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Abstract. Ever since the foundational work of Goldwasser and Micali, simulation has proven to be
a powerful and versatile construct for formulating security in various areas of cryptography. However
security definitions based on simulation are generally harder to work with than game based definitions,
often resulting in more complicated proofs. In this work we challenge this viewpoint by proposing new
simulation-based security definitions for secure channels that in many cases lead to simpler proofs of
security. We are particularly interested in definitions of secure channels which reflect real-world re-
quirements, such as, protecting against the replay and reordering of ciphertexts, accounting for leakage
from the decryption of invalid ciphertexts, and retaining security in the presence of ciphertext frag-
mentation. Furthermore we show that our proposed notion of channel simulatability implies a secure
channel functionality that is universally composable. To the best of our knowledge, we are the first to
study universally composable secure channels supporting these extended security goals. We conclude,
by showing that the Dropbear implementation of SSH-CTR is channel simulatable in the presence of
ciphertext fragmentation, and therefore also realises a universally composable secure channel. This is
intended, in part, to highlight the merits of our approach over prior ones in admitting simpler security
proofs in comparable settings.

Keywords. Secure Channels · Ciphertext Fragmentation · Universal Composability · SSH · Subtle
Authenticated Encryption

1 Introduction
Over the years, several security notions for symmetric encryption have been proposed in the cryptographic
literature. In [BDJR97] Bellare et al. studied four notions of confidentiality: semantic security, find-then-
guess security, left-or-right security, and real-or-random security, and showed them to be all equivalent.
Another notion, used in [AR07], demands indistinguishability between encryptions of real messages and
encryptions of some fixed message of the same length. This is known to be equivalent to the other four
definitions and indeed we will make extensive use of it in this work. Perhaps the most popular notion of
confidentiality today is indistinguishability from random bits, often denoted as IND$-CPA, which was put
forward in [RBBK01, Rog04]. This requires ciphertexts to be indistinguishable from random strings of
the same length. In [Rog04] Rogaway gave a number of reasons why he prefers this notion over all others,
arguing that it is stronger, easier to prove, yielding more versatile objects, and being conceptually simpler.
Indeed these are likely to be the reasons to which this notion owes its popularity.
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In our view, however, the aspect that makes IND$-CPA fundamentally different from all other notions is
that it requires the encryption of real messages to be indistinguishable from something computed without
any knowledge of the secret key. Thus, at its core is the idea that encryption be simulatable, where in
this specific case the simulator is required to be of a specific type. The all-in-one notion of authenticated
encryption introduced in [RS06], requiring indistinguishability of the encryption from $(·) and of the
decryption from ⊥(·), can be similarly viewed as requiring that both processes be simulatable. It is then
natural to ask if there is something special about these two specific simulators, or if they can be generalised
further.

It turns out that a more general formulation is possible, and this is exactly what we set out to explore
in this work. As we shall see, formulating security this way requires some care in order to guarantee the
level of security that we expect. In this respect, we identify some necessary restrictions that need to be
imposed on the simulators in order to meet their intended goal. We also establish relations between the
notions that we propose and also uncover certain interesting connections, for instance, if (and only if)
encryption can be simulated by a stateless algorithm, then the encryption is key private. In addition, our
security notions have the added nice feature that, unlike other security definitions, there are no prohibited
queries that the adversary is not allowed to make.

Beyond being of theoretical interest, there is also a more pragmatic reason motivating our study of
these security notions. We are primarily interested in symmetric encryption with advanced properties
such as protecting against replay and reordering of ciphertexts, maintaining security in the presence of
inadvertent leakage from invalid ciphertexts, and supporting ciphertext fragmentation. Such properties
are particularly relevant to the security of encryption schemes that are deployed in practice. A number
of prior works [BKN02, PW10, BDPS12, BDPS14, ABL+14, HKR15, BPS15, FGMP15, ADHP16] have
provided treatments of symmetric encryption with such properties, some of which are rather intricate. We
believe that our corresponding security definitions, based on simulation, can help to tame this complexity.
For instance, most works treat chosen ciphertext security and ciphertext integrity separately. One reason
for this is that the all-in-one notion of authenticated encryption does not lend itself well to these extended
settings. In particular, indistinguishability from random strings is too strong a requirement. In practice
ciphertexts will be encoded or prepended with additional fields that render them easy to distinguish. In
the presence of ciphertext fragmentation [PW10, BDPS12, ADHP16], this is particularly hard to achieve
since it implies that ciphertext boundaries should remain hidden. However, because decryption can now
process ciphertexts in a bit-by-bit fashion, ciphertext boundaries are implicitly demarcated by the point
at which decryption returns an output. Another complication is that the combination of chosen plaintext
security and ciphertext integrity, embodied by the all-in-one notion, no longer implies chosen ciphertext
security for schemes which may return more than one error message [BDPS14]. Our notion of channel
simulatability with Integrity, which can be viewed as a generalisation of the all-in-one notion of Rogaway
and Shrimpton, overcomes all these limitations. Another reason why our notions are easier to work with
is that they bring the security goal closer to the starting point. Our goal in a security proof will now be to
transform the scheme into a simulated one, but because the structure that this simulator needs to satisfy
is very loose, it will normally require fewer and simpler steps.

Yet another perk of channel simulatability, is that it also guarantees universal composability. More
precisely, we show that a scheme being channel simulatable with integrity implies that it realises a uni-
versally composable secure channel. In particular, it is universally composable even when leakage from
invalid ciphertexts and ciphertext fragmentation are taken into account. Moreover, channel simulatability
is conceptually much simpler and easier to use than the universal composability framework.

We conclude by presenting a proof that the Dropbear SSH-CTR implementation satisfies channel sim-
ulatability with integrity. In a recent measurement study [ADHP16] it was found that Dropbear is the
most ubiquitous SSH implementation on the Internet, with counter mode being the preferred choice of
ciphersuite – hence our choice to analyse this scheme. The security of SSH-CTR, in the case of OpenSSH,
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was analysed by Paterson and Watson in [PW10]. While the difference between the two implementations
is not major and their treatment did take ciphertext fragmentation and multiple errors into account, their
security model had some limitations which were pointed out and addressed in [BDPS12, ADHP16]. Fur-
thermore, our treatment guarantees universal composability, which is not known to be implied by any
of the prior works. However, we mostly intend this result to serve as testament to the simplicity of our
approach and invite the reader to contrast our proof with that in [PW10].

2 Preliminaries
We start by surveying some prior related works, which we will later build upon.

2.0.1 Leakage From Invalid Ciphertexts

In most padding-oracle attacks, such as [CHVV03, DP10, AP13], information is leaked to the adversary
during the decryption of invalid ciphertexts rather than valid ones. Consequently such attacks are not
captured by the usual security models where invalid ciphertexts invariably generate the same error symbol.
This motivated Boldyreva et al. to revisit the theory of authenticated encryption in the case where
distinguishable error symbols may be returned [BDPS14]. In [ABL+14] Andreeva et al. set out to model
the case where the decrypted plaintext, or part thereof, becomes available to the adversary – known as
Release of Unverified Plaintext (RUP) security. This work employs a syntax where decryption is split
into two algorithms, decryption and verification. Combined with the correctness requirement, this has
the undesirable consequence that their security model does not capture padding-oracle attacks, since the
padding cannot form part of the released plaintext. Yet in [ABL+14] RUP security was in part motivated
by the need to protect against such attacks. A related notion, called Robust Authenticated Encryption
(RAE), was put forward in [HKR15] in which the adversary also gets access to a plaintext string even if the
ciphertext was deemed invalid. RAE is formulated rather differently however, here a scheme is required to
be indistinguishable from a randomly-sampled injection with variable expansion augmented with a leakage
simulator. This renders RAE a relatively strict security notion, attainable only by a limited set of schemes
that generally require two pass encryption and decryption. The above security notions were unified in
[BPS15], for the case of nonce-based encryption, under the name Subtle Authenticated Encryption. Here
a nonce-based scheme is augmented with a leakage function, to model the information leaked from the
decryption of invalid ciphertexts, due to the scheme’s implementation. The usual nonce-based security
notions are then augmented by additionally providing the adversary with oracle access to the leakage
function. We adopt a syntax similar to Subtle AE, adapted to the secure channel setting. Consequently
our security notions do capture leakage from invalid ciphertexts.

2.0.2 Ciphertext Fragmentation

Secure channels realised over TCP/IP need to be able to decrypt ciphertexts that may be fragmented in an
arbitrary way. The mechanisms needed to support ciphertext fragmentation have been exploited to break
confidentiality in the secure channel realisations of SSH [APW09] and IPsec [DP10] which employ CBC
encryption. These attacks exposed a limitation of our security models, notably the affected secure channel
realisation in SSH was proven secure in [BKN02] in a model which did not account for ciphertext frag-
mentation. To amend this Paterson and Watson [PW10] proposed a model which accounted for ciphertext
fragmentation and used it to show that when SSH is instantiated with counter mode encryption it is secure
in this extended security model. The proposed security definition, however, was closely tied to the SSH de-
sign and suffered from a number of other issues which limited its applicability and generality. These issues
were addressed in [BDPS12] which studied ciphertext fragmentation more generally and introduced the
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related security notions of boundary hiding and resilience to denial of service. In [FGMP15] Fischlin et al.
consider an extended setting where in addition to supporting ciphertext fragmentation, encryption takes as
input a stream of data (rather than atomic messages) which it may fragment arbitrarily and encrypt sepa-
rately. Recently in [ADHP16] Albrecht et al. did a measurement study of SSH deployment and then used
the framework of [BDPS12] to analyse the security of three newly introduced ciphersuites in OpenSSH. In
this work we propose simulation-based security definitions supporting ciphertext fragmentation, following
the approach used in [BDPS12, ADHP16].

