), which means the first input byte to the

Table 1: State and key control during one round of encryption

Cycle State Shift MixColumns Key Shift

0-2 Meander No Meander
3 Meander Yes Meander
4-6 Meander No Meander
7 Meander Yes Meander
8-10 Meander No Meander
11 Meander Yes Meander
12-15 Meander No Meander
16-21 Meander No Rotate
22 ShiftRows No Rotate
23 Meander Yes Rotate

13



Table 2: State and key inputs during one round of encryption (except during loading)

Cycle Round Key Kronecker In SBin State In S20

0 K00 ⊕ SBout ⊕ Rcon S30 ⊕ RndKey - S00 Krncker In
1-2 K00 ⊕ SBout S30 ⊕ RndKey - S00 Krncker In
3 K00 ⊕ SBout S30 ⊕ RndKey S00 - Krncker In
4-6 K00 ⊕ K03 S30 ⊕ RndKey S00 - Krncker In
7-15 K00 ⊕ K03 S30 ⊕ RndKey S00 SBout Krncker In
16 - - S00 SBout S30
17-18 - K03 S00 SBout S30
19 - K03 - SBout S30
20 - K03 K13 SBout S30
21 - - K13 SBout S30
22 - - K13 SBout S31
23 - - K13 S00 S30

Kronecker delta function (in State 30) is ready in cycle 0. During cycles 23 to 2, State
00 holds bytes of the last column and is thus fed back into State 33. The MixColumns
operation occurs four times every four cycles, i.e. in cycles 23, 3, 7 and 11 (except in the
last round of encryption).

The first round of encryption (loading of the inputs) starts in cycle 0 with the data
and key inputs replacing respectively State 30 and the Round Key. In total, one AES
encryption is obtained in 10× 24 + 16 = 256 cycles. Our first-order AES implementation
has the same latency in spite of the S-box requiring only two cycles. Given the AES design,
it is difficult to exploit an S-box latency below four cycles.

5 Security Evaluation
In this section, we elaborate on the security of the first- and second-order AES constructions
against a probing adversary in the presence of glitches. Neither formal proofs in a particular
security model nor empirical leakage detecting tools can in their own capacity provide
full evidence for security. A security evaluation is incomplete without complementary
analyses following both methodologies. Therefore, our approach consists of three stages:
first in § 5.1, we address the security of the S-box under the ideal circuit assumption using
the notion of strong non-interference [BBD+16, BBP+16]. Next in § 5.2, we evaluate the
security of the S-box in the presence of glitches, using leakage detection tools available in
literature. Finally in § 5.3 we complete the evaluation by analyzing our whole circuit on a
physical device.

5.1 Security of the S-box in a theoretical framework
We now use the concept of Strong Non-Interference (SNI) [BBD+16] to prove that the
S-box construction is theoretically secure. We use the same methodology as the proof
of [BBD+16, Fig. 4]. Recall the definition of SNI:

Definition 1 (Strong Non-Interference (SNI) [BBP+16]). An algorithm is d-strong non-
interferent (or d-SNI) if and only if for every set I of t1 probes on intermediate variables
(i.e. no output wires or shares) and every set O of t2 probes on output shares such that
t1 + t2 ≤ d, the set I ∪ O can be simulated by only t1 shares of each input.

Now, consider our S-box in Figure 7, consisting of six parts: A1, A3 and A5 are affine
(only computing share wise) and A2, A4 and A6 are d-SNI as proven in Appendices D
and E. The proof starts from the output and backtracks to the input. We denote by Ii
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Figure 7: AES S-box

the set of intermediate probes in gadget Ai and by O the set of output probes on S(x).
The sets are constrained by |O|+

∑6
i=1 |Ii| ≤ d. We further define Si as the set of shares

that are required at the input of block Ai in order to be able to simulate the probes in the
remainder of the circuit, i.e.

⋃i
j=1 Ii ∪O. We subsequently treat this set as a set of probes

that needs to be simulated using input shares from a previous block Ai−1. This way, we
gradually move towards the input and try to show that the number of input shares of x
required to simulate all probes

⋃6
i=1 Ii ∪ O is at most

∑6
i=1 |Ii|.

Consider for example block A4 in Table 3. This block has output z and input y. The
set of shares of z, S3 is constrained by |S3| ≤ |S2| + |I3|. Since A4 is d-SNI and since
|S3 ∪ I4| ≤ d, we have that the number of shares of y required to simulate S3 ∪ I4 is at
most |I4|. We call this set of shares S4. Now, since we are able to simulate S3 using S4
and since S3 is able to simulate the remaining probes

⋃3
i=1 Ii ∪ O, we know that the set

of shares S4 is sufficient to simulate
⋃4

i=1 Ii ∪ O.
Table 3 shows that we need |S5,1 ∪ S6| < |S4|+ |I5|+ |I6| < |I4|+ |I5|+ |I6| shares of

the input to simulate all d-tuples of probes in the circuit, proving that the S-box is d-SNI.

Table 3: Proof that the S-box in Figure 7 is d-SNI for d = 1, 2

Probes Constraints Details

S(x) : O |O|+
∑6

i=1 |Ii| ≤ d
A1 v : S1,1;w : S1,2 |S1,k| ≤ |I1|+ |O| Affine
A2 u : S2;w : S1,2 |S2| ≤ |I2| d-SNI
A3 z : S3;w : S1,2 |S3| ≤ |I3|+ |S2| Affine
A4 y : S4;w : S1,2 |S4| ≤ |I4| d-SNI
A5 x : S5,1;w : S5,2 |S5,1| ≤ |I5|+ |S4| Affine

|S5,2| ≤ |I5|+ |S1,2|
A6 x : S5,1 ∪ S6 |S6| ≤ |I6| d-SNI

5.2 Practical Evaluation of Glitch Security of the S-box
A useful property for the synthesis of secure circuits in the presence of glitches is non-
completeness [NRS11]. We use the VerMI tool described in [ANR17] to verify the security
of the gadgets that create the S-box, i.e. the conversions and the Kronecker delta. This
tool was designed specifically for masked hardware implementations. In particular, it can
verify if a circuit satisfies the non-completeness property from register to register. By
applying this tool directly to the RTL HDL descriptions of our gadgets, we confirm that
each stage is non-complete and therefore secure in the univariate setting in the presence of
glitches if the shared input does not have a secret dependent bias. We verify this condition
on the input sharing independently (Appendix C).

We note that it has been implied in [FGMDP+18] that verifying glitch security and
strong non-interference separately does not guarantee composability in a glitchy environ-
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ment. In section 5.1, we have given security proofs for the S-box as best as we could with
the tools at our disposal. In this section, we consider glitches. The combined theoretical
verification of “glitchy” SNI is an interesting direction for future research. However,
note that SNI is not a necessary condition for the S-box to be secure. As an example,
consider our first-order S-box. Not every glitch-extended probe in the subcircuit shown in
Figure 2 is simulatable with only t1 shares of the input. However, we have exhaustively
verified that every glitch-extended probe in the entire S-box circuit is independent of
the secret. The S-box is thus 1-probing secure, even though one of its subcircuits is not
(1, 0, 0)-robust 1-SNI [FGMDP+18]. We further evaluate the security of the entire S-box
using state-of-the-art tools.

