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Abstract

The RSA PKCS#1 v1.5 signature algorithm is the most widely used digital signature scheme in
practice. Its two main strengths are its extreme simplicity, which makes it very easy to implement, and
that verification of signatures is significantly faster than for DSA or ECDSA. Despite the huge practical
importance of RSA PKCS#1 v1.5 signatures, providing formal evidence for their security based on
plausible cryptographic hardness assumptions has turned out to be very difficult. Therefore the most
recent version of PKCS#1 (RFC 8017) even recommends a replacement the more complex and less
efficient scheme RSA-PSS, as it is provably secure and therefore considered more robust. The main
obstacle is that RSA PKCS#1 v1.5 signatures use a deterministic padding scheme, which makes standard
proof techniques not applicable.

We introduce a new technique that enables the first security proof for RSA-PKCS#1 v1.5 signatures.
We prove full existential unforgeability against adaptive chosen-message attacks (EUF-CMA) under the
standard RSA assumption. Furthermore, we give a tight proof under the Phi-Hiding assumption. These
proofs are in the random oracle model and the parameters deviate slightly from the standard use, because
we require a larger output length of the hash function. However, we also show how RSA-PKCS#1 v1.5
signatures can be instantiated in practice such that our security proofs apply.

In order to draw a more complete picture of the precise security of RSA PKCS#1 v1.5 signatures,
we also give security proofs in the standard model, but with respect to weaker attacker models (key-only
attacks) and based on known complexity assumptions. The main conclusion of our work is that from
a provable security perspective RSA PKCS#1 v1.5 can be safely used, if the output length of the hash
function is chosen appropriately.

c©Authors 2018. This is the authors’ version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 2018 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’18), http://dx.doi.org/10.1145/3243734.3243798.
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1 Introduction

The RSA PKCS#1 v1.5 signature algorithm was originally specified in version 1.5 of the PKCS#1 standard
(RFC 2313), and is still contained in the most recent version (2.2) of PKCS#1 (RFC 8017). It is used in
countless important applications, such as X.509 (RFC 4055), S/MIME (RFC 3370), PGP (RFC 4880), IPSec
(RFC 4359), all TLS versions up to 1.2 (RFCs 2246, 4346, 5246), JSON Web Signature (RFC 7515), W3C’s
XML Signature,1 and many more.

PKCS#1 v1.5 is an attractive choice in practice, because it is RSA-based and extremely simple, therefore
it is quick and easy to implement. Its simplicity makes it less prone to implementation errors, which is a
highly desirable feature for cryptographic algorithms. Furthermore, it is compatible with legacy hardware
and software implementations, which is relevant for applications, such as TLS, where interoperability is
important. Another nice feature is that verification is extremely efficient, and significantly faster than that
of DSA or ECDSA. Concretely, the OpenSSL benchmark

openssl speed rsa dsa ecdsa

shows about 1170 signature verifications per second for RSA-2048, while EC-DSA achieves only around
350 verifications/s for nistp256, nistk233, and nistb233 curves, and DSA-2048 achieves only 100 verifica-
tions/s.2 Similar results were obtained by the Crypto++ 6.0.0 benchmarks, even with precomputations to
speed-up the verification in DSA.3

Security of RSA PKCS#1 v1.5 signatures. Even though RSA PKCS#1 v1.5 is still the most important
digital signature scheme used in practice, we do not yet have any formal evidence of its security, provided
by a rigorous reduction-based security proof under any standard complexity assumption. We do not even
know any security proof under a non-standard but plausible interactive assumption, apart from the trivial
assumption that the scheme is secure.

Due to the lack of security proofs for PKCS#1 v1.5 signatures, some standards allow to use PKCS#1
v1.5, but recommend RSA-PSS [BR96] instead. This includes TLS 1.3, X.509v3 (RFC 4055), and PKCS#1
itself, since version 2.1 (RFC 3447):

“Although no attacks are known against RSASSA-PKCS#1 v1.5, in the interest of increased
robustness, RSA-PSS is recommended for eventual adoption in new applications.” (RFC 3447)

While RSA-PSS has the advantage of being provably secure, it also has several disadvantages. Most
importantly, it is much more complex than PKCS#1 v1.5, and thus more difficult to implement and maintain,
and it is more prone to implementation errors. Furthermore, it requires randomness, which may be difficult
to generate securely on some devices, while PKCS#1 v1.5 is deterministic and has unique signatures. The
latter automatically yields security against subversion attacks, as shown in [AMV15], if the RSA public key
(N, e) defines a certified trapdoor permutation in the sense of [BY93, KKM12].

The difficulty of replacing PKCS#1 v1.5 signatures with PSS It has turned out to be extremely difficult
to replace PKCS#1 v1.5 with PSS in practice. Hence, even though several standards prefer PSS, one has to
expect that PKCS#1 v1.5 will remain deployed in many applications and retain its huge practical relevance
for a long time. For instance, let us consider the recent efforts to remove legacy cryptography from TLS in

1See https://www.w3.org/TR/xmldsig-core1/#sec-PKCS1.
2 The experiments were executed on an Apple MacBook Pro running MacOS 10.13.4 on an Intel Core i7 3.3 GHz CPU.
3See https://www.cryptopp.com/benchmarks.html
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TLS 1.3. Although TLS 1.3 has, in principle, moved to RSA-PSS as a preferred algorithm, this decision
was preceded by intense discussion4. It was pointed out that in many applications it is impossible to remove
PKCS#1 v1.5 signatures with a simple software update, because the signing algorithm is implemented in
hardware, and it is considered infeasible that this hardware will be replaced at large scale within a foreseeable
timeframe. Furthermore, X.509 certificates require PKCS#1 v1.5 signatures anyway, for interoperability
reasons. Hence, a TLS implementation now has to implement both schemes. The need to support two
different RSA signature schemes makes implementations more complex and requires the maintenance of
more security-critical code. Furthermore, due to a lack of RSA-certificates that can exclusively be used
with RSA-PSS, TLS implementations also accept “legacy” PKCS#1 v1.5 certificates for PSS. Formally, this
voids the known security proofs for PSS, since they consider a setting where RSA public keys are used
exclusively for PSS5.

In summary, even though the importance of using provably-secure algorithms is increasingly recognized
by standardization bodies and practicioners, it turned out to be extremely difficult to replace PKCS#1 v1.5
signatures with provably secure alternatives like PSS at large scale, due to backwards compatibility and
interoperability requirements. By providing rigorous security proofs for PKCS#1 v1.5 signatures under
standard cryptographic hardness assumptions, we show that PKCS#1 v1.5 signatures can be used securely
in practice, if instantiated in a way such that the bounds on the length of the hash function output and the
RSA modulus from our security proofs apply.

The difficulty of proving security of RSA PKCS#1 v1.5 signatures. The main obstacle in proving secu-
rity of RSA PKCS#1 v1.5 signatures is that a deterministic padding scheme is used, which makes standard
proof techniques not directly applicable. More precisely, a PKCS#1 v1.5-signature σ with respect to an
RSA public key (N, e) and message m is

σ = (PAD||z)1/e mod N,

where PAD is a long constant string and z = H(m) is a relatively short hash of the message. Concretely, for
a 2048-bit modulus N and H = SHA-256, we have |z| = 256 and |PAD| = 2048− 256 = 1792. Hence, the
message representatives PAD||z lie in an extremely small subset of ZN , and the set of signatures σ such that
there exists z with σe = PAD||z is devoid of any known algebraic structure. The combination of these two
factors means that standard proof techniques are not immediately applicable, because in standard security
proofs for RSA-based schemes [BR96, Cor00, Cor02, KK12, KK18], one samples a random signature σ
and computes σe as the message representative. However, since the set of valid message representatives is
very small, the chance of obtaining a valid random signature that satisfies σe = PAD||z for some z is very
low.