2.1 Notation

Unless otherwise stated, an algorithm may be randomised. An adversary is an algorithm. For any adversary
A and algorithms X ,Y, . . . we use AX (·),Y(·),... ⇒ z to denote the process of running A with fresh coins
and oracle access to algorithms X ,Y, . . . and returning an output z. By convention the running time of an
adversary refers to the sum of its actual running time and the size of its description. We generically refer
to the resources of an adversary as any subset of the following quantities: its running time, the number of
queries that it makes to its oracles, and the total length (in bits) of its oracle queries. If S is a set then
|S| denotes its size, and y � S denotes the process of selecting an element from S uniformly at random
and assigning it to y.

We use % to denote the integer modulo operation. For a bit b and a positive integer n, we denote
by bn the string composed of b repeated n times. With {0, 1}n we denote the set of all binary strings of
length n, and {0, 1}∗ denotes the set of all binary strings of finite length. The empty string is represented
by ε. For any two strings u and v, |u| and |u|B denote the length of u in bits and bytes, respectively, u‖v
denotes their concatenation, u ⊕ v denotes their bitwise XOR, u � v denotes the prefix predicate which
assumes the value true if and only if there exists w ∈ {0, 1}∗ such that v = u ‖ w. We use u[i, j] to denote
the substring of u from bit i to bit j inclusive, where the indexes start at 1 and ∗ points to the end of
the string. Similarly, u[i, j]B denotes the substring from byte i to byte j. If i is a non-negative integer,
then 〈i〉` denotes the unsigned `-bit canonical binary representation of i. Accordingly, 〈·〉−1 represents the
inverse mapping which maps strings of any length to N. We use {0, 1}∗∗ to denote the set of all string
sequences.

In every experiment where an adversary interacts with an encryption oracle (real or simulated), we
assume that a transcript is maintained of its queries and responses. More specifically, a transcript T is
an ordered list of message-ciphertext pairs (m, c), where each entry corresponds to an encryption query.
We endow this list with a next() method which returns its entries, one entry per call, in the same order in
which they were created – similarly to a queue. Other times, we will treat T as a set and test whether a
specific pair (m, c) is in T. When present in an experiment, the sync flag is initially set to true.

It is often convenient to write distinguishing advantages in a compact form. That is, given an adversary
A which interacts with oracles X1,X2 or with oracles Z1,Z2, we write

∆
A

[
X1,X2
Z1,Z2

]
:=
∣∣∣Prob

[
AX1,X2 ⇒ 1

]
− Prob

[
AZ1,Z2 ⇒ 1

]∣∣∣ .
According to this notation we can for example apply the triangle inequality∣∣∣Prob

[
AX1,X2 ⇒ 1

]
− Prob

[
AZ1,Z2 ⇒ 1

]∣∣∣
≤

∣∣∣Prob
[
AX1,X2 ⇒ 1

]
− Prob

[
AY1,Y2 ⇒ 1

]∣∣∣
+
∣∣∣Prob

[
AY1,Y2 ⇒ 1

]
− Prob

[
AZ1,Z2 ⇒ 1

]∣∣∣

4



and write
∆
A

[
X1,X2
Z1,Z2

]
≤∆
A

[
X1,X2
Y1,Y2

]
+ ∆
A

[
Y1,Y2
Z1,Z2

]
.

Similarly, if an adversary A′ simulates oracles X2 resp. Z2 to A through some other oracles X ′2 resp. Z ′2 by
modifying the answers, e.g., if X2 and Z2 output truncated answers of X ′2 and Z ′2, but otherwise executes
A, then we can write

∆
A

[
X1,X2
Z1,Z2

]
≤∆
A

[
X1,X ′2
Z1,Z ′2

]
.

Note that, strictly speaking, the right hand side considers adversary A′, but since this adversary only
adapts the oracle replies we take this already into account by using the other oracles in the notation.
Moreover, in all cases, A′ will consume the same resources as A, except for a small overhead in its running
time to adapt the oracle queries and responses. Since this overhead is usually minor in comparison to the
overall running time, we ignore it.

2.1.1 Syntax.

We consider two types of symmetric encryption, atomic encryption [BDJR97, BKN02] and encryption
supporting ciphertext fragmentation [BDPS12, ADHP16]. In both cases we allow invalid ciphertexts to
leak information to the adversary, as in Subtle AE [BPS15]. However, in contrast to Subtle AE our focus
is on symmetric channels rather than nonce-based symmetric encryption. We view the latter as a stepping
stone to building the former, and we believe that the utility of our security definitions manifests itself
when considering symmetric encryption with more complex functionalities than nonce-based encryption.

An atomic symmetric encryption scheme SE = (K, E ,D) is a triple of algorithms:

- The randomised key generation algorithm K returns a secret key K. We will slightly abuse notation
and use K to also identify the key space associated to the key generation algorithm.

- The encryption algorithm E : K × {0, 1}∗ → {0, 1}∗, may be randomised, stateful or both. It takes as
input the secret key K ∈ K, a plaintext message m ∈ {0, 1}∗, and returns a ciphertext in {0, 1}∗. For
stateful versions it may update its internal state when executed.

- The decryption algorithm D : K × {0, 1}∗ → ({>,⊥} × {0, 1}∗) is deterministic and may be stateful. It
takes the secret key K, a ciphertext c ∈ {0, 1}∗, to return a tuple (v,m) such that v ∈ {>,⊥} indicates
the validity of the corresponding ciphertext and m is a binary string representing a message or some
leakage. It may update its state upon execution.

Note that decryption may either return (>,m), indicating that the ciphertext was valid and decrypts
to the message m ∈ {0, 1}∗, or (⊥,m), indicating that the ciphertext was invalid where m ∈ {0, 1}∗ may
represent an error message, some internal value, or some other form of leakage. The leakage-free setting
is modeled by returning (⊥, ε) in response to an invalid ciphertext.

We further require that an atomic encryption scheme satisfies the following standard correctness condi-
tion. We write c1, . . . , cn ← EK(m1, . . . ,mn) as shorthand to denote the sequence of encryption operations
c1 ← EK(m1), c2 ← EK(m2), . . . , cn ← EK(mn). Similarly, (v1,m

′
1), . . . , (vn,m′n)← DK(c1, . . . , cn) denotes

the analogous sequence of decryption operations.

Definition 2.1 (Atomic Correctness) For all keys K output by K and all message sequencesm1, . . . ,mn ∈
{0, 1}∗∗, if c1, . . . , cn ← EK(m1, . . . ,mn) and (v1,m

′
1), . . . , (vn,m′n)← DK(c1, . . . , cn), then for all 1 ≤ i ≤

n it holds that vi = > and m′i = mi.

5



We only require decryption to recover the honestly generated messages when ciphertexts are decrypted in
the same order as they were produced. This slightly weaker correctness requirement allows us to cater for
schemes with a stateful decryption algorithm.

A symmetric encryption scheme supporting ciphertext fragmentation SE = (K, E ,D) is a triple of algo-
rithms:

- The randomised key generation algorithm K returns a secret key K. We will slightly abuse notation
and use K to also identify the key space associated to the key generation algorithm.

- The encryption algorithm E : K × {0, 1}∗ → {0, 1}∗, may be randomised, stateful or both. It takes as
input the secret key K ∈ K, a plaintext message m ∈ {0, 1}∗, and returns a ciphertext in {0, 1}∗.

- The decryption algorithm D : K × {0, 1}∗ → ({>,⊥} × {0, 1}∗)∗ is deterministic and stateful. It takes
as input the secret key K and a ciphertext fragment f ∈ {0, 1}∗, to return a sequence of one or more
tuples (v,m) or the empty string. Here v ∈ {>,⊥} indicates whether the corresponding ciphertext part
is valid or not, and m is a binary string representing the recovered message (when v = >) or leakage
from an invalid ciphertext (when v = ⊥).

In contrast to the atomic case, decryption may now return more than one tuple. This is because a
ciphertext fragment could be composed of a concatenation of ciphertexts in which case a tuple is returned
for each ciphertext. Alternatively, a ciphertext fragment may not contain sufficient information to recover
the message or even determine its validity, in which case decryption returns no output. Accordingly, we
will generally denote the process of decrypting a ciphertext fragment by (v1,m

′
1) . . . (v`,m′`) ← DK(f),

where a single output and no output are indicated by ` = 1 and ` = 0 respectively. Note also that in order
to support ciphertext fragmentation decryption must necessarily be stateful.

For schemes supporting ciphertext fragmentation we also require a stronger correctness condition.
Namely, decryption should recover the original sequence of messages even when the ciphertexts returned
by the encryption algorithm are concatenated together, optionally appended with an arbitrary string,
and the result is arbitrarily fragmented into substrings which are individually submitted for decryption in
their original order. This is stated formally below, using analogous notation for composite encryption and
decryption operations as before.

Definition 2.2 (Correctness Under Ciphertext Fragmentation) For all keys K output by K, all
message sequences m1, . . . ,mn ∈ {0, 1}∗∗, and all ciphertext fragment sequences f1, . . . , fk ∈ {0, 1}∗∗, if
c1, . . . , cn ← EK(m1, . . . ,mn) and (v1,m

′
1) . . . (v`,m′`) ← DK(f1, . . . , fk), where c1 ‖ . . . ‖ cn � f1 ‖ . . . ‖

fk, then it holds that m′i = mi and vi = > for all 1 ≤ i ≤ n.

2.1.2 A Note on Our Choice of Syntax

Our syntax for schemes supporting ciphertext fragmentation differs from that used in [BDPS12, ADHP16]
in three main ways. The most significant difference is that our syntax is more restrictive about how
decryption should behave. The syntax in [BDPS12, ADHP16] allows decryption to return a message
in separate chunks, similarly to online decryption [HRRV15]. Moreover, what chunk of the message is
returned, and when, may vary from scheme to scheme for a given sequence of ciphertext fragments. The
only requirement is that the concatenation of the outputs be an encoding of the original sequence of
messages. In our case, we ultimately want to relate our security notion to an ideal functionality in the UC
framework. Specifying such a functionality forces us to choose a concrete output behaviour for decryption.
We opted for a functionality where the message is returned all at once, which is how protocols like TLS
and SSH behave in practice. This choice is reflected in our syntax, which allows for slightly simpler
security definitions. We encounter a similar issue if we try to extend encryption to take a stream as
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its input [FGMP15]. We would again be forced to decide on a specific functionality regarding how the
plaintext stream is to be fragmented. The most natural and common choice in practice, is to separately
encrypt each message fragment as soon as it is input to the encryption algorithm. In turn this would yield
a syntax that is equivalent to the one we already have.

