
A Universally Composable Framework for the
Privacy of Email Ecosystems⋆

Pyrros Chaidos1, Olga Fourtounelli1, Aggelos Kiayias2,3, and Thomas Zacharias2

1 National and Kapodistrian University of Athens, Greece
{pchaidos,folga}@di.uoa.gr

2 The University of Edinburgh, UK
{akiayias,tzachari}@inf.ed.ac.uk

3 IOHK, UK

Abstract. Email communication is amongst the most prominent online
activities, and as such, can put sensitive information at risk. It is thus
of high importance that internet email applications are designed in a
privacy-aware manner and analyzed under a rigorous threat model. The
Snowden revelations (2013) suggest that such a model should feature a
global adversary, in light of the observational tools available. Furthermore,
the fact that protecting metadata can be of equal importance as protecting
the communication context implies that end-to-end encryption may be
necessary, but it is not sufficient.
With this in mind, we utilize the Universal Composability framework
[Canetti, 2001] to introduce an expressive cryptographic model for email
“ecosystems” that can formally and precisely capture various well-known
privacy notions (unobservability, anonymity, unlinkability, etc.), by pa-
rameterizing the amount of leakage an ideal-world adversary (simulator)
obtains from the email functionality.
Equipped with our framework, we present and analyze the security of
two email constructions that follow different directions in terms of the
efficiency vs. privacy tradeoff. The first one achieves optimal security
(only the online/offline mode of the users is leaked), but it is mainly of
theoretical interest; the second one is based on parallel mixing [Golle
and Juels, 2004] and is more practical, while it achieves anonymity with
respect to users that have similar amount of sending and receiving activity.

1 Introduction

During the last decade, internet users increasingly engage in interactions that
put their sensitive information at risk. Social media, e-banking, e-mail, and e-
government, are prominent cases where personal data are collected and processed
in the web. To protect people’s personal data, it is important that applications

⋆ This is the full version of [8] that appears in the proceedings of the ASIACRYPT 2018
conference in Brisbane, Australia. The said work was supported by the European
Union’s Horizon 2020 research and innovation programme under Grant Agreement
No. 653497 (project PANORAMIX).

2 Chaidos et al.

intended for communication of such information over the internet are designed
in a privacy-aware manner and analyzed under a rigorous threat model.

The recent revelations by Snowden (2013) on massive surveillance of citizens’
internet interactions, confirmed researchers’ views that current technology is
sufficient to provide adversaries with the tools to monitor the entire network. This
was a turning point in that, henceforth, treating internet security and privacy in
a threat model that considers a global adversary seems not only desirable, but
imperative for the design of state-of-the-art cryptographic protocols.

As far as standard security is concerned, i.e., hiding the context between
communicating internet users, there have been significant advancements on the
aforementioned matter, mainly to due to wide deployment of end-to-end (E2E)
encryption tools, even for some of the world’s most popular applications, such as
WhatsApp, Viber, Facebook Messenger and Skype (over Signal). However, it is
well understood that E2E encryption is not enough to protect the users’ metadata
(e.g. users’ identities and location, or the communication time), that often can
be of equal importance. The protection of metadata is studied in the context of
anonymous communications, that were introduced by the seminal works of Chaum
with the concept of mix-nets [11], followed by DC-nets a few years later [9]. A mix-
net is a message transmission system that aims to decouple the relation of senders
to receivers by using intermediate servers to re-encrypt and re-order messages.
The operation of mix-nets relies on messages from A to B making intermediate
stops in mix servers, with appropriate delay times so that multiple messages
“meet” at each server. The server re-encrypts messages before forwarding them,
thus breaking the link between incoming and outgoing messages. We will analyse
a mix-based system in Sect. 6 and contrast its overhead to the more expensive
broadcast solution in Sect. 5. Nowadays, the most scalable solutions of anonymous
communications in the real-world rely on onion-routing [34], and mostly on the
Tor anonymous browser [17]. Although very efficient and a major step forward
for privacy-preserving technologies, it has been pointed out (e.g., [22,33,35]) that
onion-routing can provide anonymity only against adversaries with local views
with respect to the (three) relay routing nodes, whereas a global observer can
easily derive the addresses of two entities that communicate over onion-routing
applications. Towards the goal of communication anonymity against a global
adversary [2,10,12–14,25–27,30,36], various schemes have been proposed, and
several recent ones achieving reasonable latency [1, 10,26,27,30,36].

Modeling privacy for email ecosystems. In this work, we focus on the study
of privacy (as expressed via several anonymity-style notions cf. [28]) for email
ecosystems. The reason why we choose to focus on the email case is threefold:

1. Email is one of the most important aspects of internet communication, as
email traffic is estimated to be in the order of ∼ 1011 messages per day, while
there are approximately 2.5 billion accounts worldwide 4.

4 https://www.radicati.com/wp/wp-content/uploads/2014/10/
Email-Market-2014-2018-Executive-Summary.pdf

https://www.radicati.com/wp/wp-content/uploads/2014/10/Email-Market-2014-2018-Executive-Summary.pdf
https://www.radicati.com/wp/wp-content/uploads/2014/10/Email-Market-2014-2018-Executive-Summary.pdf

A Universally Composable Framework for the Privacy of Email Ecosystems 3

2. The actual network infrastructure of an email ecosystem has some special
features that encourage a separate study from the general case of private messag-
ing. Namely, the users dynamically register, go online/offline, and communicate,
in a client-friendly environment and the management of the protocol execution
is mainly handled by their service providers (SPs) that manage their inboxes.
In turn, the client interface allows the user to log in/log out and while online,
submit send and fetch requests to their SP. Moreover, adding a subsystem of
mix-nodes which, in principle, are functionally different than the clients and
the SPs, stratifies the observational power of the global adversary into three
layers (i) the client↔SP channels, (ii) the SP↔mix-node channels, and (iii) the
channels within the mix-node system. Under this real-world setting, exploring the
feasibility and the trade off between efficiency and privacy for anonymous email
routing poses restrictions on the expected secrecy, that would not be present in
a generic peer-to-peer setting (e.g. users jointly engaging in an MPC execution).

3. To the best of our knowledge, there is no prior work on general modeling of
email privacy in a computational model, that captures protocol flow under a com-
position of individual email messaging executions. The Universal Composability
(UC) framework [6] is the ideal tool for such a modeling.

Contributions. Our contributions are as follows:

1. In Section 3, we introduce a framework for the formal study of email
ecosystems in the real-ideal world paradigm of the UC model [6]. The real-
world entities involved in our framework comprise the set of clients, the of SPs
and the subsystem of mix-nodes; all entities are synchronized via a global clock
functionality 𝒢clock and communicate over an authenticated channel functionality
with bounded message delay 𝛥net, denoted by ℱ𝛥net

auth . In the ideal-world, an email

privacy functionality ℱLeak,𝛥net

priv manages email traffic among dummy parties
that forward their inputs. The functionality is parameterized by 𝛥net and a
leakage function Leak, defined over the history transcript, that formally expresses
the underlying privacy notion the studied email ecosystem should satisfy. To
illustrate the expressibility of our framework, in Section 4, we show how to
formally capture intuitively well understood privacy notions by properly defining
the leakage function. In particular, we express and study the relation of notions
of anonymity, unlinkability, unobservability and pseudonymity defined in [28],
as well as E2E encryption, and a notion we call weak anonymity that, although
a relaxed version of standard anonymity (still stronger than E2E encryption),
provides reasonable privacy guarantees given the setting.

2. In Section 5, we present and formally analyze a theoretical construction
with quadratic communication overhead that we prove it achieves unobservability
(i.e, only the online/offline mode of the clients is leaked), which we argue that
it sets the optimal level of privacy that can be expected under the restrictions
posed in our client-SP setting, even against a global adversary that only observes
the network. As a result, the said construction shows that in principle, optimal
privacy is feasible, while the challenge of every real-world email ecosystem is to
balance the privacy vs. efficiency trade off.

4 Chaidos et al.

3. In Sections 6 and 7 we analyze a construction similar to the classical
parallel mix of Golle and Juels [19], to illustrate the expressiveness of our model
in a more practice-oriented protocol. We focus on the UC simulation in Section
6, and in Section 7, we use H̊astad’s matrix shuffle to model the permutation’s
distribution. This in turn makes our analysis relevant to Atom [26], a state of the
art anonymity system using similar permutation strategies. At the same time, as
we only assume an adversary that is a global passive observer, Atom’s techniques
to mitigate corruptions are complementary, even if orthogonal, to our work.

2 Background

2.1 Notation

We use 𝜆 as the security parameter and write negl(𝜆) to denote that some
function 𝑓(·) is negligible in 𝜆. We write [𝑛] to denote the set {1, . . . , 𝑛} and J·K
to denote a multiset. By 𝑋 ≈𝜖 𝑌 , we denote that the random variable ensembles
{𝑋𝜆}𝜆∈N, {𝑌𝜆}𝜆∈N are computationally indistinguishable with error 𝜖(·), i.e., for
every probabilistic polynomial time (PPT) algorithm 𝒜, it holds that⃒⃒

Pr[𝑤 ← 𝑋𝜆 : 𝒜(𝑤) = 1]− Pr[𝑤 ← 𝑌𝜆 : 𝒜(𝑤) = 1] < 𝜖(𝜆)
⃒⃒
.

We simply write 𝑋 ≈ 𝑌 when the error 𝜖 is negl(𝜆). The notation 𝑥
$← 𝑆 stands

for 𝑥 being sampled from the set 𝑆 uniformly ar random.

2.2 IND-CPA security of public-key encryption schemes

In our constructions, we utilize public-key encryption (PKE). We require that a
PKE scheme PKE = (KeyGen,Enc,Dec) satisfies the property of multiple challenge
IND-CPA (m-IND-CPA) security, which is equivalent to standard IND-CPA
security (up to negligible error). We recall that m-IND-CPA with error 𝜖(𝜆)
dictates that any adversary ℬ that (a) obtains the public key, and (b) sends
(polynomially many) challenge queries of the form (𝑀0,𝑀1) to the challenger
receiving encryption of 𝑀𝑏, where 𝑏 is the random bit of the challenger, can not
guess 𝑏 with more than 1/2 + 𝜖(𝜆) probability.

2.3 Related Work

Early works treating anonymity followed the intuitive definition of Pfitzmann
and Hansen (formerly Khöntopp) [28], originally [29], as “the state of not being
identifiable within a set of subjects”, and aimed to augment it by quantifying the
degree of non-identifiability. One of the first efforts in that direction (predating
[29]) was the concept of “𝑘-anonymity” by Samarati and Sweeney [31], that (in
the context of databases) attempts to identify an individual produce at least 𝑘
candidates.

In [16,32], anonymity is quantified by measuring the probability that a message
𝑀 was sent by a user 𝑈 .Thus, we are no longer interested only in the size of the

A Universally Composable Framework for the Privacy of Email Ecosystems 5

set of candidates, but also their relative probabilities. This definition improved
upon the “folklore” metric of only measuring the size of the subject set, even if
the probability distribution on that set was highly non-uniform –e.g. [24].

The seminal work of Dwork [18] on Differential Privacy, while originating
in the realm of databases, highlights and formalizes the strength of combining
different pieces of seemingly privacy-respecting information to arrive at a privacy-
impacting conclusion. Influenced in part by Differential Privacy, AnoA [3] is a
game-based privacy analysis framework that is flexible enough to model various
privacy concepts.Their approach is based on games between a challenger and an
adversary who has control of the execution of the game, apart from a challenge
message representing the scenarios the adversary is trying to distinguish.

In a different direction, the Universal Composability (UC) framework, [6]
models security as a simulation not against an adversary, but a malicious envi-
ronment, given strong control over the inputs of each party as well as a complete
view of the system. This rigorous approach produces strong and composable
security guarantees but is quite demanding in that the simulation must operate
with the bare minimum of data (i.e. what we assume the protocol leaks). This
precision in both simulation and leakage is a key motivation of this work.

On the other hand, state of the art anonymous communication solutions
such as Loopix [30] which aims for high performance while maintaining strong
anonymity properties, as well as unobservability, are analyzed under a weaker ad-
versary. Moreover, Atom [26] is engineered to provide statistical indistinguishable
shuffling with strong safeguards against malicious servers, but lacks formal proofs.
In our work, we analyze a construction that shares a similar design (namely
H̊astad’s matrix shuffle), so that we are able to offer a suggested 𝑇 value (i.e
mix length) as a side contribution in Section 7. A key difference between Loopix
and Atom is that Loopix uses a free routing approach (i.e a message’s path is
determined by its sender) as opposed to allowing mix nodes to route messages.
The first approach is more agreeable with high-efficiency solution aiming for a
practical level of resilience against active adversaries while the second approach
is easier to reason about but requires a passive adversary or measures such as
NIZKs or trap messages to ensure correct behavior.

Camenish and Lysyanskaya [5] offer a treatment of onion routing in the
Universal Composability model. The defining characteristic of onion routing, is
that routing is entirely determined by the initial sender and is not influenced by
the intervening nodes. As such, their analysis focuses on defining security with
regards to the encryption, padding, structuring and layering of onions rather
than the routing strategy itself. This is orthogonal to our approach: we focus on
evaluating the anonymity of different mixing strategies under what we view as
realistic requirements about the message encapsulation.

Wikström [37] covers the UC-security of a specific mix construction. His
analysis is well-suited to voting but is hard to generalize over other use cases and
performance parameters. In contrast, our work, while focusing on email, is more
general and flexible in regards to leakage, timings and network topology.

6 Chaidos et al.

In the work of Alexopoulos et al. [1], anonymity is studied in the concept
of messaging via a stand-alone simulation-based model. Even though formally
treated, anonymity in [1] is defined under a framework that is weaker than UC.

3 A UC framework for the privacy of email ecosystems

In this section, we present our UC framework for email privacy. As in standard
UC approach, privacy will be defined via the inability of an environment 𝒵,
that schedules the execution and provides the inputs, to distinguish between
(i) a real-world execution of an email ecosystem E in the presence of a (global
passive) adversary 𝒜 and (ii) an ideal-world execution handled by an email
privacy functionality interacting with a PPT simulator Sim. More specifically,
we adjust our definitions to the global UC setting [7], by incorporating a global
clock functionality (cf. [4,23]) that facilitates synchronicity and is accessed by all
parties, including the environment.

3.1 Entities and protocols of an email ecosystem

The entities that are involved in a private email “ecosystem” E are the following:

– The service providers (SPs) SP1, . . . ,SP𝑁 that register users and are respon-
sible for mailbox management and email transfer.