We use the simulation tool of [Rep16], in which we exhaustively probe the S-box and
create power traces using an identity leakage model. These traces do not only contain
explicit intermediates (stabilized values on wires) but also values that could be observed
in a glitch (transient values on wires). We exhaustively probe the S-box in this way in
a completely noiseless setting and create up to 100 million simulated traces. For more
details, we refer to [Rep16]. We detect no univariate leakage with up to 100 million traces
nor bivariate in the case of our second-order gadgets. We draw the same conclusions when
using the tool described in [DBR18]. This tool essentially exhausts every possible glitch in
the computation by verifying that there is no mutual information between the secret and
all possible (pairs of) glitch-extended probes.

While the theoretical possibility of a very weak bias still exists we would need more
than 100 million traces to detect it and thus the practical implications of this are thin:
if the leak is not even detected with 100 million traces in a noiseless scenario, it would
take even considerably more traces to exploit it (perform key-recovery) in a realistic noisy
scenario.

5.3 Physical Evaluation
After evaluating the S-box both theoretically and empirically in simulation, we finally put
our entire AES design to the test in a physical environment.

Setup. We program a Xilinx Spartan6 FPGA with both our first- and second-order
design on a SAKURA-G board, specifically designed for side-channel evaluation. For
the synthesis, we use the Xilinx ISE option KEEP_HIERARCHY to prevent optimization
across modules (and in particular across shares). To minimize platform noise, we split the
implementation over a crypto FPGA, which handles the AES encryption and a control
FPGA, which communicates with the host computer and supplies masked data to the
crypto FPGA. The FPGA’s are clocked at 3.072 MHz and sampled at 1GS/s.

The crypto FGPA is also equipped with a PRNG to generate the randomness required
in every clock cycle. This PRNG is loaded with a fresh seed for every encryption. In
contrast with other state-of-the-art masked implementations, we have to be able to generate
one or two non-zero bytes for the multiplicative masks. We refer to Appendix F for a
description of how we achieve this in practice, without stalling the pipeline.

Univariate. We perform a non-specific leakage detection test [BCD+13] using the method-
ology from [RGV17]. This means we gather power traces in two sets: the first corresponding
to encryptions of a fixed plaintext and the other to encryptions of random plaintexts. We
choose the fixed plaintext equal to the key in order to test the special case of zero inputs
to the S-box in the first round. Nonzero S-box inputs then occur in encryption round two
and are thus naturally also tested. The two sets of measurements are compared using the
t-test statistic. When the t-statistic at order d crosses the threshold T = ±4.5, the null
hypothesis “The design has no dth-order leakage” is rejected with confidence > 99.999%.
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Figure 8: Non-specific leakage detection test on 2.5 rounds of encryption of a first-order
protected AES. Left: PRNG off; 12 000 traces. Right: PRNG on; 50 million traces.
Rows(top to bottom): exemplary power trace, first-order, second-order t-value.

On the other hand, when the t-statistic remains below this threshold, we corroborate that
side-channel information is not distinguishable at order d.

The results for our first-order design are shown in Figure 8. Each trace consists of 64
clock cycles, comprising about two and a half rounds of encryption. An example of such a
trace is shown in Figure 8, top. To verify the soundness of our setup, we first perform the
leakage detection test with the PRNG turned off (i.e. unmasked implementation). This is
shown in the left column of the figure and as expected, the design presents severe leakage
at only 12 000 traces. On the right side, we do the leakage detection test with the PRNG
turned on. We do not observe evidence for first-order leakage with up to 50 million power
traces. The design does leak in the second order, as anticipated.

Figure 9: Non-specific leakage detection test on 2.5 rounds of encryption of a second-order
protected AES. Left: PRNG off; 12 000 traces. Right: PRNG on; 50 million traces.
Rows(top to bottom): exemplary power trace, first-order, second-order, third-order t-value.
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Similarly, we show the test results for our second-order design in Figure 9. The leakage
when the PRNG is turned off (left column) is clear. The masked implementation (right
column) does not present evidence for first- nor second-order leakage with up to 50 million
power traces. While we would expect the third-order t-statistic to surpass the threshold,
this is not yet the case due to platform noise.

We also track the evolution of the maximum absolute t-test value as a function of the
number of traces taken. This is shown in Figure 10 for the first-order (left) and second-order
(right) protected AES implementations. On the left, we clearly see an increase in the
absolute t-value of the second- and third-order moment, while the statistic for first order
is stable. For our second-order implementation, the noise of the platform prevents us from
seeing evidence for third-order leakage.
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Figure 10: Evolution of the maximum absolute t-value across the measurements. Left:
First order. Right: Second order.

Bivariate. In order to do a bivariate leakage detection test, we reduce the length of the
power traces to 15 clock cycles and the sample rate of the oscilloscope to 200MS/s. Each
trace then consists of 1 000 time samples. In order to reduce the signal-to-noise ratio, we
make the traces DC free. We then combine the measurements at different time samples by
doing an outer product of the centered traces with themselves. The resulting symmetric
matrices are the samples for our t-test.

We first perform this experiment on the first-order protected AES implementation to
verify if we can indeed detect bivariate leakage. The resulting t-statistic after 1 and 45
million traces is shown in Figure 11 and confirms that our method is sound.

Next, we do the same for the second-order masked AES implementation. We collect 50
million traces and show the resulting t-statistic in Figure 12. The result shows clearly that
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Figure 11: Non-specific bivariate leakage detection test on 15 clock cycles of a first-order
protected AES. Left: 1 million traces. Right: 45 million traces.
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Figure 12: Non-specific bivariate leakage detection test on 15 clock cycles of a second-order
protected AES with 50 million traces.

no bivariate leakage can be detected with 50 million traces.

6 Implementation Cost
We presented first- and second-order secure constructions for AES and evaluated their
security. In this section we investigate the implementation cost and compare it to the state-
of-the-art AES designs of [CRB+16] and [GMK17]. All area measures were obtained with
the Synopsis Design Compiler v.2013.12, using the Open Cell Nangate 45nm library [NAN]
and are expressed in 2-input NAND gate equivalents1. We use compile option -exact_map
to prevent optimization across modules. For a fair comparison, we also synthesize the
implementations of [CRB+16] and [GMK17] with the same library and toolchain. From
the latter, we picked the options for smallest area, i.e. not perfectly-interleaved and the
eight-stage S-box. Both these works create a shared implementation from Canright’s
compact AES S-box [Can05] using the tower-field method. Our approach is thus radically
different. We cannot compare easily with [UHA17] because of different synthesis libraries,
though they seem to have a similar area footprint for larger randomness requirement (64
bits per S-box). Also, they only provide a first-order implementation. We first detail the
cost of the S-box only in § 6.1 and then look at the entire AES encryption in § 6.2.