The other two differences, however, are merely cosmetic. Instead of decryption returning error symbols
from some set {⊥1,⊥2, . . . }, decryption now returns ⊥ together with a string. Clearly this is without loss
of generality, as the former case can be easily be mapped to the latter. Thirdly, due to the differences
we just described, the end of message symbol (¶), previously used to delineate message boundaries in the
decryption output, becomes redundant in our setting and we therefore drop it.

One notable exception that is not captured by our syntax is the InterMAC scheme, described in
[BDPS12], which does exhibit an online decryption behaviour. It should be possible to formulate a different
ideal functionality, that reflects InterMAC’s behaviour, and replicate our general approach for that setting.
However, we do not pursue that direction in this work.

2.2 Security Without Simulation

For atomic encryption schemes we consider two types of security, plain and stateful. The plain notions of
confidentiality and integrity are IND-CCA and INT-CTXT, which correspond to the similarly named notions
from Bellare and Namprempre [BN00] extended to the (stronger) subtle security setting of [BPS15], where
subtleties refer to leakage from different error messages or release of unverified plaintexts. Note that
subtle security follows directly from our extended syntax rather than any specific alteration in the security
definitions. Stateful notions of confidentiality (IND-sfCCA) and integrity (INT-sfCTXT) were introduced
in [BKN02] to additionally protect against the replay and reordering of ciphertexts. Again, through our
choice of syntax, we here extend these stateful notions to the subtle setting. We emphasize that our
syntax of atomic encryption schemes requires neither encryption nor decryption to be stateful. However
the decryption algorithm must be stateful in order for a scheme to satisfy stateful security – hence the
name. For schemes supporting ciphertext fragmentation the confidentiality and integrity analogues are
IND-sfCFA and INT-sfCFRG from [BDPS12, ADHP16] which we here adapt to our syntax. In all three
cases, the weaker IND-CPA notion is the usual one since it is unaffected by subtle security, stateful security,
or ciphertext fragmentation.

Dec(c′)

(v,m′)← DK(c′)
if ∃ m s.t. (m, c′) ∈ T

(v,m′)← (ε, ε)
return (v,m′)

sfDec(c′)

(v,m′)← DK(c′)
if sync

(m, c)← T.next()
if c′ = c

(v,m′)← (ε, ε)
else

sync← false
return (v,m′)

cfDec(f)

(v1,m
′
1) . . . (v`,m

′
`)← DK(f)

F ← F ‖ f ; j ← 1
while sync ∧ j ≤ `

if T = [ ]
sync← false

else
(m, c)← T.next()
C ← C ‖ c
if C � F
j ← j + 1

else
sync← false

return (vj ,m
′
j) . . . (v`,m

′
`)

Figure 1: Decryption oracles for defining IND-CCA, IND-sfCCA, IND-sfCFA, INT-CTXT, INT-sfCTXT, and INT-sfCFRG security.
T is a live transcript of the adversary’s queries to its encryption oracle containing message-ciphertext pairs.
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Definition 2.3 (Confidentiality) Let SE = (K, E ,D) be an atomic symmetric encryption scheme. Let
algorithms Dec and sfDec be as specified in Figure 1, then for any adversary A we define the corresponding
IND-CCA and IND-sfCCA advantages as:

Advind-cca
SE (A) =

∣∣∣Pr
[
AEK(·),Dec(·) ⇒ 1

]
− Pr

[
AEK(0|·|),Dec(·) ⇒ 1

]∣∣∣ ,
and

Advind-sfcca
SE (A) =

∣∣∣Pr
[
AEK(·),sfDec(·) ⇒ 1

]
− Pr

[
AEK(0|·|),sfDec(·) ⇒ 1

]∣∣∣ ,
where in both cases the probabilities are over K � K and the algorithms’ coin tosses. Alternatively, if
SE is a symmetric encryption scheme supporting ciphertext fragmentation, then for any adversary A the
corresponding IND-sfCFA advantage is given by:

Advind-sfcfa
SE (A) =

∣∣∣Pr
[
AEK(·),cfDec(·) ⇒ 1

]
− Pr

[
AEK(0|·|),cfDec(·) ⇒ 1

]∣∣∣ ,
where cfDec is as specified in Figure 1. A scheme SE is said to be (ε,RA)-NN secure, for NN ∈
{IND-CCA, IND-sfCCA, IND-sfCFA}, if for any adversary A with resources at most RA, its NN advantage
is bounded by ε.

In the above definition, EK(0|·|) is an oracle that on inputm returns an encryption of 0|m|. This formulation
of confidentiality is equivalent (up to a small constant factor in the advantages) to the more popular left-
or-right and real-or-random formulations.

Definition 2.4 (Ciphertext Integrity) Let SE = (K, E ,D) be an atomic symmetric encryption scheme.
Let algorithms Dec and sfDec be as specified in Figure 1 and FORGE denote the event that the decryption
oracle returns a pair (v,m′) where v = >. Then for any adversary A the corresponding INT-CTXT and
INT-sfCTXT advantages are defined as:

Advint-ctxt
SE (A) = Pr

[
K � K, AEK(·),Dec(·) : FORGE

]
,

and

Advint-sfctxt
SE (A) = Pr

[
K � K, AEK(·),sfDec(·) : FORGE

]
.

Alternatively, if SE is a symmetric encryption scheme supporting ciphertext fragmentation, let algorithm
cfDec be as specified in Figure 1 and FORGE denote the event that the decryption oracle return an output
(v1,m

′
1), . . . , (v`,m′`) where vi = > for some 1 ≤ i ≤ `. Then for any adversary A the corresponding

INT-sfCFRG advantage is given by:

Advint-sfcfrg
SE (A) = Pr

[
K � K, AEK(·),cfDec(·) : FORGE

]
,

where cfDec is as specified in Figure 1. A scheme SE is said to be (ε,RA)-NN secure, for NN ∈
{INT-CTXT, INT-sfCTXT, INT-sfCFRG}, if for any adversary A with resources at most RA, its NN ad-
vantage is bounded by ε.

In Section 3 we establish a relation between encryption simulatability and key privacy. Key privacy
was considered in [Fis99, AR07] for stateless symmetric encryption and then covered more extensively
in [BBDP01] for the case of public-key encryption. Our definition of key-privacy roughly follows the
definitions used in [Fis99, AR07] but we adapt them to cater for stateful schemes. Roughly speaking,
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the prior definitions would give the adversary access to two encryption oracles and it would then have to
distinguish whether the two oracles use the same key or not. Counter mode encryption would not satisfy
this definition since an adversary can easily detect two encryptions under the same key and counter value.
However counter mode is meant to be used in a way that never re-uses the same counter value (as even
confidentiality would fail in that case) and such a situation should never arise in practice. Accordingly
we progress the state of the two encryption oracles simultaneously, by encrypting every message by both
instances and return to the adversary only one ciphertext which it is allowed to select via an extra bit b
given to the oracle. This is stated more formally below.

Definition 2.5 (Key Privacy) Let SE = (K, E ,D) be a symmetric encryption scheme, atomic or sup-
porting ciphertext fragmentation. Let 〈O0(·),O1(·)〉(b,m) be the exclusive oracle combination described in
Figure 2, then for any adversary A we define its KP-CPA advantage as:

Advkp-cpa
SE (A) =

∣∣∣Pr
[
A〈EK(·),EK̄(·)〉(·,·) ⇒ 1

]
− Pr

[
A〈EK(·),EK(·)〉(·,·) ⇒ 1

]∣∣∣ ,
where the probabilities are over the choice of K, K̄ � K resp. K � K, and the algorithms’ coin tosses.
A scheme SE is said to be (ε,RA)-KP-CPA secure, if for any adversary A with resources at most RA, its
KP-CPA advantage is bounded by ε.

〈O0(·),O1(·)〉(b,m)

c0 ← O0(m)
c1 ← O1(m)
return cb

Figure 2: Exclusive oracle combination used in the KP-CPA security definition.

3 Encryption Simulatability

3.1 Defining Encryption Simulatability

As observed in the introduction, IND$-CPA security stands out from other definitions of confidentiality in
that it employs an encryption oracle ($(·)) that does not make use of the encryption key. In particular,
we might ask what is special about it that if encryption is indistinguishable from it, then confidentiality
is guaranteed? The absence of the encryption key suggests a notion of encryption simulatability and that
perhaps pseudorandomness is not really necessary. Indeed this turns out to be the case, but we are still
missing one ingredient. The simulator needs to emulate encryption without any knowledge of the message
contents except its length. Otherwise the scheme m← EK(m) would be trivially simulatable but is clearly
insecure. A formal definition of encryption simulatability is given below.

Definition 3.1 (Encryption Simulatability) Let SE = (K, E ,D) be a symmetric encryption scheme,
either atomic or supporting ciphertext fragmentation. For an adversary A and a simulator S we define
the corresponding ES advantage as:

Adves
SE(A,S) = Pr

[
K � K : AEK(·) ⇒ 1

]
− Pr

[
K � K : AS(|·|) ⇒ 1

]
The scheme SE is said to be (ε,RS ,RA)-ES secure if there exists a randomised and possibly stateful
simulator S, requiring at most RS resources per query, such that for any adversary A, requiring at most
RA resources, its respective advantage Adves

SE(A,S) is bounded by ε.

9



The presence of a simulator in our definition is perhaps reminiscent of other simulation-based security
definitions, such as semantic security and even zero knowledge. Intuitively, encryption simulatability says
that interacting with the encryption algorithm should convey no knowledge of the key or the message
contents. There are some important differences however. In contrast to semantic security, here the
simulator is emulating the encryption algorithm rather than the adversary. The simulator cannot depend
on the adversary either, due to the reversed order of quantifiers. Finally, contrary to the case of zero
knowledge, here the simulator is not allowed to rewind the adversary.

