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Abstract

The problem of privatizing statistical databases is a well-studied topic that has culminated
with the notion of differential privacy. The complementary problem of securing these databases,
however, has—as far as we know—not been considered in the past. While the security of private
databases is in theory orthogonal to the problem of private statistical analysis (e.g., in the
central model of differential privacy the curator is trusted) the recent real-world deployments
of differentially-private systems suggest that it will become a problem of increasing importance.
In this work, we consider the problem of designing encrypted databases (EDB) that support
differentially-private statistical queries. More precisely, these EDBs should support a set of
encrypted operations with which a curator can securely query and manage its data, and a set of
private operations with which an analyst can privately analyze the data. Using such an EDB,
a curator can securely outsource its database to an untrusted server (e.g., on-premise or in the
cloud) while still allowing an analyst to privately query it.

We show how to design an EDB that supports private histogram queries. As a building
block, we introduce a differentially-private encrypted counter based on the binary mechanism of
Chan et al. (ICALP, 2010). We then carefully combine multiple instances of this counter with
a standard encrypted database scheme to support differentially-private histogram queries.
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1 Introduction

A statistical database system is database management system designed to support statistical anal-
ysis on the data it stores. Statistical database systems are ubiquitous and support decision making
in almost every domain, including, technology, finance, education, Government, sports and national
security; just to name a few. In fact, the proliferation and significance of statistical databases has
motivated the important and active field of private statistical analysis which includes work on pri-
vacy attacks [61, 23, 52] and on the design of statistical mechanisms that achieve various notions of
privacy like k-anonymity, `-diversity and, ultimately, differential privacy as introduced by Dwork,
McSherry, Nissim and Smith [25].

In this setting, a trusted curator stores the database and responds to statistical queries made
by an untrusted analyst. By answering these queries with a differentially-private mechanism, the
curator can guarantee that the analyst gets responses within some bound of the correct answer
in such a way that the presence or absence of an individual person/entity does not affect the
output of the mechanism by much. Over the last fifteen years, research in differential privacy
has produced a multitude of mechanisms to support a wide array of statistical analyses. In turn,
these advances have lead to real-world deployments of differentially-private statistical databases in
various domains. Some of the most high-profile examples include the Census Bureau’s deployment
of differential privacy in their OnTheMap project which supports analysis on the travel patterns
of commuters [48], Apple’s deployment of local differential privacy to study emoji usage, health
data and media preferences [22], and Google’s deployment of local differential privacy to analyze
Chrome settings [30].

While it is clear that the problem of “privatizing” statistical databases has received significant
attention, as far as we know, the complimentary problem of securing statistical databases has not
been considered. While the security of statistical databases is in theory orthogonal to the problem
of private statistical analysis—indeed in this setting the curator is trusted—we believe that the
growing number of real-world deployments of differential privacy will increasingly highlight the
problem of how exactly curators should protect their data. This question is even more pertinent
given the highly sensitive nature of the data—which is why differentially-private mechanisms are
used in the first place—and the constant occurrences of data breaches.

Security via pan privacy. One approach to addressing this security problem is to use a pan-
private mechanism [27, 26] which, roughly speaking, generates a representation of the data—called
the state—in such a way that differential privacy is preserved even against an analyst that has
access to this state (in addition to the answers to its statistical queries). For example, by using a
pan-private mechanism and only storing the state, a curator could maintain a differential-privacy
guarantee in case of a data breach. While this is an improvement over storing the database in
plaintext, this approach has some limitations. For instance, since the pan-private mechanisms is
lossy, the curator may not be able to recover its data. Another limitation is that it only guarantees
differential-privacy against non-analyst adversaries whereas it would be preferable to provide a
stronger guarantee against such adversaries. In other words, while differential privacy is a strong
(and perhaps the best) guarantee possible against an adversary that is allowed to compute statistical
queries on the data, one would like a stronger guarantee against adversaries that cannot make such
queries. A third limitation is that many pan-private mechanisms achieve poor utility if used to
guard against more than a single intrusion which severely limits their usefulness in protecting
against data breaches, malicious servers etc.
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Security via encrypted databases. Over the last fifteen years, the area of encrypted search has
emerged as a promising solution to the problem of database security and data breaches. Using an
encrypted database, a client/application can store and query its data on an untrusted server without
exposing itself to the risk of insider and outsider threats, data breaches and even unintentional data
disclosures (e.g., due to mis-configured access control lists). Solutions for various kinds of databases
and with varying levels of security have been considered in the past, including for simple key-value
stores (i.e., dictionaries) [20, 17], multi-maps [21, 41, 40, 18, 53, 39], graph databases [20, 50] and
relational databases [56, 37]. The availability of such a diverse set of encrypted database solutions,
motivates the following natural question:

Can we design private encrypted databases; that is, encrypted databases that support
differentially-private statistical queries?

With such a solution, a curator could store its database on any untrusted server while still allow-
ing analysts to conduct private statistical analysis on the data. As a concrete example, the Census
Bureau could outsource the storage and management of its OnTheMap data to a server in Amazon’s
cloud without losing any of the properties provided by its differentially-private mechanism.

At a high-level, our goal is to design encrypted databases that support both encrypted and
private operations. The encrypted operations include query and update operations and are used by
the curator to query and maintain the database. The private operations include statistical query
operations used by the analyst to analyze the data. Roughly speaking, a private encrypted database
should provide security against an untrusted server and differential-privacy against an untrusted
analyst.

1.1 Our Contributions

In this work we introduce and address the problem of securing private statistical databases. We
make the following contributions.

Private encrypted databases. One of the contributions of this work is to delineate the scope of
the problem and to propose a set of reasonable properties that any encrypted and private statistical
database should achieve. We do this formally by extending the notion of structured encryption [20]
to support, in addition to a set of encrypted queries, a set of differentially-private queries. The
encrypted queries are used by the curator to query and modify the database while the private
queries are used by the analyst to analyze the data.

New adversarial models. In our setting, there are multiple adversaries to consider, including
the server that stores the database, the analyst that analyzes the data and, possibly, an adversary
that compromises the server at a point in time and gets a snapshot of the database.

More formally, the first corresponds to a persistent adversary that compromises the server
perpetually and can monitor the transcripts of the interactions between the curator, the analyst
and the server. The second corresponds to a statistical adversary that has access to the results of
the private queries but not necessarily to the transcript of the entire interaction. This captures
the standard untrusted analyst in differential privacy that tries to infer information about the data
from the responses of its queries. The third is a snapshot adversary that gets multiple accesses to
the database stored on the server but does not have access to the transcripts of any interactions.
This captures scenarios such as data breaches, devices thefts, and subpoenas.

There are several interesting subtleties that emerge from this setting that must be addressed.
Recall that in the traditional setting of differential privacy, the curator is trusted so one does not
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consider any security/privacy guarantees for the analyst. In our setting, however, the database is
stored on an untrusted server so the analyst’s queries must also be protected. Another subtlety
is that, in our setting, the data stored in the database is continually modified which requires
differential privacy to hold under continual observations.

An encrypted database for private histogram queries. As a concrete goal, we focus on
designing private encrypted databases that support differentially-private histogram queries. His-
tograms are one of the most common and central queries in statistical analysis and many other
important queries can be formulated as histograms (e.g., contingency tables, marginals).

A naive approach to solving our problem would be for the curator to use a structured encryption
scheme to produce an EDB and then use a pan-private histogram mechanism to produce a pan-
private state. The curator would then use the EDB to query and manage its data and the server
would use the pan-private state to answer analyst queries. The main limitation of this approach,
however, is that it only guarantees differential privacy against persistent and snapshot adversaries
whereas we would like a stronger guarantee.

To achieve this, we have to combine techniques from structured encryption and differential
privacy in a more careful manner. Our first step, is to design an encrypted counter that supports
an encrypted add operation and a differentially-private read operation. We build such a counter
using additively homomorphic encryption and a differentially-private counter of Chan, Shi and Song
[19]. We refer to the resulting construction as CPX. We then combine a standard encrypted data
structure with several instantiations of our encrypted counter to build a private encrypted database
that supports private histogram queries. There are several subtleties that come up—not only due to
our new adversarial models—but also due to subtle and potentially dangerous interactions between
the operations on the encrypted database and the contents of the private counter. To avoid these
pitfalls, we have to carefully consider how the queries of the curator are executed so that they do
not affect the security of the CPX counters. This results in a scheme we call HPX that has the
same (encrypted) query complexity as its underlying encrypted database and (encrypted) update
complexity that is linear in the underlying encrypted database’s update complexity and in the
number of histogram bins. When HPX’s encrypted counters are instantiated with CPX, it has
private query complexity that is logarithmic in the number of updates.

2 Related Work

Differential privacy. In their seminal work [25], Dwork, McSherry, Nissim and Smith introduced
the notion of differential privacy that guarantees privacy of individuals by ensuring similar outputs
of queries on data irrespective of whether an individual’s information is present or absent in the
data. Since its conception, differential privacy has been an active research area [49, 7, 43, 6, 9, 8, 29],
we refer the readers to [28, 24] for a comprehensive survey.

Differential privacy has also been deployed in practice, see for example the systems used at
Google [30, 31], Apple [22], the US Census Bureau [48, 2] and Uber [62, 35].

Differential privacy with continual observations. Dwork, Naor, Pitassi and Rothblum in-
troduced a new setting for differential privacy [26] where the data is continuously being modified.
The motivation was to consider scenarios where data analysis required repeated computations over
dynamic data, for example, real-time traffic analysis, social trends observation and disease outbreak
discovery. Calandrino, Kilzer, Narayanan, Felten and Shmatikov [12] showed that continual release
of statistics leaks more information to the adversary and is a bigger privacy threat. In [26], the
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authors construct an ε-differentially-private continual counter with a small error. Specifically, they
show that with probability 1 − δ, the error at time step t is at most O(1

ε log1.5 t log 1
δ ). They also

show that with probability at least δ, any ε-differentially-private mechanism for λ time steps must
incur an additive error of at least Ω(1

ε (log λ + log 1
δ )). Chan, Shi and Song, in an independent

work, also constructed a similar counter with same privacy and error guarantees [19]. The contin-
ual observation model has been widely adopted and several problems have been considered in the
literature [3, 46, 64, 14, 15, 44, 13, 58, 63, 16].

Structured encryption. Structured encryption (STE) was introduced by Chase and Kamara
in [20] as a generalization of searchable symmetric encryption (SSE) [59, 21]. There are STE
constructions for various data structures including multi-maps [32, 21, 20, 41, 40, 18, 17, 53, 38,
39, 10, 11], graphs [20, 36, 50, 66] and two-dimensional arrays [20, 42].

Snapshot security. Snapshot security was discussed informally in several works [55, 34] but first
formalized in the context of property-preserving encryption (PPE) by Lewi and Wu [45] and in the
context of STE by Amjad, Kamara and Moataz in [5].