– The clients 𝐶1, . . . , 𝐶𝑛 that wish to exchange email messages and are regis-
tered to the SPs. For simplicity, we assume that each client is linked with
only one SP that manages her mailbox. We write 𝐶ℓ@SP𝑖 to denote that 𝐶ℓ

is registered to SP𝑖, where registration is done dynamically. We define the
set C𝑖 :=

{︀
𝐶ℓ

⃒⃒
𝐶ℓ@SP𝑖

}︀
of all clients whose mailboxes SP𝑖 is managing.

– The mix node subsystem MX that consists of the mix nodes MX1, . . . ,MX𝑚

and is the core of the anonymous email routing mechanism.

An email ecosystem E has the two following phases:

� Initialization is a setup phase where all SPs and mix nodes generate any
possible private and public data, and commune their public data to a subset of
the ecosystem’s entities.
� Execution is a phase that comprises executions of the following protocols:

– The REGISTER protocol between client 𝐶𝑠 and her service provider SP𝑖. For
simplicity, we assume that registration can be done only once.

– The SEND protocol between client 𝐶𝑠 and her service provider SP𝑖. In
particular, 𝐶𝑠 that wishes to send a message 𝑀 to some client address 𝐶𝑟@SP𝑗

authenticates to SP𝑖 and provides her with an encoding Encode(𝑀,𝐶𝑟@SP𝑗)
of (𝑀,𝐶𝑟@SP𝑗) (that may not necessarily include information about the
sender). At the end of the protocol, Encode(𝑀,𝐶𝑟@SP𝑗) is at the outbox of
𝐶𝑠@SP𝑖 managed by SP𝑖.

– The ROUTE protocol that is executed among SP1, . . . ,SP𝑁 and MX1, . . . ,MX𝑚.
Namely, the encoded message Encode(𝑀,𝐶𝑟@SP𝑗) is forwarded to the MX
subsystem, which in turn delivers it to SP𝑗 that manages the inbox of 𝐶𝑟.

A Universally Composable Framework for the Privacy of Email Ecosystems 7

– The RECEIVE protocol between client 𝐶𝑟 and her service provider SP𝑗 , where
𝐶𝑟 can retrieve the messages from the inbox of 𝐶𝑟@SP𝑗 via fetch requests.

Remark 1. In this work, we consider email solutions that follow the realistic
client-side approach, where the client-side operations are relatively simple and
do not include complex interaction with the other entities for the execution of
heavy cryptographic primitives (e.g. pairwise secure MPC). As we will explain
shortly, the client-friendly approach poses some limitations on the privacy level
that the email ecosystem can achieve.

3.2 A global clock functionality

In our setting, the protocol flow within the email ecosystem E advances in time
slots, that could refer to any suitable time unit (e.g. ms). The entities of E are
synchronized via a global clock functionality 𝒢clock that interacts with a set of
parties P, a set of functionalities F, the UC environment 𝒵 and the adversary 𝒜.
In the spirit of [4,23], the functionality 𝒢clock, presented in Fig. 1, advances when
all entities in P and F declare completion of their activity within the current
time slot, whereas all entities have read access to it.

The global clock functionality 𝒢clock(P,F).

The functionality initializes the global clock variable as Cl ← 0 and the set of
advanced parties as 𝐿adv ← ∅.

– Upon receiving (sid,Advance Clock, 𝑃) from ℱ ∈ F or 𝑃 ∈ P, if 𝑃 /∈ 𝐿adv,
then it adds 𝑃 to 𝐿adv and sends the message (sid,Advance Ack, 𝑃) to ℱ
or 𝑃 , repsectively, and notifies 𝒜 by forwarding (sid,Advance Clock, 𝑃). If
𝐿adv = P, then it updates as Cl← Cl+ 1 and resets 𝐿adv ← ∅.

– Upon receiving (sid,Read Clock) from 𝑋 ∈ P ∪ F ∪ {𝒵,𝒜}, then it sends
(sid,Read Clock,Cl) to 𝑋.

Fig. 1. The global clock functionality 𝒢clock(P,F) interacting with the environment 𝒵
and the adversary 𝒜.

3.3 A UC definition of e-mail privacy

Let Ad be the set of all valid email addresses linking the set of clients C =
{𝐶1, . . . , 𝐶𝑛} and with their corresponding providers in SP = {SP1, . . . ,SP𝑁},
i.e. Ad := ∪𝑖∈[𝑁]C𝑖. We denote by P the union C ∪ SP ∪MX.

The history of an email ecosystem execution that involves the entities in
C,SP and MX is a transcript of actions expressed as a list 𝐻, where each action
entry of 𝐻 is associated with a unique pointer ptr to this action. The leakage in
each execution step, is expressed via a leakage function Leak(·, ·) that, when given
as input (i) a pointer ptr and (ii) an execution history sequence 𝐻, outputs some

8 Chaidos et al.

leakage string 𝑧. Here, 𝑧 could be ⊥ indicating no leakage to the adversary. This
leakage may depend on the entry indexed by ptr as well as on entries recorded
previously (i.e. prior than ptr).

We require that during a time slot, the environment sends a message for every
party, even when the party is idle (inactive) for this slot, so that the clock can
be advanced as described in Fig. 1.

The ideal world execution. In the ideal world, the protocol execution is
managed by the email privacy functionality ℱLeak,𝛥net

priv (P), parameterized by
the message delivery delay bound 𝛥net and the leakage function Leak(·, ·), with

access to 𝒢clock. The functionality ℱLeak,𝛥net

priv (P) consists of the Initialization,
Execution, and Clock advancement phases, that informally are run as follows:

– At the Initialization phase, all the SPs in SP and mix nodes in MX
provide ℱLeak,𝛥net

priv (P) with an initialization notification via public delayed output.
The functionality proceeds to the Execution phase when all SPs and mix nodes
are initialized. Note that in the ideal world, the SPs and the mix nodes remain idle
after Initialization (besides messages intended for 𝒢clock), as privacy-preserving

email routing is done by ℱLeak,𝛥net

priv (P). Their presence in the ideal setting is for
consistency in terms of UC interface.

– At the Execution phase, ℱLeak,𝛥net

priv (P) manages the email traffic, as sched-
uled per time slot by the environment. During this phase, the clients may
(dynamically) provide ℱLeak,𝛥net

priv (P) with registration, log in, log out, send or

fetch requests. Upon receiving a request, ℱLeak,𝛥net

priv (P) updates the history by
adding the request as a new entry associated with a unique pointer ptr, in a
‘pending’ mode. Then, it notifies the simulator Sim by attaching the corresponding
leakage. The execution of a pending request which record is indexed by a pointer
ptr is completed when ℱLeak,𝛥net

priv (P) receives an Allow Exec message paired
with ptr from Sim.

Within a time slot 𝑇 , each client may perform only one action that also
implies a time advancement request to 𝒢clock. In order for the clock to advance all
the other parties that performed no action (i.e., the SPs, the mix nodes and the
clients that remained idle during 𝑇), send an explicit time advancement request

to ℱLeak,𝛥net

priv (P). Besides, any party may submit clock reading requests arbitrarily.

All the messages that are intended for 𝒢clock are forwarded to it by ℱLeak,𝛥net

priv (P).
– At the Clock advancement phase, all parties have already submitted time

advancement requests during time slot 𝑇 , so ℱLeak,𝛥net

priv (P) takes the necessary

final steps before proceeding to 𝑇 + 1. In particular, ℱLeak,𝛥net

priv (P) completes the
execution of all send and fetch requests that have been delayed for 𝛥net steps
(by Sim). This suggests that in the ideal-world, the delay in message delivery is

upper bounded by 𝛥net. Finally, ℱLeak,𝛥net

priv (P) informs Sim of the leakage derived
from the aforementioned executions, advances its local time by 1 and reenters
the Execution phase for time slot 𝑇 + 1.

Formally, the email privacy functionality ℱLeak,𝛥net

priv (P) is described as follows:

A Universally Composable Framework for the Privacy of Email Ecosystems 9

Initialization on status ‘init’.

– ℱLeak,𝛥net

priv (P) sets its status to ‘init’. It initializes the set of valid addresses
Ad, the set of active entities 𝐿act, the set of clock-advanced entities 𝐿adv, the
history list 𝐻, and the set of leaked entries 𝐿leak as empty.

– Upon receiving (sid, Init) from a party 𝑃 ∈ SP ∪MX, if 𝐿act (SP ∪MX,
then it sends the message (sid, Init, 𝑃) to Sim.

– Upon receiving (sid,Allow Init, 𝑃) from Sim, if 𝑃 ∈ (SP ∪MX) ∖ 𝐿act,
then it adds 𝑃 to 𝐿act. If 𝐿act = SP ∪MX, then it sends (sid, ready) to Sim.

– Upon receiving (sid,Execute) from Sim, it sends (sid,Read Clock) to
𝒢clock.

– Upon receiving (sid,Read Clock,Cl) from 𝒢clock, it sets its clock as Cl and
its status to ‘execute’, and sends the message (sid, start,Cl) to Sim.

Execution on status ‘execute’.

Registration:

– Upon receiving
(︀
sid,Register,@SP𝑖

)︀
from 𝐶ℓ, if for every 𝑗 ∈ [𝑁] : 𝐶ℓ@SP𝑗 /∈

Ad and 𝐶ℓ /∈ 𝐿adv, then
1. It sends the message (sid,Advance Clock, 𝐶ℓ) to 𝒢clock.
2. Upon receiving (sid,Advance Ack, 𝐶ℓ) from 𝒢clock, it adds 𝐶ℓ to 𝐿adv

and the entry
(︀
ptr,

(︀
sid,Cl,Register, 𝐶ℓ@SP𝑖

)︀
, ‘pending’

)︀
to 𝐻.

3. It sends the message
(︀
sid, ptr, Leak(ptr, 𝐻)

)︀
to Sim.

4. Upon receiving
(︀
sid,Allow Exec, ptr

)︀
from Sim, if ptr refers to an entry

of the form
(︀
ptr,

(︀
sid,Cl,Register, 𝐶ℓ@SP𝑖

)︀
, ‘pending’

)︀
, then

(a) It adds 𝐶ℓ@SP𝑖 to Ad and 𝐿act, and initializes a list Inbox[𝐶ℓ@SP𝑖]
as empty.

(b) It updates the entry as
(︀
ptr,

(︀
sid,Cl′,Register, 𝐶ℓ@SP𝑖

)︀
, ‘(registered,Cl)’

)︀
.

(c) It sends the message
(︀
sid, ptr, Leak(ptr, 𝐻)

)︀
to Sim.

Log in:

– Upon receiving
(︀
sid,Active,@SP𝑖

)︀
from 𝐶ℓ, if 𝐶ℓ@SP𝑖 ∈ Ad and 𝐶ℓ /∈ 𝐿adv,

1. It sends the message (sid,Advance Clock, 𝐶ℓ) to 𝒢clock.
2. Upon receiving (sid,Advance Ack, 𝐶ℓ) from 𝒢clock, it adds 𝐶ℓ to 𝐿adv

and the entry
(︀
ptr,

(︀
sid,Cl,Active, 𝐶ℓ@SP𝑖

)︀
, ‘pending’

)︀
to 𝐻.

3. It sends the message
(︀
sid, ptr, Leak(ptr, 𝐻)

)︀
to Sim.

4. Upon receiving
(︀
sid,Allow Exec, ptr

)︀
from Sim, if ptr refers to an entry

of the form
(︀
ptr,

(︀
sid,Cl′,Active, 𝐶ℓ@SP𝑖

)︀
, ‘pending’

)︀
, then

(a) If 𝐶ℓ@SP𝑖 /∈ 𝐿act, then it adds 𝐶ℓ@SP𝑖 to 𝐿act.
(b) It updates the entry as

(︀
ptr,

(︀
sid,Cl′,Active, 𝐶ℓ@SP𝑖

)︀
, ‘(logged in,Cl)’

)︀
.

(c) It sends the message
(︀
sid, ptr, Leak(ptr, 𝐻)

)︀
to Sim.

Log out:

– Upon receiving
(︀
sid, Inactive,@SP𝑖

)︀
from 𝐶ℓ, if 𝐶ℓ@SP𝑖 ∈ Ad and 𝐶ℓ /∈

𝐿adv, then
1. It sends the message (sid,Advance Clock, 𝐶ℓ) to 𝒢clock.
2. Upon receiving (sid,Advance Ack, 𝐶ℓ) from 𝒢clock, it adds 𝐶ℓ to 𝐿adv

and the entry
(︀
ptr,

(︀
sid,Cl, Inactive, 𝐶ℓ@SP𝑖

)︀
, , ‘pending’

)︀
to 𝐻.

10 Chaidos et al.

3. It sends the message
(︀
sid, ptr, Leak(ptr, 𝐻)

)︀
to Sim.

4. Upon receiving
(︀
sid,Allow Exec, ptr

)︀
from Sim, if ptr refers to an entry

of the form
(︀
ptr,

(︀
sid,Cl′, Inactive, 𝐶ℓ@SP𝑖

)︀
, ‘pending’

)︀
, then

(a) If 𝐶ℓ@SP𝑖 ∈ 𝐿act, then it deletes 𝐶ℓ@SP𝑖 from 𝐿act.
(b) It updates the entry as

(︀
ptr,

(︀
sid,Cl′, Inactive, 𝐶ℓ@SP𝑖

)︀
, ‘(logged out,Cl)’

)︀
.

(c) It sends the message
(︀
sid, ptr, Leak(ptr, 𝐻)

)︀
to Sim.

Send:
– Upon receiving

(︀
sid,Send, ⟨𝐶𝑠@SP𝑖,𝑀,𝐶𝑟@SP𝑗⟩

)︀
from 𝐶𝑠, if 𝐶𝑠@SP𝑖, 𝐶𝑟@SP𝑗 ∈

Ad and 𝐶𝑠 ∈ 𝐿act ∖ 𝐿adv, then
1. It sends the message (sid,Advance Clock, 𝐶𝑠) to 𝒢clock.
2. Upon receiving (sid,Advance Ack, 𝐶𝑠) from 𝒢clock, it adds 𝐶𝑠 in 𝐿adv

and the entry
(︀
ptr,

(︀
sid,Cl,Send, ⟨𝐶𝑠@SP𝑖,𝑀,𝐶𝑟@SP𝑗⟩

)︀
, ‘pending’

)︀
to 𝐻.

3. It sends the message
(︀
sid, ptr, Leak(ptr, 𝐻)

)︀
to Sim.