Table 4: Implementation results for the AES S-box with Nangate 45nm Library

First-order secure Second-order secure
Variant Area Randomness Latency Area Randomness Latency

Module [GE] [bits/S-box] [cc] [GE] [bits/S-box] [cc]

This work 1 685 19 2 (+3) 3 891 53 4 (+3)
Kronecker delta 259 3 (3) 629 13 (3)
Bool to Mult. 538 8 1 1 434 20 2
Inversion 226 - - 226 - -
Mult. to Bool 538 8 1 1 388 20 2
Others 124 - - 214 - -

[CRB+16] 2 348 54 6 4 744 162 6
[GMK17] 2 432 18 8 4 759 54 8

1One NAND gate is 0.798µm2
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6.1 The S-box
Table 4 shows our implementation results for the S-box. Our S-box implementations are
the smallest to date among state-of-the-art schemes with similar randomness and latency
with an area reduction of 29% for first order and 18% for second order.

6.2 AES
Table 5 shows the implementation results of our entire AES implementations in comparison
with those of De Cnudde et al. [CRB+16] and Gross et al. [GMK17]. Our S-box area
reduction results in an overall improvement of around 10% over the state-of-the-art with
comparable or even better randomness consumption and latency.

Table 5: Implementation results for AES-128 with Nangate 45nm Library

First-order secure Second-order secure
Variant Area Randomness Latency Area Randomness Latency

Module [GE] [bits/S-box] [cc] [GE] [bits/S-box] [cc]

This work 6 557 19 256 10 931 53 256
S-box 1 685 - - 3 891 - -
State Array 2 509 - - 3 728 - -
Key Array 1 579 - - 2 368 - -
Control 208 - - 199 - -
Others 576 - - 745 - -

[CRB+16] 7 682 54 276 12 640 162 276
[GMK17] 7 337 18 246 12 024 54 246

7 Conclusion
We have ported the well-known concept of adaptively masking ciphers such as AES to
hardware. The idea has been extensively studied in software, but had not yet been
applied in hardware up till now. We show that this methodology is a very competitive
alternative to state-of-the-art masked AES designs. Our approach is conceptually simple,
yet incorporates modern countermeasures to mitigate the effect of glitches in hardware.

Specifically, we present secure circuits for converting between Boolean and multiplicative
masking and for circumventing the well-known zero problem of multiplicative masking.
We apply the methodology to the AES cipher for first- and second-order security and
show with experiments that our implementations do not exhibit univariate or multivariate
leakage with up to 50 million traces. Our AES S-box implementations require comparable
randomness and latency to state-of-the-art implementations and yet achieve an 18 to 29%
smaller chip area. We believe this is an interesting addition to the hardware designer’s
toolbox.
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A On optimized second-order conversions
When adopting the conversion procedures described in § 3.1 for d = 2, an additional
Boolean refreshing u is required to obtain second-order security (see Figure 3). Genelle et
al. propose mask conversion procedures tailored for software implementations that aim at
providing higher-order security [GPQ11b]. The conversions require a number of additive
refreshing masks: (d−1)d

2 units for Boolean to Multiplicative and d(d+1)
2 for Multiplicative to

Boolean. The authors suggest that one can ommit these extra refreshings when d = 2 and
still maintain second-order security [GPQ11b, p. 246], both for Boolean to Multiplicative
and vice-versa. Here we will see that the “optimized” variants exhibit second-order leaks
and thus additional randomness is needed to achieve second-order security.

A.1 Boolean to Multiplicative
Following the basic recipe for converting three Boolean shares to multiplicative shares
results in the circuit in Figure 13. The same conversion is initially proposed by Genelle et
al..

Consider the pair of intermediates (V1, V2) where V1 = (b0r0) ⊕ (b1r0) and V2 = b2
(indicated by the red stars in Figure 13). We will see that the pair (V1, V2) jointly leak
information on the sensitive input value x in the second statistical order.
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Figure 13: Conversion from Boolean to multiplicative masking with second-order leakage

To see this, consider the case when V1 = 0. (This occurs with probability 1
|Fq| .) Then

b0 ⊕ b1 = 0 since r0 6= 0 by construction. This implies that the second intermediate
V2 = b2 = b0 ⊕ b1 ⊕ b2 leaks the sensitive value x.

As a result, the value E[L1(V1) · L2(V2)|X = x] depends on the secret input x for any
device leakage behavior functions L1, L2, including the Hamming weight leakage behavior
functions. This can be verified with the following MATLAB script.

% including the value 0 in secret is not fair
% since the conversion Bool to Mult never sees
% masked 0 at the input
for secret = 1:255

b0 = floor(field_size.*rand(1,number_traces));
b1 = floor(field_size.*rand(1,number_traces));
b2 = bitxor(bitxor(b0,b1),secret);
r0 = zeros(1,number_traces);
for i=1:number_traces

while r0(i)==0
r0(i) = floor(field_size.*rand(1,1));

end
end
r0b0 = arrayfun(F,r0,b0);
r0b1 = arrayfun(F,r0,b1);
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r0b2 = arrayfun(F,r0,b2);
r0b0_p_r0b1 = bitxor(r0b0,r0b1);
leak1 = (r0b0_p_r0b1==0); % ZV easier but not really needed
leak2 = hw(1+b2)’;
second_order = mean((leak1 - mean(leak1)) .* (leak2 - mean(leak2)));
fprintf(’encoding secret %3d, cov(leak1,leak2)=% 2.5f\n’, secret, second_order);

end

A.2 Multiplicative to Boolean
Consider the conversion from multiplicative to Boolean masking in Figure 14 without extra
refreshing as proposed in [GPQ11b].
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Figure 14: Conversion from multiplicative to Boolean masking with second-order leakage

The pair of intermediates (V1, V2) with V1 = q2 ⊕ r2 and V2 = q0q1r2 (as indicated by
the red stars in Figure 14) leaks information in the second statistical order. For instance,
whenever V1 = 0, then V2 = q0q1q2 = x reveals information on the sensitive variable x. The
following MATLAB script shows that the second-order statistic E[L1(V1) · L2(V2)|X = x]
varies as a function of the secret x.