3 Preliminaries

Notation. The set of all binary strings of length n is denoted as {0, 1}n, and the set of all finite
binary strings as {0, 1}∗. [n] is the set of integers {1, . . . , n}, and 2[n] is the corresponding power set.
We write x ← χ to represent an element x being sampled from a distribution χ. The output x of
an algorithm A is denoted by x← A. Given a sequence v of n elements, we refer to its ith element
as vi or v[i]. If S is a set then |S| refers to its cardinality. If x and y are two integer sequences of
length n, then || · || denotes the Hamming distance. We denote by Lap(b) the Laplace distribution

with parameter b that has probability density function 1
2be
− |x|

b with mean 0 and variance 2b2.

Abstract data types. An abstract data type specifies the functionality of a data structure. It is
a collection of data objects together with a set of operations defined on those objects. Examples
include sets, dictionaries (also known as key-value stores or associative arrays) and graphs. The op-
erations associated with an abstract data type fall into one of the two categories: query operations,
which return information about the objects; and update operations, which modify the objects. If
the abstract data type supports only query operations it is static, otherwise it is dynamic. We
denote by Q, R, and U the query, response and update spaces of the data object, respectively.

Data structures. A data structure for a given data type is a representation in some computa-
tional model of an object of the given type.1 Typically, the representation is optimized to support
the type’s query operation as efficiently as possible. For data types that support multiple queries,
the representation is often optimized to efficiently support as many queries as possible. As a con-
crete example, the dictionary type can be represented using various data structures depending on
which queries one wants to support efficiently. Hash tables support Get and Put in expected O(1)
time whereas balanced binary search trees support both operations in worst-case log(n) time. For
ease of understanding and to match colloquial usage, we will sometimes blur the distinction between
data types and structures.

1In this work, the underlying model will always be the word RAM.
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Public-key encryption. A public key encryption scheme is a set of three polynomial-time al-
gorithms AHE = (Gen,Enc,Dec) such that Gen is a probabilistic algorithm that takes a security
parameter k and returns a pair of private and public keys (sk, pk); Enc is a probabilistic algorithm
that takes a public key pk and a message m and returns a ciphertext ct; Dec is a deterministic al-
gorithm that takes a private key sk and a ciphertext c and returns m if pk was the public key under
which ct was produced. A public key encryption scheme is an additive homomorphic encryption
scheme if for any two messages m1 and m2, and any (sk,pk)← Gen(1k) for all k ∈ N, we have that

Dec
(
sk,Enc(pk,m1) · Enc(pk,m2)

)
= m1 +m2.

Informally, a public key encryption scheme is secure against chosen-plaintext attacks if the
ciphertexts it outputs do not reveal any partial information about the plaintext even to an adversary
that can adaptively query an encryption oracle.

3.1 Structured Encryption

Structured encryption (STE) schemes [20] encrypt data structures in such a way that they can be
queried. STE schemes can be distinguished depending on the type of operations they support. This
includes non-interactive and interactive schemes where the former require only a single message
while the latter require several rounds for queries and updates. STE schemes can also be static or
dynamic where the former do not support update operations whereas the latter do. We can also
distinguish between response-revealing and response-hiding schemes where the former reveal the
response to queries whereas the latter do not.

Interactive response-revealing STE schemes are used as follows. During the setup phase, the
client constructs an encrypted data structure EDS under a key K. If the scheme is stateful, the
setup also outputs a state st. The server then receives EDS from the client. During the query
phase, the client and server execute a two-party protocol where client inputs its query q, key K and
state st while the server inputs the encrypted structure EDS. The client receives a response r and
an updated state st′ while the server receives nothing. Similarly, during the update phase, either
an add or remove, the client and server execute a two-party protocol where the client inputs its
update u+/u−, key K and state st while the server inputs the encrypted structure EDS. The client
receives an updated state st′ while the server receives an updated structure EDS′. We formally
define an interactive response-revealing STE as follows:

Definition 3.1 (Structured encryption). An interactive structured encryption scheme ΣSTE =
(Setup,Query,Add,Remove) consists of one polynomial-time algorithm and three interactive proto-
cols that work as follows:

• (st,K,EDS) ← Setup(1k,DS): is a probabilistic algorithm that takes as inputs the security
parameter k and a data structure DS and receives a state st, a key K, and an encrypted data
structure EDS.

• (st′, r;⊥)← QueryC,S(st,K, q;EDS) is a (probabilistic) protocol between the client C and the
server S. The client inputs its state st, the key K and the query q, while the server inputs
the encrypted data structure EDS. The client receives a response r and the server receives
nothing.

• (st′;EDS′) ← AddC,S(st,K, u+;EDS): is a (probabilistic) protocol between the client C and
the server S. The client inputs its state st, the key K and the update u+ ∈ U, while the server
inputs the encrypted data structure EDB0. As output, the client receives an updated state st′

and the server receives an updated state EDS′.
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• (st′;EDS′) ← RemoveC,S(st,K, u−;EDS): is a (probabilistic) protocol between the client C
and the server S. The client inputs its state st, the key K and the update u− ∈ U, while
the server inputs the encrypted data structure EDS. As output, the client receives an updated
state st′ and the server receives an updated state EDS′.

We say that a dynamic STE scheme ΣSTE is correct if for all k ∈ N, for all poly(k)-size structures
DS0, for all (st0,K,EDS0) output by Setup(1k,DS0), for all sequences of m = poly(k) operations
op1, . . . , opm such that opi ∈ {qi, ui}, for all i ∈ [m], if opi = qi, Query(sti−1,K, qi;EDSi−1) returns
the correct response with all but negligible probability; where sti−1 is the output of the Add, Remove
or Query protocols, while EDSi−1 is either the output of the last update ρ < i if it exists, or the
output of the setup algorithm otherwise.

Security. The standard notion of security for STE guarantees that: (1) an encrypted structure
reveals no information about its underlying structure beyond the setup leakage LS; (2) that the
query protocol reveals no information about the structure and the queries beyond the query leakage
LQ; and that (3) the add/remove protocols reveal no information about the structure and the
updates u+/u− beyond the add/remove leakages LA/LR.

If this holds for non-adaptively chosen operations then the scheme is said to be non-adaptively
secure. If, on the other hand, the operations can be chosen adaptively, the scheme is said to be
adaptively-secure.

Definition 3.2 (Adaptive security of interactive STE). Let Σ = (Setup,Query,Add,Remove) be an
interactive dynamic STE scheme and consider the following probabilistic experiments where A is a
stateful adversary, S is a stateful simulator, LS, LQ, LAand LR are leakage profiles and z ∈ {0, 1}∗:

RealΣ,A(k): given z the adversary A outputs a structure DS and receives EDS from the challenger,
where (st,K,EDS) ← Setup(1k,DS). The adversary then adaptively chooses a polynomial
number of operations op1, . . . , opm such that opi is either a query qi or an update u+

i or u−i .
For all i ∈ [m], if opi = qi, the adversary and the challenger execute the protocol Query, and
the challenger receives an updated state st′ and a response r while the adversary receives noth-
ing, where (st′, r;⊥)← Query(st,K, qi;EDS). If, opi = u+

i , the adversary and the challenger
execute the protocol Add, and the challenger receives an updated state st′, while the adversary
receives an updated encrypted structure EDS′, where (st′;EDS′)← Add(st,K, u+

i ;EDS). If, on
the other hand, opi = u−i , the adversary and the challenger execute the protocol Remove, and
the challenger receives an updated state st′, while the adversary receives an updated encrypted
structure EDS′, where (st′;EDS′) ← Remove(st,K, u−i ;EDS). Finally, A outputs a bit b that
is output by the experiment.

IdealΣ,A,S(k): given z the adversary A generates a structure DS which it sends to the chal-
lenger. Given z and leakage LS(DS) from the challenger, the simulator S returns an en-
crypted structure EDS to A. The adversary then adaptively chooses a polynomial number
of operations op1, . . . , opm such that opi is either a query qi or an update u+

i or u−i . For
all i ∈ [m], if opi = qi, the simulator receives the query leakage LQ(DS, qi) and executes
Query(LQ(DS, qi);EDS) with the adversary. The adversary receives nothing as output. If,
opi = u+

i , the adversary the simulator receives the add leakage LA(DS, u+
i ) and executes

Add(LA(DS, u+
i );EDS) with the adversary. The adversary receives an updated structure EDS′

as output. If, on the other hand, opi = u−i , the adversary the simulator receives the remove
leakage LR(DS, u−i ) and executes Remove(LR(DS, u−i );EDS) with the adversary. The adver-
sary receives an updated structure EDS′ as output. Finally, A outputs a bit b that is output
by the experiment.
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We say that Σ is adaptively (LS,LQ,LA,LR)-secure if there exists a ppt simulator S such that for
all ppt adversaries A, for all z ∈ {0, 1}∗,

|Pr [ RealΣ,A(k) = 1 ]− Pr [ IdealΣ,A,S(k) = 1 ]| ≤ negl(k).

A note on operation failures. Similarly to plaintext data structures, operations over encrypted
structures may fail. For queries, failures are in general the result of an empty response or the
nonexistence of the query in the structure. We typically capture a query failure by a null ⊥
element added to the data type response space. However, update failures are in general more
complex. For example, in set data structures, an add update might fail if the element already
exists in the structure. An update also might fail if it intends to remove an element that does not
exist or simply because the structure is empty. At a high level, we say that an update fails if the
update does not modify the encrypted structure. Formally, an update u+ ∈ U fails if EDS = EDS′

where (st′;EDS′) ← AddC,S(st,K, u;EDS) for all k ∈ N , for all poly(k)-size structures DS, for all
(st,K,EDS) output by Setup(1k,DS) (similary for Remove).2

A note on data structures and databases. Our main construction, HPX, can be used to
support histogram queries on any encrypted data structure. Unfortunately, most of the differential
privacy and cryptography literature does not distinguish between data structures (e.g., arrays, two-
dimensional arrays, dictionaries, multi-maps, trees etc.) and databases (e.g., relational databases,
NoSQL databases). So to remain consistent with the literature, in the remainder of this paper
we will refer to arbitrary data structures as databases. So anytime we refer to a database DB or
an encrypted database EDB what we mean is some arbitrary data structure and some arbitrary
encrypted data structure, respectively.

4 Private Structured Encryption

In this Section, we extend the notion of STE to support private queries. We refer to the resulting
primitive as a private structured encryption (PSTE) scheme. With a PSTE scheme, a curator can
encrypt its database in such a way that it can query and manage its database through a set of
encrypted queries and such that an analyst can query the database through a set of private queries.
In Definition 4.1 below, we describe the syntax of a PSTE scheme. Here, we only describe schemes
that support one encrypted and one private query operations but the syntax can be extended to
support schemes with multiple encrypted and private queries in the natural way.