4. Upon receiving
(︀
sid,Allow Exec, ptr

)︀
from Sim, if ptr refers to an entry(︀

sid,Cl′,Send, ⟨𝐶𝑠@SP𝑖,𝑀,𝐶𝑟@SP𝑗⟩
)︀

with status ‘pending’, then

(a) It adds
(︀
sid,Cl′,Send, ⟨𝐶𝑠@SP𝑖,𝑀,𝐶𝑟@SP𝑗⟩

)︀
to Inbox[𝐶𝑟@SP𝑗].

(b) It updates as
(︀
ptr,

(︀
sid,Cl′,Send, ⟨𝐶𝑠@SP𝑖,𝑀,𝐶𝑟@SP𝑗⟩

)︀
, ‘(sent,Cl)’

)︀
.

(c) It sends the message
(︀
sid, ptr, Leak(ptr, 𝐻)

)︀
to Sim.

Fetch:
– Upon receiving

(︀
Fetch, sid, 𝐶𝑟@SP𝑗

)︀
from 𝐶𝑟, if 𝐶𝑟@SP𝑗 ∈ Ad and 𝐶𝑟 ∈

𝐿act ∖ 𝐿adv, then
1. It sends the message (sid,Advance Clock, 𝐶𝑟) to 𝒢clock.
2. Upon receiving (sid,Advance Ack, 𝐶𝑟) from 𝒢clock, it adds 𝐶𝑠 in 𝐿adv

and the entry
(︀
ptr,

(︀
sid,Cl,Fetch, 𝐶𝑟@SP𝑗

)︀
, ‘pending’

)︀
to 𝐻.

3. It sends the message
(︀
sid, ptr, Leak(ptr, 𝐻)

)︀
to Sim.

4. Upon receiving
(︀
sid,Allow Exec, ptr

)︀
from Sim, if ptr refers to an entry

of the form
(︀
sid,Cl′,Fetch, 𝐶𝑟@SP𝑗

)︀
with status ‘pending’, then

(a) It sends the message (sid, Inbox[𝐶𝑟@SP𝑗]) to 𝐶𝑟.
(b) It updates the entry as

(︀
ptr,

(︀
sid,Cl′,Fetch, 𝐶𝑟@SP𝑗

)︀
, ‘(fetched,Cl)’

)︀
.

(c) It resets Inbox[𝐶𝑟@SP𝑗] as empty.
(d) It sends the message

(︀
sid, ptr, Leak(ptr, 𝐻)

)︀
to Sim.

Clock reading:

– Upon receiving
(︀
sid,Read Clock

)︀
from a party 𝑃 ∈ P, then

1. It sends the message
(︀
sid,Read Clock

)︀
to 𝒢clock.

2. On receiving
(︀
sid,Read Clock,Cl

)︀
from 𝒢clock it adds

(︀
ptr,

(︀
sid,Cl,

Read Clock, 𝑃
)︀)︀

to 𝐻, sending
(︀
sid,Read Clock,Cl

)︀
to 𝑃 .

3. It sends the message
(︀
sid, ptr, Leak(ptr, 𝐻)

)︀
to Sim.

Clock advance:
– Upon receiving

(︀
sid,Advance Clock

)︀
from a party 𝑃 ∈ P ∖ 𝐿adv, then

1. It sends the message (sid,Advance Clock, 𝑃) to 𝒢clock.
2. Upon receiving (sid,Advance Ack, 𝑃) from 𝒢clock, it adds 𝑃 in 𝐿adv and(︀

ptr,
(︀
sid,Cl,Advance Clock, 𝑃

)︀)︀
to 𝐻.

3. It sends the message
(︀
sid, ptr, Leak(ptr, 𝐻)

)︀
to Sim.

4. If 𝐿adv = P, then it sets its status to ‘advance’ and proceeds to the Clock
advancement phase below.

A Universally Composable Framework for the Privacy of Email Ecosystems 11

Clock advancement on status ‘advance’.

– Upon setting its status to ‘advance’:
1. For every history entry of the form

(︀
sid,Cl′,Send, ⟨𝐶𝑠@SP𝑖,𝑀,𝐶𝑟@SP𝑗⟩

)︀
with status ‘pending’ such that Cl − Cl′ = 𝛥net, it adds this entry to
Inbox[𝐶𝑟@SP𝑗] and updates the entry’s status to ‘(sent,Cl)’.

2. For every history entry of the form
(︀
sid,Cl′,Fetch, 𝐶𝑟@SP𝑗

)︀
with status

‘pending’ such that Cl−Cl′ = 𝛥net, it sends the message (sid, Inbox[𝐶𝑟@SP𝑗])
to 𝐶𝑟, resets the list Inbox[𝐶𝑟@SP𝑗] as input and updates the entry’s
status to ‘(fetched,Cl)’.

3. It sends the message
(︀
sid, ptr, Leak(ptr, 𝐻)

)︀
to Sim.

4. It finalizes execution for the current slot as follows:
(a) It advances its time by Cl← Cl + 1.
(b) It adds

(︀
ptr,

(︀
sid,Clock Advanced

)︀)︀
to 𝐻.

(c) It reverts its status to ‘execute’ and resets 𝐿adv to empty.
(d) It sends the message (sid,Clock Advanced) to Sim.

We denote by EXEC
ℱLeak,𝛥net

priv

Sim,𝒵,𝒢clock
[P](𝜆), the output of the environment 𝒵 in an

ideal-world execution of ℱLeak,𝛥net

priv (P) under the presence of Sim.

The authenticated channel functionality ℱ𝛥net
auth (P).

The functionality initializes a list of pending messages 𝐿pend as empty.

– Upon receiving (sid,Channel,𝑀, 𝑃 ′) from 𝑃 ∈ P, then
1. It sends the message (sid,Read Clock) to 𝒢clock(P).
2. Upon receiving (sid,Read Clock,Cl) to 𝒢clock(P), it picks a unique pointer

ptr and stores the entry
(︀
ptr, (sid,Cl,Channel, 𝑃,𝑀,𝑃 ′)

)︀
to 𝐿pend.

3. It sends the message
(︀
ptr, (sid,Channel, 𝑃,𝑀,𝑃 ′)

)︀
to 𝒜.

– Upon receiving (sid,Allow Channel, ptr′) from 𝒜, if there is an en-
try

(︀
ptr′, (sid,Cl′,Channel, 𝑃,𝑀,𝑃 ′)

)︀
in 𝐿pend, then it sends the message

(sid,𝑀, 𝑃) to 𝑃 ′ and deletes
(︀
ptr′, (sid,Cl′,Channel, 𝑃,𝑀,𝑃 ′)

)︀
from 𝐿pend.

– Upon any activation from a party 𝑃 ∈ P or 𝒜 as above,
1. It sends the message (sid,Read Clock) to 𝒢clock(P).
2. Upon receiving (sid,Read Clock,Cl) to 𝒢clock(P), it parses 𝐿pend. For every

entry
(︀
ptr′, (sid,Cl′,Channel, 𝑃,𝑀,𝑃 ′)

)︀
s.t. Cl− Cl′ = 𝛥net, it sends the

message (sid,𝑀, 𝑃) to 𝑃 ′ and deletes
(︀
ptr′, (sid,Cl′,Channel, 𝑃,𝑀,𝑃 ′)

)︀
from 𝐿pend.

Fig. 2. The authenticated channel functionality ℱ𝛥net
auth (P) interacting with the adver-

sary 𝒜.

The
(︀
𝒢clock,ℱ𝛥net

auth

)︀
-hybrid world execution. In the real world email ecosystem

E, the clients, the SPs and the mix nodes interact according to the protocols’

12 Chaidos et al.

guidelines and the environment’s instructions. The message delivery is executed
via the functionality ℱ𝛥net

auth (P) described in Fig. 2 that captures the notion of
an authenticated channel, upon which a maximum delivery delay 𝛥net can be
imposed. Clock advancement is done via calls to 𝒢clock, which interacts with all
entities and ℱ𝛥net

auth .

We denote by EXECE𝒢clock,ℱ
𝛥net
auth

𝒜,𝒵,𝒢clock
[P](𝜆) the output of the environment 𝒵 in an

execution of E𝒢clock,ℱ𝛥net
auth under the presence of 𝒜.

The UC definition of a private email ecosystem is provided below.

Definition 1 (UC Email Privacy). Let 𝛥net, 𝜖 be non-negative values. Let E
be an email ecosystem with client set C = 𝐶1, . . . , 𝐶𝑛, service provider set SP =
SP1, . . . ,SP𝑁 and mix node set MX = MX1, . . . ,MX𝑚. Let P := C∪SP∪MX.

We say that E𝒢clock,ℱ𝛥net
auth achieves statistical (resp. computational) 𝜖-privacy with

respect to leakage (Leak) and message delay 𝛥net, if for every unbounded (resp.
PPT) global passive adversary 𝒜, there is a PPT simulator Sim such that for
every PPT environment 𝒵, it holds that

EXEC
ℱLeak,𝛥net

priv

Sim,𝒵,𝒢clock
[P](𝜆) ≈𝜖 EXECE𝒢clock,ℱ

𝛥net
auth

𝒜,𝒵,𝒢clock
[P](𝜆) .

4 Formalizing privacy notions via types of leakage
functions

In [28], Pfitzmann and Hansen provide definitions for anonymity, unlinkability,
unobservability and pseudonymity. Even though outside the context of a formal
framework, the definitions in this seminal work have served as a reference point
by researchers for the understanding of privacy notions. In this section, we
formally express the said (yet not only these) notions by carefully specifying a
corresponding leakage function.

Basic leakage sets. Below, we define some useful sets that will enable the
succinct description of the various leakage functions that we will introduce. In our
formalization, leakage will derive from the history entries that are in a ‘pending’
mode. This is due to technical reasons, as the ideal-world simulator Sim (cf.
Section 3.3) must be aware of the actions to be taken by the email privacy

functionality ℱLeak,𝛥net

priv (P) before allowing their execution, so that it can simulate
the real-world run in an indistinguishable manner. In the following, the symbol *
denotes a wildcard, and ptr′ ≤ ptr denotes that entry indexed with pointer ptr′

was added earlier than the entry with pointer ptr.

– The active address set for 𝐻 by pointer ptr:

Actptr[𝐻] =:
{︁
𝐶ℓ@SP𝑖

⃒⃒⃒
∃ptr′ ≤ ptr :

[︁[︀(︀
ptr′,

(︀
sid, *,Active, 𝐶ℓ@SP𝑖

)︀
, ‘pending’

)︀
∈ 𝐻

]︀
∨

∨
[︀(︀
ptr′,

(︀
sid, *,Register, 𝐶ℓ@SP𝑖

)︀
, ‘pending’

)︀
∈ 𝐻

]︀]︁
∧

∧
[︁
∀ptr′′ : ptr′ ≤ ptr′′ ≤ ptr⇒

(︀
ptr′′,

(︀
sid, *, Inactive, 𝐶ℓ@SP𝑖

)︀
, ‘pending’

)︀
/∈ 𝐻

]︁}︁
.

A Universally Composable Framework for the Privacy of Email Ecosystems 13

Note. To simplify the notation and terminology that follows, we consider as active
all the addresses that are in a pending registration status.

– The sender set for 𝐻 by pointer ptr:

Sptr[𝐻] :=
{︁
𝐶𝑠@SP𝑖

⃒⃒⃒
∃ptr′ ≤ ptr :

(︀
ptr′,

(︀
sid, *,Send, ⟨𝐶𝑠@SP𝑖, *, *⟩

)︀
, ‘pending’

)︀
∈ 𝐻

}︁
.

– The sender multiset for 𝐻 by pointer ptr, denoted by JSptrK[𝐻], is defined
analogously. The difference with Sptr[𝐻] is that the cardinality of the pending
Send messages provided by 𝐶𝑠@SP𝑖 is attached.

– The message-sender set for 𝐻 by pointer ptr:

MSptr[𝐻] :=
{︁

(𝑀,𝐶𝑠@SP𝑖)
⃒⃒⃒
∃ptr′ ≤ ptr :(︀

ptr′,
(︀
sid, *,Send, ⟨𝐶𝑠@SP𝑖,𝑀, *⟩

)︀
, ‘pending’

)︀
∈ 𝐻

}︁
.

– The recipient set for 𝐻 by pointer ptr:

Rptr[𝐻] :=
{︁
𝐶𝑟@SP𝑗

⃒⃒⃒
∃ptr′ ≤ ptr :(︀

ptr′,
(︀
sid, *,Send, ⟨*, *, 𝐶𝑟@SP𝑗⟩

)︀
, ‘pending’

)︀
∈ 𝐻

}︁
.

– The recipient multiset for 𝐻 at time slot 𝑇 , denoted by JRptrK[𝐻], is defined
analogously. The difference with Rptr[𝐻] is that the cardinality of the pending
Send messages intended for 𝐶𝑟@SP𝑗 is attached.

– The message-recipient set for 𝐻 by pointer ptr:

MRptr[𝐻] :=
{︁

(𝑀,𝐶𝑟@SP𝑗)
⃒⃒⃒
∃ptr′ ≤ ptr :(︀

ptr′,
(︀
sid, *,Send, ⟨*,𝑀,𝐶𝑟@SP𝑗⟩

)︀
, ‘pending’

)︀
∈ 𝐻

}︁
.

– The set of fetching clients for 𝐻 by pointer ptr

Fptr[𝐻] :=
{︁
𝐶𝑟@SP𝑗

⃒⃒⃒
∃ptr′ ≤ ptr :

(︀
ptr,

(︀
sid, *,Fetch, 𝐶𝑟@SP𝑗

)︀
, ‘pending’

)︀}︁
.

Unobservability. Unobservability is the state where “the messages are not
discernible from random noise”. Here, we focuse on the case of (complete) sender
and receiver unobservability, that we will refer to as unobservability for brevity. In
this case, the sender and recipient unobservability sets match the set of all online
clients, and within these complete unobservability sets, it is neither noticeable if
a client sends, nor if it receives as message. Hence, in our setting, unobservability
is achieved if only the “client activity bit” is leaked. As a result, we can define
the unobservability leakage function Leakunob as the active address set:

Leakunob(ptr, 𝐻) := Actptr[𝐻] . (1)

14 Chaidos et al.

Remark 2 (Unobservability as a golden standard for email privacy). In our UC
formalization of e-mail ecosystems, we consider a dynamic scenario where the
clients register, go online/offline and make custom fetch requests, which is
consistent with the real-world dynamics of email communication. It is easy
to see that in such a setting the clients’ online/offline status may be leaked to a
global observer. E.g., the environment may provide send requests to offline clients
and notify the global adversary that provided the said requests, so that the latter
can check the activity of those clients. Hence, in our framework, unobservability
as defined in Eq. (1), sets a “golden standard” for optimal privacy. In Section 5,
we show that this golden standard is feasible in principle. Namely, we describe a
theoretical construction with quadratic communication complexity and we prove
it achieves unobservability. As a result, that construction sets one extreme point
in the privacy vs. efficiency trade off for the client-server email infrastructure, the
other being a simple and fast network with no security enhancements. Clearly,
the challenge of every email construction is to balance the said trade off between
these two extreme points.