%%
% Second-order leak in Mult -> Bool
%
fprintf(’ -- init\n’);

% including the value 0 in secret is not fair
for secret = [1 2 95]%1:255 %1:255 % 1:255

for rep=1:1
clear leak1 leak2 second_order
clear a b c r1 ab abr1 c_p_r1

% non-zero a, b
a = zeros(1,number_traces);
b = zeros(1,number_traces);
c = zeros(1,number_traces);
r1 = zeros(1,number_traces);
for i=1:number_traces

while a(i)==0
a(i) = floor(field_size.*rand(1,1));

end
while b(i)==0

b(i) = floor(field_size.*rand(1,1));
end
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while r1(i)==0
r1(i) = floor(field_size.*rand(1,1));

end
end

r1=uint8(r1);
secret_times_a = arrayfun(F,uint8(secret*ones(1,number_traces)),inv_table(1+a)’);
c = arrayfun(F,secret_times_a,inv_table(1+b)’);

c_p_r1 = bitxor(c,r1);
ab = arrayfun(F,a,b);
abr1 = arrayfun(F,ab,r1);

leak1 = hw(1+c_p_r1);
leak2 = hw(1+abr1);

second_order = mean((leak1 - mean(leak1)) .* (leak2 - mean(leak2)));

fprintf(’encoding secret %3d, cov(leak1,leak2)=% 2.5f\n’, secret, second_order);
end

end

B Inversion circuit
The AES S-box circuit from Boyar, Matthews and Peralta [BMP13] is the smallest to date,
even beating Canright’s tower-field one. The circuit consists of three parts: S = B ·F ·U⊕
0x63 with U,B linear and F non-linear. As we are only interested in the inversion part of
the S-box, we adopt only F and U and add our own linear layer to obtain the inversion
output x−1

0 , x−1
1 , . . . , x−1

7 . We provide only the linear equations of the new block here. For
F and U we refer to [BMP13, Fig. 10 and 11].

x−1
0 = z9 ⊕ z11 ⊕ z15 ⊕ z17

x−1
1 = z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z12 ⊕ z13 ⊕ z15 ⊕ z16

x−1
2 = z0 ⊕ z1 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z8 ⊕ z12 ⊕ z13 ⊕ z15 ⊕ z16

x−1
3 = z0 ⊕ z2 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7 ⊕ z10 ⊕ z11 ⊕ z12 ⊕ z13 ⊕ z15 ⊕ z17

x−1
4 = z0 ⊕ z2 ⊕ z6 ⊕ z8 ⊕ z12 ⊕ z13 ⊕ z15 ⊕ z16

x−1
5 = z1 ⊕ z2 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z8 ⊕ z10 ⊕ z11 ⊕ z12 ⊕ z14 ⊕ z15 ⊕ z16

x−1
6 = z1 ⊕ z2 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z8 ⊕ z9 ⊕ z10 ⊕ z13 ⊕ z14 ⊕ z15 ⊕ z17

x−1
7 = z3 ⊕ z5 ⊕ z6 ⊕ z8 ⊕ z12 ⊕ z13 ⊕ z15 ⊕ z16
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C Probability Distributions of Probes
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Figure 15: Circuit for the shared Kronecker delta function δ(x) for n = 8

In Figure 15 we show again the AND tree that implements the shared Kronecker Delta
function with randomness optimizations from § 3.3 and we indicate with red dotted lines the
stages where we place our probes. At each probe, we compute the probability distribution
of the wire for each possible value of the secret x and verify that the distribution does not
vary with the secret. We do the same for each pair of probes in the case of the second-order
implementation. We distinguish A stages, in which we target the cross products tij of the
DOM multipliers and B stages, which contain the multiplication results. Note that the
A-stage probes are the cross products before any randomness is added.

One Probe. If we look only at individual probes (first-order) in either the first- or second-
order implementation, we find that all B-stage wires are uniformly distributed for each
secret. For each of the cross products in the A stages, we find a non-uniform distribution
[ 3

4
1
4 ]. However, this distribution does not change if we vary the secret.

Two Probes. In the second-order implementation, pairs of probes in the B stages also
result in uniform distributions [ 1

4
1
4

1
4

1
4 ]. In A stages we see the distribution [ 9

16
3

16
3

16
1

16 ]
for most pairs. Since this is the outer product of [ 3

4
1
4 ] with itself, it means such a pair

of probes is statistically independent. In contrast, let i 6= j, j 6= k and i 6= k; then when
we probe two cross products (tij , tik) or (tij , tkj) in the same multiplier, we obtain the
probability distribution [ 5

8
1
8

1
8

1
8 ].

The multivariate probe of a B-stage wire and a wire in the next A stage results in
distributions [ 3

8
3
8

1
8

1
8 ] (the outer product of [ 3

4
1
4 ] and [ 1

2
1
2 ]), except when we combine a

cross product tij with share i or j of one of the multiplication inputs. In those cases, we
see probability distribution [ 1

2
1
4 0 1

4 ]. Again, these distributions are not uniform but they
are independent of the secret.
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D Strong Non-Interference of Conversions
In this section, we prove the strong non-interference of the conversions between Boolean
and multiplicative masking. We cannot use the tool of [Cor17] since it is incompatible
with the use of our multiplicative operations. An important substitution rule from [Cor18]
is that an XOR with a random ri

$← Fq serves as a one-time pad when ri is not used in
another part of the probe:

ri ⊕ x→ ri

However, extending this substitution rule to field multiplication is not straight-forward.
In general, the multiplication of a secret field element x ∈ Fq with a random variable ri

cannot be simulated by ri because of the non-uniform mapping of zeroes in a multiplication.
However, if at least one of the multiplicants is nonzero, the random value does play the
role of a one-time pad. Therefore, we define and use the following substitution rule:

ri ⊗ x→ ri iff x ∈ F∗q

This rule is valid whether ri
$← F∗q or ri

$← Fq. In what follows, we show how to simulate
all d-probes in the conversion circuits using only |I| input shares, where I is the set of
intermediate probes. It can be seen that for any field multiplication, at least one of the
operands is nonzero in our setting. We thus show that the conversions are d-SNI for
d ∈ {1, 2}. Table 6 shows the proof for d = 1 (Figure 16) and Tables 7 and 8 for d = 2
(Figure 17). For readability, we do not attempt to simulate when the probe(s) themselves
already depend on only |I| input shares.
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Figure 16: First-order Boolean to multiplicative (left) and multiplicative to Boolean (right)
conversion circuits with intermediate probes

Table 6: Simulation of intermediate probes I and output probes O such that |I|+ |O| ≤
d = 1 using |I| input shares for the first-order conversions.

|I| Probes Simulation using

Multiplicative to Boolean: q0, q1 ∈ F∗q , r1
$← Fq

0 b′0 = r1q0 ∼ r1
b′1 = (q1 ⊕ r1)q0 ∼ r1q0 ∼ r1

1 i0 = q1 ⊕ r1 q1

Boolean to multiplicative: b ∈ F∗q , r0
$← F∗q

0 p0 = r0
p1 = r0b ∼ r0

1 i0 = r0b0 b0
i1 = r0b1 b1
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Figure 17: Second-order Boolean to multiplicative (left) and multiplicative to Boolean
(right) conversion circuits with intermediate probes

Table 7: Simulation of intermediate probes I and output probes O such that |I|+ |O| ≤
d = 2 using |I| input shares for the second-order multiplicative to Boolean conversion.

|I|Probes Simulation using

Multiplicative to Boolean: q0, q1, q2 ∈ F∗q , r2, r3, u
$← Fq

0 (b′0, b′1) = ((r3 ⊕ u)q0, (r2q1 ⊕ u)q0) ∼ (r3q0, (r2q1 ⊕ u)q0) ∼ (r3q0, uq0) ∼ (r3, u)
(b′0, b′2) = ((r3 ⊕ u)q0, ((q2 ⊕ r2)q1 ⊕ r3)q0) ∼ (uq0, ((q2 ⊕ r2)q1 ⊕ r3)q0)