Definition 4.1 (Private structured encryption). An interactive private structured encryption scheme
∆ =

(
Setup,EAdd,ERemove,EQuery,PQuery

)
consists of five polynomial-time protocols that work

as follows:

•
(
(st,KC);PEDB;KA

)
← SetupC,S,A

(
(1k, ε,DB);⊥;⊥

)
: is a three-party protocol between the

curator C, the server S and the analyst A. The curator inputs the security parameter 1k, the
privacy parameter ε and a database DB, while the server and the analyst input nothing. The
curator receives a state st and a key KC, the server receives an encrypted database PEDB and
the analyst receives a key KA.

2The encrypted structure can also be the output of a previous update protocol executions. The definition can be
naturally extended.
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• (st′;PEDB′) ← EAddC,S
(
(st,KC, u

+);PEDB
)
: is a two-party protocol between the curator C

and the server S. The curator inputs its state st, a key KC and an update u+ ∈ U, while the
server inputs the encrypted database PEDB. As output, the curator receives the updated state
st′ and the server receives an updated encrypted database PEDB′.

• (st′;PEDB′) ← ERemoveC,S
(
(st,KC, u

−);PEDB
)

is a two-party protocol between the curator
C and the server S. The curator inputs its state st, a key KC and an update u− ∈ U, while
the server inputs the encrypted database PEDB. As output, the curator receives the updated
state st′ and the server receives an updated encrypted database PEDB′.

•
(
(st′, r);⊥

)
← EQueryC,S

(
(st,KC, q);PEDB

)
is a two-party protocol between the curator C

and the server S. The curator inputs its state st, a key KC and a query q, while the server
inputs the encrypted database PEDB. The curator receives a response r and an updated state
st′, and the server receives nothing.

• (rp;⊥)← PQueryA,S
(
(KA, q

p);PEDB
)
: is a two-party protocol between the analyst A and the

server S. The analyst inputs its key KA and its private query qp ∈ P, while the server inputs
the encrypted database PEDB. As output, the analyst receives a private response rp ∈ O while
the server receives nothing.

For visual clarity, we sometimes omit the subscripts of the protocols when the parties involved is
clear from the context.

A PSTE scheme is used as follows. During a setup phase, the curator, server and analyst
execute the Setup protocol on the curator’s database DB. This results in a secret key KC and state
st for the curator, an encrypted database PEDB for the server and a secret key KA for the analyst.
To query the database, the curator executes the EQuery protocol with the server. To manage the
database (i.e., to add or remove items), it executes the EAdd and ERemove protocols with the
server. To perform a statistical query on the data, the analyst executes the PQuery protocol with
the server.

4.1 Correctness and Utility

We say that a PSTE scheme is correct if the encrypted query protocol always returns the correct
response with high probability (possibly) on an updated encrypted database output by an update
operation (addition or removal operation) that has previously occurred. Moreover, correctness
also should hold independently of the private queries made by the analyst. We formally define
correctness as follows.

Definition 4.2 (Correctness). Let ∆ = (Setup,EAdd,ERemove,EQuery,PQuery) be a PSTE scheme.
We say that ∆ is correct if for all k ∈ N, for all ε > 0, for all poly(k)-size databases DB, for all
(st,KC;PEDB;KA) output by Setup

(
(1k, ε,DB);⊥;⊥

)
and all poly(k)-size sequences of operations

σ = (σ1, · · · , σλ), for all i ∈ [λ], if σi = qi, then EQuery(sti−1,KC, qi;PEDBi−1) returns the cor-
rect response with all but negligible probability; where PEDBi−1 results from applying all the update
operations in (σ1, . . . , σi−1) to the encrypted database PEDB0 generated with Setup.

Utility. The correctness definition above guarantees that the curator will get correct responses
to its encrypted queries (with high probability) but does not say anything about the utility of the
analyst’s private queries. Intuitively, in the setting of differential privacy we say that a mechanism
is useful if its responses are close to the correct responses. Here, we apply the same intuition to the
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encrypted database’s PQuery operation. More precisely, we say that PQuery is (α, δ)-useful if, with
probability at least 1− δ, it produces responses within an additive factor of α to the true response.
We formally define this below.

Definition 4.3 (Utility). Let ∆ = (Setup,EAdd,ERemove,EQuery,PQuery) be a PSTE scheme.
We say that ∆ is (α, δ)-useful if for all poly(k)-size sequences of operations σ = (σ1, . . . , σλ), for
all i ∈ [λ], if σi = qpi ,

Pr [ |rpi − ri| ≤ α ] ≥ 1− δ

where (rpi ;⊥) ← PQuery
(
(KA, q

p
i );PEDBi−1

)
, ri is the correct response and PEDBi−1 results from

applying all the updates in (σ1, . . . , σi−1) to the encrypted database PEDB0 generated with Setup.

4.2 Security and Privacy

As discussed in Section 1, our adversarial setting is more complex than that of STE and of dif-
ferential privacy. In particular, in our context we have to consider two adversaries: namely, the
server and the analyst. In addition, the server can be corrupted in two possible ways: a persistent
corruption and a snapshot corruption. We summarize these models as follows:

• a persistent adversary corrupts the server perpetually. It has access to the encrypted database
and can monitor both the encrypted and private query operations. This captures a corrupted
server (e.g., an untrusted cloud service or a possibly corrupted on-premise server).

• a snapshot adversary is an adversary that corrupts the server only at fixed points in time.
It can access a copy of the encrypted database at the time of corruption, but cannot see the
encrypted or private query operations. This models certain kinds of data-breaches, subpoenas
and thefts.

• a statistical adversary is an adversary that corrupts the analyst. It can see the responses to
the private queries but cannot see encrypted private database or the encrypted query/update
operations. This captures an untrusted analyst.

Collusions. While providing security against each of these adversaries is non-trivial, we will
discuss in Section 7 how to maintain the same security guarantees when some of these adversaries
collude. Specifically, we will consider the cases when: (1) a snapshot adversary colludes with a
statistical adversary; and (2) a persistent adversary colludes with a statistical adversary. Note that
the case of a snapshot adversary colluding with a persistent adversary reduces to the case of a
persistent adversary.

Security against a persistent adversary. The security of PSTE schemes is a natural extension
of the security of standard STE schemes. Intuitively, we require that a PSTE scheme guarantees
that the encrypted database reveals no information about its underlying database beyond the setup
leakage LS; that the encrypted query protocol reveals no information about the database and the
query beyond the query leakage LQ; that the add and remove protocols reveal no information about
the database and the updates u+ and u−, respectively, than the add and remove leakages LA and
LR; and that the private query protocol reveals no information about the database and the private
query qp beyond the private query leakage LP. If this holds for non-adaptively chosen operations
then this is referred to as non-adaptive security. If, on the other hand, the operations can be chosen
adaptively, we have the stronger notion of adaptive security [21, 20].
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Definition 4.4 (Adaptive persistent security). Let ∆ = (Setup,EAdd,ERemove,EQuery,PQuery)
be a private structured encryption scheme. Consider the following probabilistic experiments where
A is stateful adversary, S1 and S2 are stateful simulators, C is a challenger, LS, LQ, LA, LR, and
LP are leakage profiles, and z ∈ {0, 1}∗:

Real∆,A(k, ε): given z, the adversary A outputs a database DB and receives an encrypted database
PEDB, where (st,K;PEDB;KA) ← Setup

(
(1k, ε,DB);⊥;⊥

)
. The adversary then adaptively

chooses a poly(k)-size sequence of operations σ = (σ1, · · · , σλ). For all i ∈ [λ], if

• (add operations) if σi is an add operation u+
i , then the challenger C and the adversary

A execute
(st′;PEDB′)← EAdd

(
(st,K, u+

i );PEDB
)
,

with C playing the curator and A playing the server.

• (remove operations) if σi is a remove operation u−, then the challenger C and the ad-
versary A execute

(st′;PEDB′)← ERemove
(
(st,K, u−i );PEDB

)
,

with C playing the curator and A playing the server.

• (encrypted query) if σi is an encrypted query qi, then the challenger C and the adversary
A execute

(st′, r;⊥)← EQuery
(
(st,K, qi);PEDB

)
,

with C playing the curator and A playing the server.

• (private query) if σi is a private query qpi , then the challenger C and the adversary A
execute

(rp;⊥)← PQuery
(
(KA, q

p
i );PEDB

)
,

with C playing the analyst and the adversary playing the server.

Finally, A outputs a bit b that is output by the experiment.

Ideal∆,A,S1,S2(k, ε): given z, the adversary A generates a database DB. The simulator S1 is then
given z and setup leakage LS(DB) from which it outputs an encrypted database PEDB. Given
PEDB, A adaptively chooses a poly(k)-size sequence of operations σ = (σ1, · · · , σλ). For all
i ∈ [λ],

• (add operation) if σi is an add operation u+
i , then S1(LA(DB, u+

i )) and A execute EAdd,
with the simulator playing the curator and the adversary playing the server.

• (remove operation) if σi is a remove operation u−, then S1(LR(DB, u−i )) and A execute
ERemove, with the simulator playing the curator and the adversary playing the server.

• (encrypted query) if σi is an encrypted query qi, then S1(LQ(DB, qi)) and A execute
EQuery, with the simulator playing the curator and the adversary playing the server.

• (private query) if σi is a private query qpi , then S2(LP(DB, qpi )) and A execute PQuery,
with the simulator playing the analyst and the adversary playing the server.

Finally, A outputs a bit b that is output by the experiment.

We say that ∆ is adaptively (LS,LQ,LA,LR,LP)-secure if there exists ppt simulators S1 and
S2 such that for all ppt adversaries A, for all ε > 0 and all z ∈ {0, 1}∗, the following holds:

|Pr[Real∆,A(k, ε) = 1]− Pr[Ideal∆,A,S1,S2(k, ε) = 1]| ≤ negl(k)
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Security against a snapshot adversary. Security against a persistent adversary is a strong
notion of security in that it guarantees security against an adversary that not only has access to
the encrypted database but also to transcripts of the operations. In many real-world scenarios,
however, we are concerned with a weaker adversary that can periodically access the encrypted
database but, in particular, cannot access any of the query transcripts. This captures, for example,
certain kinds of data breaches, malicious employees, thefts and subpoenas. This kind of adversary
is referred to as a snapshot adversary and it was recently formalized in the context of structured
encryption by Amjad, Kamara and Moataz [5].

In the following Definition, we adapt the formalization of [5] to our context. Intuitively, the
adversary is given access to multiple snapshots of the encrypted database each of which is in-
terspersed with a batch of encrypted and private queries (and updates). We then require that
encrypted database reveals no information about the underlying database and the sequence of op-
erations executed prior to the snapshot, beyond some snapshot leakage LSN. In the worst case, the
adversary can have a snapshot after every operation.