Our results. We present the first security proofs for RSA PKCS#1 v1.5. We prove full existential un-
forgeability under adaptive chosen message attacks (UF-CMA) in the random oracle model [BR93]. This
is the same security level that other practical signature schemes, such as RSA-PSS or RSA Full-Domain
Hash [BR96, Cor00, Cor02, KK12, KK18], provably achieve. We give two different results:

1. The first is based on the standard RSA assumption, and has a linear security loss in the number qs
of signature queries made by the adversary. If the RSA public key (N, e) defines a certified trapdoor
permutation in the sense of [KKM12], then this was shown to be optimal in [Cor00, KK12, KK18],

4See https://www.ietf.org/mail-archive/web/tls/current/msg19360.html, for instance.
5As pointed out in https://nikmav.blogspot.com/2018/05/gnutls-and-tls-13.html
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because in this case RSA PKCS#1 v1.5 has a unique signature for each message. Furthermore, in this
case our proofs immediately imply strong existential unforgeability in the sense of [SPW07], as well
as resilience against subversion attacks in the sense of [AMV15].

2. The second is based on the ϕ-Hiding assumption [CMS99]. This follows a line of recent results
[KOS10, KK18, LOS13, KPS13, Seu14, SZ15], which use lossy trapdoor permutations [PW08], to
prove security. Lossy RSA keys are indistinguishable from injective keys under the ϕ-Hiding As-
sumption. In this case, we get a tight security proof that is independent of qs. However, in this case
we only get UF-CMA-security, but not strong UF-CMA, and no provable security against subversion
attacks.

Both proofs are based on a new technique, which introduces an Encode algorithm that makes it possible to
embed arbitrary elements of ZN into correctly PKCS#1 v1.5-padded strings modulo N̂ , where N̂ = NR
for some additional prime factorR. The signature scheme is defined modulo N̂ , while we consider hardness
assumptions modulo N . Thus, if N = PQ is the product of two primes, then our proof considers a variant
of PKCS#1 v1.5 signatures with a modulus N̂ = PQR that is the product of three primes. We explain
below how this results can easily be lifted to the standard two-prime setting.

Finally, in order to complete the picture, we also give security proofs in the standard model, but with
respect to very weak security notions. In this case we consider no message attacks, which are also know as
key only attacks. In this scenario the adversary has only the public key and must forge a signature. As with
the random oracle case, we prove two different results.

1. The first result is also based on the ϕ-Hiding assumption. It is well know that when using lossy keys,
the RSA function gives an e-regular lossy trapdoor permutation, that is a permutation that is exactly
e-to-1. This means that the set of eth residues is much smaller. We argue that the distribution of these
residues is such that with high probability there are no message representatives that are ethresidues.

2. The second result relies on a variant of the Approximate e-th Root assumption (AER), which is a
generalization of the RSA assumption. Essentially we give the adversary more freedom, as he does
not have to find an e-th root of a specific value, but an e-th root of any value sufficiently close to the
given target. We use this to cover the entire set of message representatives and the proof follows from
there. More details are discussed in Section 4.2

Implication for practical instantiations. Our UF-CMA security proof considers PKCS#1 v1.5 signatures
with moduli N̂ = PQR that are a product of three primes. In practice, PKCS#1 v1.5 signatures are usually
used with moduli that have only two prime factors. Firstly, we point out that the PKCS#1 standard defines
N̂ as a product of two or more primes, such that the setting considered in our paper is already standard
compliant. In order to avoid an additional assumption, one can simply use a modulus of the form N̂ = PQR,
which is compatible with PKCS#1. In any case, we can easily lift this result to the standard setting where N̂
is the product of only two primes. To this end, we simply make the additional complexity assumption that
for a suitably large modulus N̂ breaking the UF-CMA-security of PKCS#1 v1.5 signatures with N̂ = PQ
a product of two primes is at least as hard as breaking PKCS#1 v1.5 signatures with N̂ = PQR. We
consider this as a very plausible assumption, since more prime factors should only make it easier to break
the signature scheme, and we prove security even for more prime factors. With this additional assumption,
we immediately obtain a security proof for the standard case where N̂ is the product of two primes.

Furthermore, we remark that our proofs work only with a hash function with an unusually long output.
More precisely, if we use the Encode algorithm described in Section 3.1.1, then we can prove security for
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PKCS#1 v1.5 signatures instantiated with an 2n-bit modulus and `-bit hash function, under the assumption
that breaking the RSA (or ϕ-Hiding) assumption is hard with respect to an n-bit modulus N with |N | = `.
Concretely, for signatures instantiated with an 2048-bit RSA modulus N̂ , we can prove security under the
1024-bit RSA assumption, with 1024-bit padding and 1024-bit hash function. Here we note that being able
to deal with very long paddings of 1024 bits and more goes significantly beyond what is achievable with
prior proof techniques. Furthermore, there are several practical ways to instantiate hash functions with long
output of 1024 bits or more, even with solutions that are already standardized:

• The PKCS#1 v2.2 standard (RFC 8017) itself already specifies a way to turn a cryptographic hash
function into a function with arbitrary output size. The construction is called MGF1 (Mask Generation
Function 1) in Appendix B of RFC 8017. This function is a building block of the 2-round Feistel
network used in PSS signatures and OAEP encryption. It is basically a standard hash function, which
is repeatedly applied to the input and increasing counter values, until the total output has the desired
length.

• The Keccak construction [BDPA11], which is the basis of the SHA-3 hash function, allows to specify
a longer output length. The NIST standard specifying SHA-3 [FIPS 202] also specifies Keccak-based
extendable-output functions (XOFs), called SHAKE128 and SHAKE256, which have arbitrary length
output.

Thus, even though our proofs do not immediately apply to PKCS#1 v1.5 when instantiated with standard
hash functions, such as SHA-512, we show that it is still possible to instantiate PKCS#1 v1.5 signatures in
a meaningful way, and based on standardized constructions, such as MGF1 from RFC 8017 or the XOFs
SHAKE128 and SHAKE256 standardized by NIST in FIPS 202.

We recommend that future versions of the PKCS#1 standard allow the use of such hash functions with
longer output, as a compromise between the simplicity of classical PKCS#1 v1.5 signatures (but without
any provable security), and the significantly more complex RSA-PSS scheme (with provable security).

Idea of our Encode algorithm. The main novelty of this paper is the idea to use an Encode algorithm
to embed numbers modulo N into strings with correct PKCS#1 v1.5-padding with respect to some larger
integer N̂ = NR, where R is a prime number chosen by us. The Encode algorithm exploits this knowledge
of the part factorization of the modulus N̂ = NR. Concretely,

(ŷ, s, z)←$ Encode(N, e, 1, PAD, R)

is an efficient algorithm that takes as input an n-bit integerN , an exponent e, y ∈ Z∗N , a padding pattern PAD
and an r-bit primeR. It outputs (ŷ, s, z) ∈ ZN̂ ×ZN ×{0, 1}` such that ŷ has to correct form for a PKCS#1
signature mod N̂ , with z being our message hash. Additionally s will be an eth root mod N . Using this and
the knowledge of R, we can compute an eth root modulo N̂ . Additionally, we can embed an RSA challenge
in our signature if we replace 1 with our random challenge y. In this case, we cannot simulate a signature,
but given a forgery, we can solve our RSA challenge. With these two uses of the Encode algorithm, we are
able to prove UF-CMA security of PKCS#1 in the Random Oracle Model.

We remark that the above proof sketch is slightly different from our actual proof. In fact, we use the more
sophisticated approach of Coron [Cor00] to embed y in multiple hash values. This achieves a better tightness
bound, where the loss is only linear in the number of signature queries qs and not in the number of hash
queries qh. This approach is known to be optimal for unique signatures [Cor02, KK12, BJLS16, KK18].
However, this is only a minor technical difference, and the main proof idea remains identical.
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Instantiating the Encode algorithm. We instantiate Encode based on elementary modular arithmetic.
Our algorithm works for both the RSA-based and the ϕ-Hiding-based security proof.