3.2 Understanding Encryption Simulatability

We motivated ES as a generalisation of IND$-CPA, and indeed from the definition it follows straight away
that IND$-CPA implies ES for any length-regular scheme. Showing that the reverse implication does not
hold, i.e., ES 6=⇒ IND$-CPA is also straightforward, e.g., if the ciphertext contains redundant 0-bits.
Despite the differences we mentioned previously, between semantic security (equivalently IND-CPA) and
ES, the two notions turn out to be equivalent. In essence, for any IND-CPA symmetric encryption scheme
there exists a stateful encryption simulator which samples a fresh key at the beginning and runs the
encryption algorithm on that key and a fixed message of the length indicated in its input. This is stated
more formally together with the reverse implication in Theorem 3.2.

Theorem 3.2 (IND-CPA ⇐⇒ ES) Let SE = (K, E ,D) be a symmetric encryption scheme.

a) Then for any encryption simulator S it holds that:

Advind-cpa
SE (A) ≤ 2 · Adves

SE(A,S) .

b) Furthermore, there exists a stateful encryption simulator S̄(`), which on its first input runs K̄ � K
once and responds to every query with EK̄(0`), such that:

Adves
SE(A, S̄) ≤ Advind-cpa

SE (A) .

Proof. For any adversary A its IND-CPA advantage given by:

Advind-cpa
SE (A) = ∆

A

[
EK(·)
EK(0|·|)

]
.

By the triangle inequality we obtain:

≤∆
A

[
EK(·)
S(|·|)

]
+ ∆
A

[
S(|·|)
EK(0|·|)

]
.

Now the first distinguishing game is exactly the ES game, whereas the second game can be reduced to the
ES game. In particular, any query m can be simulated by querying 0|m| in the ES game, since |0|m|| = |m|.
Thus it follows that:

Advind-cpa
SE (A) ≤ 2 · Adves

SE(A,S).

This proves the first part of the theorem, we now prove the other direction. For the given simulator S̄ and
any adversary A we have that:

Adves
SE(A, S̄) = ∆

A

[
EK(·)
EK̄(0|·|)

]
.
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Applying the triangle inequality we obtain:

≤∆
A

[
EK(·)
EK(0|·|)

]
+ ∆
A

[
EK(0|·|)
EK̄(0|·|)

]
.

Now note that the first term is exactly the IND-CPA advantage, whereas the second term is zero because
the two oracles are distributional identical, i.e. for any sequence of queries they yield identically distributed
responses (over the choice of the key and potentially the randomness of the encryption scheme). Thus,
the result follows:

Adves
SE(A, S̄) ≤ Advind-cpa

SE (A) + 0 .

�

One could also consider chosen-ciphertext extensions of encryption simulatability (ES-ATK for ATK ∈
{CCA, sfCCA,CFA}) by additionally providing the adversary with access to the corresponding decryption
oracle from Figure 1. While the first implication extends to these settings, i.e. ES-ATK =⇒ IND-ATK, the
implication in the other direction does not! The reason can be seen in the above proof for the IND-CPA case.
In the final step of the proof the second advantage term in the proof is no longer zero when a decryption
oracle is available. To see why, consider an IND-CCA scheme where every ciphertext is valid, i.e. decrypts
to some string [Des00]. Now modify this scheme such that it uses two keys, one used for encryption and
decryption and the other is appended to the ciphertexts during encryption. Decryption now checks whether
the correct key is appended to the ciphertext, if so it proceeds to decrypt the rest of the ciphertext and
returns an error otherwise. The resulting scheme is still IND-CCA secure but a simulator can only guess
the right key with negligible probability. An adversary can distinguish the two cases by modifying the
part of the ciphertext which is not the key and observe whether its decryption returns a string or an error
message. This separation extends easily to the sfCCA and CFA settings. Thus the equivalence between
encryption simulatability and semantic security does not extend to the chosen-ciphertext setting.

Interestingly, if we further require that the simulator be stateless, meaning that it maintains no state
and uses independent coins in each call, then encryption simulatability additionally guarantees key privacy.
The implication holds for schemes which are either stateless or whose state progression is independent of
the coins used, which is usually the case in practice, e.g., if a counter is incremented for each call.

Theorem 3.3 (ES ∧ Stateless(S) =⇒ KP-CPA) Let SE = (K, E ,D) be a symmetric encryption scheme
such that E uses fresh coins on each call, and is either stateless or it progresses its state independently of
its coins. Then for a stateless simulator S using fresh coins on every query and any adversary A, it holds
that:

Advkp-cpa
SE (A) ≤ 3 · Adves

SE(A,S) .

Proof. For any adversary A the KP-CPA advantage is given by:

Advkp-cpa
SE (A) = ∆

A

[
〈EK(·), EK̄(·)〉(·, ·)
〈EK(·), EK(·)〉(·, ·)

]
.

By the triangle inequality, for any encryption simulator S we have that:

≤∆
A

[
〈EK(·), EK̄(·)〉(·, ·)
〈EK(·),S(|·|)〉(·, ·)

]
+ ∆
A

[
〈EK(·),S(|·|)〉(·, ·)
〈S(|·|),S(|·|)〉(·, ·)

]

+ ∆
A

[
〈S(|·|),S(|·|)〉(·, ·)
〈EK(·), EK(·)〉(·, ·)

]
.
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Each of the above terms can be reduced to the encryption simulatability game. In the first term the
reduction (playing against EK̄(·) or S(|·|)) simulates the first oracle EK(·) by sampling an independent
encryption key K. In the second term the reduction simulates the second oracle by running its own copy
of the simulator. The third reduction is where we require the simulator to be stateless and the encryption
algorithm to have a state progression that is independent of its coins. The reduction uses one instance of
the simulator to emulate two independent ones, which is only possible if the simulator answers each query
independently. Similarly for encryption, if the state progression depends only on the key and the message
sequence, then both instances of the left and right oracle will progress through the same sequence of states
and can therefore be emulated via a single instance. Thus we obtain:

Advkp-cpa
SE (A) ≤∆

A

[
EK̄(·)
S(|·|)

]
+ ∆
A

[
EK(·)
S(|·|)

]
+ ∆
A

[
S(|·|)
EK(·)

]
≤ 3 · Adves

SE(A,S).

�
We emphasise that the above implication necessitates that the simulator be stateless. That is, if the

simulator is allowed to be stateful then ES does not imply KP-CPA. In particular, a scheme may leak a
fixed portion of its key in its ciphertexts and still be IND-CPA secure. Then by Theorem 3.2 the scheme
has a stateful encryption simulator, but clearly the scheme is not key private.

3.2.1 A Length-Hiding Variant

Our definition of encryption simulatability could be extended to offer a limited form of length hiding by
replacing the length function |·| with a rounding length function d·e. This would partition the message
space into intervals according to the message length. Then messages of differing lengths but wich fall
within the same interval would map to the same input to the simulator. Intuitively, the simulator can
now only leak the length interval that the message belongs to but not its precise length. This security
notion nicely captures the intended protection against traffic analysis offered by practical schemes which
pad messages up to a multiple of the block length or some larger value.

4 Decryption Simulatability
It also makes sense to consider an analogous security notion where decryption is required to be simulatable.
Although not stated explicitly, security proofs often involve either simulating part of the decryption oracle
or employ a specific type of simulator. Indeed ciphertext integrity can be viewed as requiring the existence
of a specific type of decryption simulator—one which returns ⊥ to every query. Error predictability
[FGMP15] and leakage simulation [BPS15] are two other examples where parts of the decryption algorithm
is simulated. The notion we propose is a generalisation of these ideas, adapted to the channel setting,
where we require the whole decryption algorithm to be simulatable. It also allows us to argue about
the chosen ciphertext security of schemes which do not provide ciphertext integrity, such as the schemes
proposed in [Des00], where any string constitutes a valid ciphertext but it will decrypt to a random-looking
message.

4.1 Defining Decryption Simulatability

When defining decryption simulatability it makes sense to also give the adversary access to the encryption
algorithm. Then simulation of decryption requests is only possible if as usual we prohibit the adversary
from forwarding the ciphertexts it obtains from the encryption oracle. In this particular case, however,
we have an alternative option. We can lift these restrictions from the adversary and instead give the
decryption simulator access to a live transcript of the encryption queries. Intuitively, this information is
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already known to the adversary and should result in an equivalent security notion. However, as it turns
out, this intuition is not quite correct. We need to restrict the simulator’s access to the transcript in order
for security to be preserved.

To see why, consider the classical example where we alter a scheme by appending a redundant bit
to the ciphertext during encryption and ignore this bit during decryption. This modification renders the
scheme malleable and thereby fails to be IND-CCA even if the underlying scheme is. However the resulting
scheme does have a decryption simulator if it is given unrestricted access to the encryption transcript.
In particular, the decryption simulator could use the transcript to simulate the decryption of ciphertexts
which are not in the transcript. More concretely, let us assume that the underlying scheme is IND-CPA
secure and provides ciphertext integrity. Now, if the encryption of m returned c ‖ 0 and the adversary
queries c ‖ 1, the simulator can, through the available transcript, detect that this is a mauled ciphertext
and return m as its response. Alternatively, if the ciphertext is unrelated to a prior encryption query, the
simulator returns ⊥. Thus, if we were to allow unrestricted access to the transcript, the resulting notion
of decryption simulatability would not suffice to reduce IND-CCA security to IND-CPA security.

To overcome this limitation we will wrap the simulator S with a fixed wrapper algorithm that has access
to the transcript and possibly overwrites the outputs of S. Specifically, the wrapper will detect whether
a ciphertext corresponds to a prior encryption query and replace the output of S with the message in
the transcript, unnoticeable for the simulator. Equivalently, the resulting algorithm can be viewed as
a composite decryption simulator where the wrapper component has access to the transcript but its
functionality is fixed and S has no access to the transcript but its functionality is unrestricted and may
depend on the scheme. We consider three different wrappers V, W, and Z, described in Figure 3, each
yielding a different notion of decryption simulatability. The first, denoted by DS, is plain decryption
simulatability and is intended for atomic schemes. Stateful decryption simulatability (SDS) corresponds to
the stateful family of security notions which additionally protect against replay and reordering. Fragmented
decryption simulatability (FDS) is intended for schemes supporting ciphertext fragmentation.