Definition 4.5 (Snapshot security). Let ∆ = (Setup,EAdd,ERemove,EQuery,PQuery) be a private
structured encryption scheme and consider the following probabilistic experiments where A is a
stateful adversary, S is a stateful simulator, C is a stateful challenger, LSN is a stateful leakage
function, z ∈ {0, 1}∗, and m ≥ 1:

Real∆,A(k, ε,m): given z, the adversary A outputs an initial database DB0. The challenger
then computes (st,KC;PEDB0;KA)← Setup

(
(1k, ε,DB0;⊥;⊥

)
. Given PEDB0, A outputs an

adaptively chosen poly(k)-size sequence σ1 = (σ1,1, . . . , σ1,m). For all i ∈ [n],

• the challenger applies the operations in σi to PEDBi−1 which results in PEDBi;

• given PEDBi, the adversary outputs a sequence of operations σi+1 = (σi+1,1, · · · , σi+1,m)

Finally, A outputs a bit b that is returned by the experiment.

Ideal∆,A,S(k, ε,m): given z, the adversary A outputs a database DB0. The simulator S(z,LSN(DB0,⊥))
simulates PEDB0. The adversary A(PEDB0) outputs an adaptively chosen poly(k)-size se-
quence σ1 = (σ1,1, · · · , σ1,m). For all i ∈ [n],

• the challenger applies the operations in σi to DBi−1 which results in DBi;

• the simulator S(LSN(DBi,σi)) simulates PEDBi;

• given PEDBi, the adversary A outputs a sequence of operations σi+1 = (σi+1,1, · · · , σi+1,m);

Finally, A outputs a bit b that is output by the experiment.

We say that ∆ is (n,LSN)-snapshot secure if there exists a ppt simulator S such that for all
ppt adversaries A, for all ε > 0 and all z ∈ {0, 1}∗, the following holds:

|Pr [ Real∆,A(k, ε,m) = 1 ]− Pr [ Ideal∆,A,S(k, ε,m) = 1 ]| ≤ negl(k).

Breach resistance. In [5], the authors formalize the notion of a breach-resistant STE scheme
as a scheme with snapshot leakage that reveals at most the size of the underlying structure at the
time of the snapshot. We extend this to the setting of private structured encryption by allowing
the snapshot leakage to include, in addition, the size of the private query space.
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Definition 4.6 (Breach resistance). Let ∆ = (Setup,EAdd,ERemove,EQuery,PQuery) be an (m,LSN)-
snapshot secure private structured encryption scheme. We say that ∆ is breach-resistant if for all
m = poly(k),

LSN(DB,σi) =

(
|DBi|, |P|

)
where DBi is the structure that results from applying σ1, . . . ,σi to DB0 and P is the private query
space.

Security against a statistical adversary. We now turn to our notion of privacy against a
statistical adversary which captures privacy against an untrusted analyst. Specifically, we wish to
guarantee differential privacy against the analyst. Informally, differential privacy formalizes privacy
by requiring that the probability of the output of a mechanism is roughly the same for any two
“neighboring” databases.

Continual observations. In our setting, we do not have a fixed database so we cannot use the
standard definition of differential privacy. Because our database is dynamic we need a variant
referred to as differential privacy under continual observations [26]. This definition is formalized
as follows. Let M be a privacy mechanism, let S ⊆ Im(M)λ and let DB0 be a database. The
definition says that M is ε-differentially-private over continual observations if for all neighboring
sequences of curator operations σ = (σ1, . . . , σλ) and σ′ = (σ′1, . . . , σ

′
λ),

Pr

[(
M(DB1), . . . ,M(DBλ)

)
∈ S

]
≤ eε · Pr

[(
M(DB′1), . . . ,M(DB′λ)

)
∈ S

]
,

where DBi results from applying σi to DBi−1 and DB′i results from applying σ′i to DB′i−1. In our
context, the PQuery protocol is effectively a private mechanism so it would be tempting to just
apply the definition above.

Variable queries. The difficulty with this is that in the definition above, the mechanism M is
a fixed operation that has no operand whereas PQuery allows the analyst to choose an operand qp.
There are several possible ways to handle this but here we take the worst-case which is to assume
that, after each curator operation, the analyst makes every possible private query qp ∈ P. If we
can quantify the privacy against such an analyst, it will provide an upper bound on the privacy we
achieve against all possible analysts.

Before we formalize this intuition, we describe our notion of neighboring sequences. Let an
operation σ be composed of an operator/operand pair (op, o). We consider two sequences of curator
update operations σ = (σ1, . . . , σλ) and σ′ = (σ′1, . . . , σ

′
λ) neighbors if they differ by at most

a single update operation and operand; that is, there exists at most a single i ∈ [λ] such that
(opi, oi) 6= (op′i, o

′
i).

Definition 4.7 (Differential privacy). Let ∆ = (Setup,EAdd,ERemove,EQuery,PQuery) be a pri-
vate structured encryption scheme. We say that ∆ is ε-differentially-private (under continual
observations) if for all neighboring sequences of curator operations σ = (σ1, . . . , σλ) and σ′ =
(σ′1, . . . , σ

′
λ),

Pr

[((
r1,qp

)
qp∈P, . . . ,

(
rλ,qp

)
qp∈P

)
∈ S

]
≤ eε · Pr

[((
r′1,qp

)
qp∈P, . . . ,

(
r′λ,qp

)
qp∈P

)
∈ S

]
,

where ri,qp is the result from executing (ri,qp ;⊥) ← PQuery(KA, q
p;PEDBi) and PEDBi results

from applying the curator operations (σ1, . . . , σi) to PEDB0. Here r′i,qp is defined analogously.
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5 CPX: A Private Encrypted Counter

A counter is a data structure that stores an integer and supports Add and Read operations. Add
takes as input a counter ctr and an integer a ∈ {−1, 0, 1} and returns an updated counter ctr′

that stores c + a, where c is the current value of the counter. The Read operation takes as input
a counter ctr and returns its current value. Counters are a basic data structure that are heavily
used throughout all of computer science. A private counter [26, 19] is a counter that supports
a differentially-private read operation. This is typically achieved by adding noise to the counter
value. In this section, we are concerned with designing an encrypted private counter which supports
encrypted add operations and private read operations.

The binary mechanism. The binary mechanism is a differentially-private (under continual
observations) counter introduced by Chan, Shi and Song [19] which offers reasonable privacy and
utility tradeoffs. The counter supports increment, decrement and no-op operations represented as
additions of values in {−1, 0, 1}. When read, it returns a value that is the true counter with some
noise added to it.

The counter is represented as a range tree with a local register. The local register just stores the
total number of addition operations performed until now. A range tree is a complete binary tree
T that stores values in such a way that all the values within a range can be computed efficiently.
More precisely, range trees maintain a tree with λ leaves associated to λ values. Each node in the
tree represents a unique range: the tth leaf represents the range [t, t] whereas an internal node that
is the root of a subtree with leaves ranging from t1 to t2 represents the range [t1, t2]. The cover
of a range [t1, t2] is defined as the set of nodes such that the union of the ranges of the nodes is
equal to [t1, t2]. The minimum cover is the cover with minimum cardinality. Range trees have the
property that the size of the minimum cover of a range [1, t], for any t, is at most 2 log t. We abuse
the notation and refer to the minimum cover of [1, t] as the minimum cover of t.

During setup, the binary mechanism takes as input a parameter λ denoting the maximum
number of addition operations to be performed on the counter, and it initializes a range tree with
λ leaves. Each node stores a value of 0. For the tth add operation, it takes as input a value
a ∈ {−1, 0, 1}, and adds a to all the nodes on the path from [t, t] to the root. It also adds noise
γt ← Lap(2 log λ/ε) to all the nodes of the form [·, t] on this path. To answer read operations, the
mechanism outputs the sum of the nodes in the minimum cover of t, where t is the current register
value which denotes the number of add operations performed until this point.

We now describe an encrypted private counter based on the binary mechanism called CPX. Our
construction is described in Fig. (1) and works as follows.

Setup. The Setup algorithm takes as input the security parameter 1k, the privacy parameter ε
and the number of update operations to be made λ. The curator initializes a binary tree T with
λ leaves where every node consists of an additively-homomorphic encryption of 0. The private
encrypted counter ectr is a tuple composed of the tree T, the privacy parameter ε, a time step t
initialized to 0 and the public key of the homomorphic encryption.

Encrypted add. To add an integer a ∈ {−1, 0, 1} to the encrypted counter, the curator sends
the encryption of the integer cta to the server. The server, given the time step t, first fetches all
the nodes in the path Pt starting from the root and ending at the leaf [t, t]. The server then adds
cta to every node in Pt. The server then selects all nodes in Pt with a range of the form [., t], to
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which it adds the encryption of a freshly sampled noise. The server also increments the internal
time step t.

Private read. To read the value of the counter after the ith operation, the server simply sends
to the analyst the sum of all nodes belonging to the minimum cover of [1, i] which the analyst later
decrypts.

Let Lap(·) denote the Laplace distribution. Let AHE = (Gen,Enc,Dec) be an additively homomorphic
encryption scheme. Consider the private encrypted counter scheme ∆ctr = (Setup,EAdd,PRead) defined
as follows:

• Setup
(
1k, ε, λ, ctr

)
:

1. generate (pk, sk)← AHE.Gen(1k);

2. initialize a binary tree T with λ leaves;

3. for each node N ∈ T,

(a) set N = AHE.Enc(pk, 0);

4. set t = 0;

5. C receives KC = pk, S receives ectr = (T, ε, t, pk) and A receives KA = sk;

• EAddC,S
(
KC, a; ectr

)
:

1. S parses ectr as (T, ε, t, pk);

2. S sets t = t+ 1;

3. C sends cta ← AHE.Enc(pk, a) to S;

4. S does the following

(a) it finds the path Pt from the [t, t] leaf of T to its root;

(b) for all nodes N in Pt, it sets N = N + cta;

(c) it creates a subset S ⊂ Pt of nodes in Pt whose range has the form [·, t];
(d) for each node N in S,

i. it computes γN ← Lap( 2 log λ
ε );

ii. it sets N = N + AHE.Enc(pk, γN);

(e) C receives ⊥ and S receives an updated encrypted counter ectr′ = (T′, ε, t, pk);

• PReadA,S
(
⊥; ectr

)
:

1. S does the following:

(a) it parses ectr as (T, ε, t, pk);

(b) it finds the minimal cover Ct of the interval [1, t];

(c) it sends ctr =
∑

N∈Ct
N to A;

2. A computes r ← AHE.Dec(sk, ctr);

3. A receives r and S receives ⊥;

Figure 1: CPX: Range tree based Encrypted private counter.