We conclude our remark noting that a higher level privacy (e.g., no leakage
at all) could be possible if we considered an alternative setting where the email
addresses are a priori given, the clients are always online and mail delivery is via
continuous push by the SPs. However, we believe that such a setting is restrictive
for formally capturing what is an email ecosystem in general.

Anonymity. According to [28], anonymity “is the state of being not identifiable
within a set of subjects, the anonymity set”. In the email scenario, a sender
(resp. recipient) should be anonymous within the set of potential senders (resp.
recipients), i.e. the sender (resp. recipient) anonymity set. In addition, anonymity
sets may change over time, which in our framework is done via global clock
advancement and per slot. We recall from the discussion in Remark 2 that in our
setting, the anonymity sets are restricted within the set of online users.

We define the predicate End(·, ·) over the pointers and history transcripts to
denote that a pointer ptr refers to the last history entry before the functionality
enters the Clock advancement phase in order to finalize execution for the
running time slot. By the above, we define the anonymity leakage function,
Leakanon, as follows:

Leakanon(ptr, 𝐻) :=

{︂(︀
Sptr[𝐻],Rptr[𝐻],Actptr[𝐻]

)︀
, if End(ptr, 𝐻) = 1

Actptr[𝐻], otherwise
(2)

Unlinkability. Unlinkability of items of interest (e.g. subjects, messages, etc.)
means that “the ability of the attacker to relate these items does not increase by
observing the system”. In [28] several anonymity variants are defined in terms
of unlinkability. Below, we propose a formalization of a selection of the said
notions5.
5 In the proceedings version of this work [8], the terms of sender-side/recipient-side
unlinkability are used instead of sender/recipient anonymity, respectively. Here, we
choose to be closer to the terminology of [28].

A Universally Composable Framework for the Privacy of Email Ecosystems 15

– Sender anonymity: a particular message can not be linked to any sender
and to a particular sender, no message is linkable. We define the sender
anonymity leakage function Leaks.anon as

Leaks.anon(ptr, 𝐻) :=

{︂(︀
Sptr[𝐻],MRptr[𝐻],Actptr[𝐻]

)︀
, if End(ptr, 𝐻) = 1

Actptr[𝐻], otherwise
(3)

Sender anonymity is a useful notion to capture the level of privacy desired in
an e-voting process. Namely, all voters (senders) provide their votes (messages)
in an encrypted form to a single known recipient server, playing the role of the
ballot box. During tally, the ballot box opens so that the votes are counted, yet
the link between the vote and the voter is should be broken so that privacy is
preserved.

– Recipient anonymity: a particular message can not be linked to any recipient
and to a particular recipient, no message is linkable. We define the recipient
anonymity leakage function Leakr.anon as

Leakr.anon(ptr, 𝐻) :=

{︂(︀
MSptr[𝐻],Rptr[𝐻],Actptr[𝐻]

)︀
, if End(ptr, 𝐻) = 1

Actptr[𝐻], otherwise
(4)

As an interesting example for the direction of recipient-anonymity, suppose
that an individual wishes to make several donations amongst a number of known
charities. Recipient-anonymity ensures that even if the sender wishes to disclose
the amounts, this is done without necessarily disclosing which the charity received
which amount.

Pseudonymity. According to [28] “being pseudonymous is the state of using
a pseudonym as ID”. To capture pseudonymity, we may slightly abuse nota-
tion and consider leakage as a randomized function (or program). Namely, the
functionality initially chooses a random permutation 𝜋 over the set of clients
C, and the pseudonym of each client 𝐶ℓ is 𝜋(𝐶ℓ) ∈ [𝑛]. We denote by 𝜋[𝐻] the
“pseudonymized history” w.r.t. to 𝜋, i.e. in every entry of 𝐻 we replace 𝐶ℓ by
𝜋(𝐶ℓ). We define the pseudonymity leakage function as follows:

Leakpseudon(ptr, 𝐻) := 𝜋[𝐻], where 𝜋
$←
{︀
𝑓
⃒⃒
𝑓 : C −→ [𝑛]

}︀
. (5)

Besides anonymity, unlinkability, unobservability and pseudonymity defined
in [28], other meaningful notions of privacy can be formally expressed in our
framework. We present two such notions below.

Weak anonymity. We define weak anonymity, as the privacy notion where the
number of messages that a client sends or receives and her fetching activity is
leaked. In this weaker notion, the anonymity set for a sender (resp. recipient)
consists of the subset of senders (resp. recipients) that are associated with the
same number of pending messages. In addition, now the leakage for sender
anonymity set is gradually released according to the protocol scheduling, whereas

16 Chaidos et al.

the recipient anonymity set still is leaked “per slot”. The weak anonymity leakage
function, Leakw.anon, is defined via the sender and recipient multisets as follows:

Leakw.anon(ptr, 𝐻) :=

{︂(︀
JSptrK[𝐻], JRptrK[𝐻],Fptr[𝐻],Actptr[𝐻]

)︀
, if End(ptr, 𝐻) = 1(︀

JSptrK[𝐻],Fptr[𝐻],Actptr[𝐻]
)︀
, otherwise

(6)

Remark 3. Even though not a very strong privacy notion, weak anonymity sup-
ports a reasonable level of privacy for email realizations that aim at a manageable
overhead and practical use. Indeed, observe that if we can not tolerate to blow
up the ecosystem’s complexity by requiring some form of cover traffic (which is a
plausible requirement in practical scenarios), then a global adversary monitoring
the client-SP channel can easily infer the number of sent/received messages over
this channel. Moreover, one may informally argue that in case the email users do
not vary significantly in terms of their sending and fetching activity (or at least
they can be grouped into large enough sets of similar activity), weak anonymity
and standard anonymity are not far. In Section 6, we present an efficient weakly
anonymous email construction based on parallel mixing [19,20].

End-to-end encryption. The standard notion of end-to-end encryption, now
applied in many internet applications (e.g., Signal, WhatsApp, Viber, Facebook
Messenger, Skype), suggests context hiding of 𝑀 in the communication of the
end users (up to the message length |𝑀 |), in our case the sender and the recipient.
Hence, we define the end-to-end leakage function Leake2e as shown below.

Leake2e :=
(︁
Actptr[𝐻],

{︁
(𝐶𝑠@SP𝑖, |𝑀 |, 𝐶𝑟@SP𝑗)

⃒⃒⃒
∃ptr′ ≤ ptr :(︀

ptr′,
(︀
sid, *,Send, ⟨𝐶𝑠@SP𝑖,𝑀,𝐶𝑟@SP𝑗⟩

)︀
, ‘pending’

)︀
∈ 𝐻

}︁)︁
.

(7)

Relation between privacy notions. Observe that the relation between two
privacy notions can be deduced via their corresponding leakage functions. Namely,
if for every (ptr, 𝐻) a PPT adversary given the output of leakage function
Leak1(ptr, 𝐻) can derive the output of some other leakage functions Leak2(ptr, 𝐻),
then Leak2(·, ·) refers to a stronger notion of privacy than Leak1(·, ·). In Fig. 3,
given the definitions of Leakunob, Leakanon, Leaks.anon/Leakr.anon, Leakw.anon, Leake2e
above we relate the respective notions in an intuitively consistent way.

Unobservability =⇒ Anonymity =⇒ Sender/Recipient anonymity
⇓

Weak anonymity =⇒ E2E encryption

Fig. 3. Relations between privacy notions. By 𝐴 =⇒ 𝐵, we denote that notion 𝐴 is
stronger than notion 𝐵.

A Universally Composable Framework for the Privacy of Email Ecosystems 17

Remark 4. We observe that pseudonymity can not be compared to any of the
notions in Fig. 3. Indeed, even for the stronger notion of unobservability, having
the set of active addresses is not enough information to derive the pseudonyms.
Conversely, having the entire email activity pseudonymized, is not enough infor-
mation to derive the active clients’ real identities. In addition, we can combine
pseudonymity with some other privacy notion and result in a new ‘pseudonymized’
version of the latter (e.g. pseudonymous unobservability/anonymity/etc.). It is
easy to see that the new notions can also be expressed via suitable (randomized)
leakage functions, by applying a random permutation on the clients’ identities and
then define leakage as in the original corresponding leakage function, up to this

permutation. E.g., for 𝜋
$←
{︀
𝑓
⃒⃒
𝑓 : C −→ C

}︀
, “pseudonymized unobservability”

could be expressed via the leakage function

Leakps.unob(ptr, 𝐻) :=
{︁
𝜋(𝐶ℓ)@SP𝑖

⃒⃒
𝐶ℓ@SP𝑖 ∈ Actptr[𝐻]

}︁
.

Remark 5. As our E2E leakage does not cover fetch information, strictly speaking
the implication from Weak anonymity to E2E encryption only holds if the fetch
behavior is either known in advance (e.g. because of the system specification) or
irrelevant. One could also opt to add the additional leakage to the E2E definition,
but we believe there is little practical value in doing so.

5 An email ecosystem with optimal privacy

We present an email ecosystem, denoted by Ecomp, that achieves privacy at
an optimal level at the cost of high (quadratic) communication complexity.
Specifically, in each time slot all SPs in Ecomp communicate with complete
connectivity and always pad the right amount of dummy traffic, so that the
activity of their registered clients is unobservable by a third party, leaking
nothing more than that they are online (logged in). In addition, end-to-end
communication between the clients is done via encryption layers by utilizing a
public key encryption scheme PKE = (KeyGen,Enc,Dec). The encryption layers
are structured according to the network route

Sender −→ Sender’s SP −→ Receiver’s SP −→ Receiver

To support unobservability, the online clients who do not send an actual message
during some round provide their SPs with a dummy ciphertext.

Even though certainly impractical, Ecomp sets a “golden standard” of privacy
according to the discussion in Remark 2 that efficient constructions refer to in
order to balance the privacy vs. efficiency trade off.

Description of Ecomp. The email ecosystem Ecomp operates under a known
delay bound 𝛥net. Throughout the description of Ecomp, we assume that the
following simplifications: (a) all ciphertexts are of the same length. By Enc[𝑃](𝑀),

18 Chaidos et al.

we denote the encryption of 𝑀 under 𝑃 ’s public key, and (b) all computations
require one time slot6:

The phases of Ecomp are as follows:

� Initialization:

– On input
(︀
sid, Init

)︀
, a service provider SP𝑖 that is not yet initialized, runs

KeyGen(1𝜆) to generate a private and a public key pair (skSP𝑖 , pkSP𝑖
). Then, it

initializes its list of setup entities, denoted by 𝐿SP𝑖
setup, as the pair (pkSP𝑖

,SP𝑖),
implying that at first SP𝑖 is only aware of itself. In addition, SP𝑖 initializes its
list of valid addresses, denoted by AdSP𝑖 , as empty. Finally, it broadcasts the
message

(︀
sid,Channel, (setup, pkSP𝑖

),SP𝑗) to ℱ𝛥net

auth (P) for every 𝑗 ∈ [𝑁]∖{𝑖},
so that all other SPs receive its public key.

– Upon receiving
(︀
sid, (setup, pkSP𝑗

,SP𝑗

)︀
from ℱ𝛥net

auth (P), SP𝑖 adds
(︀
(pkSP𝑗

,SP𝑗)
)︀

to 𝐿SP𝑖
setup. When 𝐿SP𝑖

setup contains all SPs, the SP𝑖 sets its status to ‘execute’,
and only then it processes messages of the Execution phase described below.

� Execution:

Registration:

– On input
(︀
sid,Register,@SP𝑖

)︀
, if 𝐶ℓ is not registered to any SP and has

not yet sent a message (sid,Advance Clock, 𝐶ℓ), then:

1. 𝐶ℓ sends the message (sid,Advance Clock, 𝐶ℓ) to 𝒢clock.
2. Upon receiving (sid,Advance Ack, 𝐶ℓ) from 𝒢clock, 𝐶ℓ runs KeyGen(1𝜆) to
generate a private and a public key pair (skℓ, pkℓ). It also initializes her list of
setup entities, 𝐿ℓ

setup as the pair (pkℓ, 𝐶ℓ), and her list of valid addresses, Adℓ

as empty. Then, she sends the message
(︀
sid,Channel, (register, pkℓ),SP𝑖

)︀
to

ℱ𝛥net

auth (P).

3. Upon receiving
(︀
sid, (register, pkℓ), 𝐶ℓ

)︀
from ℱ𝛥net

auth (P), SP𝑖 checks that

(𝐶ℓ, ·) /∈ 𝐿SP𝑖
setup and that pkℓ is a valid public key, and if so, then it adds (pkℓ, 𝐶ℓ)

to 𝐿SP𝑖
setup and 𝐶ℓ@SP𝑖 to AdSP𝑖

. Next, it updates other SPs and its regis-

tered clients by broadcasting the message
(︀
sid,Channel, (setup, pk𝐶ℓ

, 𝐶ℓ), 𝑃)

to ℱ𝛥net

auth (P) for every 𝑃 ∈ (SP ∖ {SP𝑖}) ∪ C𝑖. It also sends the message(︀
sid,Channel, (setup, {pk𝑃 , 𝑃}𝑃∈𝐿

SP𝑖
setup

,AdSP𝑖
), 𝐶ℓ), updating 𝐶ℓ with all the

valid public keys and addresses it knows so far. Finally, it initializes the inbox
Inbox[𝐶ℓ@SP𝑖] of 𝐶ℓ.
4. Upon receiving

(︀
sid, (setup, pkℓ, 𝐶ℓ),SP𝑖

)︀
from ℱ𝛥net

auth (P), SP𝑗 checks that

(𝐶ℓ, ·) /∈ 𝐿
SP𝑗

setup and that pkℓ is a valid public key, and if so, then it, then it adds

(pkℓ, 𝐶ℓ) to 𝐿
SP𝑗

setup and 𝐶ℓ@SP𝑖 to AdSP𝑗 . It also adds it adds 𝐶ℓ to its set of ac-

tive users, denoted by 𝐿SP𝑖
act and initialized as empty. Next, it updates its regis-

tered clients by broadcasting the message
(︀
sid,Channel, (setup, pk𝐶ℓ

, 𝐶ℓ), 𝐶)

to ℱ𝛥net

auth (P) for every 𝐶 ∈ C𝑗 .