∼ (u, r3q0) ∼ (u, r3)
(b′1, b′2) = ((r2q1 ⊕ u)q0, ((q2 ⊕ r2)q1 ⊕ r3)q0) ∼ (uq0, r3q0) ∼ (u, r3)

1 (i0, b′0) = (q2 ⊕ r2, (r3 ⊕ u)q0) ∼ (r2, r3)
(i1, b′0) = ((q2 ⊕ r2)q1, (r3 ⊕ u)q0) ∼ (r2q1, r3q0) ∼ (r2, r3)
(i2, b′0) = (r2q1, (r3 ⊕ u)q0) ∼ (r2, r3)
(i3, b′0) = (r3 ⊕ u, (r3 ⊕ u)q0) q0
(i4, b′0) = ((q2 ⊕ r2)q1 ⊕ r3, (r3 ⊕ u)q0) ∼ ((q2 ⊕ r2)q1 ⊕ r3, uq0) ∼ (r3, u)
(i5, b′0) = (r2q1 ⊕ u, (r3 ⊕ u)q0) ∼ (r2q1 ⊕ u, r3q0) ∼ (u, r3)
(i0, b′1) = (q2 ⊕ r2, (r2q1 ⊕ u)q0) ∼ (q2 ⊕ r2, uq0) ∼ (r2, u)
(i1, b′1) = ((q2 ⊕ r2)q1, (r2q1 ⊕ u)q0) ∼ ((q2 ⊕ r2)q1, uq0) ∼ (r2q1, uq0) ∼ (r2, u)
(i2, b′1) = (r2q1, (r2q1 ⊕ u)q0) ∼ (r2q1, uq0) ∼ (r2, u)
(i3, b′1) = (r3 ⊕ u, (r2q1 ⊕ u)q0) ∼ (r3, (r2q1 ⊕ u)q0) ∼ (r3, uq0) ∼ (r3, u)
(i4, b′1) = ((q2 ⊕ r2)q1 ⊕ r3, (r2q1 ⊕ u)q0) ∼ (r3, (r2q1 ⊕ u)q0) ∼ (r3, uq0) ∼ (r3, u)
(i5, b′1) = (r2q1 ⊕ u, (r2q1 ⊕ u)q0) ∼ (u, uq0) q0
(i0, b′2) = (q2 ⊕ r2, ((q2 ⊕ r2)q1 ⊕ r3)q0) ∼ (q2 ⊕ r2, r3q0) ∼ (r2, r3)
(i1, b′2) = ((q2 ⊕ r2)q1, ((q2 ⊕ r2)q1 ⊕ r3)q0) ∼ ((q2 ⊕ r2)q1, r3q0) ∼ (r2q1, r3q0) ∼ (r2, r3)
(i2, b′2) = (r2q1, ((q2 ⊕ r2)q1 ⊕ r3)q0) ∼ (r2q1, r3q0) ∼ (r2, r3)
(i3, b′2) = (r3 ⊕ u, ((q2 ⊕ r2)q1 ⊕ r3)q0) ∼ (u, ((q2 ⊕ r2)q1 ⊕ r3)q0)

∼ (u, r3q0) ∼ (u, r3)
(i4, b′2) = ((q2 ⊕ r2)q1 ⊕ r3, ((q2 ⊕ r2)q1 ⊕ r3)q0) ∼ (r3, r3q0) q0
(i5, b′2) = (r2q1 ⊕ u, ((q2 ⊕ r2)q1 ⊕ r3)q0) ∼ (u, ((q2 ⊕ r2)q1 ⊕ r3)q0)

∼ (u, r3q0) ∼ (u, r3)
2 (i0, i1) = (q2 ⊕ r2, (q2 ⊕ r2)q1) q1, q2

(i0, i2) = (q2 ⊕ r2, r2q1) q1, q2
(i0, i3) = (q2 ⊕ r2, r3 ⊕ u) q2
(i0, i4) = (q2 ⊕ r2, (q2 ⊕ r2)q1 ⊕ r3) q1, q2
(i0, i5) = (q2 ⊕ r2, r2q1 ⊕ u) q1, q2
(i1, i2) = ((q2 ⊕ r2)q1, r2q1) q1, q2
(i1, i3) = ((q2 ⊕ r2)q1, r3 ⊕ u) q1, q2
(i1, i4) = ((q2 ⊕ r2)q1, (q2 ⊕ r2)q1 ⊕ r3) q1, q2
(i1, i5) = ((q2 ⊕ r2)q1, r2q1 ⊕ u) q1, q2
(i2, i3) = (r2q1, r3 ⊕ u) q1
(i2, i4) = (r2q1, (q2 ⊕ r2)q1 ⊕ r3) q1, q2
(i2, i5) = (r2q1, r2q1 ⊕ u) q1
(i3, i4) = (r3 ⊕ u, (q2 ⊕ r2)q1 ⊕ r3) q1, q2
(i3, i5) = (r3 ⊕ u, r2q1 ⊕ u) q1
(i4, i5) = ((q2 ⊕ r2)q1 ⊕ r3, r2q1 ⊕ u) q1, q2
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Table 8: Simulation of intermediate probes I and output probes O such that |I|+ |O| ≤
d = 2 using |I| input shares for the second-order Boolean to multiplicative conversion.

|I| Probes Simulation using

Boolean to multiplicative: b ∈ F∗q , r0, r1
$← F∗q , u

$← Fq

0 (p0, p1) = (r0, r1)
(p0, p2) = (r0, r1r0b) ∼ (r0, r1)
(p1, p2) = (r1, r1r0b) ∼ (r1, r0)

1 (i0, p0) = (r0b0, r0) b0
(i1, p0) = (r0b1, r0) b1
(i2, p0) = (r0b2, r0) b2
(i3, p0) = (r0b1 ⊕ u, r0) b1
(i4, p0) = (r0b0 ⊕ r0b1 ⊕ u, r0) ∼ (u, r0)
(i5, p0) = (r0b2 ⊕ u, r0) b2
(i6, p0) = (r1(r0b0 ⊕ r0b1 ⊕ u), r0) ∼ (r1u, r0)
(i7, p0) = (r1(r0b2 ⊕ u), r0) b2
(i0, p1) = (r0b0, r1) b0
(i1, p1) = (r0b1, r1) b1
(i2, p1) = (r0b2, r1) b2
(i3, p1) = (r0b1 ⊕ u, r1) b1
(i4, p1) = (r0b0 ⊕ r0b1 ⊕ u, r1) ∼ (u, r1)
(i5, p1) = (r0b2 ⊕ u, r1) b2
(i6, p1) = (r1(r0b0 ⊕ r0b1 ⊕ u), r1) ∼ (r1u, r1)
(i7, p1) = (r1(r0b2 ⊕ u), r1) b2
(i0, p2) = (r0b0, r1r0b) ∼ (r0b0, r1) b0
(i1, p2) = (r0b1, r1r0b) ∼ (r0b1, r1) b1
(i2, p2) = (r0b2, r1r0b) ∼ (r0b2, r1) b2
(i3, p2) = (r0b1 ⊕ u, r1r0b) ∼ (u, r1)
(i4, p2) = (r0b0 ⊕ r0b1 ⊕ u, r1r0b) ∼ (u, r1)
(i5, p2) = (r0b2 ⊕ u, r1r0b) ∼ (u, r1)
(i6, p2) = (r1(r0b0 ⊕ r0b1 ⊕ u), r1r0b) ∼ (r1u, r1r0b) ∼ (r1u, r0)
(i7, p2) = (r1(r0b2 ⊕ u), r1r0b) ∼ (r1u, r1r0b) ∼ (r1u, r0)