5.1 Efficiency and Utility

The complexity of both the encrypted add and private query are

O(log λ · timeAHE),
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where λ is the upper bound on the number of updates while timeAHE is the time complexity of a
homomorphic operation. This stems from the fact that the size of the minimum cover in a range
tree is upper bounded by 2 log λ. Moreover, the round complexity of both protocols is equal to 1.

Theorem 5.1. For each t ∈ [λ], CPX is (α, δ)-useful, where α = O(1
ε · (log λ)

√
log λ · log 1

δ ), and
ε, δ > 0.

The proof of Theorem 5.1 is in Appendix. A.1.

5.2 Security

In the following, we detail the security guarantees of CPX against persistent, snapshot and statis-
tical adversaries, respectively.

Against a persistent adversary. The setup leakage of CPX consists of the size of the tree
which is equal to the upper bound on the number of updates λ such that

LctrS (ctr) = λ.

Both the add leakage and the private query leakage of CPX are equal to ⊥ as they do not depend
of the curator’s input such that

LctrA (ctr, a) = ⊥ and LctrP (ctr,⊥) = ⊥.

Theorem 5.2. If AHE is CPA-secure, then CPX is (LctrS ,LctrA ,LctrP )-secure.

The proof of Theorem 5.2 is in Appendix. A.2.

Leakage against a snapshot adversary. The snapshot leakage LctrSN of CPX is equal, for all
i ∈ [m], to

LctrSN(ctr,σi) = λ.

Theorem 5.3. If AHE is CPA-secure, then CPX is (m,LctrSN)-snapshot secure.

The proof of Theorem 5.3 is in Appendix A.3. Note that CPX is breach-resistant based on
Definition 4.6 when m = poly(k).

Against a statistical adversary. As detailed above, CPX is an encrypted variant of the binary
mechanism. In particular, the private responses of CPX have the same exact distribution (on the
same sequences of operations) as the binary mechanism and, therefore inherits the same differential
privacy parameters. In particular we have the following Theorem.

Theorem 5.4. The PRead protocol in CPX is ε-differentially private as per Definition 4.7.

The proof of this theorem is similar to the one of the binary mechanism in [19] and we defer it
to the full version of this work.

6 HPX: An Encrypted Database for Private Histograms Queries

In this section, we describe our encrypted database scheme, HPX, which supports private histogram
queries. With our solution, a curator can outsource its statistical database to an untrusted server.
The curator can update the data using the EDB’s encrypted queries and an analyst can analyze
the data using the EDB’s private queries.
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Overview. At a high-level, HPX works as follows. We are given a database DB and a his-
togram H = {ctr1, . . . , ctrn} initialized to 0. We also assume the existence of a function Map1 that
maps database updates u to multiple counters in H. Our construction produces (n+ 1) encrypted
structures: EDB and ectr1, . . . , ectrn. The first results from encrypting the database DB with an
appropriate structured encryption scheme. The curator interacts with EDB to query and update
its database. The structures (ectr1, . . . , ectrn) are private encryptions of the histogram counters
(ctr1, . . . , ctrn) and are used by the server to answer the analyst’s queries. Whenever the curator
successfully updates its EDB with an update u+, it also increments the ith counter ctri by 1, where
i ∈ Map1(u+). To hide which counter was updated, however, it also increments all the remaining
counters by 0.

The efficiency of our scheme depends on the efficiency of the underlying encrypted database
EDB and is linear in n. In terms of security, we provide a black-box leakage analysis of HPX’s leak-
age. We then show that if its underlying encrypted structures are instantiated with zero leakage
or almost zero-leakage constructions then HPX’s leakage profile is minimal.

HPX makes use of a dynamic response-hiding structured encryption scheme ΣDB = (Setup,Query,
Add,Remove) and a private encrypted counter scheme ∆ctr = (Setup,EAdd,PRead) (e.g., the con-
struction described in Section 5). Our construction is described in detail in Figs. (2) and (3) and
works as follows.

Setup. The Setup algorithm takes as input a database DB and the size of the histogram n. It
initializes n counters (ctr1, . . . , ctrn). It then encrypts DB with ΣDB which results in EDB, and
encrypts each ctri with ∆ctr which results in (ectr1, . . . , ectrn). The private EDB is PEDB =
(EDB, ectr1, . . . , ectrn).

Encrypted queries. To query the EDB, the curator and server execute the ∆.Query protocol
where the curator inputs its query q and the server inputs PEDB. This protocol in turn executes
EDB’s query protocol on the same inputs and returns the response to the curator.

Database updates. To add or remove an item u to/from the database, the curator first up-
dates EDB using the appropriate update protocol (either ΣDB.Add or ΣDB.Remove). The server
then returns a message to the curator indicating whether the operation succeeded or failed. The
curator and server then update all the private encrypted counters (ectr1, . . . , ectrn) as follows. If
the operation succeeded and i ∈ Map1(u) (i.e., the update is associated to the ith counter) then
ectri is incremented by 1 (in case of addition, otherwise it is decremented by 1), otherwise ectri
is incremented by 0. Incrementing all the counters—even the ones that are not relevant to the
update—hides which counter is updated from the server. This is crucial to hide the values of the
histogram from the server. To see why, suppose we did not hide which counter is updated after
an EDB operation (i.e., an EAdd or ERemove). Note that the server knows whether the EDB op-
eration was an add or a remove and whether the operation succeeded or failed. It can determine
the success or failure simply by comparing EDB to EDB′. If, in addition to this, it also knew
which counter got updated after the EDB operation, it would know whether that counter was in-
cremented, decremented or kept constant. And from this information the server effectively knows
the histogram.

Private queries. To query the ith counter, the analyst and the server execute a private read
operation on ectri.
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Let ΣDB = (Setup,Query,Add,Remove) be a database encryption scheme and let ∆ctr =
(Gen,Setup,EAdd,PRead) be a PSTE scheme for counters. Let λ be a upper bound on the num-
ber of updates and ε be the differential privacy parameter. Consider the PSTE scheme ∆HIS =
(Setup,EAdd,ERemove,EQuery,PHist) defined as follows:

• SetupC,S,A

((
1k, ε,DB

)
;⊥;⊥

)
:

1. C does the following:

(a) computes (KDB, stDB,EDB)← ΣDB.Setup(1k,DB);

(b) for all i ∈ [n], it computes (Ki
C; ectri;K

i
A)← ∆ctr.SetupC,S,A(1k, ε, λ, ctri);

2. C receives KC = (KDB,K
1
C, . . . ,K

n
C) and stC = stDB;

3. S receives PEDB = (EDB, ectr1, . . . , ectrn);

4. A receives KA = (K1
A, . . . ,K

n
A).

• EAddC,S

((
stC,KC, u

+
)
;PEDB

)
:

1. C parses stC as stDB and KC as (KDB,K1, . . . ,Kn);

2. S parses PEDB as (EDB, ectr1, . . . , ectrn);

3. C and S execute (st′DB;EDB′)← ΣDB.AddC,S(stDB,KDB, u
+;EDB);

4. if EDB = EDB′ then S sets fail = 1 otherwise it sets fail = 0;

5. S sends fail to C;

6. for all i ∈ [n],

(a) if fail = 0 and i ∈ Map1(u), then C and S execute (⊥; ectr′i)← ∆ctr.EAddC,S(Ki,+1; ectri);

(b) otherwise they execute (⊥; ectr′i)← ∆ctr.EAddC,S(Ki, 0; ectri);

7. C receives an updated state st′C = st′DB;

8. S receives an updated structure PEDB′ = (EDB′, ectr′1, . . . , ectr
′
n).

• ERemoveC,S

((
stC,KC, u

−);PEDB):

– similar to EAdd except that

1. on line (3) C computes ΣDB.RemoveC,S(stDB,KDB, u
−;EDB);

2. on line (6a) C and S execute (⊥; ectr′i)← ∆ctr.EAddC,S(Ki,−1; ectri);

• EQueryC,S

((
stC,KC, q

)
;PEDB

)
:

1. C parses stC as stDB and KC as KDB;

2. S PEDB as (EDB, ectr1, . . . , ectrn);

3. C and S execute (r;⊥)← ΣDB.QueryC,S(stDB,KDB, q;EDB);

4. C receives r;

5. S receives ⊥.

Figure 2: HPX: our PSTE construction for histograms (Part 1).
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• PHistA,S

((
KA, q

p
)
;PEDB

)
:

1. A parses KA as (K1, . . . ,Kn);

2. S parses PEDB as (EDB, ectr1, . . . , ectrn);

3. A and S execute (rp;⊥)← ∆ctr.PReadA,S

(
Kqp ; ectrqp

)
;

4. A outputs rp and S outputs ⊥.

Figure 3: HPX: our PSTE construction for histograms (Part 2).

6.1 Efficiency and Utility

The query complexity of HPX is equal to the query complexity of the underlying database encryp-
tion scheme ΣDB. In other words, its query complexity is

O

(
timeqDB(q)

)
,

where timeqDB is the query complexity ΣDB. Similarly, the round complexity of the query protocol
is equal to the round complexity of the query protocol of ΣDB. The update complexity (whether it
is an EAdd or a ERemove) of HPX is

O

(
timeuDB(v) + n · timectr(λ)

)
,

where timeuDB is the update complexity of the database encryption scheme ΣDB, timectr is the add
complexity of the private counter encryption scheme ∆ctr, n is the number of bins in the histogram,
and λ is the upper bound on the number of updates. We stress that even though the update
complexity is linear in n, the latter is usually a small constant. In fact, in practice, the number of
bins is often decided a-priori by the analyst and is usually a small constant [4, 57, 47, 65]. In this
case, the update complexity of HPX is

O

(
timeuDB(v) + timectr(λ)

)
.

The round complexity of both EAdd and a ERemove is

O

(
roundsuDB(v) + roundsactr(λ)

)
,

where roundsuDB and roundsactr are the round complexities of the update and the add protocols of
ΣDB and ∆ctr, respectively. The private query complexity of HPX is

O

(
timepctr(λ)

)
,

where timepctr is the private query complexity of ∆ctr. Similarly, the round complexity is equal to
the round complexity of the private query complexity of ∆ctr.
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Additional remarks about update complexity. As discussed above, in practice, the number
of bins is a small constant but there are applications where the number of bins might be ω(1).
In particular, Sturges [60] shows that, when the data is approximately normally distributed, then
setting n to

n = 1 + dlog |U|e

is sufficient for data analytics, where U is the update space of the database. In this case, the update
complexity is equal to

O

(
timeuDB(v) + log |U| · timectr(λ)

)
.

Note also that there is a variant of our construction that reduces the update complexity to

O

(
timeuDB(v) + n

)
.

at the cost of increasing the private query complexity to

O

(
timepctr(λ) + log λ · timectr(λ)

)
Due to space limitation, we defer the details of this variant to the full version of this work.

Theorem 6.1. For each t ∈ [λ], HPX is (α, δ)-useful, where α = O(1
ε · (log λ)

√
log λ · log 1

δ ), and
ε, δ > 0.