6 As it will become clear by the ecosystem’s description, the above simplifications do
not harm generality essentially. Namely,(a) can be reached via padding, while (b)
leads to similar analysis as requiring a computational time upper bound.

A Universally Composable Framework for the Privacy of Email Ecosystems 19

5. Upon receiving
(︀
sid, (setup, {pk𝑃 , 𝑃}𝑃∈𝐿

SP𝑖
setup

,AdSP𝑖
),SP𝑖

)︀
from ℱ𝛥net

auth (P),

the client 𝐶ℓ, newly registered to SP𝑖, checks that all public keys are valid.
If the check is successful, then 𝐶ℓ adds {pk𝑃 , 𝑃}𝑃∈𝐿

SP𝑖
setup

to 𝐿𝑖
setup and sets

Adℓ ← AdSP𝑖
. Thus, from this point, 𝐶ℓ is aware of the public information

of all SPs and all registered clients up to now. In addition, it sets its status
as logged in to SP𝑖.
6. Upon receiving

(︀
sid, (setup, pk𝐶𝑡

,SP𝑗),SP𝑖) from ℱ𝛥net

auth (P), client 𝐶ℓ (now
already registered to SP𝑖) checks the validity of pk𝐶𝑡

, and if so, then she adds
(pk𝑡, 𝐶𝑡) to 𝐿ℓ

setup and 𝐶𝑡@SP𝑗 to Adℓ.
Log in:

– On input
(︀
sid,Active,@SP𝑖

)︀
, if 𝐶ℓ is not logged in, 𝐶ℓ@SP𝑖 is her valid

address, and has not yet sent a message (sid,Advance Clock, 𝐶ℓ), then:

1. 𝐶ℓ sends the message (sid,Advance Clock, 𝐶ℓ) to 𝒢clock.
2. Upon receiving (sid,Advance Ack, 𝐶ℓ) from 𝒢clock, 𝐶ℓ “logs in” by send-
ing

(︀
sid,Channel,Enc[SP𝑖](Active),SP𝑖

)︀
to ℱ𝛥net

auth (P).

3. Upon receiving
(︀
sid,Enc[SP𝑖](Active), 𝐶ℓ

)︀
from ℱ𝛥net

auth (P), SP𝑖 decrypts as(︀
sid,Active, 𝐶ℓ

)︀
and checks that 𝐶ℓ@SP𝑖 ∈ AdSP𝑖 . If so, then it adds 𝐶ℓ to

𝐿SP𝑖
act .

Log out:

– On input
(︀
sid, Inactive,@SP𝑖

)︀
, if 𝐶ℓ is logged in, 𝐶ℓ@SP𝑖 is her valid address,

and has not yet sent a message (sid,Advance Clock, 𝐶ℓ), then:

1. 𝐶ℓ sends the message (sid,Advance Clock, 𝐶ℓ) to 𝒢clock.
2. Upon receiving (sid,Advance Ack, 𝐶ℓ) from 𝒢clock, 𝐶ℓ “logs out” by
sending

(︀
sid,Channel,Enc[SP𝑖](Inactive),SP𝑖

)︀
to ℱ𝛥net

auth (P).

3. Upon receiving
(︀
sid,Enc[SP𝑖](Inactive), 𝐶ℓ

)︀
from ℱ𝛥net

auth (P), SP𝑖 decrypts

as
(︀
sid, Inactive, 𝐶ℓ

)︀
and checks that 𝐶ℓ@SP𝑖 ∈ AdSP𝑖 . If so, then it removes

𝐶ℓ from 𝐿SP𝑖
act .

Send:
– On input

(︀
sid,Send, ⟨𝐶𝑠@SP𝑖,𝑀,𝐶𝑟@SP𝑗⟩

)︀
, if 𝐶𝑠 is logged in to SP𝑖 and

has not yet sent a message (sid,Advance Clock, 𝐶𝑠), then:

1. 𝐶𝑠 sends the message (sid,Advance Clock, 𝐶𝑠) to 𝒢clock.
2. Upon receiving (sid,Advance Ack, 𝐶𝑠) from 𝒢clock, 𝐶𝑠 encrypts the mes-
sage 𝑀 into layers and provides ℱ𝛥net

auth (P) with the layered encryption(︀
sid,Channel,Enc[SP𝑖]

(︀
Enc[SP𝑗]

(︀
𝐶𝑟@SP𝑗 ,Enc[𝐶𝑟](𝑀)

)︀)︀
,SP𝑖

)︀
3. Upon receiving

(︀
sid,Enc[SP𝑖]

(︀
Enc[SP𝑗]

(︀
𝐶𝑟@SP𝑗 ,Enc[𝐶𝑟](𝑀)

)︀)︀
, 𝐶𝑠

)︀
from ℱ𝛥net

auth (P),
SP𝑖 checks that 𝐶𝑠@SP𝑖 ∈ AdSP𝑖 . If so, then it decrypts the first layer with
skSP𝑖 and adds

(︀
sid, 𝐶𝑠@SP𝑖,Enc[SP𝑗]

(︀
𝐶𝑟@SP𝑗 ,Enc[𝐶𝑟](𝑀)

)︀)︀
to its set of mes-

sages pending to be sent, denoted by 𝐿SP𝑖

send and initialized as empty.
Fetch:

– On input
(︀
sid,Fetch, 𝐶𝑟@SP𝑗

)︀
, if 𝐶𝑟 is logged in to SP𝑗 and has not yet

sent a message (sid,Advance Clock, 𝐶𝑟):

1. 𝐶𝑟 sends the message (sid,Advance Clock, 𝐶ℓ) to 𝒢clock.

20 Chaidos et al.

2. Upon receiving (sid,Advance Ack, 𝐶𝑟) from 𝒢clock, 𝐶𝑟 sends the message(︀
sid,Channel,Enc[SP𝑗](Fetch),SP𝑗

)︀
to ℱ𝛥net

auth (P).

3. Upon receiving
(︀
sid,Enc[SP𝑗](Fetch), 𝐶𝑟

)︀
from ℱ𝛥net

auth (P), 𝐶𝑟 checks that
𝐶𝑟@SP𝑗 ∈ AdSP𝑗

. If so, then she decrypts and adds Inbox[𝐶𝑟@SP𝑗] to her

set of inboxes which messages are pending to be pushed, denoted by 𝐿
SP𝑗

push.

4. Upon receiving (sid, 𝐸𝑟,1, . . . , 𝐸𝑟,𝑛,SP𝑗) from ℱ𝛥net

auth (P) (see below), if 𝐶𝑟

is registered to SP𝑗 and has sent a
(︀
sid,Fetch, 𝐶𝑟@SP𝑗

)︀
request, then she

decrypts all ciphertexts and stores the ones that are not dummy, i.e. they
correspond to actual mail messages with her as recipient. Otherwise, she
discards (sid, 𝐸𝑟,1, . . . , 𝐸𝑟,𝑛,SP𝑗).

Clock reading:

– On input
(︀
sid,Read Clock), the entity 𝑃 ∈ C ∪ SP sends the message(︀

sid,Read Clock) to 𝒢clock. Upon receiving
(︀
sid,Read Clock,Cl) from

𝒢clock, 𝑃 stores Cl as its local time.
Clock advance (for clients):

– On input
(︀
sid,Advance Clock), if the client 𝐶ℓ is logged in to SP𝑖 and has

not yet sent a message (sid,Advance Clock,SP𝑖), then she executes the
following steps:
1. 𝐶ℓ sends the message (sid,Advance Clock, 𝐶ℓ) to 𝒢clock.
2. Upon receiving (sid,Advance Ack, 𝐶ℓ) from 𝒢clock, then she sends a
dummy message

(︀
sid,Enc[SP𝑖](null)

)︀
to SP𝑖 via ℱ𝛥net

auth (P) (in turn, SP𝑖 will
discard the received null upon decryption).

Clock advance (for SPs):

– On input
(︀
sid,Advance Clock), if SP𝑖 has not yet sent a message

(sid,Advance Clock,SP𝑖), then it executes the following steps:

1. SP𝑖 sends the message (sid,Advance Clock,SP𝑖) to 𝒢clock.
2. Upon receiving (sid,Advance Ack,SP𝑖) from 𝒢clock, for every address
𝐶𝑠@SP𝑖 ∈ AdSP𝑖

:
∙ If there is a message

(︀
sid, 𝐶𝑠@SP𝑖,Enc[SP𝑗]

(︀
𝐶𝑟@SP𝑗 ,Enc[𝐶𝑟](𝑀)

)︀)︀
in

𝐿SP𝑖

send, then SP𝑖 broadcasts
(︀
sid,Enc[SP𝑗]

(︀
𝐶𝑟@SP𝑗 ,Enc[𝐶𝑟](𝑀)

)︀)︀
to all SPs

via ℱ𝛥net

auth (P), and removes the message from 𝐿SP𝑖

send.
∙ If there is no such message for 𝐶𝑠@SP𝑖 but 𝐶𝑠 ∈ 𝐿𝑖

act, then SP𝑖 broadcasts
a dummy message

(︀
sid,Enc[SP𝑖]

(︀
null

)︀)︀
under its own key.

3. Upon receiving a message
(︀
sid, 𝐸̃,SP𝑖

)︀
from ℱ𝛥net

auth (P), SP𝑗 checks whether

𝐸̃ is a ciphertext under its public key that decrypts as a pair of a valid
address 𝐶𝑟@SP𝑗 along with an (encrypted) message 𝐸. If so, then it adds 𝐸
to Inbox[𝐶𝑟@SP𝑗].

4. When 𝐿
SP𝑗

fin,k contains all SPs, then for every address 𝐶𝑟@SP𝑗 :

∙ If Inbox[𝐶𝑟@SP𝑗] ∈ 𝐿
SP𝑗

push, then SP𝑗 forwards all messages 𝐸𝑟,1, . . . 𝐸𝑟,𝑛𝑟

in Inbox[𝐶𝑟@SP𝑗] to 𝐶𝑟 along with 𝑛−𝑛𝑟 dummy ciphertexts under 𝐶𝑟’s

public key, empties Inbox[𝐶𝑟@SP𝑗] and removes it from 𝐿
SP𝑗

push.

∙ If Inbox[𝐶𝑟@SP𝑗] /∈ 𝐿
SP𝑗

push but 𝐶𝑟 ∈ 𝐿
SP𝑗

act , then SP𝑗 forwards 𝑛 dummy
encryptions of ‘null’ to 𝐶𝑟, under her public key.

A Universally Composable Framework for the Privacy of Email Ecosystems 21

Thus, in any case, if 𝐶𝑟 is active, then SP𝑗 sends a message of the form

(sid, 𝐸𝑟,1, . . . , 𝐸𝑟,𝑛) to 𝐶𝑟 via ℱ𝛥net

auth (P).

Privacy of Ecomp. To prove the privacy of Ecomp, we require that the underlying
public key encryption scheme PKE = (KeyGen,Enc,Dec) satisfies m-IND-CPA,
as specified in Section 2.2. In the following theorem, we prove that Ecomp only
leaks the “activity bit” of the clients formally expressed by the leakage function
Leakunob(·, ·) defined in Eq. (1).

Theorem 1. Let Ecomp with clients C = {𝐶1, . . . , 𝐶𝑛} and service providers
SP = SP1, . . . ,SP𝑁 be implemented over the PKE scheme PKE = (KeyGen,Enc,Dec)

that achieves m-IND-CPA security with error 𝜖(𝜆). Then, E𝒢clock,ℱ𝛥net
auth

comp achieves
computational 2(𝑛 + 𝑁)𝜖(𝜆)-privacy for message delay 𝛥net with respect to the
unobservability leakage function defined below

Leakunob(ptr, 𝐻) := Actptr[𝐻] .

Proof. Let 𝒜 be a global passive PPT adversary against E𝒢clock,ℱ𝛥net
auth

comp . We begin
by constructing a simulator Sim for 𝒜 as shown below.

Constructing a simulator for 𝒜. The ideal adversary Sim for 𝒜 that for any
environment 𝒵, simulates an execution of Ecomp as follows:
Simulating interaction between 𝒵 and 𝒜.

– Upon receiving a message
(︀
sid,𝑀

)︀
from 𝒵, it forwards

(︀
sid,𝑀

)︀
to 𝒜 playing

the role of a simulated environment.
– Upon receiving a message

(︀
sid,𝑀

)︀
from 𝒜 intended for the environment, it

forwards
(︀
sid,𝑀

)︀
to 𝒵.

Achieving synchronicity.

– Upon receiving any message from ℱLeakunob,𝛥net

priv (P), Sim sends the message(︀
sid,Read Clock

)︀
to 𝒢clock. Upon receiving

(︀
sid,Read Clock,Cl

)︀
from

𝒢clock, it stores Cl as the global time of the real-world simulation. This way,
Sim simulates an execution where the simulated entities are synchronized
with respective actual ones in the ideal-world.

Simulating real-world message delivery.

– Upon receiving a leakage message of the form
(︀
sid, (ptr,𝑀)

)︀
(possibly 𝑀 = ⊥)

from ℱLeakunob,𝛥net

priv (P), Sim knows that this message refers to some command
(register/active/inactive/send/fetch) that in the real-world protocol is realized
via communication between a client and her SP. Since in the simulation Sim
also plays the role of ℱ𝛥net

auth (P) in the eyes of 𝒜, it must be consistent with
the bounded delays (up to 𝛥net) that 𝒜 imposes on message communication.
To achieve this consistency, Sim keeps record of the simulated message 𝑀̃
that sends to the simulated ℱ𝛥net

auth (P) and is associated with ptr. Whenever

22 Chaidos et al.

the message delivery of 𝑀̃ is allowed, either by 𝒜 or automatically when
𝛥net delay has passed, Sim sends the message

(︀
sid,Allow Exec, ptr

)︀
to

ℱLeakunob,𝛥net

priv (P).

Simulating Initialization.

– Upon receiving
(︀
sid, Init,SP𝑖

)︀
from ℱLeakunob,𝛥net

priv (P), it runs Gen(1𝜆) on behalf
of SP𝑖 to generate a pair of a private and a public key pair (skSP𝑖 , pkSP𝑖

).
Then, it broadcasts the message

(︀
sid,Channel, (setup, pkSP𝑖

),SP𝑗) to every

𝑗 ∈ [𝑁] ∖ {𝑖}, also simulating the role of ℱ𝛥net

auth (P). Observe that since 𝒜 is
global and passive, the execution will always initiate upon 𝒵’s request. Then,
Sim sends the message (sid,Allow Init,SP𝑖) to ℱLeakunob,𝛥net

priv (P).