Related work. At the CRYPTO 2006 rump session, Bleichenbacher presented a low-exponent attack on
RSA-PKCS#1 v1.5 signatures. This attack was later described by Finney in a posting to the OpenPGP
mailing list.6 The attack exploits a vulnerable implementation of a flawed signature verification algorithm.
In this paper, we consider only forgeries that are accepted by a correct verification algorithm.

The RSA-PSS scheme and RSA Full-Domain Hash signatures have already been mentioned above.
There are several further signature schemes that are based on the RSA [HW09, BHJ+13] or the strong-
RSA [GHR99, CS99, Fis03, Sch11, HJK11] assumption. None of them is widely used in practice, as they
require the generation of relatively large primes, not only for key generation, but also to compute signatures.
Hence, they are computationally significantly less efficient that RSA-FDH or RSA-PSS.

The PKCS#1 standards also specify encryption schemes. The RSA-PKCS#1 v1.5 encryption scheme is
very similar to RSA-PKCS#1 v1.5 signatures, except that a probabilistic padding is used and the RSA public
key is applied to the padded message, instead of the secret key. This scheme is also very widely-used in prac-
tice, e.g., in all TLS versions up to 1.2. While there are no known attacks for correctly-implemented RSA-
PKCS#1 v1.5 signatures, there are many examples of chosen-ciphertext attacks that break PKCS#1 v1.5
encryption [Ble98, CFPR96, CJNP00, KPR03, DLP+12, BFK+12, MSW+14, ZJRR14, JSS15a, JSS15b,
BSY17]. The RSA OAEP encryption scheme due to Bellare and Rogaway [BR95] uses a similar Feistel-like
message encoding as RSA-PSS. Its security has been extensively studied in [BR95, Sho02, KP09, KOS10,
FGK+13].

2 Preliminaries

2.1 Notations and conventions

We denote our security parameter as n. For all n ∈ N, we denote by 0n and 1n the n-bit string of all
zeroes and all ones, respectively. For any set S, we use x ∈R S to indicate that we choose x uniformly
random from S. All algorithms may be randomized. For any algorithm A, we define x ←$ A(a1, . . . , an)
as the execution of A with inputs a1, . . . , an and fresh randomness and then assigning the output to x. For
deterministic algorithms, we drop the $ from the arrow. We denote the set of prime numbers by P and we
denote the set of κ-bit integers as Z[κ]. Similarly, we denote the set of κ-bit primes as P[κ]. We denote by
Z∗N the multiplicative group modulo N ∈ N. We will use game based proofs and will denote by GA ⇒ 1
the event that the adversary A wins game G i.e. the Finalize Procedure outputs 1.

2.2 Digital Signatures and their security

A digital signature scheme is a triple Sig = (KeyGen,Sign,Verify) of algorithms which are defined as
follows:

• KeyGen takes as an input the unary representation of our security parameter (1n) and outputs a private
signing key sk and a public verification key pk.

• Sign takes as input a signing key sk, message m and outputs a signature σ.
6See https://www.ietf.org/mail-archive/web/openpgp/current/msg00999.html.
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• Verify is a deterministic algorithm, which on input of a public key and a message-signature pair (m,σ)
outputs 1 (accept) or 0 (reject).

We say that Sig is correct if for all public key and secret key pairs generated by KeyGen, we have:

Pr[Verify(pk,m, Sign(sk,m)) = 1] = 1

.
We will consider two different notions of security for digital signatures, namely Unforegeability under

No Message Attack (UF-NMA) and Unforgeability under Chosen Message Attack (UF-CMA). Recall that
the distinction between the two security definitions is that in UF-CMA the attacker has access to a signing
oracle, whereas in UF-NMA it does not. UF-NMA is sometimes called a “key only attack” in the literature.
Additionally, we only consider UF-NMA in the standard model and UF-CMA in the random oracle model,
and therefore extend the latter with an additional Hash(m) oracle.

Game UF-NMA(StdM)

Initialize(1n)

(pk, sk)←$ KeyGen(1n)
return pk

Finalize(m∗, σ∗)

if Verify(pk,m∗, σ∗) = 1
return 1

else
return 0

Figure 1: Game defining NMA security in the Standard Model.

Consider the UF-NMA security experiment in Figure 1, when executed with a signature scheme Sig =
(KeyGen,Sign,Verify). We say that Sig is (t, ε)-UF-NMA secure if for any forger F running in time at most
t, we have:

AdvUF-NMA
F ,Sig = Pr

[
1← Finalize(m∗, σ∗);

(m∗, σ∗)← F(pk)

]
6 ε

Consider the UF-CMA game in Figure 2, executed with scheme Sig = (KeyGen,Sign,Verify). We say
that Sig is (t, ε, qh, qs)-UF-CMA secure if for any forger F running in time at most t, making at most qh
hash queries and making at most qs signature queries, we have:

AdvUF-CMA
F ,Sig = Pr

[
1← Finalize(m∗, σ∗);

(m∗, σ∗)← FHash(·),Sign(·)(pk)

]
6 ε

2.3 RSA PKCS#1 v1.5 Signatures

We now describe the RSA PKCS#1 v1.5 scheme, see Figure 3. We note that in PKCS#1 version 2.2, the
recommended hash functions are SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA512/256.
Additionally, MD2, MD5 and SHA-1 are included for backwards compatibility.

Let us point out that our description in Figure 3 deviates from the original scheme in a few minor ways.
Strictly speaking, the string PAD is not included in the public key, but is publicly known. We included it in
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Game UF-CMA(ROM)

Initialize
(pk, sk)←$ KeyGen(1n)
return pk

Hash(m)

if (m, ·) ∈ H
fetch (m, y) ∈ H
return y

else
y ∈R Domain;
H ← H∪ {(m, y)}
return y

Sign(m)

M←M∪ {m}
return σ ←$ Sign(sk,m)

Finalize(m∗, σ∗)

if Verify(pk,m∗, σ∗) == 1 ∧m∗ 6∈ M
return 1

else
return 0

Figure 2: Game defining CMA security in the Random Oracle Model

the public key for self-containment. Also, we define our signing function as taking the eth root instead of
the dth power. This is done for keeping a consistent notation throughout the paper, since d is not defined for
lossy keys.

The string PAD seems somewhat arbitrary and the reason for this is historical. In PKCS v1.5#1 (RFC
2313), all message were encoded in representative “blocks”. These representatives had the (hexadecimal)
format

0x00||BT||PS||0x00||D.

BT defined the type of block, which is 0x01 for signatures and 0x02 for encryption. D is the encoding
of the message, which for signatures is the hash of the message prefixed with the hash id IDH. PS is the
“padding string”, whose purpose is to ensure our message representative is exactly n bits long. PS is fixed
to 0xFF . . . FF for BT = 0x01. Thus, signature “blocks” have the (hexadecimal) format

0x00||0x01||0xFF . . . FF||0x00||IDH||H(m).