The utility of HPX is equal to the utility of CPX. This is because for each private query, one
of the counters is read and returned.

6.2 Security

In the following, we detail the security guarantees of HPX against standard, snapshot and statistical
adversaries, respectively.

Security against a persistent adversary. The setup leakage of HPX consists of the setup
leakage of its underlying building blocks. In particular, this includes the setup leakage of the
database encryption scheme and the setup leakage of the encrypted private counter, for all n
counters. The query leakage is equal to the query leakage of the underlying database encryption
scheme. The update leakage, whether it is an add or remove leakage, includes the update leakage
of the underlying database encryption scheme and, for all i ∈ [n], the add leakage of the underlying
encrypted private counter scheme. The private query leakage of a query consists of, the private
query leakage of the underlying private counter scheme along with the counter identifier. We now
give a precise description of HPX’s leakage profile and show that it is adaptively-secure with respect
to it. Its setup leakage is

LS(DB) =

(
LdbS (DB),

(
LctrS (ctri)

)
i∈[n]

)
.

Its query leakage is equal to
LQ(DB, q) = LdbQ (DB, q).

21



Its respective add and remove leakages LA and LR on the respective add and remove updates u+

and u− are equal to for all a ∈ {−1, 0, 1}

LA(DB, u+) =

(
LdbA (DB, u+),

(
LctrA (ctri, a)

)
i∈[n]

)
,

LR(DB, u−) =

(
LdbR (DB, u−)),

(
LctrA (ctri, a)

)
i∈[n]

)
.

Its private query leakage is equal to

LP(DB, qp) =

(
qp,LctrP (ctrqp ,⊥)

)
.

Theorem 6.2. If ΣDB is (LdbS ,LdbQ ,LdbA ,LdbR )-secure, and ∆ctr is (LctrS ,LctrA ,LctrP )-secure, then HPX
is (LS,LQ,LA,LR,LP)-secure.

The proof of Theorem 6.2 is in Appendix B.1.

Security against a snapshot adversary. The snapshot leakage LSN of HPX is equal to the
snapshot leakage of its underlying primitives such that

LSN(DB,σi) =

(
LdbSN(DB,σi),

(
LctrSN(ctrj ,σi)

)
j∈[n]

)
.

Theorem 6.3. If ΣDB is (m,LdbSN)-snapshot secure, and ∆ctr is (m,LctrSN)-snapshot secure, then
HPX is (m,LSN)-snapshot secure.

The proof of Theorem 6.3 is in Appendix B.2. Clearly, if both ΣDB and ∆ctr are breach-resistant
then HPX is breach-resistant as well based on Definition 4.6.

Leakage vs. update complexity and utility. Recall that the update complexity is linear in
n because all the counters are updated during an HPX update. More precisely, the counters in
Map1(v) are incremented with +1/ − 1 and the rest are incremented with 0. This is to hide the
identity of the counters in Map1(v) from the adversaries. If one is willing to leak this, the update
complexity improves to

O

(
timeuDB(v) + |Map1(v)| · timectr(λ)

)
,

while the add/remove leakage and the snapshot leakage will now include, in addition, the identities
of the updated counters Map1(v). This will also improve the utility of the counters because, roughly
speaking, they will be incremented less often so less noise will be added.

Security against a statistical adversary. To show that our HPX construction is differentially-
private, we need to show that PHist is differentially private as per Definition 4.7. For this, we first
show that any two neighboring update operation sequences induce operation sequences on the
counters that differ in at most two time places. As the next step of the proof, we show that, given
that ∆ctr is differentially private, PHist is differentially private.

Recall that in our construction, every update operation of the curator induces an EAdd operation
on all the counters. The operand however differs from counter to counter. For example, a successful
ERemove of operand o by the curator leads to a −1 being added to all counters in Map1(o), while 0
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to the rest of the counters. Similarly, a successful EAdd of operand o leads to a 1 being added to all
counters in Map1(o), while 0 to the rest of the counters. Therefore, the operation that is induced
on the counters is always EAdd but the operands come from {−1, 0, 1}. We therefore slightly abuse
the notation and say that a curator’s update operation induces an operation in {−1, 0, 1} on the
counters.

Before introducing our lemma and our main theorem, we set up some notations. Let σ =(
(op1, o1), . . . , (opλ, oλ)

)
be an update operation sequence, where opi ∈ {EAdd,ERemove} and oi ∈

U. For all i ∈ [n], we define a new mapping Mapi2 that, intuitively, creates the operation sequences
in {−1, 0, 1}λ for the ith counter. We call these sequences the counter mapped sequences. Formally,
for each j ∈ [λ], we have,

Mapi2[σj ] =


1 if opj = EAdd and j ∈ Map1(oj)

−1 if opj = ERemove and j ∈ Map1(oj)

0 otherwise.

Also, for every i ∈ [n], we define a another mapping Mapi3, that captures whether the jth
operation in the update operation sequence is successful or not. We call these sequences the
operation mapped sequences. Formally,

Mapi3

[
Mapi2[σj ]

]
=

{
Mapi2[σj ] if oj succeeds
0 otherwise.

We abuse the notation and we set

Mapi2[σ] =
(
Mapi2[σj ])j∈[λ]

and similarly

Mapi3

[
Mapi2[σ]

]
=

(
Mapi3

[
Mapi2[σj ]

])
j∈[λ]

.

In the following, we show that any update operation sequences that differ in at most one
operation, lead to two operation mapped sequences that differ in at most two operations.

Lemma 6.4. Given any two update operation sequences σ and σ′ such that ||σ−σ′|| ≤ 1, and for
any i ∈ [n], we have ∣∣∣∣∣∣∣∣Mapi3

[
Mapi2[σ]

]
−Mapi3

[
Mapi2[σ′]

]∣∣∣∣∣∣∣∣ ≤ 2

We provide the proof of Lemma 6.4 in Appendix B.3. Since an update u ∈ U can be mapped
to |Map1(u)| counters, the overall privacy is degraded by a multiplicative maxu∈U |Map1(u)| factor.
Given the results of the lemma above, we now state our main theorem.

Theorem 6.5. If ∆ctr is ε-differentially-private, then HPX is 2ε ·maxu∈U(|Map1(u)|)-differentially
private as per Definition 4.7.

We provide the proof of Theorem 6.5 in Appendix B.4.

7 Handling Collusions

In this Section, we describe how our constructions can be extended to handle collusions.
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Snapshot and statistical adversary. First, note that collusion between a snapshot and statis-
tical adversary is equivalent to the adversary considered in the pan-privacy literature. In [19], Chan
et al. construct a pan-private counter for a single unannounced intrusion and multiple announced
intrusions based on the same binary mechanism described in Section 5. In the former, additional
noise is added to all the nodes of the binary tree during setup to prevent the adversary from getting
the real node values at the time of intrusion. This added noise protects against the intrusion but
degrades the utility by a factor of 2. They then extend this method to support multiple announced
intrusions by adding increasing amounts of noise and further degrading the utility. In particular,
k intrusions reduce the utility by O(

√
k + 1).

To handle this kind of collusion, it suffices to replace all the counters in CPX with the pan-
private counters of [19]. To encrypt the database, we then use snapshot-secure STE scheme with
zero-leakage; that is, with leakage that reveals at most some public parameter (e.g., the security
parameter or any parameter that is chosen independently of the database). Note that this is simple
to achieve by padding the database and encrypting it with a breach-resistant STE scheme [5].

Persistent and statistical adversary. This is a stronger setting than above because achieving
differential privacy requires us to hide whether an add or a remove operation occurred. This is
particularly difficult to do against an adversary that holds the encrypted database EDB because
the size of EDB before and after an operation reveals which operation occured. This essentially
requires us to use an EDB with zero-leakage updates. Another challenge is that many STE schemes
leak the sizes of query responses which could be correlated with the size of EDB. To handle this,
we need to use an STE scheme with zero-leakage queries. One possible instantiation is to make use
of ORAM simulation [33] where all query responses in the database have to be padded to be equal
to the same length– a function of some public parameter. This instantiation, however, will induce
a polylogarithmic multiplicative overhead on both the query and update complexities.

Notice that when the persistant and statistical adversaries collude, there is no need to encrypt
the counters since the analyst holds the decryption key. In addition, since the server samples the
noise for the counters, it can easily infer the increments made. We can therefore use plaintext
counters maintained in a simple register (i.e., there is no need to use the binary tree mechanism
of Chan et al.) and use the following approach to maintain them. To increment the counters, the
curator sends to the server an increment of +1/− 1/0 with noise for each counter. Upon receiving
the noisy increment, it adds it to the current value in the register. The PRead protocol returns
the current register value. We note that this approach is similar to the second simple counting
mechanism of [19]. In fact, using a proof very similar to that of Theorem 1.3 of [19], this approach

can be shown to be ε-differentially private and (α, δ)-useful, where α = O
(√

λ
ε · log 1

δ

)
and ε, δ > 0.

Note that this approach meets Dwork et al.’s lower bound of
√
k on utility for k intrusions [26],

proving that this construction is almost tight.

8 Efficiency Estimates

In this Sectoin, we estimate the efficiency of our construction. To do this we conducted micro-
benchmarks of all the building blocks and then estimated the cost of the various operations.

Experimental setup. We consider the case where the additively-homomorphic encryption scheme
is instantiated with Paillier [54]. We further assume the database is a multi-map and is encrypted
using DLS, the dual-secure multi-map encryption scheme of Amjad, Kamara and Moataz [5]. We
used implementations of Paillier and DLS from the Javaillier [1] and Clusion libraries [51],
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respectively. Our test environment was a MacBook Pro 3.1 GHz Intel Core i7 with 16 GB of
memory.

Micro-benchmarks. We instantiated Paillier with a 2048-bit key. Encryption, decryption and
addition took on average 18, 70 and 513 ms, respectively. With a multi-map holding 10 millions
pairs, DLS.Setup, DLS.Get and DLS.Put took 10 minutes, 33 ms and 1 microsecond, respectively.
We used Sturges’ formula on our datast to determine the bins. This resulted in 25 bins.

Estimates. Based on the micro-benchmarks above, we estimate that for a multi-map holding 10
million pairs, HPX.Setup will take about 10 minutes, HPX.EAdd and HPX.ERemove will take 0.96
minutes, HPX.EQuery will take 1 microsecond.

Acknowledgements

The authors would like to thank DIMACS and the organizers of the Workshop on Overcoming
Barriers to Data Sharing including Privacy and Fairness where the ideas for this work were first
generated.

References

[1] Javallier. https://github.com/snipsco/paillier-libraries-benchmarks/tree/master/

java-javallier.

[2] J. Abowd. The challenge of scientific reproducibility and privacy protection for statisti-
cal agencies., 15 September 2016. https://www2.census.gov/cac/sac/meetings/2016-09/

2016-abowd.pdf.