2 (i0, i1) = (r0b0, r0b1) b0, b1
(i0, i2) = (r0b0, r0b2) b0, b2
(i0, i3) = (r0b0, r0b1 ⊕ u) b0, b1
(i0, i4) = (r0b0, r0b0 ⊕ r0b1 ⊕ u) b0, b1
(i0, i5) = (r0b0, r0b2 ⊕ u) b0, b2
(i0, i6) = (r0b0, r1(r0b0 ⊕ r0b1 ⊕ u)) b0, b1
(i0, i7) = (r0b0, r1(r0b2 ⊕ u)) b0, b2
(i1, i2) = (r0b1, r0b2) b1, b2
(i1, i3) = (r0b1, r0b1 ⊕ u) b1
(i1, i4) = (r0b1, r0b0 ⊕ r0b1 ⊕ u) b0, b1
(i1, i5) = (r0b1, r0b2 ⊕ u) b1, b2
(i1, i6) = (r0b1, r1(r0b0 ⊕ r0b1 ⊕ u)) b0, b1
(i1, i7) = (r0b1, r1(r0b2 ⊕ u)) b1, b2
(i2, i3) = (r0b2, r0b1 ⊕ u) b1, b2
(i2, i4) = (r0b2, r0b0 ⊕ r0b1 ⊕ u) ∼ (r0b2, u) b2
(i2, i5) = (r0b2, r0b2 ⊕ u) b2
(i2, i6) = (r0b2, r1(r0b0 ⊕ r0b1 ⊕ u)) ∼ (r0b2, r1u) b2
(i2, i7) = (r0b2, r1(r0b2 ⊕ u)) b2
(i3, i4) = (r0b1 ⊕ u, r0b0 ⊕ r0b1 ⊕ u) b0, b1
(i3, i5) = (r0b1 ⊕ u, r0b2 ⊕ u) b1, b2
(i3, i6) = (r0b1 ⊕ u, r1(r0b0 ⊕ r0b1 ⊕ u)) b0, b1
(i3, i7) = (r0b1 ⊕ u, r1(r0b2 ⊕ u)) b1, b2
(i4, i5) = (r0b0 ⊕ r0b1 ⊕ u, r0b2 ⊕ u) ∼ (r0 ⊕ u, u)
(i4, i6) = (r0b0 ⊕ r0b1 ⊕ u, r1(r0b0 ⊕ r0b1 ⊕ u)) b0, b1
(i4, i7) = (r0b0 ⊕ r0b1 ⊕ u, r1(r0b2 ⊕ u)) ∼ (r0 ⊕ u, r1u)
(i5, i6) = (r0b2 ⊕ u, r1(r0b0 ⊕ r0b1 ⊕ u)) ∼ (r0 ⊕ u, r1u)
(i5, i7) = (r0b2 ⊕ u, r1(r0b2 ⊕ u)) b2
(i6, i7) = (r1(r0b0 ⊕ r0b1 ⊕ u), r1(r0b2 ⊕ u)) ∼ (r1(r0 ⊕ u), r1u)
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E Strong Non-Interference of Kronecker Delta
The Kronecker Delta circuit (Figure 4) is d-SNI for d ∈ {1, 2} because the used multiplier
gates are SNI. This can be verified with the tool of Coron [Cor17]. However, the recycling
of randomness throughout the circuit might break the SNI property. In this section, we
show that the first- and second-order Kronecker delta circuits (detailed in Figure 18) are
1-SNI resp. 2-SNI even with optimized randomness. We note that we have a pen-and-paper
proof instead of using an existing tool. That is because existing tools, including the recent
tool of Coron [Cor17] which uses the aforementioned one-time pad rules, are not able to
reduce the probes to the point of simulatibility. More specifically, we are able to successfully
simulate any d-probes provided to us by the tool [Cor17] as breaking the d-SNI condition.
We observe two aspects that lead to false negatives and should be investigated further
to improve [Cor17]. On the one hand, the randomness recycling limits the substitutions
that the tool thinks it is able to make. On the other hand, the tool does not simplify the
equations of specific probes and therefore does not see that some of the used random bits
disappear.

We demonstrate that all (pairs of) probes can be simulated using at most |I| input
shares. We proceed by reducing all (pairs of) probes using the one-time pad method
of [Cor18] to a point, where only randomness remains and thus simulation is trivial. We
recall that any variable that is the XOR of a value with a uniformly random ri can be
replaced by ri if ri does not appear anywhere else in the current probes.
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Figure 18: First- (left) and second-order (right) Kronecker Delta. Notation is adapted for
clarity.

For the first-order circuit, we can easily exhaust all intermediates as follows. We skip
the crossproducts in the first layer, since they can obviously be simulated using one input
share. The equations demonstrate clearly the special property of the DOM multiplier that
was explained in § 3.3, resulting in the independence of for example w0

i of r2.

For i ∈ {0, 1}:
y0

i = x0
ix

1 + r1 ∼ r1

y1
i = x2

ix
3 + r2 ∼ r2

y2
i = x4

ix
5 + r1 ∼ r1

y3
i = x6

ix
7 + r2 ∼ r2
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For i, j ∈ {0, 1}:
y0

i y
1
j = (x0

ix
1 + r1)(x2

jx
3 + r2) ∼ r1r2

y2
i y

3
j = (x4

ix
5 + r1)(x6

jx
7 + r2) ∼ r1r2

For i, j ∈ {0, 1}, i 6= j:
y0

i y
1
j + r3 = (x0

ix
1 + r1)(x2

jx
3 + r2) + r3 ∼ r3

y2
i y

3
j + (r2 + r3) = (x4

ix
5 + r1)(x6

jx
7 + r2) + r2 + r3 ∼ r3

For i ∈ {0, 1}:
w0

i = y0
i y

1 + r3 = (x0
ix

1 + r1)y1 + r3 ∼ r3

w1
i = y2

i y
3 + r2 + r3 = (x4

ix
5 + r1)y3 + r2 + r3 ∼ r2

For i, j ∈ {0, 1}:
w0

iw
1
j = ((x0

ix
1 + r1)y1 + r3)((x4

jx
5 + r1)y3 + r2 + r3) ∼ r3r2

For i, j ∈ {0, 1}, i 6= j:
w0

iw
1
j + r1 = ((x0

ix
1 + r1)y1 + r3)((x4

jx
5 + r1)y3 + r2 + r3) + r1 ∼ r3r2 + r1 ∼ r1

For i ∈ {0, 1}:
z0

i = w0
iw

1 + r1 = ((x0
ix

1 + r1)y1 + r3)w1 + r1 ∼ r3w
1 + r1 ∼ r1

We now prove that the second-order circuit is 2-SNI. Here also, some of the used
random variables disappear. We first note all intermediates of the circuit below to clarify
which intermediate depends on which ri. We skip the crossproducts in the first layer, since
their equations and dependencies are obvious.