The overarching concept of blocks has since been dropped, primarily due to the switch to OAEP encryp-
tion, but PKCS signatures still use this format for the message representatives. If we convert this format into
binary, it is easy to see that the prefix of H(m) is exactly our prefix PAD. It is worth noting at this juncture
that the identifier strings IDH do not have a fixed length, thus we need to take into account their bit length α.
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Scheme RSA-PKCS1-v1.5

KeyGen(1n, `)

P,Q ∈R P[n/2]
N = PQ,ϕ(N) = (P − 1)(Q− 1)
e ∈R Z∗N , gcd(e, ϕ(N)) = 1
pick hash function H : {0, 1}∗ → {0, 1}`
Look-up α-bit IDH for H
ν = n− `− α− 23
PAD = 015||1ν ||08||IDH
return (pk = (N, e, PAD,H), sk = (P,Q))

Sign(sk,m)

z ← H(m)
y = PAD||z
return σ = y1/e mod N

Verify(pk,m, σ)

y′ = σe mod N
z ← H(m)
if (PAD||z == y′)

return 1
else

return 0

Figure 3: RSA PKCS#1 v1.5

3 Existential Unforgeability in the Random Oracle Model

In this section, we give two different proofs that RSA PKCS#1 v1.5 signatures are UF-CMA-secure. The
first is based on the RSA assumption, the second is based on the ϕ-Hiding assumption. Both proofs are
in the random oracle model, and both proofs consider the case where the modulus N̂ used in the signature
scheme is a product of three primes. Even though RSA PKCS#1 v1.5 signatures are usually used with
moduli consisting of only two prime factors, we stress that all versions of the PKCS#1 standards allow to
use moduli N̂ consisting of three prime factors, meaning that this choice is standard compliant.

3.1 The Encode Algorithm

The main novel ingredient for our RSA PKCS#1 v1.5 signature UF-CMA-security proofs is an Encode
algorithm, which enable us to efficiently encode an arbitrary integer y modulo N as an integer ŷ modulo
N̂ = NR for some prime R, such that ŷ has correct PKCS#1 v1.5 padding modulo N̂ . Let us define
formally the properties that an Encode algorithm has to fulfil.

Definition 1. Let
(ŷ, s, z) ∪ ⊥ $← Encode(N, e, y, `, PAD, R)

be an algorithm that takes as input an n-bit integer N , an exponent e, y ∈ Z∗N , a padding pattern PAD and
an r-bit prime R ∈ P[r], and outputs (ŷ, s, z) ∈ Z

N̂
× Z∗N × {0, 1}` or failure ⊥. We say that Encode
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`-simulates the PKCS#1 v1.5 encoding modulo N̂ = NR, if all the following conditions are satisfied. We
say that Encode efficiently `-simulates the PKCS#1 v1.5 encoding modulo N̂ = NR, if Encode additionally
runs in time polynomial in n.

1. Encode outputs (ŷ, s, z), except with negligible failure probability (in n).

2. z is uniformly distributed over {0, 1}`.

3. ŷ ∈ Z
N̂

is the PKCS#1 v1.5 encoding of the string z ∈ {0, 1}` with padding of size |PAD| = n+r−`.
That is, we have

ŷ = PAD||z.

4. It holds that ŷ = y · se mod N .

Intuitively, we use Encode as follows to prove UF-CMA-security of RSA-PKCS#1 v1.5 signatures.
Encode enables us to embed an RSA-challenge (N, e, y) modulo N into the UF-CMA-security experiment
for RSA-PKCS#1 v1.5 signatures defined modulo N̂ . Concretely, to achieve this we will run
(ŷ, s, z)

$← Encode(N, e, y, `, PAD, R) to obtain ŷ = PAD||z. Then we program the random oracle H with
range {0, 1}` such that H(m∗) = z, which is possible because z is uniformly distributed. Furthermore, we
also show that Encode enables us to simulate correct signatures in a similar way.

As we show in the following, our Encode algorithm allows us to create correctly-padded strings ŷ with
freely adjustable padding of size ≈ |r| and relatively large hash value size ` ≈ |n|.

3.1.1 Encode Algorithm

Consider the algorithm Encode as defined in Figure 4. It takes as input an n-bit modulus N , an exponent e,
an integer y ∈ ZN , a hash value length `, a padding pattern PAD of size |PAD| = n + r − `, an r-bit prime
R, and outputs a string ŷ := PAD||z such that |z| = `.

Encode (N, e, y, `, PAD, R)

n = dlog2Ne, r = dlog2Re
z := 2`, k := 0
while (z ≥ 2`) and (k < n · 2n−`):
k := k + 1

s
$← ZN

z := yse − 2` · PAD mod N
ŷ := 2` · PAD + z
if z < 2` then

return (ŷ, s, z)
else

return ⊥.

Figure 4: Encode algorithm

Theorem 1. For ` < n := |N |, the Encode algorithm described in Figure 4 `-simulates the PKCS#1 v1.5
encoding modulo NR in time O(n4 · 2n−`).
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PROOF. In order to verify condition (1) of Definition 1, we have to show that Encode outputs a tuple (ŷ, s, z)
expect with negligible failure probability. By the last line in Figure 4, Encode fails in producing (ŷ, s, z) iff
z ≥ 2` for all iterations of the while-loop.

Observe that the value z := yse − 2` · PAD mod N computed inside each iteration of the while-loop is
independently uniformly distributed moduloN , because s is uniform over ZN , and the maps s 7→ se mod N
and s 7→ s·y mod N are permutations (note here that y ∈ Z∗N is invertible). Hence, for uniformly distributed
z

$← ZN , N < 2n, we have per iteration

Pr
[
z ≥ 2`

]
=
N − 2`

N
< 1− 2`−n.

Using 1− x ≤ e−x, we fail after n · 2n−` iterations with probability at most

(1− 2`−n)n·2
n−` ≤ e−n.

The uniform distribution of z over {0, 1}` (condition (2)) follows from the fact that z is a uniformly dis-
tributed integer modulo N . Hence for ` < n, we can use the well-known rejection sampling method:
Rejecting all values of z ≥ 2` yields uniformly distributed values in {0, 1}`.

For checking condition (3), we see that ŷ := 2` · PAD + z by definition in Encode. From (2) we
have z < 2`, which implies ŷ = PAD||z over the integers. However, ŷ has to be defined in Z

N̂
. Since

|PAD| = n+ r − `− 2, we verify that

2` · PAD + z < 2` · 2n+r−`−2 = 2n−1 · 2r−1 < NR = N̂ .

To show (4), we compute

ŷ = 2` · PAD + z mod N̂

= 2` · PAD + yse − 2` · PAD mod N

= yse mod N.

Finally, we observe that Encode’s running time is dominated by the while-loop with a maximum of
n · 2n−` iterations each taking time O(log e log2N) = O(n3). �

Corollary 1. Let n := |N |. The Encode algorithm described in Figure 4 efficiently (n−O(log n))-
simulates the PKCS#1 v1.5 encoding modulo NR.

By Corollary 1, our Encode algorithm is efficient only for hash values as large as ` ≈ |n|. We leave it
as an important open problem to reduce ` to output sizes of standard hash functions.

3.2 Security Proof under the RSA Assumption

Now we are ready to prove security under the RSA assumption. Normally, the size of the RSA modulus is
implicitly assumed to be the same in the assumption as in the scheme, therefore it is never explicitly fixed.
However, our proof modifies this, by using a larger modulus for the scheme than in the assumption, thus we
need to explicitly state these values. For the sake of notation, we formulate our assumptions with explicit
bit-sizes. We also consider the more general case where primes may, but need not be of the same size. Once
all the primes have been selected, we can pick an exponent e such that gcd(e, ϕ(N)) = 1, where we have

for N =

k∏
i=1

pi that ϕ(N) =

k∏
i=1

(pi − 1).

11



Assumption 1 ((k, n)-RSA Assumption). The RSA Assumption, denoted by (k, n)-RSA, states that given
(N, e, xe) it is hard to compute x, where N is the product of k distinct random prime numbers pi ∈ P[ni],

for i ∈ J1, kK, k constant, and
n∑
i=1

ni = n, e ∈ Z∗ϕ(N), and x ∈R ZN . RSA is said to be (t, ε)-hard, if for all

adversaries A running in time at most t, we have

Adv
(k,n)-RSA
A = Pr [x = A(N, e, xe mod N)] 6 ε.

Additionally, we define RSA-PKCS1-v1.5 [k, n, `] to be the RSA PKCS#1 v1.5 scheme with a n-bit
public modulus N which is the product of k primes and an `-bit hash function. It should be noted that
having a modulus that is the product of more than two primes is allowed by the PKCS standard (RFC 8017).