Definition 4.1 (Decryption Simulatability) Let SE = (K, E ,D) be an atomic symmetric encryption
scheme. For an adversary A and a decryption simulator S we define the corresponding DS and SDS
advantages as:

Advds
SE(A,S) = Pr

[
AEK(·),DK(·) ⇒ 1

]
− Pr

[
AEK(·),V[S](·) ⇒ 1

]
,

and

Advsds
SE(A,S) = Pr

[
AEK(·),DK(·) ⇒ 1

]
− Pr

[
AEK(·),W[S](·) ⇒ 1

]
.

where the probabilities are over K � K and the algorithms’ coin tosses. Alternatively, if SE is a symmetric
encryption scheme supporting ciphertext fragmentation, its corresponding FDS advantage is given by:

Advfds
SE(A,S) = Pr

[
AEK(·),DK(·) ⇒ 1

]
− Pr

[
AEK(·),Z[S](·) ⇒ 1

]
.

A scheme SE is said to be (ε,RS ,RA)-NN secure, for NN ∈ {DS, SDS,FDS}, if there exists a randomised
and possibly stateful simulator S, requiring at most RS resources per query, such that for any adversary
A, requiring at most RA resources, its respective advantage Advnn

SE(A,S) is bounded by ε.

4.2 Decryption Simulatability and Chosen-Ciphertext Security

The next theorem states that, as intended, decryption simulatability suffices to reduce chosen cipher-
text security to chosen plaintext security. We here state the theorem for the case of schemes support-
ing ciphertext fragmentation but analogous results hold for atomic schemes in the plain security setting
(IND-CPA ∧DS =⇒ IND-CCA) as well as the stateful security setting (IND-CPA ∧ SDS =⇒ IND-sfCCA).
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V[S](c′) V[S](c′)

(v,m′)← S(c′)
if ∃ m s.t. (m, c′) ∈ T

(v,m′)← (>,m)

(v,m′)← (ε, ε)

return (v,m′)

W[S](c′) W[S](c′)

(v,m′)← S(c′)
if sync

(m, c)← T.next()
if c′ = c

(v,m′)← (>,m)

(v,m′)← (ε, ε)

else
sync← false

return (v,m′)

Z[S](f) Z[S](f)

(v1,m
′
1) . . . (v`,m

′
`)← S(f)

F ← F ‖ f ; j ← 1
while sync ∧ j ≤ `

if T = [ ]
sync← false

else
(m, c)← T.next()
C ← C ‖ c
if C � F

(vj ,m
′
j)← (>,m)

j ← j + 1
else

sync← false
return (v1,m

′
1) . . . (v`,m

′
`)

return (vj ,m
′
j) . . . (v`,m

′
`)

Figure 3: The V and W wrappers for an atomic decryption simulator and the Z wrapper for the decryption simulator supporting
ciphertext fragmentation, used to define decryption simulatability and channel simulatability. In all three cases the boxed
code is omitted. In the suppressing variants V, W, and Z the boxed lines of code replace the lines above them. T is a live
transcript of the adversary’s queries to the encryption oracle and is not accessible to S. Note that (ε, ε) represents the empty
string.

Theorem 4.2 (IND-CPA ∧ FDS =⇒ IND-sfCFA) Let SE = (K, E ,D) be a symmetric encryption scheme
supporting ciphertext fragmentation. Then for any adversary A and any decryption simulator S it holds
that:

Advind-sfcfa
SE (A) ≤ Advind-cpa

SE (A) + 2 · Advfds
SE(A,S) .

Proof. Observe that the decryption oracle cfDec(·) in Figure 1 is identical to Z[DK ](·), where Z is described
in Figure 3. Then, for any adversary A its IND-sfCFA advantage is given by:

Advind-sfcfa
SE (A) = ∆

A

[
EK(·) ,Z[DK ](·)
EK(0|·|),Z[DK ](·)

]
.

By the triangle inequality, for any decryption simulator S it holds that:

≤∆
A

[
EK(·),Z[DK ](·)
EK(·), Z[S](·)

]
+ ∆
A

[
EK(·) ,Z[S](·)
EK(0|·|),Z[S](·)

]

+ ∆
A

[
EK(0|·|), Z[S](·)
EK(0|·|),Z[DK ](·)

]
.
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By means of a reduction on the third term we now replace every encryption query m with 0|m|. Note how
this is only possible because the wrapper is suppressing and would not be possible otherwise. In particular,
in one case the transcript stores m whereas in the other it stores 0|m|. However, in both cases the oracle’s
behaviour is identical since the suppressing wrapper does not make use of the messages in the transcript.
We now have that:

≤∆
A

[
EK(·),Z[DK ](·)
EK(·), Z[S](·)

]
+ ∆
A

[
EK(·) ,Z[S](·)
EK(0|·|),Z[S](·)

]

+ ∆
A

[
EK(·), Z[S](·)
EK(·),Z[DK ](·)

]
.

We now reduce the first and third terms to the FDS game. We employ a straightforward reduction that
applies Z to the decryption oracle, and observe that applying Z after Z is equivalent to applying Z directly.
This means we can simulate Z[DK ] resp. Z[S] through Z[DK ] and Z[S], and we can then also take advantage
of Z[DK ] = DK . Regarding the second term, it can be reduced to IND-CPA by running a local copy of the
decryption simulator and wrapper. This yields:

≤∆
A

[
EK(·),DK(·)
EK(·),Z[S](·)

]
+ ∆
A

[
EK(·)
EK(0|·|)

]
+ ∆
A

[
EK(·),Z[S](·)
EK(·),DK(·)

]
,

= Advfds
SE(A,S) + Advind-cpa

SE (A) + Advfds
SE(A,S).

�
Note that chosen ciphertext security does not imply decryption simulatability, i.e. IND-CCA 6=⇒ DS.

To show this separation we can use again the same counterexample that we used in the discussion following
Theorem 3.2. That is, a scheme can leak part of the key in its ciphertext and still be IND-CCA secure.
Then decryption can behave differently, by returning a string or an error message, depending on whether
a ciphertext contains the right key or not. Now, since a decryption simulator does not know the key,
it cannot successfully emulate this behaviour and is therefore not DS secure. However, for the case of
encryption simulatability the implication is valid, that is, ES-CCA =⇒ DS. In particular, we can simulate
decryption by running the algorithm on an independently sampled key. Thus, if encryption is simulatable
to an adversary with oracle access to decryption, it follows that decryption is simulatable to an adversary
with oracle access to encryption. Analogous relations hold for stateful security and schemes supporting
ciphertext fragmentation. Below we state more formally, with proof, the relation for the fragmentation
setting.

Theorem 4.3 (ES-sfCFA =⇒ FDS) Let SE = (K, E ,D) be a symmetric encryption scheme supporting
ciphertext fragmentation. Then there exists a stateful decryption simulator SD(c), which on its first input
runs K̄ � K and responds to every query using DK̄(c), such that for any encryption simulator SE it holds
that:

Advfds
SE(A,SD) ≤ 2 · Adves-sfcfa

SE (A,SE) .

Proof. For the given simulator SD, which decrypts under a freshly chosen key K̄, and any adversary A
the FDS advantage is given by:

Advfds
SE(A,SD) = ∆

A

[
EK(·), DK(·)
EK(·),Z[SD](·)

]
= ∆
A

[
EK(·), DK(·)
EK(·),Z[DK̄ ](·)

]
.

By the triangle inequality, for any encryption simulator SE it holds that:

≤∆
A

[
EK(·) , DK(·)
SE(|·|),Z[DK ](·)

]
+ ∆
A

[
SE(|·|),Z[DK ](·)
EK(·) ,Z[DK̄ ](·)

]
.
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By the correctness of the scheme, we can replace DK(·) by Z[DK ](·) in the upper row of the first term. With
respect to the second term we drop the decryption oracle since it can be simulated locally by sampling an
independent key and maintaining a local transcript for simulating the wrapper. We thus have:

≤∆
A

[
EK(·) ,Z[DK ](·)
SE(|·|),Z[DK ](·)

]
+ ∆
A

[
SE(|·|)
EK(·)

]
.

The first term can now be reduced to a similar game employing a suppressing wrapper since the suppressed
queries can be answered by maintaining a local copy of the transcript. Therefore:

= ∆
A

[
EK(·) ,Z[DK ](·)
SE(|·|),Z[DK ](·)

]
+ ∆
A

[
SE(|·|)
EK(·)

]
,

and the result now follows

= Adves-sfcfa
SE (A,SE) + Adves

SE(A,SE).

�

4.3 Decryption Simulatability and Ciphertext Integrity

Informally, decryption simulatability says that access to the decryption algorithm is of no use to an
adversary, thereby allowing us to reduce chosen ciphertext security to chosen plaintext security. However,
by itself, this does not guarantee ciphertext integrity. Luckily, we only need to impose a minor additional
requirement on the simulator for it to cover ciphertext integrity. Essentially, the requirement is that the
simulator always returns an error for mauled ciphertexts. It then follows that the real decryption algorithm
can only deviate from this behaviour with negligible probability. In our definition we conveniently make use
of the suppressing variants of the wrapper algorithms, from Figure 3, in order to filter out any ciphertexts
that were obtained from the encryption oracle.

Definition 4.4 (Decryption Simulatability with Integrity) Let SE = (K, E ,D) be an atomic sym-
metric encryption scheme. Then SE is said to be (ε,RS ,RA)-DS-I or (ε,RS ,RA)-SDS-I secure, if it is
respectively (ε,RS ,RA)-DS or (ε,RS ,RA)-SDS secure, and, in addition, the corresponding simulator S
augmented with V or W respectively never (with probability zero) outputs a pair (v,m′) where v = >.