y
0
0 = x

0
0x

1 + r1 + r2

y
0
1 = x

0
1x

1 + r1 + r3

y
0
2 = x

0
2x

1 + r2 + r3

y
1
0 = x

2
0x

3 + r4 + r5

y
1
1 = x

2
1x

3 + r4 + r6

y
1
2 = x

2
2x

3 + r5 + r6

y
2
0 = x

4
0x

5 + r7 + r8

y
2
1 = x

4
1x

5 + r7 + r9

y
2
2 = x

4
2x

5 + r8 + r9

y
3
0 = x

6
0x

7 + r10 + r11

y
3
1 = x

6
1x

7 + r10 + r12

y
3
2 = x

6
2x

7 + r11 + r12

y
0
0y

1
0 = (x

0
0x

1 + r1 + r2)(x
2
0x

3 + r4 + r5)

y
0
0y

1
1 + r7 = (x

0
0x

1 + r1 + r2)(x
2
1x

3 + r4 + r6) + r7

y
0
0y

1
2 + r11 = (x

0
0x

1 + r1 + r2)(x
2
2x

3 + r5 + r6) + r11

y
0
1y

1
0 + r7 = (x

0
1x

1 + r1 + r3)(x
2
0x

3 + r4 + r5) + r7

y
0
1y

1
1 = (x

0
1x

1 + r1 + r3)(x
2
1x

3 + r4 + r6)

y
0
1y

1
2 + (r9 + r12) = (x

0
1x

1 + r1 + r3)(x
2
2x

3 + r5 + r6) + r9 + r12

y
0
2y

1
0 + r11 = (x

0
2x

1 + r2 + r3)(x
2
0x

3 + r4 + r5) + r11

y
0
2y

1
1 + (r9 + r12) = (x

0
2x

1 + r2 + r3)(x
2
1x

3 + r4 + r6) + r9 + r12

y
0
2y

1
2 = (x

0
2x

1 + r2 + r3)(x
2
2x

3 + r5 + r6)

y
2
0y

3
0 = (x

4
0x

5 + r7 + r8)(x
6
0x

7 + r10 + r11)

y
2
0y

3
1 + r1 = (x

4
0x

5 + r7 + r8)(x
6
1x

7 + r10 + r12) + r1

y
2
0y

3
2 + r5 = (x

4
0x

5 + r7 + r8)(x
6
2x

7 + r11 + r12) + r5
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y
2
1y

3
0 + r1 = (x

4
1x

5 + r7 + r9)(x
6
0x

7 + r10 + r11) + r1

y
2
1y

3
1 = (x

4
1x

5 + r7 + r9)(x
6
1x

7 + r10 + r12)

y
2
1y

3
2 + (r3 + r6) = (x

4
1x

5 + r7 + r9)(x
6
2x

7 + r11 + r12) + r3 + r6

y
2
2y

3
0 + r5 = (x

4
2x

5 + r8 + r9)(x
6
0x

7 + r10 + r11) + r5

y
2
2y

3
1 + (r3 + r6) = (x

4
2x

5 + r8 + r9)(x
6
1x

7 + r10 + r12) + r3 + r6

y
2
2y

3
2 = (x

4
2x

5 + r8 + r9)(x
6
2x

7 + r11 + r12)

w
0
0 = (x

0
0x

1 + r1 + r2)y
1 + r7 + r11

w
0
1 = (x

0
1x

1 + r1 + r3)y
1 + r7 + r9 + r12

w
0
2 = (x

0
2x

1 + r2 + r3)y
1 + r11 + r9 + r12

w
1
0 = (x

4
0x

5 + r7 + r8)y
3 + r1 + r5

w
1
1 = (x

4
1x

5 + r7 + r9)y
3 + r1 + r3 + r6

w
1
2 = (x

4
2x

5 + r8 + r9)y
3 + r5 + r3 + r6

w
0
0w

1
0 = ((x

0
0x

1 + r1 + r2)y
1 + r7 + r11)((x

4
0x

5 + r7 + r8)y
3 + r1 + r5)

w
0
0w

1
1 + (r2 + r8) = ((x

0
0x

1 + r1 + r2)y
1 + r7 + r11)((x

4
1x

5 + r7 + r9)y
3 + r1 + r3 + r6) + r2 + r8

w
0
0w

1
2 + (r4 + r10) = ((x

0
0x

1 + r1 + r2)y
1 + r7 + r11)((x

4
2x

5 + r8 + r9)y
3 + r5 + r3 + r6) + r4 + r10

w
0
1w

1
0 + (r2 + r8) = ((x

0
1x

1 + r1 + r3)y
1 + r7 + r9 + r12)((x

4
0x

5 + r7 + r8)y
3 + r1 + r5) + r2 + r8

w
0
1w

1
1 = ((x

0
1x

1 + r1 + r3)y
1 + r7 + r9 + r12)((x

4
1x

5 + r7 + r9)y
3 + r1 + r3 + r6)

w
0
1w

1
2 + r13 = ((x

0
1x

1 + r1 + r3)y
1 + r7 + r9 + r12)((x

4
2x

5 + r8 + r9)y
3 + r5 + r3 + r6) + r13

w
0
2w

1
0 + (r4 + r10) = ((x

0
2x

1 + r2 + r3)y
1 + r11 + r9 + r12)((x

4
0x

5 + r7 + r8)y
3 + r1 + r5) + r4 + r10

w
0
2w

1
1 + r13 = ((x

0
2x

1 + r2 + r3)y
1 + r11 + r9 + r12)((x

4
1x

5 + r7 + r9)y
3 + r1 + r3 + r6) + r13

w
0
2w

1
2 = ((x

0
2x

1 + r2 + r3)y
1 + r11 + r9 + r12)((x

4
2x

5 + r8 + r9)y
3 + r5 + r3 + r6)

z0 = ((x
0
0x

1 + r1 + r2)y
1 + r7 + r11)w

1 + r2 + r8 + r4 + r10

z1 = ((x
0
1x

1 + r1 + r3)y
1 + r7 + r9 + r12)w

1 + r2 + r8 + r13

z2 = ((x
0
2x

1 + r2 + r3)y
1 + r11 + r9 + r12)w

1 + r4 + r10 + r13

E.1 |I| = 0
Simulating two outputprobes is trivial as each outputshare has at least one pad (ri) that
does not appear in the other outputshares:

(z0, z1) ∼ (r10, r13)
(z0, z2) ∼ (r8, r13)
(z1, z2) ∼ (r8, r10)

E.2 |I| = 1
We combine each outputprobe with an intermediate probe.