[3] G. Acs and C. Castelluccia. A case study: privacy preserving release of spatio-temporal density
in paris. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1679–1688. ACM, 2014.

[4] G. Acs, C. Castelluccia, and R. Chen. Differentially private histogram publishing through
lossy compression. In 2012 IEEE 12th International Conference on Data Mining, pages 1–10.
IEEE, 2012.

[5] G. Amjad, S. Kamara, and T. Moataz. Breach-resistant structured encryption. IACR Cryp-
tology ePrint Archive, 2018:195, 2018.

[6] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi. Geo-
indistinguishability: Differential privacy for location-based systems. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security, pages 901–914. ACM,
2013.

[7] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar. Privacy, accuracy,
and consistency too: a holistic solution to contingency table release. In Proceedings of the
twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pages 273–282. ACM, 2007.

25

https://github.com/snipsco/paillier-libraries-benchmarks/tree/master/java-javallier
https://github.com/snipsco/paillier-libraries-benchmarks/tree/master/java-javallier
https://www2.census.gov/cac/sac/meetings/2016-09/2016-abowd.pdf
https://www2.census.gov/cac/sac/meetings/2016-09/2016-abowd.pdf


[8] G. Barthe, M. Gaboardi, E. J. Gallego Arias, J. Hsu, A. Roth, and P.-Y. Strub. Higher-order
approximate relational refinement types for mechanism design and differential privacy. ACM
SIGPLAN Notices, 50(1):55–68, 2015.

[9] A. Blum, K. Ligett, and A. Roth. A learning theory approach to noninteractive database
privacy. Journal of the ACM (JACM), 60(2):12, 2013.

[10] R. Bost. Sophos - forward secure searchable encryption. In ACM Conference on Computer
and Communications Security (CCS ’16), 20016.

[11] R. Bost, B. Minaud, and O. Ohrimenko. Forward and backward private searchable encryption
from constrained cryptographic primitives. In ACM Conference on Computer and Communi-
cations Security (CCS ’17), 2017.

[12] J. A. Calandrino, A. Kilzer, A. Narayanan, E. W. Felten, and V. Shmatikov. ” you might
also like:” privacy risks of collaborative filtering. In Security and Privacy (SP), 2011 IEEE
Symposium on, pages 231–246. IEEE, 2011.

[13] J. Cao, Q. Xiao, G. Ghinita, N. Li, E. Bertino, and K.-L. Tan. Efficient and accurate strate-
gies for differentially-private sliding window queries. In Proceedings of the 16th International
Conference on Extending Database Technology, pages 191–202. ACM, 2013.

[14] Y. Cao and M. Yoshikawa. Differentially private real-time data release over infinite trajectory
streams. In Mobile Data Management (MDM), 2015 16th IEEE International Conference on,
volume 2, pages 68–73. IEEE, 2015.

[15] Y. Cao and M. Yoshikawa. Differentially private real-time data publishing over infinite trajec-
tory streams. IEICE TRANSACTIONS on Information and Systems, 99(1):163–175, 2016.

[16] Y. Cao, M. Yoshikawa, Y. Xiao, and L. Xiong. Quantifying differential privacy under temporal
correlations. In Data Engineering (ICDE), 2017 IEEE 33rd International Conference on, pages
821–832. IEEE, 2017.

[17] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner. Dynamic
searchable encryption in very-large databases: Data structures and implementation. In NDSS,
volume 14, pages 23–26. Citeseer, 2014.

[18] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Highly-scalable search-
able symmetric encryption with support for boolean queries. In Advances in Cryptology -
CRYPTO ’13. Springer, 2013.

[19] T. H. Chan, E. Shi, and D. Song. Private and continual release of statistics. In Automata,
Languages and Programming, 37th International Colloquium, ICALP 2010, Bordeaux, France,
July 6-10, 2010, Proceedings, Part II, pages 405–417, 2010.

[20] M. Chase and S. Kamara. Structured encryption and controlled disclosure. In Advances in
Cryptology - ASIACRYPT ’10, volume 6477 of Lecture Notes in Computer Science, pages
577–594. Springer, 2010.

[21] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption:
improved definitions and efficient constructions. Journal of Computer Security, 19(5):895–934,
2011.

26



[22] A. Differential Privacy Team. Learning with privacy at scale.

[23] I. Dinur and K. Nissim. Revealing information while preserving privacy. In Proceedings of
the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 202–210. ACM, 2003.

[24] C. Dwork. Differential privacy: A survey of results. In International Conference on Theory
and Applications of Models of Computation, pages 1–19. Springer, 2008.

[25] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private
data analysis. In TCC, volume 3876, pages 265–284. Springer, 2006.

[26] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differential privacy under continual
observation. In Proceedings of the forty-second ACM symposium on Theory of computing,
pages 715–724. ACM, 2010.

[27] C. Dwork, M. Naor, T. Pitassi, G. N. Rothblum, and S. Yekhanin. Pan-private streaming
algorithms. In ICS, pages 66–80, 2010.

[28] C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends R© in Theoretical Computer Science, 9(3–4):211–407, 2014.

[29] C. Dwork and G. N. Rothblum. Concentrated differential privacy. arXiv preprint
arXiv:1603.01887, 2016.
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A CPX Proofs

A.1 Proof of Theorem 5.1

For each t ∈ [λ], CPX is (α, δ)-useful, where α = O(1
ε · (log λ)

√
log λ · log 1

δ ), and ε, δ > 0.
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Proof. The proof is similar to the proof of utility of Chan et al.’s counter [19]. The main difference
is the sensitivity of the “sum” function. Chan et al. consider Add operands from {0, 1} whereas
we consider Add operands from {−1, 0, 1}. Because of this the senstivity of our “sum” function is
2 as opposed to 1. In turn, this affects the differential privacy by a multiplicative factor of 2 but
this can be factor traded-off for utility by scaling the Laplacian noise appropriately. Note that this
factor is subsumed above in the asymptotic notation.

A.2 Proof of Theorem 5.2

Theorem 5.2. If AHE is CPA-secure, then CPX is (LctrS ,LctrA ,LctrP )-secure.

Proof. Consider the CPX simulators S1 and S2 that work as follows.

Simulating PEDB: Given LctrS (ctr) = λ, it initializes a binary tree with λ leaves where every node
N is equal to N ← AHE.Enc(pk, 0), where (sk,pk) ← AHE.Gen(1k). It outputs ectr = (T, ε, 0,pk),
where ε is the privacy parameter.

Simulating EAdd: Given LctrA (ctr, a) = ⊥, S1 outputs cta ← AHE.Enc(pk, 0).

Simulating PRead: Given LctrP (ctr,⊥) = ⊥, S2 does nothing.
It remains to show that for all probabilistic polynomial-time adversaries A, the probability that

RealΣ,A(k) outputs 1 is negligibly-close to the probability that IdealΣ,A,S1,S2 outputs 1. We do
this using the following sequence of games:

Game0 : is the same as a RealΣ,A(k) experiment.

Game1 : is the same as Game0 except that the AHE encryption of each node in T is replaced by
AHE.Enc(pk, 0), and the encrypted integer cta in ∆ctr.EAdd is replaced with AHE.Enc(pk, 0),
for any a ∈ {−1, 0, 1}. The probabilities that Game0 and Game1 output 1 are negligibly-close,
otherwise the IND-CPA-security of AHE would be violated.

The Theorem follows by observing that Game1 is exactly an IdealΣ,A,S1,S2(k) experiment.

A.3 Proof of Theorem 5.3

Theorem 5.3. If AHE is CPA-secure, then CPX is (m,LctrSN)-snapshot secure.

Proof. Consider the CPX simulator S that works as follows.

Simulating ectri after the ith sequence of operations: Given LctrSN(ctr,σi) = λ, S simulates ectri as
follows:

• As first step, S initializes a binary tree T0 with λ leaves where every node N is equal to
N ← AHE.Enc(pk, 0), where (sk, pk) ← AHE.Gen(1k). It outputs ectri = (T0, ε, 0, pk), where
ε is the privacy parameter.

• for all i ≥ 1, for all j ∈ [|opi|], the simulator S replaces every node N in the path starting
from the root and ending at the leaf

∑i−1
t=1 |σt|+j in Ti−1 by N← AHE.Enc(pk, 0). It outputs

ectri = (Ti, ε,
∑i

t=1 |σt|, pk).
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It remains to show that for all probabilistic polynomial-time adversaries A, the probability that
RealΣ,A(k) outputs 1 is negligibly-close to the probability that IdealΣ,A,S outputs 1. We do this
using the following sequence of games:

Game0 : is the same as a RealΣ,A(k) experiment.

Game1 : is the same as Game0 except that the AHE encryption of all nodes N in the path
starting from the root and ending at the ith leaf, for the ith operation, are replaced with
N← AHE.Enc(pk, 0). The probabilities that Game0 and Game1 output 1 are negligibly-close,
otherwise the IND-CPA-security of AHE would be violated.

The Theorem follows by observing that Game1 is exactly an IdealΣ,A,S(k) experiment.

B HPX Proofs

B.1 Proof of Theorem 6.2

Theorem 6.2. If ΣDB is (LdbS ,LdbQ ,LdbA ,LdbR )-secure, and ∆ctr is (LctrS ,LctrA ,LctrP )-secure, then HPX
is (LS,LQ,LA,LR,LP)-secure.

Proof. Let SDB, S1
ctr and S2

ctr be the simulators guaranteed to exist by the adaptive security of ΣDB

and ∆ctr and consider the HPX simulators S1 and S2 that work as follows.

Simulating PEDB: Given

LS(DB) =

(
LdbS (DB),

(
LctrS (ctri)

)
i∈[n]

)
,

S1 simulates PEDB by computing

EDB← SDB(LdbS (DB)) and ectri ← S1
ctr(LctrS (ctri)),

for all i ∈ [n], and outputting

PEDB = (EDB, ectr1, · · · , ectrn).

Simulating EQuery: Given LQ(DB, q) = LdbQ (DB, q), S1 uses

SDB

(
LdbQ
(
DB, q

))
to simulate a query on EDB. Recall that ΣDB.Query is an interactive protocol so here S1 is using
SDB to play the role of the curator.

Simulating EAdd: Given

LA(DB, u+) =

(
LdbA (DB, u+),

(
LctrA (ctri, a)

)
i∈[n]

)
,

where a ∈ {−1, 0, 1}. S1 first uses

SDB

(
LdbA
(
DB, u+

))
,
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to simulate an add to EDB. Here again, as ΣDB.Add is an interactive protocol, S1 is using SDB to
simulate the role of the curator. Then S1 uses

S1
ctr

(
LctrA (ctri, a)

)
to simulate an add to ectri for all i ∈ [n]. S1 is using S1

ctr to simulate the role of the curator.