Our first proof follows the proof technique of Coron [Cor00, Cor01] and has a loss in the order of qs.
As was shown by Coron [Cor02, Cor01] and Kakvi and Kiltz [KK12, KK18], this loss is optimal for RSA
with “large” exponents. This is due to the fact that RSA with a “large” exponent defines a certified trapdoor
permutation [BY93, BY96], as was shown by Kakvi, Kiltz and May [KKM12].

Our second proof follows the proof technique of Kakvi and Kiltz [KK12, KK18] and is tight to the
ϕ-Hiding assumption. This proof bypasses the optimality result, by using keys that do not define a certified
trapdoor permutation. By using “small” keys, which gives us a lossy trapdoor permutation, we can provide
a tight security proof to the ϕ-Hiding assumption. Furthermore, there is currently no known proof technique
which achieves tighter security for small exponents (such as e = 216 + 1, as commonly used in real-world
instantiations) and is based on the RSA assumption.

Theorem 2. Assume the (2, n)-RSA assumption is (t′, ε′)-hard. Then for any (qh, qs), the RSA-PKCS1-v1.5
[3, 2n− 1] scheme is (t, ε, qh, qs)-UF-CMA secure in the Random Oracle Model, where

ε′ >
ε

qs
·
(

1− 1

qs + 1

)qs+1

≈ ε

qs

t′ 6 t+ qh · O(n4).

PROOF. We describe the oracles in Figure 5. The reduction first receives a (2, n)−RSA challenge (N, e, y).
It then builds a 2n-bit modulus by selecting R ∈R P[n], gcd(e,R − 1) = 1 and computing N̂ = NR. The
reduction then computes the corresponding padding by first computing ν = n−α−23, and then computing
PAD = 015||1ν ||08||IDH. The public key pk = (N̂ , e, PAD) is sent to the forger. We now describe our oracles.

For every hash querymi the reduction flips a biased coin χi with Pr[χi = 0] = p0,Pr[χi = 1] = p1, the
choice of which will be discussed later. The idea behind this is that with probability p1 the reduction embeds
the RSA challenge into the oracle response and with probability p0, it will not. For the values where the
reduction does not embed the challenge, i.e. χi = 0, it can simulate signatures and for ones where it does, i.e.
χi = 1, it can extract a solution. In the case χi = 0, the reduction simply runs Encode(N, e, 1, `, PAD, R)
and gets (ŷi, si, zi). The reduction now computes σi, using the Chinese Remainder Theorem. It is clear from
the construction that ŷ1/e = si mod N and furthermore, the reduction can easily compute ŷ1/e mod R,
which gives

σi = si ·R(R−1 mod N) + (ŷ
1/e
i mod R) ·N(N−1 mod R) mod N̂ .

The reduction then adds (mi, zi, si, σi) to its hash listH.
In the case χi = 1, the reduction runs Encode(N, e, y, `, PAD, R) and gets (ŷi, si, zi). However, since

it cannot simulate a signature, it stores the distinguished abort symbol ⊥ as the signature, i.e., it adds
(mi, zi, si,⊥) to its hash listH.

12



RSA Proof Oracles
Initialize(1n)
(N, e, y)←$ RSA(2, 1n)
R ∈R P [n] , gcd(e,R− 1) = 1

N̂ = N ·R ∈ Z[2n]
pick IDH ∈ {0, 1}α
ν = n− α− 23
PAD = 015||1ν ||08||IDH
return pk = (N̂ , e, PAD)

Hash(m)
if (m, ·) ∈ H

fetch (m, zm) ∈ H
return zm

else
χm ←p0,p1 {0, 1}
if (χi = 0)

(ŷm, sm, zm)←$ Encode(N, e, 1, `, PAD, R);
σm = sm ·R(R−1 mod N) + (ŷ

1/e
m mod R) ·N(N−1 mod R) mod N̂

else if (χm = 1)
(ŷ, sm, zm)←$ Encode(N, e, y, `, PAD, R);
σm = ⊥

H ← H ∪ {(m, zm, sm, σm)}
return zm

Sign(m)
M←M∪ (m)
fetch (m, zm, σm) ∈ H
return σm

Finalize(m∗, σ∗)
if (Verify(pk,m∗, σ∗) = 1) ∧ (m∗ 6∈ M)

if (χm∗ = 1)
x = σ∗ · (sm∗)−1 mod N

else
x = ⊥

RSA.Finalize(x)
return 1

else
RSA.Finalize(⊥)
return 0

Figure 5: Oracles for the RSA based proof.
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Having updatedH, the reduction now returns zi as the response to the random oracle query.
We assume that the forger always makes a hash query on a message before it queries that message to the

signing oracle. The reduction can also implicitly do this by querying the random oracle itself. This means
that for every signature query mi, there is an entry (mi, zi, σi) ∈ H. If σi = ⊥, i.e. the hash value has
a challenge embedded in it, the reduction aborts, as it cannot provide a signature. If this is not the case,
it simply returns σi as response and adds mi to the list of queried messages M. The probability that the
reduction answers any signature query correctly is p0 and the probability that it answers all queries correctly
is at least pqs0 .

In the final phase, the forger submits a forgery (m∗, σ∗). With probability p1, m∗ is one of the messages
where we embedded our RSA challenge. First we observe that a valid forgery means that σ∗ = ŷ∗1/e mod
N̂ . Our encode algorithm ensures that ŷ = s∗e · y mod N , which in turn means that σ∗ mod N = ŷ =
s∗ · y1/e mod N . Because the reduction has an entry inH containing (m∗, z∗, s∗,⊥), it can extract y1/e =
σ∗ · (s∗)−1 mod N , which is the solution to its RSA challenge.

The reduction can extract a solution with probability p1 = 1 − p0, which means that the reduction
succeeds with probability at least pqs0 · (1 − p0) · ε. To get the optimal result, we need to maximize the
expression pqs0 · (1 − p0) · ε. Coron [Cor02] showed an optimal value of p0 = 1

qs+1 , giving us a success

probability of at least ε
qs
·
(

1− 1
qs+1

)qs+1
, as required. The time bound is the time needed to answer all

hash queries. �

Remark 1. In the proof we select R to be a prime number, however this is not strictly necessary. What we
require is that we are able to compute eth roots mod R. Thus it would also suffice if we knew the prime
factorization of R. It should be noted that the difficulty of factoring N̂ = NR is at least that of factoring
N if the smallest prime factor of R is at least n/2 bits long. R was chosen to be prime in the proof for
convenience, but the proof goes through equally for any suitable composite R.

Remark 2. While the PKCS#1 standard does not specify how long the padding must be, apart from the
limitation that PS must be at least 8 octets long, one must be careful when using smaller paddings. If the
padding is less than half of the bits, the message represenatives are suceptible to the attacks of de Jonge and
Chaum [dC86] and Girault and Misarsky [GM97]. Although the usage of a hash function complicates the
attacks, it is always better to err on the side of caution.

3.3 Security Proof under the Phi-Hiding Assumption

We are also able to produce an essentially optimal security proof for “small” exponents e, using the tech-
niques of Kakvi and Kiltz [KK12, KK18]. In our case, “small” means our exponent is at most 1

4 of the
bit-length of our modulus. This proof proceeds as a series of games, each of which we will describe sepa-
rately. We first recall the ϕ-Hiding Assumption.