Outputprobe z0. z0 receives a one-time pad from r8, r4 and r10. A combination of this
probe with any intermediate that is independent of at least one of these is trivial to
simulate since we can then replace z0 by the pad. For example, w0

2w
1
2 does not depend on

r4, so we have
(z0, w

0
2w

1
2) ∼ (r4, w

0
2w

1
2) ∼ (r4, r5)

We therefore only consider the intermediates that depend on r8, r4 and r10.

(z0, w
0
2w

1
0 + r4 + r10) ∼ (z0, w

0
2r5 + r4 + r10)

∼ (r8, w
0
2r5 + r4 + r10)
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∼ (r8, r10)

In the first step, we use the fact that z0 and w0
2 are independent of r5 and replace w1

0 by
its one-time pad r5. In the second step, we use the fact that w0

2 does not depend on r8 and
use this to replace z0. Finally, we can replace the second probe by the pad r10. A similar
method can be applied to the pair of probes (z0, w

0
0w

1
2 + r4 + r10). All other intermediates

are independent of either r4, r8 of r10.

Outputprobes z1 and z2. Thanks to the fresh randomness r13, outputshares z1 and z2
are trivial to combine with any intermediates. For z1, there is no intermediate which
depends on r2, r8 and r13 and similarly, for z2 all intermediates have independence of
either r4, r10 or r13.

E.3 |I| = 2

There are a lot of pairs of intermediates in the circuit and enumerating them all would
require many pages. We therefore give examples of all types of pairings. The methodology
and results for the others are extremely similar. We divide this section based on the type
of the first probe. We move through the circuit top-down as in Figure 18 and combine
each type of probe with those on the same level and below it.

A crossproduct of wi
j ’s with randomness. Consider for example w0

0w
1
1 + r2 + r8. We

do not need to combine this probe with any intermediate that is independent of r8 since
r8 is then again a trivial one-time pad. We note that all w0

i are independent of r5 and r6
and all w1

i are independent of r11 and r12.

(w0
0w

1
1 + r2 + r8, w

0
1w

1
0 + r2 + r8) ∼ (r11r6 + r2 + r8, r12r5 + r2 + r8)

(w0
0w

1
1 + r2 + r8, w

0
2w

1
2) ∼ (w0

0w
1
1 + r2 + r8, r12r5) ∼ (r8, r12r5)

(w0
0w

1
1 + r2 + r8, w

1
0) ∼ (w0

0w
1
1 + r2 + r8, r5) ∼ (r8, r5)

(w0
0w

1
1 + r2 + r8, y

2
2y

3
2) ∼ (w0

0r6 + r2 + r8, y
2
2r12) ∼ (w0

0r6 + r2 + r8, r9r12) ∼ (r8, r9r12)
(w0

0w
1
1 + r2 + r8, y

2
0) ∼ (r11r6 + r2 + r8, y

2
0) ∼ (r2, r7)

(w0
0w

1
1 + r2 + r8, x

4
0x

5
2 + r8) ∼ (r2, x

4
0x

5
2 + r8) ∼ (r2, r8)

A crossproduct of wi
j without randomness. We take for example w0

0w
1
0. This is a

product of w0
0 which contains pads r7 and r11 on the one hand and w1

0 which is padded by
r1 and r5 on the other. We therefore ignore other probes if they are independent of either
r7 or r11 and independent of either r1 or r5.

(w0
0w

1
0, w

0
2w

1
0) ∼ (w0

0w
1
0, r12w

1
0) ∼ (r11w

1
0, r12w

1
0) ∼ (r11r5, r12r5)

(w0
0w

1
0, w

0
2w

1
1) ∼ (w0

0r5, r12r6) ∼ (r11r5, r12r6)
(w0

0w
1
0, w

1
0) ∼ (r11w

1
0, w

1
0) ∼ (r11r5, r5)

(w0
0w

1
0, w

1
1) ∼ (r11r5, r6)

(w0
0w

1
0, y

0
1y

1
0 + r7) ∼ (r11w

1
0, r3r4 + r7) ∼ (r11r5, r7)

(w0
0w

1
0, y

2
0y

3
2) ∼ (w0

0r5, y
2
0r12) ∼ (r11r5, r8r12)

There are no yi
j which can depend on both r7 and r11 or on r1 and r5.
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Intermediate wi
j . We consider w1

0 as example. It has potential one-time pads r1 and r5
so we only consider other intermediates that depend on both.

(w1
0, y

0
1y

1
0 + r7) ∼ (w1

0, r3r4 + r7) ∼ (r5, r7)
(w1

0, y
0
1y

1
2) ∼ (w1

0, r3r6) ∼ (r5, r3r6)

There are no yi
j depending on both r1 and r5.

A crossproduct of yi
j with randomness. Take for example y0

2y
1
0 + r11, which can be

replaced by r11 if combined with another probe that is independent of r11. We thus
consider intermediates depending on r11 only.
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3
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2 + r11) ∼ (r3r4 + r11, r1r6 + r11)
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2
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3
0) ∼ (r3r4 + r11, r7r10) ∼ (r11, r7r10)

(y0
2y

1
0 + r11, y

3
2) ∼ (y0

2y
1
0 + r11, r12) ∼ (r11, r12)

(y0
2y

1
0 + r11, x

6
0x

7
2 + r11) ∼ (r3r4 + r11, x

6
0x

7
2 + r11)

The last pair of probes can be simulated using only 1 input share (x6
0 and x7

2).

A crossproduct of yi
j without randomness and below. As of the level of crossproducts

of yi
j downwards, there is no more randomness recycling and the circuit corresponds to

one with fresh randomness for each gate. In this case, the shared multiplication gates are
2-SNI, which implies the ability to simulate the remaining pairs.
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F Nonzero Randomness
Our first-order masked AES requires 19 bits of fresh randomness for each S-box calculation.
For this purpose, we instantiate an implementation of the stream cipher Trivium [Can06],
which provides 19 bits in parallel each clock cycle.2 Of these 19 bits, one byte serves as a
new multiplicative mask r0 and must therefore be nonzero. The probability that we end up
with an unusable mask is 2−8. Since the S-box is used 200 times per encryption (10 rounds
with each 16 state bytes and 4 key bytes), we (over)estimate this event happening roughly
once per encryption. We do not want to stall the pipeline until the PRNG generates a
nonzero byte. Recall from Table 2, that the S-box receives an input in only 20 out of 24
clock cycles. This means that there are four cycles in each encryption round during which
we are generating but not using 19 bits of randomness. This is more than enough to create
a set of backup nonzero bytes in for example a FIFO. The size of the FIFO should depend
on how many zero bytes we expect to see in one encryption round. Naturally, bytes are
verified to be nonzero before being put in the FIFO.

We can model the number of PRNG failures X (= # zero bytes) over n = 20 trials
with a binomial distribution with probability p = 2−8.

Pr[X = k] =
(
n

k

)
pk(1− p)n−k

The expected number of failures is then simply E[X] = np = 0.078. A FIFO depth of only
two or three bytes should thus more than suffice.

A similar approach can be used for the second-order implementation, in which 53 bits
of randomness are required each cycle, of which two bytes must be nonzero.

2The Trivium cipher can be implemented to generate up to 64 bits in parallel.
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