Similarly, if SE is a symmetric encryption scheme supporting ciphertext fragmentation it is said to be
(ε,RS ,RA)-FDS-I secure if it is (ε,RS ,RA)-FDS secure and its corresponding simulator S is such that
Z[S] never (with probability zero) returns an output (v1,m

′
1), . . . , (v`,m′`) where vi = > for some 1 ≤ i ≤ `.

Informally, the above says that the simulator will never return a valid output for a ciphertext that is
not in the transcript (DS-I) or once the queries become out of sync (SDS-I and FDS-I). Note that such a
property can be verified simply by inspecting the code of the simulator. Thus no additional steps may be
required to prove ciphertext integrity if the decryption simulator already satisfies this condition.

The following theorem says that decryption simulatability with integrity implies the usual notions of
ciphertext integrity. We prove this only for schemes supporting ciphertext fragmentation, but analogous
theorems and proofs hold for the atomic setting, i.e. DS-I =⇒ INT-CTXT and SDS-I =⇒ INT-sfCTXT.

Theorem 4.5 (FDS-I =⇒ INT-sfCFRG) Let SE = (K, E ,D) be a symmetric encryption scheme support-
ing ciphertext fragmentation and let S be a decryption simulator such that it is (ε,RS ,RA)-FDS-I secure.
Then SE is (ε,RA)-INT-sfCFRG secure.
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Proof. Note that cfDec(·) is identical to Z[DK ](·). Hence for any simulator S and any adversary A with
at most RA resources, we have that:

∆
A

[
EK(·),cfDec(·)
EK(·), Z[S](·)

]
= ∆
A

[
EK(·),Z[DK ](·)
EK(·), Z[S](·)

]
.

Then, by a straightforward reduction that applies Z to the decryption oracle and observing that Z[Z[S]](·)
is identical to Z[S](·), it follows that:

≤∆
A

[
EK(·),DK(·)
EK(·),Z[S](·)

]
,

= Advfds
SE(A,S).

From the above relation it then follows that:

Advint-sfcfrg
SE (A) = Pr

[
K � K, AEK(·),cfDec(·) : FORGE

]
,

≤ Pr
[
AEK(·),Z[S](·) : FORGE

]
+ Advfds

SE(A,S).

Now since SE is (ε,RS ,RA)-FDS-I secure, there exists a simulator such that the first term is zero and the
second term is bounded by ε, thus:

≤ ε.

4.3.1 Comparing DS to Prior Notions

We are not the first to consider notions requiring the decryption algorithm to be simulatable. Two notable
cases are the works of Andreeva et al. [ABL+14] and that of Hoang, Krovetz, and Rogaway [HKR15].
Below is a comparison of our notion with these

Inspired by plaintext awareness the authors of [ABL+14] propose two security notions called PA1 and
PA2, which involve an extractor algorithm that essentially acts as a decryption simulator. Their first notion,
PA1, roughly corresponds to a notion of decryption simulatability where the simulator has unrestricted
access to the transcript. As we described in Section 4.1, such a formulation would not suffice to guarantee
chosen-ciphertext security and results in a weaker notion. Accordingly, the authors put forward PA2
where the extractor no longer has access to the transcript and the adversary is prohibited from querying
ciphertext to the extractor that it obtains from its encryption oracle. We note, however, that a our notions
and relations are not directly comparable to those in [ABL+14] since their work assumes a different syntax.
Apart from being nonce-based and requiring encryption to be deterministic, their syntax splits decryption
into separate decryption and verification algorithms. This choice of syntax has important consequences,
where for instance, their resulting IND-CCA notion is weaker than the traditional one, see [BPS15].

A decryption simulator also appears in the definition of Robust Authenticated Encryption (RAE)
from [HKR15]. RAE security requires that a (nonce-based) encryption scheme be indistinguishable from
an idealised scheme where encryption is a randomly-sampled injection, and decryption can be viewed
as answering its queries either by looking up the transcript or via a simulator. That is, the idealised
decryption oracle in RAE essentially behaves as our combination of a decryption simulator and wrapper
algorithm. Note that in RAE the decryption simulator appears in conjunction with an ideal encryption
oracle, whereas in DS it appears in conjunction with the real encryption algorithm. As such, RAE is
perhaps more akin to ES ∧ DS (discussed in Section 5.1). Indeed, RAE security could be viewed as a
special case of ES ∧ DS (translated to the nonce-based setting), where the encryption simulator is further
restricted to be a pseudorandom injection.
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5 Channel Simulatability
We can now go a step further and require that both encryption and decryption be simulatable.

5.1 Defining Channel Simulatability

A natural formulation is to require that there exist an encryption simulator SE and a decryption simulator
SD such that no adversary can distinguish between unrestricted oracle access to EK(·) and DK(·) or SE(|·|)
and V[SD](·). Such a notion turns out to be equivalent to ES∧DS, i.e. the requirement that a scheme satisfy
both simulatability notions ES and DS. This notion can be viewed as a stronger analogue of IND-CCA
security. Indeed, because decryption simulatability reduces IND-CCA security to IND-CPA security and
encryption simulatability implies IND-CPA, it follows that ES ∧ DS =⇒ IND-CCA. Similarly ES ∧ DS-I,
where decryption simulatability also ensures integrity, can be viewed as an analogue and a generalisation
of the combined authenticated encryption security notion from [RS06]. Clearly, all of the above also holds
for stateful security (ES ∧ SDS-I) and for schemes supporting ciphertext fragmentation (ES ∧ FDS-I).

We believe these notions are appealing for a number of reasons. On an intuitive level, these notions say
that an adversary’s computational abilities are not any better when it is given oracle access to the channel,
since it can be simulated. That is, the ability to choose the messages that get encrypted, replay, reorder and
fragment ciphertexts arbitrarily, and observe the output of the decryption algorithm (possibly augmented
with additional leakage such as error messages and the release of unverified plaintext) are of no help to
the adversary. Moreover, there are no prohibited or suppressed queries, as is the case with all CCA and
authenticated encryption type of definitions. Being single-game definitions, they are also easier to prove
than their two-game counterparts used in [BKN02, PW10, BDPS12, FGMP15, ADHP16]. Further backing
to the claim that these notions are easier to prove can be found in Section 7. Finally, as we will show
later on, any scheme that meets these notions realises a universally composable secure channel. Thus our
notions guarantee composability under extended security requirements, such as the presence of leakage
from invalid ciphertexts [BDPS14, ABL+14, HKR15, BPS15], protection against replay and reordering
[BKN02], and security in the presence of ciphertext fragmentation [PW10, BDPS12, FGMP15, ADHP16].

However the above formulation, requiring separate simulators, has some limitations. For instance the
schemes used in SSH, which include an encrypted length field as part of their ciphertext – see Section 7
or [PW10, ADHP16], cannot meet this notion. In particular, because a ciphertext may be delivered as
multiple fragments, the length field is used by the decryption algorithm to determine the total length of
the ciphertext and accordingly at which point to verify the MAC tag. As such the decryption simulator
needs to be able to predict, both for in-sync and out-of-sync ciphertexts, after how many bytes it should
return an output. Note that the contents of length field are known to the adversary and any inconsistency
between the real scheme and the simulated one would allow it to distinguish the two. At the same time,
the encryption simulator cannot leak this information anywhere in the ciphertext, except through its size,
as otherwise it would either not constitute a good simulator, or the encryption used to protect the length
field in the real scheme is insecure. Consequently, for the schemes used in SSH there can exist no pair of
simulators that satisfy the security definition outlined above.

In the case of SSH-CTR this issue can be overcome by allowing the simulators to share a random tape
that they can then use to one-time-pad the length field. In general, the more freedom we give the simulators
to share resources and communicate the easier it becomes to satisfy such a security notion. We therefore lift
all such restrictions by replacing the two simulators with a single simulator having separate interfaces for
encryption and decryption, S(e, ·) and S(d, ·). The resulting notion, which we call channel simulatability
(CS) is stated more formally in Defintion 5.1 and in Defintion 5.3. Note that ES ∧ DS =⇒ CS since two
separate simulators can easily be combined into one, but the converse is not true. While it is easy to see
that channel simulatability retains the appealing properties that we mentioned earlier, the SSH example
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we just described separates it from ES ∧ DS. We must therefore make sure that channel simulatability
still offers an adequate level of security. We assert this in Theorem 5.2 and Theorem 5.3, where we prove
that it guarantees chosen ciphertext security and integrity. The results are stated for schemes supporting
ciphertext fragmentation but analogous results hold in the atomic setting for plain and stateful security. In
Section 6 we show that channel simulatability implies UC-realising the secure channel ideal functionality.
By transitivity, it follows that ES ∧ DS also guarantees universal composability.

Definition 5.1 (Channel Simulatability) Let SE = (K, E ,D) be a symmetric encryption scheme. For
any adversary A and a channel simulator S we define the corresponding CS and SCS advantages as:

Advcs
SE(A,S) = Pr

[
AEK(·),DK(·) ⇒ 1

]
− Pr

[
AS(e,|·|),V[S](d,·) ⇒ 1

]
,

and,

Advscs
SE(A,S) = Pr

[
AEK(·),DK(·) ⇒ 1

]
− Pr

[
AS(e,|·|),W[S](d,·) ⇒ 1

]
,

where the probabilities are over K � K and the algorithms’ coin tosses. Alternatively, if SE is a symmetric
encryption scheme supporting ciphertext fragmentation, its corresponding FCS advantage is given by:

Advfcs
SE(A,S) = Pr

[
AEK(·),DK(·) ⇒ 1

]
− Pr

[
AS(e,|·|),Z[S](d,·) ⇒ 1

]
.

A scheme SE is said to be (ε,RS ,RA)-NN secure, for NN ∈ {CS, SCS,FCS}, if there exists a randomised
and possibly stateful simulator S such that every query of the form S(e, ·) or S(d, ·) requires at most RS
resources, and for any adversary A, requiring at most RA resources, its respective advantage Advnn

SE(A,S)
is bounded by ε.