Assumption 2 (The ϕ-Hiding Assumption. [CMS99]). The ϕ-Hiding Assumption, denoted by ΦHA, states
that it is hard to distinguish between (N, e) and (N, ê), where N is the product of two random (n/2)-bit
primes and e, ê > 3 ∈ P and and e, ê ≤ N

1
4 , with gcd(e, ϕ(N)) = 1 and gcd(ê, ϕ(N)) = ê, where ϕ is the

Euler Totient function. ΦHA is said to be (t, ε)-hard, if for all distinguishers D running in time at most t,
we have:

AdvΦH
D = Pr [1← D(N, e)]− Pr [1← D(N, ê)] 6 ε

14



Game G0

Initialize(1n)
(pk, sk)←$ RSA-PKCS1-v1.5[3, 2n, n]
return pk

Hash(m)
if (m, ·) ∈ H

fetch (m, zm) ∈ H
return zm

else
zm ∈R {0, 1}`;
H ← H∪ {(m, zm)}
return zm

Sign(m)
M←M∪ (m)
fetch (m, zm) ∈ H
return σm = (PAD||zm)1/e

Finalize(m∗, σ∗)
if (Verify(pk,m∗, σ∗) = 1) ∧ (m∗ 6∈ M)

return 1
else

return 0

(a) Game 0: The Standard UF-CMA Game

Game G1

Initialize(1n)
(N, e)←$ RSAPermGen(1n) //G1,G3

(N, e)←$ RSALossyGen(1n) //G2,G4

R ∈R P [n] , gcd(e,R− 1) = 1

N̂ = N ·R ∈ Z[2n]
pick IDH ∈ {0, 1}α
ν = n− α− 23
PAD = 015||1ν ||08||IDH
return pk = (N̂ , e, PAD)

Hash(m)
if (m, ·) ∈ H

fetch (m, zm) ∈ H
return zm

else
(ŷ, σm, zm)←$ Encode(N, e, 1, PAD, R);
H ← H∪ {(m, zm, σm)}
return zm

Sign(m)
M←M∪ (m)
fetch (m, zm, σm) ∈ H
return σm

Finalize(m∗, σ∗)
if (σ∗ = σm) //G3,G4

return 0 //G3,G4

if (Verify(pk,m∗, σ∗) = 1) ∧ (m∗ 6∈ M)
return 1

else
return 0

(b) Games 1-4: The Simulated Reduction Games

The requirement that e, ê ≤ N
1
4 stems from the fact that simply given a modulus N , we are unable to

ascertain how many prime factors it consists of and how large they are in relation to one another. We know
thatN is composite, therefore consists of at least 2 prime factors7. The bound then follows directly from the
well known attacks due to Coppersmith [Cop97]. We also note that when gcd(ê, ϕ(N)) = ê, the function
xê mod N is exactly ê-to-1, i.e. it said to be ê-regular lossy as defined by Kakvi and Kiltz [KK12, KK18].

Theorem 3. Assume that ΦHA is (t′, ε′)-hard and defines a γ-regular lossy function. Then for any (qh, qs),
RSA-PKCS1-v1.5 [3, 2n] is (t, ε, qh, qs)-UF-CMA secure in the Random Oracle Model, where

ε 6
2γ − 1

γ − 1
· ε′

t′ 6 t+ qh · O(n4).

PROOF.
7We assume N is not a prime power, which can be checked efficiently [Ber98].
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The proof proceeds in a sequence of games, which are given in Figures 6a, 6b. The idea is to move from
the UF-CMA game to one the forger cannot win. The original UF-CMA game is given in G0. The first game
hop we make is from normal signing to simulating signatures, using our Encode algorithm, which does not
change anything from the view of the forger. The next step is to move from the “normal” public key where
gcd(e, ϕ(N)) = 1, to the lossy key (N, ê) were now we have a 1-to-ê signing function. The forger does not
notice this, unless it breaks the ΦHA. Now, a new abort condition is introduced; the reduction aborts if the
forgery is the same signature it picked in the simulation phase. Since the signature is picked from the set
of ê signatures independently from the view of the forger, this happens with probability at most 1

ê . Finally
the keys are switched back to “normal” keys, which now means any valid forgery leads to an abort from the
reduction. If we combine the bounds from all the games, we get exactly the bounds stated in the proof. We
prove the Theorem step by step, with Lemmata 1, 2, 3, 4 & 5.

Lemma 1. Pr[GF0 ⇒ 1] = Pr[GF1 ⇒ 1].

PROOF. In G0, we modelled the hash function as a random oracle. In G1 we modify the random oracle and
the signing queries. On any m the random oracle now “precomputes” a signature for m using the Encode
algorithm. Note that signing no longer requires the secret key. It can be seen that all our signatures will
verify due to the fact that σem = PAD||zm for all m. Thus our simulation of the signatures is correct. Since
Encode gives us uniformly distributed values s, z, the distribution of our hash queries in G1 is identical to
the distribution in G0. Thus we have Pr[GF0 ⇒ 1] = Pr[GF1 ⇒ 1]. �

Lemma 2. There exists a distinguisher D1 against the ΦHA, which runs in time t = t+ qh · O(n4) and such
that

∣∣Pr[GF1 ⇒ 1]− Pr[GF2 ⇒ 1]
∣∣ = AdvΦHA

D1
.

PROOF. From G1 to G2, we change the key generation from a normal key (N̂ , e) to a lossy (N̂ , ê), however
the oracles are identical in both games. We now build a distinguisher D1 against the ΦHA, using these
games. The distinguisher will run F and simulates the oracles Sign(·),Hash(·) as described in games G1

and G2. Note that D1 does not require the signing key to simulate the oracles. After F calls Finalize, D1

returns the output of Finalize. Thus we can see that Pr[1← D1(N, e)] = Pr
[
GF1 ⇒ 1

]
and

Pr[1← D1(N, ê)] = Pr
[
GF2 ⇒ 1

]
. Hence we have∣∣Pr

[
GF1 ⇒ 1

]
− Pr

[
GF2 ⇒ 1

]∣∣ = |Pr[1← D1(N, e)]− Pr[1← D1(N, ê)]| = AdvΦHA
D1

.

�

Lemma 3. Pr
[
GF3 ⇒ 1

]
=
(
ê−1
ê

)
Pr
[
GF2 ⇒ 1

]
.

PROOF. In G3, we introduce a new rule, which aborts the reduction if the forgery σ∗ provided by F is the
same as the simulated signature σm∗ for the target message m∗. If this is the case, the forger loses the game,
i.e., G3 outputs 0. σm∗ is independent of F’s view and is uniformly distributed in the set of pre-images of
ŷm∗ . Due to the fact that the function xê mod N̂ is ê-regular lossy, the probability of a collision is 1/ê.
Thus we see that this abort condition reduces the probability of the forger winning the game by 1/ê, hence

Pr
[
GF3 ⇒ 1

]
=

(
1− 1

ê

)
Pr
[
GF2 ⇒ 1

]
=

(
ê− 1

ê

)
Pr
[
GF2 ⇒ 1

]
.

�
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Lemma 4. There exists a distinguisher D2 against the ΦHA, which runs in time t = t+ qh · O(n4) and such
that |Pr[GF3 ⇒ 1]− Pr[GF4 ⇒ 1]| = AdvΦHA

D2
.

PROOF. From G3 to G4, we change the key generation from a lossy key (N̂ , ê) to a normal key (N̂ , e),
however the oracles are identical in both games. We now build a distinguisher D2 against ΦHA, using these
games. The distinguisher runs F and simulates the oracles Sign(·),Hash(·) as described in games G3&G4.
Note that D2 does not require the signing key to simulate the oracles. After F calls Finalize, D2 returns the
output of Finalize. Thus we can see that Pr[1← D2(N, e)] = Pr

[
GF4 ⇒ 1

]
and

Pr [1← D2(N, ê)] = Pr
[
GF3 ⇒ 1

]
Hence we have∣∣Pr

[
GF4 ⇒ 1

]
− Pr

[
GF3 ⇒ 1

]∣∣ = |Pr[1← D2(N, e)]− Pr[1← D2(N, ê)]| = AdvΦHA
D2

.

�

Lemma 5. Pr[G4 ⇒ 1] = 0.