– Upon receiving
(︀
sid, ready

)︀
from ℱLeakunob,𝛥net

priv (P), if all simulated SPs have ini-

tialized by generating and broadcasting their keys, then it sends
(︀
sid,Execute

)︀
to ℱLeakunob,𝛥net

priv (P). Otherwise, it aborts simulation.

Simulating Execution.

Whenever the environment sends a register/active/inactive/send/fetch/clock

advance command to a dummy party 𝑃 that forwards it to ℱLeakunob,𝛥net

priv (P),
Sim obtains (i) an (sid,Advance Clock, 𝑃) notification from 𝒢clock, and (ii) the

leakage of the form
(︀
sid, ptr,Actptr[𝐻]

)︀
from ℱLeakunob,𝛥net

priv (P). Namely, Sim obtains
the sequence of clock advances and the transcript of activations/deactivations.
We describe how using this information, Sim simulates execution:

– Upon receiving (sid,Advance Clock, 𝐶ℓ) and
(︀
sid, ptr,Actptr[𝐻]

)︀
, then:

∙ Playing the role of the global clock, Sim sends a simulated notification
(sid,Advance Clock, 𝐶ℓ) to 𝒜.
∙ If 𝐶ℓ@SP𝑖 is in Actptr[𝐻] and

(︀
sid, ptr,Actptr[𝐻]

)︀
is the first entry that

𝐶ℓ@SP𝑖 is activated, then Sim deduces that this refers to a registra-
tion command (Recall that for simplicity we included the pending reg-
istration commands in the set of active addresses). In this case, Sim
runs the registration protocol between 𝐶ℓ and SP𝑖 exactly as in the
description of Ecomp, except that it replaces the ciphertext contents with

‘null’ messages. When ℱ𝛥net

auth delivers the message, Sim sends the message(︀
sid,Allow Exec, ptr

)︀
to ℱLeakunob,𝛥net

priv (P).
∙ If 𝐶ℓ@SP𝑖 is in Actptr[𝐻] and is registered but not yet logged in, then Sim

deduces that this refers to an active or a clock advance command. In either
of these cases, Sim simulates execution by sending a dummy ciphertext(︀
sid,Channel,Enc[SP𝑖](null),SP𝑖

)︀
to the simulated ℱ𝛥net

auth . When ℱ𝛥net

auth

delivers the message, Sim sends the message
(︀
sid,Allow Exec, ptr

)︀
to

ℱLeakunob,𝛥net

priv (P).
∙ If 𝐶ℓ@SP𝑖 is in Actptr[𝐻] and is registered and already logged in, then
Sim deduces that this refers to either a inactive, send, fetch or a clock
advance command. In either of these cases, Sim simulates execution by
sending a dummy ciphertext

(︀
sid,Channel,Enc[SP𝑖](null),SP𝑖

)︀
as above.

A Universally Composable Framework for the Privacy of Email Ecosystems 23

∙ If 𝐶ℓ@SP𝑖 is not in Actptr[𝐻], then Sim deduces that 𝐶ℓ@SP𝑖 is inactive
and takes no further action.

– Upon receiving (sid,Advance Clock,SP𝑖) and
(︀
sid, ptr,Actptr[𝐻]

)︀
:

∙ Playing the role of the global clock, Sim sends a simulated notification
(sid,Advance Clock,SP𝑖) to 𝒜.
∙ For every address 𝐶𝑠@SP𝑖 ∈ AdSP𝑖

, it broadcasts a dummy message(︀
sid,Channel,Enc[SP𝑖](null),SP𝑖

)︀
to all other SPs. Then, it sends the

message
(︀
sid,Allow Exec, ptr

)︀
to ℱLeakunob,𝛥net

priv (P).

Reducing privacy to m-IND-CPA security. We prove the privacy of E𝒢clock,ℱ𝛥net
auth

comp

via a reduction to the m-IND-CPA security with error 𝜖 of the underlying pub-
lic key encryption scheme PKE = (KeyGen,Enc,Dec), which is assumed in the
theorem’s statement. Our reduction works as follows: Let 𝒜 be a real-world
adversary and 𝒵 be an environment. First, we order the clients and servers as
parties 𝑃1, . . . , 𝑃𝑛+𝑁 . Then, we construct a sequence of “hybrid” m-IND-CPA
adversaries ℬ1, . . . ,ℬ𝑛+𝑁 , where ℬ𝑗* executes the following steps:

1. It receives a public key pk from the m-IND-CPA challenger.

2. It generates the parties 𝑃1, . . . , 𝑃𝑛+𝑁 and simulates an execution of E𝒢clock,ℱ𝛥net
auth

comp

conducted by 𝒵 and under the presence of 𝒜, also playing the role of
𝒢clock,ℱ𝛥net

auth . The simulation differs from an actual execution as shown below:

(a) Upon initialization of a party 𝑃𝑗 : if 𝑃𝑗 ̸= 𝑃𝑗* , then ℬ𝑗* honestly generates
a fresh key pair (sk𝑗 , pk𝑗). If 𝑃𝑗 = 𝑃𝑗* , then it sets pk𝑗* := pk.

(b) When a party 𝑃𝑖 must send an encrypted message 𝑀 under the public
key of 𝑃𝑗 (note it may be the case that 𝑃𝑖 = 𝑃𝑗) via ℱ𝛥net

auth :

– If 𝑗 < 𝑗*, then ℬ𝑗* sends an encryption of 𝑀 under pk𝑗 .
– If 𝑗 = 𝑗*, then it sends a challenge pair (𝑀0,𝑀1) := (null,𝑀) to the

m-IND-CPA challenger. Upon receiving a ciphertext Enc[𝑃𝑗*](𝑀𝑏),
where 𝑏 is the m-IND-CPA challenge bit, it sends Enc[𝑃𝑗*](𝑀𝑏) to
𝑃𝑗* .

– If 𝑗 > 𝑗*, then it sends an encryption of null under pk𝑗 .

(c) Since 𝒜 is passive, all parties are honest, thus ℬ𝑗* is completely aware of
the plaintext-ciphertext correspondence. Therefore, when 𝑃𝑖 encrypts 𝑀
under 𝑃𝑗 ’s public key to a ciphertext Enc[𝑃𝑗](𝑀), ℬ𝑗* proceeds as if 𝑃𝑗

had indeed decrypted this ciphertext to 𝑀 .

3. It returns the output of 𝒵.

Given the description of ℬ𝑗* , 𝑗* = 1, . . . , 𝑛 + 𝑁 , we make the following observa-
tions:

– The limit case 𝑗* = 1: if 𝑏 = 0, then ℬ1 replaces all real-world communication
with encryptions of ‘null’, exactly as Sim does in its simulation. Thus, we
have that

Pr
[︀
ℬ1 = 1 | 𝑏 = 0

]︀
= EXEC

ℱLeakunob,𝛥net
priv

Sim,𝒵,𝒢clock
[P](𝜆) . (8)

24 Chaidos et al.

– The hybrid step: for every 1 ≤ 𝑗* < 𝑛 + 𝑁 , the adversaries ℬ𝑗* and ℬ𝑗*+1

have the same behavior regarding the parties 𝑃𝑗 , where 𝑗 ̸= 𝑗*, 𝑗* + 1. In
addition, if the m-IND-CPA challenge bit 𝑏 is 1, then ℬ𝑗* (i) respects the
encryptions of 𝑃 *

𝑗 (hence, of every 𝑃𝑗 , for 𝑗 ≤ 𝑗*) and (ii) replaces with null
any plaintext intended for 𝑃𝑗 , for 𝑗 ≥ 𝑗* + 1. Observe that this is exactly the
behavior of ℬ𝑗*+1, if 𝑏 = 0. Therefore, it holds that

Pr
[︀
ℬ𝑗* = 1 | 𝑏 = 1

]︀
= Pr

[︀
ℬ𝑗*+1 = 1 | 𝑏 = 0

]︀
. (9)

– The limit case 𝑗* = 𝑛 + 𝑁 : if 𝑏 = 1, then ℬ𝑛+𝑁 executes real-world commu-
nication respecting the environments’ instructions and inputs. Thus, we have
that

Pr
[︀
ℬ𝑛+𝑁 = 1 | 𝑏 = 1

]︀
= EXECE𝒢clock,ℱ

𝛥net
auth

𝒜,𝒵,𝒢clock
[P](𝜆) . (10)

Consequently, by Eq. (8) and the m-IND-CPA security of PKE, we have that for
every 𝑗* ∈ [𝑛 + 𝑁], it holds that⃒⃒⃒

Pr
[︀
ℬ𝑗* = 1 | 𝑏 = 1

]︀
− Pr

[︀
ℬ𝑗* = 1 | 𝑏 = 0

]︀⃒⃒⃒
=

=
⃒⃒⃒
Pr

[︀
ℬ𝑗* = 1 | 𝑏 = 1

]︀
−

(︀
1− Pr

[︀
ℬ𝑗* = 0 | 𝑏 = 0

]︀
)
⃒⃒⃒
≤

≤
⃒⃒⃒
2 · Pr

[︀
(ℬ𝑗* = 1) ∧ (𝑏 = 1)

]︀
+ 2 · Pr

[︀
(ℬ𝑗* = 0) ∧ (𝑏 = 0)

]︀
− 1

⃒⃒⃒
=

=
⃒⃒⃒
2 · Pr

[︀
ℬ𝑗*(1𝜆) breaks PKE

]︀
− 1

⃒⃒⃒
≤

⃒⃒⃒
2 ·

(︀
1/2 + 𝜖(𝜆)

)︀
− 1

⃒⃒⃒
= 2𝜖(𝜆) .

(11)

Finally, by Eq. (8), (9),(10), and (11), we get that⃒⃒⃒
EXEC

ℱLeakunob,𝛥net
priv

Sim,𝒵,𝒢clock
[P](𝜆)− EXECE𝒢clock,ℱ

𝛥net
auth

𝒜,𝒵,𝒢clock
[P](𝜆)

⃒⃒⃒
≤ 2(𝑛 + 𝑁)𝜖(𝜆)

which completes the proof. ⊓⊔

6 A parallel mix email ecosystem with 𝑡 strata

We will now describe a design to be used for routing messages between various
clients, based on parallel mixing [19, 20]. A parallel mix is a design that borrows
characteristics from stratified mixes i.e mixes where servers are grouped in sets
called strata, and routing is restricted so that each stratum except the first only
receives messages from the previous one and each stratum except the last only
forwards messages to the next (the first and last strata operate as the entry
and exit points respectively). In parallel mixing routing is determined by the
servers themselves in the interest of symmetry and predictability in performance
and security. All 𝑡 strata consist of 𝜎 nodes each. We use MX𝑖,𝑗 to indicate
the 𝑗-th server in stratum 𝑖, and let MX = {MX𝑖,𝑗 |𝑖 ≤ 𝑡, 𝑗 ≤ 𝜎}. We use
P =

(︀
C ∪ SP ∪MX

)︀
to denote the set of all involved parties. We use a set of

assumptions similar to those of section 5, specifically: (a) all communication is
executed via ℱ𝛥net

auth (P) as described in Fig. 2; (b) all messages have the same size

A Universally Composable Framework for the Privacy of Email Ecosystems 25

(i.e messages are padded ahead of time); (c) all computations complete within
one unit slot; (d) each client is assigned to exactly one address.

As we assume a passive adversary and no corruptions, we are able to use
a simple layering of encryptions instead of a more complex onion scheme. In
practice one may wish to use a scheme such as Sphinx [15] or a variant thereof.

� Initialization: Nodes of the same stratum share stratum-specific keying ma-
terial. In practice, because of the long structure of the mixnet, and the large
number of nodes involved, we might have that the same entities will be running
multiple servers across different strata. We can thus regain some robustness by
excluding some entities from each stratum so that each entity is absent from at
least one stratum. Alternatively, we may use per-node keys and allow free routing,
at the cost of slower (in terms of rounds) convergence to a random permutation .

– On input
(︀
sid, Init

)︀
, a party 𝑃 ∈ P that is not yet initialised, runs Gen(1𝜆)

to generate a pair of a private and a public key pair (sk𝑃 , pk𝑃). Then, it
broadcasts the message

(︀
sid, (init, pk𝑃), 𝑃) to all clients and SPs by sending(︀

sid, (init, pk𝑃), 𝑃 ′) to ℱ𝛥net

auth (G[P]), for every 𝑃 ′ ∈ P ∖ {𝑃}.
– When SP𝑖 has received

(︀
sid, (init, pkSP𝑗

,SP𝑗) for every 𝑖 ∈ [𝑁] ∖ {𝑗}, then
begins the engagement in the email message exchange with its assigned clients
and the other SPs.

– When MX𝑖,1 has received
(︀
sid, (init, pk𝑆 , 𝑆) for every MX𝑖,𝑗 , 𝑗 > 1, it runs

Gen(1𝜆) to generate stratum key pair (sk𝑖, pk𝑖). Then, it broadcasts the
message

(︀
sid, (init, pk𝑖),MX𝑖,1) to all parties 𝑃 ′ outside stratum 𝑖 by send-

ing
(︀
sid, (init, pk𝑖), 𝑃

′) to ℱ𝛥net

auth (G[P]). For parties 𝑃 ′′ in stratum 𝑖 it sends(︀
sid, (init, (pk𝑖, sk𝑖)), 𝑃

′′) instead.

� Execution: Our mixnet operates in rounds. A round consists of t+2 subrounds,
each consisting of 𝑡𝑠𝑢𝑏 ≥ 𝛥net + 1 timeslots. We assume timing information is
publicly available. During each subround, messages are only sent during the first
timeslot. The remaining timeslots exist to ensure that even delayed messages are
delivered before the next subround. To simplify notation we will introduce three
functions on the clock value Cl:

Namely, we define (i) 𝑟𝑜𝑢𝑛𝑑(Cl) :=
⌊︁

Cl
𝑡𝑠𝑢𝑏(𝑡+2)

⌋︁
, (ii) 𝑠𝑢𝑏(Cl) :=

⌊︁
Cl

𝑡𝑠𝑢𝑏

⌋︁
, and (iii)

𝑠𝑙𝑜𝑡(Cl) := Cl mod 𝑡𝑠𝑢𝑏. Essentially, at clock Cl we are in slot 𝑠𝑙𝑜𝑡(Cl) of subround
𝑠𝑢𝑏(Cl). We also assume that using the above functions use Read Clock to
determine the current value of Cl.