Simulating ERemove: The simulation is similar to the EAdd simulation except that instead of LA,
it uses LR.

Simulating PHist: Given

LP(DB, qp) =

(
qp,LctrP (ctrqp ,⊥)

)
,

S2 uses

S2
ctr

(
LctrP (ctrqp ,⊥)

)
to simulate a private query on ectrqp . S2 is using S2

ctr to simulate the role of the analyst.
It remains to show that for all probabilistic polynomial-time adversaries A, the probability that

RealΣ,A(k) outputs 1 is negligibly-close to the probability that IdealΣ,A,S1,S2 outputs 1. We do
this using the following sequence of games:

Game0 : is the same as a RealΣ,A(k) experiment.

Game1 : is the same as Game0 except that EDB is replaced by the output of SDB(LdbS (DB)), the
execution of ΣDB.Query is replaced by a simulated execution between

SDB

(
LdbQ
(
DB, q

))
and the adversary, the execution of ΣDB.Add is replaced by a simulated execution between

SDB

(
LdbA
(
DB, u+

))
and the adversary, and the execution of ΣDB.Remove is replaced by a simulated execution
between

SDB

(
LdbR
(
DB, u−

))
and the adversary. The probabilities that Game0 and Game1 output 1 are negligibly-close,
otherwise the (LdbS ,LdbQ ,LdbA ,LdbR )-security of ΣDB would be violated.

Game1+i for i ∈ [n]: is the same as Gamei except that ectri is replaced by the output of S1
ctr(LctrS (ctri)),

the execution of ∆ctr.Add is replaced by a simulation between

S1
ctr

(
LctrA

(
ctri, a

))
and the adversary, and the execution of ∆ctr.PRead, if qp ≤ i, is replaced by a simulation
between

S2
ctr

(
LctrP

(
ctrqp ,⊥

))
and the adversary on the qpth counter. The probabilities that Gamei and Game1+i output 1
are negligibly-close, otherwise the (LctrS ,LctrA ,LctrP )-security of ∆ctr would be violated.

The Theorem follows by observing that Game1+n is exactly an IdealΣ,A,S1,S2(k) experiment.
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B.2 Proof of Theorem 6.3

Theorem 6.3. If ΣDB is (m,LdbSN)-snapshot secure, and ∆ctr is (m,LctrSN)-snapshot secure, then
HPX is (m,LSN)-snapshot secure.

Proof. Let SDB and Sctr be the simulators guaranteed to exist by the snapshot security of ΣDB and
∆ctr and consider the HPX simulator S that works as follows.

Simulating PEDB after the ith sequence of operations: Given

LSN(DB,σi) =

(
LdbSN(DB,σi),

(
LctrSN(ctrj ,σi)

)
j∈[n]

)
,

S simulates PEDBi by computing, for all i ∈ [m],

EDBi ← SDB(LdbSN(DB,σi)), and

ectri,j ← Sctr(LctrSN(ctrj ,σi)),

for all j ∈ [n], and outputting

PEDBi = (EDBi, ectri,1, . . . , ectri,n).

It remains to show that for all probabilistic polynomial-time adversaries A, the probability that
RealΣ,A(k) outputs 1 is negligibly-close to the probability that IdealΣ,A,S outputs 1. We do this
using the following sequence of games:

Game0 : is the same as a RealΣ,A(k) experiment.

Game1 : is the same as Game0 except that EDBi is replaced by the output of SDB(LdbSN(DB,σi)),
for i ∈ [m]. The probabilities that Game0 and Game1 output 1 are negligibly-close, otherwise
the (m,LdbSN)-snapshot security of ΣDB would be violated.

Game1+j for j ∈ [n]: is the same as Gamej except that ectri,j is replaced by the output of
Sctr(LctrSN(ctrj ,σi)), for i ∈ [m]. The probabilities that Gamej and Game1+j output 1 are
negligibly-close, otherwise the (m,LctrSN)-snapshot security of ∆ctr would be violated.

The Theorem follows by observing that Game1+n is exactly an IdealΣ,A,S(k) experiment.

B.3 Proof of Lemma 6.4

We first start by showing that any two counter mapped sequences that differ in at most one
operation, lead to two operation mapped sequences that differ in at most two operations. Note
that this result only applies to set-like failures.

Lemma B.3. Let σ, σ′ be any neighboring update operation sequences such that for all i ∈ [n],∣∣∣∣Mapi2[σ]−Mapi2[σ′]
∣∣∣∣ ≤ 1, then we have∣∣∣∣∣∣∣∣Mapi3

[
Mapi2[σ]

]
−Mapi3

[
Mapi2[σ′]

]∣∣∣∣∣∣∣∣ ≤ 2
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Proof. For simplicity assume that all operations (opi, oi) in the update operation sequence σ that
map to the ith counter operate on the same operand. Formally, for all i, j ∈ [λ], if Map1(oi) ∩
Map1(oj) 6= ⊥, then oi = oj .

3 We assume the same thing for σ′ as well.
We now do the rest of the proof for counter i. Let µ = Mapi2[σ], µ′ = Mapi2[σ′], µ̃ = Mapi3(µ)

and µ̃′ = Mapi3(µ′), for any i ∈ [n]. We also denote by DB0 and DB′0 the underlying plaintext
database before applying the sequence of operations in σ and σ′, respectively.

Let t ≤ λ be the position at which the two sequences µ and µ′ differ at. Then µ̃j = µ̃′j , for
all j < t. This simply holds by definition of the operation mapped sequences. Note that this
also implies that the databases, after the t first operations, contain the same items and we write
DBt−1 = DB′t−1. So in order to proof the lemma we need to show that in the remaining positions,
i.e., for all j ∈ {t, · · · , λ}, µ̃ and µ̃′ differ at most at two places. That is, our proof reduces to a
counting problem where we need to count the number of indices in {t, · · · , λ} where µ̃ and µ̃′ differ.

Consider the tth operation µt and µ′t. There are three possiblities where µt and µ′t are different:
(1) µt = 1, µ′t = −1, (2) µt = 0, µ′t = −1, or (3) µt = 1, µ′t = 0. The other three cases are
symmetrical and we ignore them without any loss of generality. We now try to infer what the tth

operand ot and o′t respectively must be in σ and σ′ in these three cases. In (1), ot = o′t because
otherwise either Map2[σt] 6= i or Map2[σ′t] 6= i leading to either µt = 0 or µ′t = 0. Let us define
o = ot = o′t. In (2), let o = o′t, while in (3) let o = ot.

Let us now consider case (1) again (when µt = 1, µ′t = −1) with o defined as above and count the
number of indices in {t, · · · , λ} where µ̃ and µ̃′ differ. The other two cases can be proven on similar
lines. Recall that DBt−1 = DB′t−1, therefore there are two cases at this point : (a) o /∈ DBt−1,DB

′
t−1;

and (b) o ∈ DBt−1,DB
′
t−1. Again these cases are symmetrical, so we just describe case (a) in the

following.
Since o /∈ DBt−1 and µt = 1 =⇒ opt = EAdd, the operation must be successful. Therefore

µ̃t = 1 and the database changes to DBt such that o ∈ DBt. However, since v /∈ DB′t−1 and
µ′t = −1 =⇒ ERemove, the operation fails. Therefore, µ̃′t = 0 and the database becomes DB′t such
that v /∈ DB′t.

We now show that after applying the next operation µt+1 to DBt and µ′t+1 to DB′t, either
DBt+1 = DB′t+1 and µ̃t+1 6= µ̃′t+1 (thereby producing the second differing index); or DBt+1 = DBt
and DB′t+1 = DB′t but µ̃t+1 = µ̃′t+1 (at which point the argument can be repeated until the next
instance at which the operation mapping differs). Once the databases become the same, they
remain similar for the remaining operations as all the operations in µ and µ′ are the same. Hence
no more different indices are produced. In particular, consider µt+1 and µ′t+1 and all the possible
values it can take:

1. µt+1 = µ′t+1 = 1. Since o ∈ DBt, the operation µt+1 fails. Therefore, µ̃t+1 = 0 and the
database does not change making DBt+1 = DBt such that o ∈ DBt+1. However, since o /∈ DB′t
and µ′t+1 = 1, the operation is successful. Therefore µ̃′t = 1 and the database changes to
DB′t+1 such that o ∈ DB′t. Notice that DBt+1 = DB′t+1.

2. µt+1 = µ′t+1 = −1. This is similar to the above. In the end, o /∈ DBt+1,DB
′
t+1 and DBt+1 =

DB′t+1.

3. µt+1 = µ′t+1 = 0. Since both µt+1 and µ′t+1 are 0, the databases do not change but µ̃t+1 =
µ̃′t+1.

3Note that the general case where operations may have different operands can be reduced to the same operand
case detailed above. To see why, we can simply map different operands to different sub-sequences in such a way that
every sub-sequence operates on the same operand. Note that there will be only one sub-sequence that have different
operations in this case.
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This ends our proof.

While the previous lemma assumes the counter mapped sequences to be neighbors, we show
that the lemma even holds when we assume only the update operation sequences to be neighbors.

Lemma 6.4. Given any two update operation sequences σ and σ′ such that ||σ−σ′|| ≤ 1, and for
any i ∈ [n], we have ∣∣∣∣∣∣∣∣Mapi3

[
Mapi2[σ]

]
−Mapi3

[
Mapi2[σ′]

]∣∣∣∣∣∣∣∣ ≤ 2

Proof. Given two neighboring update operation sequences σ and σ′, it is clear that the resulting
counter mapped sequences, for any i ∈ [n], will differ in at most 1 position (and that position will
be same as the position at which σ and σ′ differ). This is because one update operation can map
to one and only one operation in the counter mapped sequences. Therefore, we have that for any
i ∈ [n], ∣∣∣∣Mapi2(σ)−Mapi2(σ′)

∣∣∣∣ ≤ 1.

Based on the result of Lemma B.3, we can then conclude our proof.

B.4 Proof of Theorem 6.5

Theorem 6.5. If ∆ctr is ε-differentially-private, then HPX is 2ε ·maxu∈U(|Map1(u)|)-differentially
private as per Definition 4.7.

Proof. In HPX, every counter is implemented using ∆ctr which is an ε-differentially private counter
on neighboring sequences in {−1, 0, 1}λ. However, if the sequences are not 1-distance (neighbors)
apart but k-distance apart, ∆ctr provides kε-differentially private counters. We already showed in
Lemma 6.4 that neighboring update operation sequences indeuce operation sequences on individual
counters that are 2-distance apart. However, an update can map to multiple counters. In particular,
an update u ∈ U can map to |Map1(u)| counters, implying that we can have a maximum of
maxu∈U(|Map1(u)| sequences that are 2-distance apart. Leveraging the union bound we therefore
prove our theorem.
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