PROOF. In G4 we are using the normal keys, i.e. xe mod N̂ is a 1-to-1 function. Since our signing function
is now injective, any forgery implies a collision. Therefore whenever the forger is able to produce a valid
forgery, the game outputs 0 due to it failing the check, as ∀m∗, σm = σ∗. Whenever the forger is unable
to make a forgery, the game outputs 0. Thus we can see that in all cases, the game will output 0, hence
Pr[G4 ⇒ 1] = 0. �

We combine Lemmata 1 to 5 to get

Pr[1← G0] = AdvΦHA
D1

+

(
ê

ê− 1

)
AdvΦHA

D2
.

Because D1 and D2 run in time at most t + qh · O(n3), by our assumption, both distinguishers have an
advantage of at most ε′, giving us:

ε ≤ 2ê− 1

ê− 1
· ε′.

As we have an ê-regular lossy permutation, we see that for γ = ê, we get exactly the bounds we need. �

3.4 The Case of Two Prime Factors

We can easily lift our results for three prime factors presented in the previous section to the standard case
of two prime factors, by additionally assuming that breaking the UF-CMA-security of RSA PKCS#1 v1.5
signatures with 2 prime factors is not significantly easier than with 3 prime factors. To make this more
precise, we define the 2 vs. 3 Primes Assumption, denoted by 2v3PA, which states that

AdvUF-CMA
F ,RSA-PKCS1-v1.5[2,n,`] ≤ AdvUF-CMA

F ,RSA-PKCS1-v1.5[3,n,`] + ε

for small ε and all efficient UF-CMA-forgers F .

Assumption 3 (Two vs. Three Primes Assumption). We say that 2v3PA is (t, ε)-hard, if for all F running in
time at most t, we have:

AdvUF-CMA
F ,RSA-PKCS1-v1.5[2,n,`] ≤ AdvUF-CMA

F ,RSA-PKCS1-v1.5[3,n,`] + ε
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Note that breaking RSA PKCS#1 v1.5 signatures should only become easier if the modulus N̂ is a
product of more prime factors. For instance, let N̂2 = PQ be a product of two primes of approximately
equal size, and N̂3 = PQR be a product of three primes of approximately equal size, such that N̂2 and N̂3

have the same size. With known factoring algorithms it should be easier to compute the factorisation of N̂3

than that of N̂2. Hence, even though 2v3PA is a very specific and non-standard assumption, we consider it
as very plausible for sufficiently large moduli. With this additional assumption we get the following result.

Theorem 4. Assume the (2, n)-RSA assumption is (t′, ε′)-hard, and 2v3PA is (t′′, ε′′)-hard. Then for
any (qh, qs), the RSA-PKCS1-v1.5 [2, 2n, n] scheme is (t, ε, qh, qs)-UF-CMA secure in the Random Ora-
cle Model, where

ε′ + ε′′ >
ε

qs
·
(

1− 1

qs + 1

)qs+1

≈ ε

qs

t′ 6 t+ t′′ + qh · O(n4).

PROOF SKETCH. The proof works nearly identically to the proof of Theorem 2, except that we use the
2v3PA assumption in order to replace a two-prime modulus N̂ with a three-prime modulus. More precisely,
we begin with considering the RSA-PKCS1-v1.5 [2, 2n] defined over a two-prime modulus. Then we replace
this scheme with RSA-PKCS1-v1.5 [3, 2n, n]. Now we can apply the proof from Theorem 2. �

The following theorem can be proven similarly, by extending the proof of Theorem 3 with an additional
step that uses the 2v3PA assumption.

Theorem 5. Assume that ΦHA is (t′, ε′)-hard and defines a γ-regular lossy function and 2v3PA is (t′′, ε′′)-
hard. Then, for any (qh, qs), RSA-PKCS1-v1.5 [2, n+ `] is (t, ε, qh, qs)-UF-CMA secure in the Random
Oracle Model, where

ε ≤ 2γ − 1

γ − 1
· ε′ + ε′′

t′ ≤ t+ t′′ + qh · O(n4).

4 Proofs in the Standard Model

In order to give a more complete picture of what security properties of RSA PKCS#1 v1.5 signatures can be
proved, we now present different approaches to provide security proofs without random oracles.

4.1 Proof based on The Phi-Hiding Assumption

We now present our proof based on the lossiness of RSA and the ΦHA. In this proof we rely on the fact that
when e|ϕ(N) the ethroots modulo N are close to uniformly distributed. Okamoto and Stern [OS03] show
that in any interval of length L ≥ N1/2 the number of eth powers is close to its expectation. However, we
need the same statement for intervals of size 2`, which is usually smaller than N

1
2 . So [OS03] gives us an

indication that our assumption in Theorem 6 is plausible, but we cannot direct apply [OS03].
The main idea of the proof of Theorem 6 is that for lossy RSA keys with e|ϕ(N) with high probability

there does not even exist a valid RSA PKCS#1 v1.5 signature.
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Theorem 6. Assume ΦHA is (t′, ε′)-hard. Further assume that e-th powers S = {σe | σ ∈ Z∗N} are
uniformly distributed in Z∗N when e|ϕ(N). Then RSA-PKCS1-v1.5 with an `-bit hash function H is (t, ε)-
UF-NMA secure in the Standard Model, where

ε 6

(
1− 2`

e

)
ε′,

t ≈ t′.

PROOF. We prove this theorem via game hops, which we show in Figures 7a,7b & 7c. Ḡ0 is the UF-NMA
game. In Ḡ1 we switch to “simulated” real keys. There is no change, since we consider no message attacks
(NMA) and therefore never need a secret key. Secondly, in Ḡ2 we switch to “simulated” lossy keys. The
difference here is ε′, unless the forger breaks the ΦHA. Finally in this game, we show that the adversary
cannot win, except with a very small probability.

Game Ḡ0

Initialize(1n)

(pk, sk)←$ RSA-PKCS1-v1.5[2, n]
return pk

Finalize(m∗, σ∗)

if Verify(pk,m∗, σ∗) = 1
return 1

else
return 0

(a) Standard UF-NMA Game

Game Ḡ1

Initialize(1n)

(N, e, ê)←$ ΦHA
Look-up α-bit IDH for H
ν = n− `− α− 23
PAD = 015||1ν ||08||IDH
return (pk = (N, e, PAD,H)

Finalize(m∗, σ∗)

if Verify(pk,m∗, σ∗) = 1
return 1

else
return 0

(b) UF-NMA Game with simulated
public key

Game Ḡ2

Initialize(1n)

(N, e, ê)←$ ΦHA
Look-up α-bit IDH for H
ν = n− `− α− 23
PAD = 015||1ν ||08||IDH
return (pk = (N, ê, PAD,H)

Finalize(m∗, σ∗)

if Verify(pk,m∗, σ∗) = 1
return 1

else
return 0

(c) UF-NMA Game with lossy simu-
lated public key

Lemma 6. Pr[ḠF0 ⇒ 1] = Pr[ḠF1 ⇒ 1].

PROOF. From Ḡ0 to Ḡ1, we changed from the RSA-PKCS1-v1.5 key generation to the ΦHA instance genera-
tion. It is clear to see that the distributions are the same, thus there is no change from the view of the forger.
�

Lemma 7. There exists a distinguisher D against the ΦHA, which runs in time t′ ≈ t and such that
|Pr[ḠF1 ⇒ 1]− Pr[ḠF2 ⇒ 1]| = AdvΦHA

D .