Registration is handled as in Section 5. Messages are routed through the
mixnet as follows:

– Messages from clients are queued by their SPs until the round begins.
– Once a round begins, in sub-round 0, clients send their messages to the SPs. In

sub-round 1, each SP uniformly randomly selects a server in the first stratum
to receive each message.

– In the sub-round 2 (3), first-stratum (second) servers tally up their incoming
messages and pad them to a multiple of 𝜎. They shuffle them and send 1

𝜎 of
them to each 2nd-stratum (3rd) server. No padding is required afterwards.

26 Chaidos et al.

– In sub-round 𝑖, where 4 ≤ 𝑖 ≤ 𝑡 + 1, the servers of stratum 𝑖− 1 shuffle their
received messages and send 1

𝜎 of them to each server in stratum i+1.
– At the end of sub-round 𝑡 + 2, the SPs move messages from their input buffers

to client inboxes. .

We will now formally describe our system. Note that some inputs will only
have effect when given during particular sub-rounds or when given to certain
parties (e.g. only Clients). As in the previous section, Enc[𝑋](𝑌) denotes the
encryption of 𝑌 under 𝑋’s public key. For brevity, we use Enc[𝑥,𝑦](𝑚) to denote

Enc[𝑥]
(︀
Enc[𝑦](𝑚)

)︀
.

𝐶𝑠 ∈ C On input
(︀
sid,Send, ⟨𝐶𝑠@SP𝑖,𝑀,𝐶𝑟@SP𝑗⟩

)︀
, if 𝐶𝑠 is not registered with an

SP𝑖 and 𝑠𝑢𝑏𝑟𝑜𝑢𝑛𝑑(Cl) = 0 and 𝑠𝑙𝑜𝑡(Cl) = 0, the client sets 𝑟𝑒𝑔 = 𝑟𝑜𝑢𝑛𝑑(Cl)
and runs the registration operation from Section 5.

𝐶𝑠 ∈ C On input
(︀
sid,Send, ⟨𝐶𝑠@SP𝑖,𝑀,𝐶𝑟@SP𝑗⟩

)︀
, if 𝐶𝑠 is logged in to SP𝑖, she

prepares the message
(︀
sid,Enc[SP𝑖]

(︀
𝐶𝑠@SP𝑖,Enc[SP𝑗]

(︀
𝐶𝑟@SP𝑗 ,Enc[𝐶𝑟](𝑀)

)︀)︀)︀
to be sent to SP𝑖. If, in addition the 𝑠𝑢𝑏(Cl) and 𝑠𝑙𝑜𝑡(Cl) are both 0 and
𝑟𝑜𝑢𝑛𝑑(Cl) > 𝑟𝑒𝑔, all prepared messages are sent to SP𝑖.

𝐶𝑟 ∈ C On input
(︀
sid,Fetch, 𝐶𝑟@SP𝑗

)︀
, if 𝐶𝑟 is logged in to SP𝑗 , it sends the message(︀

sid, 𝐶𝑟@SP𝑗 ,Enc[SP𝑗](Fetch)
)︀

to SP𝑗 which, if 𝐶𝑟@SP𝑗 is a valid address,
it decrypts and forwards all messages 𝐸𝑟,1, . . . 𝐸𝑟,𝑛𝑟

in Inbox[𝐶𝑟@SP𝑗] to 𝐶𝑟,
and empties Inbox[𝐶𝑟@SP𝑗].

𝐶𝑟 ∈ C Upon receiving (sid, 𝐸𝑟,1, . . . , 𝐸𝑟,𝑛) from SP𝑗 and if 𝐶𝑟 has sent a
(︀
sid,Fetch,

𝐶𝑟@SP𝑗

)︀
request, 𝐶𝑟 decrypts all ciphertexts and stores the ones that are

not 0, i.e. they correspond to non-dummy mail messages.
𝑃 ∈ P On input

(︀
sid,Read Clock), the entity 𝑃 ∈ P sends the message

(︀
sid,

Read Clock) to 𝒢clock. Upon receiving
(︀
sid,Read Clock,Cl) from 𝒢clock,

𝑃 stores Cl as its local time and forwards the message
(︀
sid,Read Clock,Cl)

to the environment.
SP𝑖 ∈ SP On input

(︀
sid,Enc[SP𝑖]

(︀
𝐶𝑠@SP𝑖,Enc[SP𝑗]

(︀
𝐶𝑟@SP𝑗 ,Enc[𝐶𝑟](𝑀)

)︀)︀)︀
, it checks

that 𝐶𝑠@SP𝑖 ∈ Ad and if so, then it decrypts and adds
(︀
sid, 𝐶𝑠@SP𝑖,

Enc[SP𝑗]

(︀
𝐶𝑟@SP𝑗 ,Enc[𝐶𝑟](𝑀)

)︀)︀
to its set of messages pending to be sent,

denoted by 𝐿𝑖
send.

SP𝑗 ∈ SP Upon receiving a message (sid,Enc[SP𝑗](·, ·)) from some MX𝑥,𝑦, SP𝑗 checks
whether 𝑥 = 𝑡, and if the content is a ciphertext under its public key that
decrypts as a valid address 𝐶𝑟@SP𝑗 along with a ciphertext 𝐸. If so, then it
adds 𝐸 to B[𝐶𝑟@SP𝑗].

MX1,𝑗 ∈ S On receiving
(︀
sid,Enc[1,...,𝑡]

(︀
𝐶𝑟@SP𝑗 ,Enc[𝐶𝑟](𝑀)

)︀
, 𝑋

)︀
, it checks that 𝑋 ∈ SP

and if so, it decrypts it and adds
(︀
sid,Enc[2,...,𝑡]

(︀
𝐶𝑟@SP𝑗 ,Enc[𝐶𝑟](𝑀)

)︀
to its

set of messages pending to be sent, denoted by 𝐿𝑖
send.

MX𝑘+1,𝑗 ∈ S On receiving
(︀
sid,Enc[𝑘,...,𝑡]

(︀
𝐶𝑟@SP𝑗 ,Enc[𝐶𝑟](𝑀)

)︀
, 𝑋

)︀
, it checks that 𝑋 =

MX𝑘,𝑥 for some 𝑥 and if so, it decrypts it and adds
(︀
sid,Enc[𝑘+2,...,𝑡]

(︀
𝐶𝑟@SP𝑗 ,

Enc[𝐶𝑟](𝑀)
)︀

to its set of messages pending to be sent, denoted by 𝐿𝑖
send. If

𝑘 = 𝑡− 1, it instead adds
(︀
sid,Enc[𝑆𝑃𝑗]

(︀
𝐶𝑟@SP𝑗 ,Enc[𝐶𝑟](𝑀)

)︀
to the list.

𝑃 ∈ P On input
(︀
sid,Advance Clock), the entity 𝑃 ∈ P sends the message(︀

sid,Advance Clock) to 𝒢clock.

A Universally Composable Framework for the Privacy of Email Ecosystems 27

SP𝑖 ∈ SP On input
(︀
sid,Advance Clock), If 𝑠𝑢𝑏(Cl) = 1 and 𝑠𝑙𝑜𝑡(Cl) = 0, for

each message
(︀
sid, 𝐶𝑠@SP𝑖,Enc[SP𝑗]

(︀
𝐶𝑟@SP𝑗 ,Enc[𝐶𝑟](𝑀)

)︀)︀
in 𝐿𝑖

send, then

SP𝑖 sends
(︀
sid,SP𝑖,Enc[1,...,𝑡]

(︀
𝐶𝑟@SP𝑗 ,Enc[𝐶𝑟](𝑀)

)︀)︀
to a randomly selected

MX1,𝑗 and removes the message from 𝐿𝑖
send. Finally, it sends the message(︀

sid,Advance Clock) to 𝒢clock.
MX𝑘,𝑗 ∈ S On input

(︀
sid,Advance Clock), If 𝑠𝑢𝑏(Cl) ̸= 𝑘 + 1 or 𝑠𝑙𝑜𝑡(Cl) ̸= 0, send

the message
(︀
sid,Advance Clock) to 𝒢clock and return. Otherwise, if 𝑘 = 1

or 𝑘 = 2, MX𝑘,𝑗 pads the list 𝐿𝑖
send with

(︀
sid,Enc[𝑘+1,...,𝑡]

(︀
0)
)︀)︀

so that its
length is a multiple of 𝜎. The list is then shuffled randomly. For each mes-
sage

(︀
sid,Enc[𝑘+1,...,𝑡]

(︀
𝐶𝑟@SP𝑗 ,Enc[𝐶𝑟](𝑀)

)︀)︀
in 𝐿𝑖

send, then MX𝑘,𝑗 sends
(︀
sid,

MX𝑘,𝑗 ,Enc[𝑘+1,...,𝑡]

(︀
𝐶𝑟@SP𝑗 ,Enc[𝐶𝑟](𝑀)

)︀)︀
to server MX𝑘+1,𝑗 mod 𝜎, where 𝑗

is the message’s position on the list, and removes the message from 𝐿𝑖
send.

Finally, it sends the message
(︀
sid,Advance Clock) to 𝒢clock.

MX𝑡,𝑗 ∈ S On input
(︀
sid,Advance Clock), If 𝑠𝑢𝑏(Cl) = 𝑡 + 1 and 𝑠𝑙𝑜𝑡(Cl) = 0, for

each message
(︀
sid,Enc[SP𝑗]

(︀
𝐶𝑟@SP𝑗 ,Enc[𝐶𝑟](𝑀)

)︀)︀
in 𝐿𝑖

send, MX𝑡,𝑗 forwards

it to SP𝑗 . Finally it sends the message
(︀
sid,Advance Clock) to 𝒢clock.

SP𝑗 ∈ SP On input
(︀
sid,Advance Clock), If 𝑠𝑢𝑏(Cl) = 𝑡 + 2 and 𝑠𝑙𝑜𝑡(Cl) = 0, it

moves the contents of every buffer B[𝐶𝑟@SP𝑗] to the corresponding inbox
Inbox[𝐶𝑟@SP𝑗]. Finally it sends the message

(︀
sid,Advance Clock) to 𝒢clock.

Efficiency & Delivery times. The overhead of the padding is an 𝑂
(︁

𝜎2

𝑚

)︁
multiplicative increase in the messages sent, where 𝑚 is the number of messages
sent, which we expect to be low for typical use cases. Disregarding padding
messages, the cost to deliver a single email, is 3 + 𝑡 messages compared to 3 in
the insecure case (sender to SP𝑠 to SP𝑟 to receiver) or 1 + 𝑠 · 𝑛 for the “golden
standard” solution of Section 5. While in principle this is identical to a cascade
(i.e. single server per stratum) solution, in practice a parallel mix requires a larger
𝑡 value. The load per mix server is 𝑚

𝜎 messages, compared to 𝑚 in a cascade.
The encryption overhead depends on the specifics of the cryptosystem. While

naive encryption might cause an exponential blow-up, solutions based on hybrid
encryption, or onioning solutions such as Sphinx can reduce the overhead to a
small linear factor. Delivery latency is also directly proportional to the length of
the mixnet. We note that latency can be significantly reduced by pipelining (i.e.
allowing messages to be sent at the end of every subround rather than at the
end of the first round only), but we opt to describe the base version for clarity.

Privacy. Here, we will show that the system described above is secure under
the weak anonymity definition and leakage function Leakw.anon(ptr, 𝐻), defined in
Eq. (6). For convenience, we will assume that one timeslot maps to one round.

Theorem 2. Let PKE = (KeyGen,Enc,Dec) be a PKE scheme that achieves
m-IND-CPA security with error 𝜖𝐸(𝜆). Then, the parallel mix email ecosystem
of Section 6 over PKE and 𝒢clock,ℱ𝛥net

auth , using 𝑡 strata of 𝜎 servers to deliver 𝑚

messages achieves computational 𝑚1−⌊ 𝑡−1
2 ⌋ 1

4 4⌊
𝑡−1
2 ⌋ 1

2 log𝑚⌊ 𝑡−1
2 ⌋ 1

4 +2|P|𝜖𝐸-privacy

28 Chaidos et al.

for message delay 𝛥net with respect to the weak anonymity leakage function defined
below

Leakw.anon(ptr, 𝐻) :=

{︂(︀
JSptrK[𝐻], JRptrK[𝐻],Fptr[𝐻],Actptr[𝐻]

)︀
, if End(ptr, 𝐻) = 1(︀

JSptrK[𝐻],Fptr[𝐻],Actptr[𝐻]
)︀
, otherwise

Proof. We begin by describing the simulator, Sim. The handling of messages to
𝒜, timing, message delays and initialization are identical to those in Theorem
1. We note that the adversary’s decisions with regard to delays are irrelevant:
all externally observable operations are timed to succeed even if all preceding
messages are maximally delayed. In addition the simulator stores an internal
tally of the sender multiset initialized as 𝑆 = {∅, ∅, ∅}, and pending send pointers
𝑃 initialized to ∅.

We now describe how Sim handles the different kinds of leakage it may receive.

– Upon receiving
(︀
sid, ptr, (Register, 𝐶ℓ@SP𝑖)

)︀
from ℱLeakw.anon,𝛥net

priv (C,SP,Ad),
Sim runs the registration protocol between 𝐶ℓ and SP𝑖 exactly as in the de-
scription of Ecomp, also setting 𝐶ℓ as active. Then, it sends the message(︀
sid,Allow Exec, ptr

)︀
to ℱLeakw.anon,𝛥net

priv (C,SP,Ad).

– When Sim receives leakage
(︀
JSptrK[𝐻],Fptr[𝐻],Actptr[𝐻]

)︀
, it compares it

with its stored list 𝑆. If it differs in the first component, then a client
𝐶𝑙 = JSptrK[𝐻] ∖ 𝑆1 is attempting to send a message. First, the simula-
tor will check if the client is registered, and if so, sends a dummy mes-
sage

(︀
sid,Channel,Enc[SP𝑖](0),SP𝑖

)︀
to the simulated ℱ𝛥net

auth , and updates
𝑆1, while also adding the handle ptr to 𝑃 . Otherwise, it simply replies(︀
sid,Allow Exec, ptr).

If the leakage differs in the second component, then a client 𝐶𝑙 = Fptr[𝐻]∖𝑆2 is
attempting to fetch her messages. First, the simulator will check if the client is
registered, and if so, sends a dummy message 𝑀 =

(︀
sid,Channel,Enc[SP𝑖](0),

SP𝑖

)︀
to the simulated ℱ𝛥net

auth , and updates 𝑆2, while also keeping record of
𝑀, ptr. Whenever the message delivery of 𝑀 is allowed, either by 𝒜 or au-
tomatically when 𝛥net delay has passed, Sim allows execution of ptr by sending(︀
sid,Allow Exec, ptr). Otherwise, it simply replies

(︀
sid,Allow Exec, ptr).