Theorem 5.2 (FCS =⇒ IND-sfCFA) Let SE = (K, E ,D) be a symmetric encryption scheme supporting
ciphertext fragmentation. Then for any adversary A and any channel simulator S it holds that:

Advind-sfcfa
SE (A) ≤ 2 · Advfcs

SE(A,S) .

Proof. Observing that cfDec(·) is identical to Z[DK ](·), it follows that for any adversary A:

Advind-sfcfa
SE (A) = ∆

A

[
EK(·) ,Z[DK ](·)
EK(0|·|),Z[DK ](·)

]
.

By the triangle inequality, for any channel simulator S it follows that:

≤∆
A

[
EK(·) ,Z[DK ](·)
S(e, |·|),Z[S](d, ·)

]
+ ∆
A

[
S(e, |·|),Z[S](d, ·)
EK(0|·|),Z[DK ](·)

]
.

In the second term, since the wrapper is suppressing, we can replace every encryption query m with 0|m|,
reducing it to:

≤∆
A

[
EK(·) ,Z[DK ](·)
S(e, |·|),Z[S](d, ·)

]
+ ∆
A

[
S(e, |·|),Z[S](d, ·)
EK(·) ,Z[DK ](·)

]
.

Through a straightforward reduction that applies Z to the decryption oracle and observing that applying
Z after Z is equivalent to applying Z directly, we obtain:

≤∆
A

[
EK(·) ,Z[DK ](·)
S(e, |·|),Z[S](d, ·)

]
+ ∆
A

[
S(e, |·|),Z[S](d, ·)
EK(·) ,Z[DK ](·)

]
,

and the result follows

= Advfcs
SE(A,S) + Advfcs

SE(A,S).

�
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5.2 Channel Simulatability with Integrity

Just like decryption simulatability, channel simulatability can easily be extended to guarantee ciphertext
integrity by additionally requiring an easily verifiable property from the channel simulator. Informally,
we require that, by design, the simulator never return a valid output for a ciphertext that is not in the
transcript (CS-I) or once the queries become out of sync (SCS-I and FCS-I).

Definition 5.3 (Channel Simulatability with Integrity) Let SE = (K, E ,D) be an atomic symmet-
ric encryption scheme. Then SE is said to be (ε,RS ,RA)-CS-I or (ε,RS ,RA)-SCS-I secure, if it is respec-
tively (ε,RS ,RA)-CS or (ε,RS ,RA)-SCS secure, and, in addition, the corresponding channel simulator S
is such that V[S](d, ·) ,or respectively W[S](d, ·), never (with probability zero) outputs a pair (v,m′) where
v = >.

Similarly, if SE is a symmetric encryption scheme supporting ciphertext fragmentation it is said to be
(ε,RS ,RA)-FCS-I secure if it is (ε,RS ,RA)-FCS secure and its corresponding simulator S is such that
Z[S](d, ·) never (with probability zero) returns an output (v1,m

′
1), . . . , (v`,m′`) where vi = > for some

1 ≤ i ≤ `.

The theorem below states that channel simulatability with integrity implies the respective notion of
ciphertext integrity. The theorem is stated for the case of ciphertext fragmentation, but analogous results
hold for the atomic schemes. Its proof is similar to that of Theorem 4.5 with some minor adaptations, but
for completeness we include it in Appendix A.

Theorem 5.4 (FCS-I =⇒ INT-sfCFRG) Let SE = (K, E ,D) be a symmetric encryption scheme support-
ing ciphertext fragmentation and let S be a channel simulator such that it is (ε,RS ,RA)-FCS-I secure.
Then SE is (ε,RA)-INT-sfCFRG secure.

6 Simulatable Channels and Universal Composability
In this section we show that any scheme satisfying channel simulatability with integrity realises a universally
composable channel.

6.1 UC Framework

The universal composition framework [Can01] is a simulation-based security notion for a protocol π imple-
menting some ideal functionality F . The approach requires that for any adversary AUC attacking a real
protocol π between parties P1, P2, . . . there exists an ideal-model adversary SUC (or, simulator) interacting
in a world where all parties are connected to the ideal functionality F . The only task of the parties in this
ideal world is to forward their inputs to F and output the responses of F . The communication with the
ideal functionality is not visible to other parties and cannot be tampered with.

We give here only an informal introduction to the model and refer to [Can01] for the details. The
UC model is different from other simulation-based notions in that it uses an interactive distinguisher to
decide in which of the two worlds the execution takes place. This interactive distinguisher is called the
environment EUC, since it represents other potentially ongoing protocols and thereby ensures composability.
The environment determines the input of the parties, learns their outputs, and can interact with the (real
or ideal) adversary. To distinguish inputs for different sessions, the UC model assumes that globally unique
and publicly known session identifiers sid are assigned to each protocol execution.

Let REALAUC,EUC,π(n) be the random variable denoting the environment’s output in a real-world ex-
ecution, where AUC interacts with the protocol π for security parameter n, and IDEALSUC,EUC,F (n) be
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the corresponding random variable when interacting with SUC in the ideal world. We say that a pro-
tocol π securely realises F if for any probabilistic polynomial time (PPT) adversary AUC there exists a
PPT simulator SUC such that for any PPT environment EUC the random variables REALAUC,EUC,π and
IDEALSUC,EUC,F are computationally indistinguishable. For concrete security one would measure the differ-
ence in the output distributions exactly. By viewing a potential distinguisher of the environment’s output
as part of the environment itself, we can equivalently assume that the environment only outputs a bit to
indicate which world it is in.

In principle, the adversary may decide to corrupt parties, either at the outset of the execution (static
corruptions) or while the execution is running (adaptive corruptions). This choice affects even the design of
the ideal functionality. However, for channels based on symmetric keys, corrupting one of the participating
parties discloses the secret key and the channel can no longer provide any security guarantees. Hence, we
assume that the adversary neither corrupts the sender nor the receiver in our scenario.

Some technicalities of the UC framework are relevant to our setting. The first is that it suffices to
consider so-called dummy adversaries ÃUC in the real world. These are adversaries which are under full
control of the environment and are only supposed to follow the EUC’s orders, like injecting messages into
the network communication. In other words, the core of the attack resides in the environment EUC and
the adversary only acts as in interface. Remarkably, if a protocol securely realises a functionality with
respect to dummy adversaries, then it also does in general.

The second noteworthy property is delayed outputs in the ideal functionality [Can00]. In the real-world
the adversary has full control over the network and may decide when to deliver, say, channel messages.
To capture this ability in the ideal model for communication between the ideal functionality and the
parties one usually deploys delayed-output instructions, informing the adversary about a message waiting
to be delivered to some party. These allow the adversary to decide at which point in time a message
eventually gets delivered, by providing a corresponding command to the functionality. However, delayed-
output instructions, as defined in [Can00], do not make any stipulation about preserving the order in which
messages are delivered. Since this is a crucial characteristic of a secure channel, we enforce such behaviour
by associating delayed-output instructions to a queueing mechanism in the ideal functionality.

6.2 Secure Channel Functionality

A secure channel functionality has been given in [CK02]. It consists of a stage in which the channel between
two parties Pi and Pj is established. Once this is done, party Pi can securely transmit messages m to
the other party. This is performed by sending m to the secure channel functionality. The functionality
then informs the adversary about a transmission, but keeps the actual message m secret. Only the length
|m| of the message is revealed to the adversary. The adversary can then decide when to deliver the next
message to the receiving party Pj .

We adapt this secure channel functionality to the unidirectional setting, i.e., only party Pi sends
messages, and it is a single-instance functionality, i.e., it only allows to establish a single channel. The UC
composition theorem allows to extend this simple form of a channel to more complex constructions. The
resulting secure channel functionality is described in Figure 4.

6.3 Simulatable Channels with Integrity are Universally Composable

Here we show that simulatable channels (with integrity) are also universally composable. The necessity of
the integrity property stems from the definition of the ideal channel functionality: The UC adversary can
only demand to deliver messages which have been actually inserted into the channel; it cannot make the
receiving party output further messages. In contrast, simulatable channels without integrity in principle
allow the simulator to output other messages as well. Put differently, the secure channel functionality
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Functionality FSC

1. Upon receiving a command (EstCh, sid, Pi, Pj) from Pi send (EstCh, sid, Pi, Pj) to the adversary and
(delayed) to Pj . Store (EstCh, sid, Pi, Pj) and ignore all further establishment requests. Create an
empty queue Q for (EstCh, sid, Pi, Pj)

2. Upon receiving a command (Send, sid,m) from Pi check if there is a stored entry (EstCh, sid, Pi, Pj).
If not, ignore the message. Else send (Sent, sid, |m|) to the adversary and enqueue Q.enq(m) in the
queue.

3. Upon receiving a command (Deliver, sid) from the adversary, check if Q is empty; if so, ignore the
message. Else dequeue the next message m← Q.deq() and send (Sent, sid,m) to Pj .

Figure 4: Ideal functionality for a secure channel (with static corruptions).

stipulates integrity by construction.
We are, of course, faced with the problem that the two parties need to share a key in the symmetric

setting, without having a way to communicate securely yet. Previous solutions [CK01] assumed that the
keys are established by running a suitable key exchange protocol first. To abstract out this step, we design
our protocol πSC in the hybrid setting where an ideal functionality FKE establishes a shared key between
the two parties. That is, πSC may call the ideal functionality FKE as part of the protocol steps. We
parameterise this functionality by a key generation algorithm K to describe the underlying distribution
over keys. The concrete implementation of the key establishment protocol is a matter of choice, but the
UC framework says that any protocol realising FKE securely, can then be composed with our protocol πSC
to yield a secure, fully implemented protocol for FSC. We assume that the session identifier sid ′ of the
sub procedure has a one-to-one correspondence with the session identifier sid of the calling protocol, e.g.,
are given by sid‖0 and sid‖1.