PROOF. From Ḡ1 to Ḡ2, we change the key generation from a normal key (N, e) to a lossy (N, ê). We now
build a distinguisher D against the ΦHA, using these games. The distinguisher will run F and after F calls
Finalize, D returns the output of Finalize. Thus we can see that Pr [1← D1(N, e)] = Pr

[
ḠF1 ⇒ 1

]
and

Pr[1← D1(N, ê)] = Pr
[
ḠF2 ⇒ 1

]
Hence we have |Pr

[
ḠF1 ⇒ 1

]
−Pr

[
ḠF2 ⇒ 1

]
| = |Pr [1← D1(N, e)]−

Pr[1← D1(N, ê)]| = AdvΦHA
D . �
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Lemma 8. Pr[ḠF2 ⇒ 1] 6
(

2`

e

)
Pr[ḠF1 ⇒ 1]].

PROOF. We show that with overwhelming probability there are no valid signatures in the desired PKCS
interval, i.e. 6 ∃σ ∈ Z∗N s.t. σe ∈ JPAD||0`, PAD||1`K. For lossy keys e|ϕ(N), the mapping

Z∗N → Z∗N , x 7→ xe mod N

is e-to-1 for all x ∈ Z∗N . Hence m := |S| = ϕ(N)
e . Let S = {s1, . . . , sm} and define a 0, 1-random variable

Xi that takes value 1 iff si ∈ JPAD||0`, PAD||1`K for i = 1, . . . ,m. By assumption, we have

Pr[Xi = 1] =
2`

ϕ(N)
for all i.

Let X := X1 + . . .+Xm denote the number of signatures in the desired interval JPAD||0`, PAD||1`K. Then
we have expectation E[X] = ϕ(N)

e · 2`

ϕ(N) = 2`

e . Since X is a non-negative integer-valued random variable,
it follows that

Pr[X ≥ 1] ≤ E[X] =
2`

e
.

Thus, there is a valid signature in the desired interval with probability at most 2`

e . �
If we combine Lemmata 6 to 8, we get

ε 6

(
1− 2`

e

)
ε′

as required. This completes the proof. �

4.2 Proof based on a Variant of the Approximate e-th Root Assumption

The Approximate e-th Root (AER) assumption was introduced in 1985 by Okomoto and Shibaishi [OS85]
to prove the security of the ESIGN signature scheme (see also [OS03]). In the AER problem, one requires
the adversary not to find the root of a specific target value, but one also accept a root of any value “close”
to the target. By close we mean that the adversary can submit a root for any value that it is most ∆ away
from our target value, where ∆ is part of the challenge. The AER assumption has been thoroughly studied
in cryptanalysis [BD86, BO88, GTV90].

Assumption 4 (Approximate e-th Root (AER).). The Approximate e-th Root assumption, denoted by AER,
states that given (N, e, y,∆), where N is the product of two distinct random n/2-bit prime numbers P and
Q, e ∈ Z∗ϕ(N), y ∈R Z∗N and ∆ ≤ N

e−1
e , it is hard to compute x such that |y − xe| 6 ∆. AER is said to be

(t, ε)-hard, if for all adversaries A running in time at most t, we have:

AdvAER = Pr [x = A(N, e, y,∆) ∧ |y − xe mod N | 6 ∆] 6 ε

The first thing that we can see is that we select ∆ = 0, we get exactly the RSA Assumption. This
is because if ∆ = 0, we require that the adversary finds x such that |y − xe mod N | 6 0, which means
y − xe = 0 mod N , i.e. y = xe mod N . Beyond this, we must note that the the Approximate e-th root
problem becomes “easier” as the value of ∆ grows. In fact we can see that for ∆ ≥ (N − 1)/2 AER is
trivially solvable, as all x ∈ ZN are valid, that is to say ∀x, y ∈ ZN , |y − xe| 6 ∆.
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The problem is also easily solvable if there exists an e-th root over the integers nearby y. Let us look at
the following algorithm. We define as our AER solution x̃ = by1/ec ∈ N, the rounded e-th root of y over
the integers. How close is then x̃e to y? Let us define x = y1/e ∈ R with x ≥ x̃ and x− x̃ < 1. By the Mean
Value Theorem for every continuous function g(x) on the interval [x0, x1] there exists some x′ ∈ [x0, x1]
such that

g′(x′) =
g(x1)− g(x0)

x1 − x0
,

where g′(x) is the first derivative of g(x). For g(x) = xe this implies

0 ≤ y − x̃e = xe − x̃e ≤ g′(x) · (x− x̃) < exe−1 < eN
e−1
e .

Hence, we can efficiently solve AER for ∆ ≥ eN
e−1
e . To the best of our knowledge, this is the best known

bound for solving AER. Thankfully, the value of ∆ we need for PKCS#1 signatures is much smaller than
this, which means that we are not susceptible to this attack.

Let us look more closely as to how we apply the AER assumption to the securoty of PKCS#1 v1.5
signatures. The first thing we need to note is that if we fix our modulus length n and our hash function H, the
prefix PAD is the same regardless of the choice of (N, e). Let us call the set of message representatives Yn,H.
We can compute the boundaries of Yn,H by simply setting the hash to all zeros and all ones, respectively.
This gives us a lower bound of PAD||0` and an upper bound of PAD||1`, thus Yn,H = JPAD||0`, PAD||1`K.

To take this into account, we consider a specific case of the AER Assumption, which we will called
Fixed-Range Approximate e-th Root Assumption. Essentially, we fix our values y,∆ so that we have
PAD||0` = y − ∆ and PAD||1` = y + ∆. For notional simplicity, we write Yn,H in place of (y,∆) and
assume it to be publically known.

Assumption 5 (Fixed-Range Approximate e-th Root Assumption.). The Fixed-Range Approximate e-th Root
Assumption, denoted by Yn,H-FAER, states that given (N, e), where N is the product of two distinct
random n/2-bit prime numbers P and Q, e ∈ Z∗ϕ(N), it is hard to compute x such that xe mod N ∈ Yn,H.
Yn,H-FAER is said to be (t, ε)-hard, if for all adversaries A running in time at most t, we have:

Adv
Yn,H-FAER
A = Pr [x = A(N, e) ∧ xe mod N ∈ Yn,H] 6 ε

Theorem 7. Assume the Yn,H-FAER assumption is (t′, ε′)-hard, then RSA-PKCS1-v1.5 is (t, ε)-UF-NMA
secure in the Standard Model, where:

ε = ε′

t ≈ t′

PROOF. Given (N, e) from the challenger and knowing Yn,H, we can compute our public key pk =
(N, e, PAD,H). We simply take (N, e) from the challenge and knowing Yn,H = JPAD||0`, PAD||1`K we
can derive the value PAD and the hash function, as the identifier IDH is contained in PAD. We now send
this public key to the forger. If the forger produces a valid forgery σ∗ for message m∗, we know that
σ∗e mod N = PAD||H(m∗) ∈ Yn,H. Thus we can submit σ∗ as our approximate root. We see that any valid
forgery by the adversary is a valid solution to our Yn,H-FAER challenge. Thus, we are successful whenever
the forger is successful, which gives us ε = ε′, as required. �
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5 Conclusions

This paper presents the first security proofs for PKCS#1 v1.5 signatures under plausible cryptographic hard-
ness assumptions. In particular, we prove full UF-CMA-security in the random oracle model for a three
prime modulus variant of PKCS#1 v1.5 signatures, based on the standard RSA assumption, and give a tight
security proof under the ϕ-Hiding assumption. This matches the known security proofs of other practical
RSA-based signature schemes, such as RSA-PSS and RSA-FDH. Using an additional assumption, we are
able to lift our results from our variant to the more standard two prime modulus instantiation of PKCS#1
v1.5 signatures. Hence, PKCS#1 v1.5 signatures can be used securely in practice, when instantiated such
that the bounds on the length of the hash function output and the modulus from our proofs apply.

An interesting research direction for future work is to improve the provided bounds on the size of the
padding and the hash function, ideally such that standard hash functions, such as SHA-512, are covered.
Furthermore, an interesting question is whether one can directly prove the security of two prime modulus
PKCS#1 v1.5 signatures, without any additional assumptions.
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