If the leakage differs in the third component, then a client 𝐶𝑙 = Actptr[𝐻]△𝑆3

is attempting to register, login or logout. This is handled as in the simulator
of Theorem 1.

– When a client 𝐶𝑙 registers at SP𝑗 the simulator will receive
(︀
sid, ptr, (Register,

𝐶ℓ@SP𝑖)
)︀
. Sim records this, and simulates the rest of the registration protocol.

Then, it sends
(︀
sid,Allow Exec, ptr

)︀
to ℱLeakw.anon,𝛥net

priv (C,SP,Ad).

– When the timeslot advances, Sim receives leakage
(︀
JSptrK[𝐻], JRptrK[𝐻],Fptr[𝐻],

Actptr[𝐻]
)︀
. If the receiver multiset is non-empty, the simulator stores both

multisets (potentially overriding their previous values). Note that this only
happens during timeslot 0 of subround 0. If 𝑠𝑙𝑜𝑡(Cl) = 0 then the simulator
needs to simulate the corresponding subround 𝑠𝑢𝑏(Cl).
∙ For subround 0, the simulator looks at JSptrK[𝐻] to determine the num-

ber of messages originating from each SP. The messages,
(︀
sid,SP𝑖,

A Universally Composable Framework for the Privacy of Email Ecosystems 29

Enc[1,...,𝑡](0)
)︀

are each sent to a uniformly randomly selected first stratum

server via the simulated ℱ𝛥net

auth . The simulator then notes the messages
stored in each server MX1,𝑖.

∙ For subrounds 1 to t-1, the simulator knows the messages stored in each
server and is able to simply follow the protocol (including padding) by
processing the messages and routing them through the simulated ℱ𝛥net

auth .
∙ For subround t, the simulator replaces |JRptrK[𝐻]| randomly selected

messages in MX𝑡 with JRptrK[𝐻] and sends dummy messages to the
corresponding SPs following the protocol. At the same time, it allows
execution of all pending sends in 𝑃 , and resets it to empty.

For the next part, we will use a series of |P|+ 1 hybrid games, 𝐻0 to 𝐻|P|.
𝐻0 represents a real execution of the protocol. 𝐻𝑖, for 𝑖 ∈ {1, |P|} is identical
to 𝐻𝑖−1 but includes a challenger who embeds an m-IND-CPA challenge in the
messages addressed to the 𝑖-th party, and encrypts only zeroes for parties 𝑗 > 𝑖.
For this, we order the parties so that the stratum order is reversed (i.e servers in
the last stratum appear first). It also internally labels dummy ciphertexts with
their corresponding message and uses the labels when the challenge and dummy
messages are supposed to be decrypted. We note here, that the challenger in
𝐻𝑖 cannot be used to instantiate a simulator as it requires full knowledge of the
messages and metadata in addition to the specified leakage.

By the m-IND-CPA security of the encryption scheme, games 𝐻𝑖, 𝐻𝑖−1 are
computationally indistinguishable, as they only differ in the contents of ciphertexts
addressed to party 𝑖.

The only difference between 𝐻|P| and the simulation is that 𝐻|P| is able to
shuffle the messages that would pass through each server (using the labels and
side input), whereas the simulation routes zeroed out messages throughout the
network, and decides randomly which server a received message will be delivered
from.

To complete the proof, we use Theorem 3 (based on [21]) which shows that for
large 𝑡 the distribution of messages in game 𝐻𝑝 is statistically indistinguishable
from that of the simulation. Accounting for the computational security of Enc, we
obtain that 𝐻0 is computationally indistinguishable to the (efficient) simulator.

The adversary’s advantage in distinguishing between games 𝐻𝑖 and 𝐻𝑖+1 is
2𝜖𝐸 , so the total advantage is bounded by 2|P|𝜖𝐸 . The adversaries advantage in
distinguishing 𝐻𝑝 from the simulation is bounded by the statistical difference be-

tween the two distributions, which is bounded by 𝑁1−⌊ 𝑡−1
2 ⌋ 1

4 4⌊
𝑡−1
2 ⌋ 1

2 log𝑁⌊ 𝑡−1
2 ⌋ 1

4 .

Thus the total advantage is bounded by 𝑁1−⌊ 𝑡−1
2 ⌋ 1

4 4⌊
𝑡−1
2 ⌋ 1

2 log𝑁⌊ 𝑡−1
2 ⌋ 1

4 + 2|P|𝜖𝐸 .
⊓⊔

7 The Combinatorics of Parallel Mixing

Many of the works analysing parallel mixing investigate the probability distri-
bution of a single message traversing the network. This is satisfactory for some
definitions of anonymity but not for our modelling of a global adversary under

30 Chaidos et al.

universal composability. In our model, the environment determines the sender
and receiver of each message, so it is not sufficient to argue that any one message
is successfully shuffled (i.e has a uniformly random exit point from the network).

To illustrate, assume messages are represented by a deck of 𝑛 playing cards,
and further assume that our mixnet operates by simply “cutting” the deck once,
in secret (i.e choosing 𝑘 ∈ {0..𝑛− 1}, and placing the first 𝑘 cards at the bottom
of the deck in their original order). It is trivial to simulate drawing a single
card from a deck shuffled this way, by sampling a random card. However, once a
card has been drawn, subsequent draws are determined by the initial order. The
environment knows the initial order because it set it, but the simulator does not,
and the simulation fails.

Our approach will be to show that parallel mixing after a number of rounds
produces a random permutation on the list of input messages, thus allowing
the simulator to produce the list of output messages by sampling a random
permutation of the recipients, independent of the senders (which is crucial as it
does not know the relation between the two).

We will model parallel mixing as a generalisation of the square lattice shuffle
of H̊astad [21]. In a square lattice shuffle, 𝑛 = 𝑚2 cards are arranged in an
𝑚×𝑚 matrix, and shuffled as follows: in odd rounds each row is shuffled by an
independently uniformly random sampled permutation. In even rounds, the same
happens to columns. It is simple to check that 𝑡 iterations of this process map
directly to a 𝑡-stratum parallel mix with 𝑚 servers per stratum, each with capacity
𝑚: we label odd strata as “rows” and even strata as “columns”, where the 𝑖-th
server corresponds to the 𝑖-th row (column). The mapping is then completed by
noting the result of an odd round is that each row randomly contributes one of
its elements to each column, and vice-versa for even rounds.

Thus H̊astad’s results are applicable to parallel mixing. A second observation is
that because parties are assumed honest, we can assign multiple rows or columns
to one party without invalidating the bounds. We thus reproduce Theorem 3.6
from [21] and explain how it applies in our construction.

Theorem 3 (H̊astad [21], Theorem 3.6). Let 𝛱𝑡 be the distribution defined
by 𝑡 iterrations of lattice shuffling on 𝑚 objects. Then

𝛥(𝛱𝑡, 𝑈𝑚) ≤ 𝑂(𝑚1−⌊ 𝑡−1
2 ⌋ 1

4 log𝑚⌊ 𝑡−1
2 ⌋ 1

2)

Closer examination of the proof, and assuming 𝑚 > 81 enables us to dismiss
the big-O and obtain:

𝛥(𝛱𝑡, 𝑈𝑚) ≤ 𝑚1−⌊ 𝑡−1
2 ⌋ 1

4 1.5⌊
𝑡−1
2 ⌋ log𝑚⌊ 𝑡−1

2 ⌋ 1
2

This in turn implies

Corollary 1. For 𝑚 > 106, 31 rounds of lattice shuffling are statistically 1
𝑚

close to uniform.

The theorem’s proof also gives us insight in the effect of compromised servers in
a stratum: as coupling takes place over 3 iterations (or 2 with the assumption that
another honest iteration will follow), we must allow that a single compromised
stratum essentially shortens our network by 3 strata at the worst case.

A Universally Composable Framework for the Privacy of Email Ecosystems 31

7.1 A brief discussion on convergence speed

The bounds stated above describe a parallel mix with many small servers. One
would expect the situation to improve when examining fewer, larger servers. In
that direction, we expect a generalization of H̊astad’s result to yield a tighter
bound. That would be of value as there are few competing designs for random
permutation networks suited to anonymous communication [26].

The core of H̊astad’s analysis is about the probability of “coupling” two
permutations that start out differing by a single transposition, after 2 rounds
of shuffling. A first observation is that with “large” servers, the probability
that the transposition lies in one server (and thus the coupling is immediate)
becomes significant, improving convergence. A second, is that the probability
of a missed coupling is inversely proportional to the number of elements per
server which again implies improved convergence. We believe that a bound of

𝑚1−⌊ 𝑡−1
2 ⌋ 1

2 1.5⌊ 𝑡−1
2 ⌋ log𝑚⌊ 𝑡−1

2 ⌋ 𝜎−1√
𝜎

⌊ 𝑡−1
2 ⌋

is possible, which would approximately

halve the rounds required for the bound to reach 1
𝑚 , when 𝜎 is small, e.g. 17

rounds for 𝜎 = 4, 𝑚 > 300.000. However, we consider the specifics outside the
scope of this work, and leave the question of statistical bounds for parallel mixing
open for further research.

References

1. Alexopoulos, N., Kiayias, A., Talviste, R., Zacharias, T.: MCMix: Anonymous
messaging via secure multiparty computation. In: USENIX (2017)

2. Angel, S., Setty, S.: Unobservable communication over fully untrusted infrastructure.
In: OSDI (2016)

3. Backes, M., Kate, A., Manoharan, P., Meiser, S., Mohammadi, E.: Anoa: A frame-
work for analyzing anonymous communication protocols. In: CSF (2013)

4. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
A composable treatment. In: CRYPTO (2017)

5. Camenisch, J., Lysyanskaya, A.: A formal treatment of onion routing. In: CRYPTO.
pp. 169–187. Springer (2005)

6. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: Foundations of Computer Science. IEEE (2001)

7. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with
global setup. In: TCC (2007)

8. Chaidos, P., Fourtounelli, O., Kiayias, A., Zacharias, T.: A universally composable
framework for the privacy of email ecosystems. In: ASIACRYPT (2018)

9. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient
untraceability. Journal of cryptology 1(1), 65–75 (1988)

10. Chaum, D., Das, D., Javani, F., Kate, A., Krasnova, A., de Ruiter, J., Sherman,
A.T.: cmix: Mixing with minimal real-time asymmetric cryptographic operations.
In: ACNS. pp. 557–578 (2017)

11. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 24(2), 84–90 (1981)

12. Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: An anonymous messaging
system handling millions of users. In: Security and Privacy (2015)

32 Chaidos et al.

13. Corrigan-Gibbs, H., Ford, B.: Dissent: accountable anonymous group messaging.
In: CCS. pp. 340–350 (2010)

14. Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: Design of a type III
anonymous remailer protocol. In: Security and Privacy. pp. 2–15 (2003)

15. Danezis, G., Goldberg, I.: Sphinx: A compact and provably secure mix format. In:
Security and Privacy (2009)

16. Dı́az, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In:
PETS (2002)

17. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. Tech. rep., DTIC Document (2004)

18. Dwork, C.: Differential privacy. In: Automata, Languages and Programming. pp.
1–12 (2006)

19. Golle, P., Juels, A.: Parallel mixing. In: CCS. pp. 220–226. ACM (2004)
20. Goodrich, M.T., Mitzenmacher, M.: Anonymous card shuffling and its applications

to parallel mixnets. In: Automata, Languages, and Programming. pp. 549–560.
Springer (2012)

21. H̊astad, J.: The square lattice shuffle. Random Structures & Algorithms 29(4),
466–474 (2006)

22. Johnson, A., Wacek, C., Jansen, R., Sherr, M., Syverson, P.: Users get routed:
Traffic correlation on tor by realistic adversaries. In: CCS. pp. 337–348 (2013)

23. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous
computation. In: TCC (2013)

24. Kesdogan, D., Egner, J., Büschkes, R.: Stop-and-go-mixes providing probabilistic
anonymity in an open system. In: International Workshop on Information Hiding.
pp. 83–98. Springer (1998)

25. Kotzanikolaou, P., Chatzisofroniou, G., Burmester, M.: Broadcast anonymous
routing (BAR): scalable real-time anonymous communication. Int. J. Inf. Sec.
16(3), 313–326 (2017)

26. Kwon, A., Corrigan-Gibbs, H., Devadas, S., Ford, B.: Atom: Horizontally scaling
strong anonymity. In: SOSP. ACM (2017)

27. Kwon, A., Lazar, D., Devadas, S., Ford, B.: Riffle: An efficient communication
system with strong anonymity. PoPETS 2016(2), 115–134 (2015)

28. Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by data mini-
mization: Anonymity, Unlinkability, Undetectability, Unobservability, Pseudonymity,
and Identity Management. Version v0.34 http://dud.inf.tu-dresden.de/literatur/
Anon Terminology v0.34.pdf (August 2010)

29. Pfitzmann, A., Köhntopp, M.: Anonymity, unobservability, and pseudonymity—a
proposal for terminology. In: Designing privacy enhancing technologies. Springer
(2001)

30. Piotrowska, A., Hayes, J., Elahi, T., Danezis, G., Meiser, S.: The loopix anonymity
system. In: USENIX (2017)

31. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. In: Security
and Privacy (1998)

32. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity.
In: Privacy Enhancing Technologies. pp. 41–53. Springer (2002)

33. Shmatikov, V., Wang, M.: Timing analysis in low-latency mix networks: Attacks
and defenses. In: ESORICS. pp. 18–33 (2006)

34. Syverson, P.F., Goldschlag, D.M., Reed, M.G.: Anonymous connections and onion
routing. In: Security and Privacy. pp. 44–54 (1997)

http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf

A Universally Composable Framework for the Privacy of Email Ecosystems 33

35. Syverson, P.F., Tsudik, G., Reed, M.G., Landwehr, C.E.: Towards an analysis of
onion routing security. In: Workshop on Design Issues in Anonymity and Unobserv-
ability. pp. 96–114 (2000)

36. Van Den Hooff, J., Lazar, D., Zaharia, M., Zeldovich, N.: Vuvuzela: Scalable private
messaging resistant to traffic analysis. In: SOSP. pp. 137–152 (2015)

37. Wikström, D.: A universally composable mix-net. In: TCC. pp. 317–335. Springer
(2004)

	A Universally Composable Framework for the Privacy of Email Ecosystems