Functionality FKKE

1. Upon receiving a command (EstKey, sid ′, Pi, Pj) from Pi, check that there is no entry for sid ′
yet. If so, pick a random key K ← K and send (EstKey, sid ′, Pi, Pj) to the adversary and the
(delayed-output) messages (EstKey, sid ′, Pi, Pj ,K) to Pi and Pj .

Figure 5: Ideal functionality for key establishment (with static corruptions).

Construction 6.1 Let SE = (K, E ,D) be an encryption scheme. Define the protocol πSC in the FKKE-
hybrid model follows:

• On input (EstCh, sid, Pi, Pj) to Pi make a call (EstKey, sid ′, Pi, Pj) to FKKE.

• On input (EstKey, sid ′, Pi, Pj ,K) from FKKE to Pi or Pj store (sid, Pi, Pj ,K).

• On input (Send, sid,m) to Pi check for an entry (sid, Pi, Pj ,K). If found, compute c ← E(K,m),
and possibly update the state, and send (sid, c) to Pj.

• On input (sid, f) check for an entry (sid, Pi, Pj ,K). If found, compute the sequence (v1,m1), . . . , (v`,m`)←
D(K, f), possibly updating the state, and for each vi = > output (Sent, sid,mi) (in this order).

We state our theorem with respect to the stateful fragmentation notion FCS-I. The result also transfers
straightforwardly to the stateless and stateful atomic cases CS-I and SCS-I.
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Theorem 6.2 If SE = (K, E ,D) supports fragmentation and is channel simulatable with integrity (FCS-I)
then the protocol πSC securely realises FSC in the FKKE-hybrid model.

The idea is to turn the channel simulator S, embedded into a wrapper Z, into a UC simulator SUC,
interacting with the channel functionality FSC instead. The reduction then shows that any UC environment
EUC (in combination with a fixed but sufficiently general UC dummy adversary ÃUC) against this UC
simulator can be transformed into a channel simulatability adversary A. Note that the order of quantifiers
is important here: the UC simulator SUC works for any environment EUC just as the channel simulator
S works for any channel adversary A. Integrity of the channel ensures that the simulation of the UC
simulator SUC is sound. The proof is in Appendix B.

Unfortunately, we cannot show that universal composability implies channel simulatability (with or
without integrity). The reason is that ciphertexts may carry redundancy, e.g., an extra bit appended to
the ciphertext c‖0, which still allows a UC simulator to detect an altered but valid ciphertext, say, c‖1,
and to ask the ideal functionality to forward the next message in the queue. Our channel simulator, on the
other hand, does not know the message encapsulated in c‖0 and the wrapper would not reveal it either.

6.4 Other Work on Composable Secure Channels

In [KT09], Küsters and Tuengerthal consider two ideal functionalities, one for encryption and one for au-
thenticated encryption and present matching protocols which realise these functionalities iff the underlying
symmetric encryption schemes respectively satisfy IND-CCA and IND-CPA∧ INT-CTXT. These results are
limited to atomic and single-error encryption schemes. More importantly, however, the ideal functionalities
considered therein are significantly different from that in [CK02] (and consequently also to ours): They
consider the stronger notion of adaptive corruptions and thus have to deal with the committing property
of encryption schemes. At the same time, their composition, in an intermediate step, uses an encryption
scheme with full key reveals, such that the problem of key cycles —the environment asking for circular
encryptions of a key under that key— must be taken care of. In contrast, [CK02] and we here work with
the common notion of secret keys.

An alternative formulation of secure channels can be found in [MT10, MRT12], in the language of
Maurer’s Constructive Cryptography framework. We believe that an analogue of Theorem 6.2 should also
hold for the Constuctive Cryptography framework. That is, any scheme that is channel simulatable with
integrity (CS-I/SCS-I/FCS-I) can be used to convert an insecure channel into a secure channel.

7 Dropbear’s SSH-CTR Implementation is FCS-I Secure
Dropbear is an SSH distribution intended specifically for resource-constrained devices such as embedded
systems. In a measurement study performed in early 2016 [ADHP16] it was found to be the most widely
deployed SSH implementation on the Internet. Owing to its minimalist design it only implements a handful
of ciphersuites. Following the attack from [APW09] which affected CBC encryption, it added support for
counter mode encryption and set this as the default. The study from [ADHP16] identified counter-mode
encryption as the preferred choice for more than 90% of the Dropbear servers.

The SSH-CTR scheme described in Figure 6 is an accurate representation of SSH’s symmetric encryp-
tion using counter mode that we extracted from Dropbear’s open source code. Throughout it is assumed
that compression is disabled. At various points during decryption a ciphertext may be deemed to be
invalid resulting in the connection being torn down. We model this by setting a closed flag at which point
all subsequent calls to the decryption algorithm will return an error of the form (⊥,CONN_CLOSED).
Dropbear does not return specific error messages prior to closing a connection, however we adopt a conser-
vative approach and return distinct error messages for every decryption failure that results in a connection
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tear-down. This only serves to strengthen our security result, since security will hold even if an adversary
can distinguish these events through timing information or some other means.

We next show that SSH-CTR is FCS-I secure. To prove this, we need to transform the scheme, through
a sequence of game hops, into a pair of algorithms such that a) both algorithm do not make use of the key,
b) encryption does not make use of the message contents, and c) decryption only returns error messages
for out-of-sync ciphertexts. This is easier than it sounds, in particular by the point where we switch from
a block cipher and MAC to their idealised forms (i.e. random functions) we have already eliminated the
key. We then only need a couple of simple probabilistic arguments to reach our goal. The advantage of
channel simulatability is that we can focus on specific portions of the code without having to worry about
its functionality as a whole. For example, we do not have to worry about the parts of the code which
handle the reconstruction of ciphertexts and validating of the length field. Indeed if the scheme made
use of a nonce-based AEAD scheme, such as GCM, we would only need one game hop to prove channel
simulatability.

Below is a formal statement of the security theorem. Its proof can be found in Appendix C.

Theorem 7.1 (SSH-CTR is FCS-I secure) Let SSH-CTR be the encryption scheme supporting ciphertext
fragmentation, composed of a blockcipher BC and a MAC algorithm MAC, described in Figure 6. Then there
exists a simulator S such that for any FCS-I adversary Afcs attempting to distinguish S from SSH-CTR,
running in time t, making at most qe encryption queries totalling µe bits, and at most qd decryption queries
totalling µd bits, it holds that:

Advfcs
SSH-CTR(Afcs) ≤ Advprp

BC(t′, qf ) +
q2
f

2blocksize+1 + Advprf
MAC(t′, qm) + 2−macsize ,

where qf = dµe+40qe

blocksizee+ qe + dµd+40qd
blocksize e+ qd, qm = qe + qd, and t′ ≈ t.

Furthermore, S is such that Z[S](d, ·) never returns an output (v1,m
′
1), . . . , (v`,m′`) where vi = > for some

1 ≤ i ≤ `.

References
[ABL+14] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha, and Kan Ya-

suda. How to securely release unverified plaintext in authenticated encryption. In Palash
Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASIACRYPT 2014, Part I, vol-
ume 8873 of Lecture Notes in Computer Science, pages 105–125, Kaoshiung, Taiwan, R.O.C.,
December 7–11, 2014. Springer, Heidelberg, Germany. (Cited on pages 2, 3, 17, and 18.)

[ADHP16] Martin R. Albrecht, Jean Paul Degabriele, Torben Brandt Hansen, and Kenneth G. Paterson. A
surfeit of SSH cipher suites. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi, editors, ACM CCS 16: 23rd Conference on Computer
and Communications Security, pages 1480–1491, Vienna, Austria, October 24–28, 2016. ACM
Press. (Cited on pages 2, 3, 4, 5, 6, 7, 18, and 24.)

[AP13] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking the TLS and DTLS
record protocols. In 2013 IEEE Symposium on Security and Privacy, pages 526–540, Berkeley,
CA, USA, May 19–22, 2013. IEEE Computer Society Press. (Cited on page 3.)

[APW09] Martin R. Albrecht, Kenneth G. Paterson, and Gaven J. Watson. Plaintext recovery attacks
against SSH. In 2009 IEEE Symposium on Security and Privacy, pages 16–26, Oakland, CA,
USA, May 17–20, 2009. IEEE Computer Society Press. (Cited on pages 3 and 24.)

24



alg. SSH-CTR-EK(m)

1 : parse K as (Ke,Km, IV )
2 : if e-seqnr = 0
3 : e-ctr← IV // initialise on first call

4 : mlen← |m|B
5 : // calculate padding length

6 : padlen← blocksize− (5 + mlen)%blocksize
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alg. SSH-CTR-DK(f)

1 : parse K as (Ke,Km, IV )
2 : if d-seqnr = 0 ∧ α = ε

3 : d-ctr← IV // initialise on first call

4 : if closed
5 : out← (⊥,CONN_CLOSED); break
6 : α← α ‖ f ; out← ε // update buffer and reset output

7 : while (true) // process buffer (α)

8 : if |α|B < blocksize
9 : break // first ciphertext block is incomplete

10 : // decrypt first ciphertext block

11 : ptxt′ ← α[1, blocksize]⊕ BC(Ke, d-ctr)
12 : d-ctr← d-ctr + 1
13 : clen← 〈ptxt′[1, 32]〉−1 + 4 + macsize
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Figure 6: The SSH-CTR scheme as implemented in Dropbear.
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A Proof of Theorem 5.4
Noting that cfDec(·) is identical to Z[DK ](·), we then have that for any channel simulator S and any
adversary A with at most RA resources:

∆
A

[
EK(·) , cfDec(·)
S(e, ·),Z[S](d, ·)

]
= ∆
A

[
EK(·) ,Z[DK ](·)
S(e, ·),Z[S](d, ·)

]
.

Then, by a straightforward reduction that applies Z to the decryption oracle and observing that Z[Z[S]](d, ·)
is identical to Z[S](d, ·), it follows that:

≤∆
A

[
EK(·) ,DK(·)
S(e, ·),Z[S](·)

]
,

= Advfcs
SE(A,S).

From the above relation it then follows that:

Advint-sfcfrg
SE (A) = Pr

[
K � K, AEK(·),cfDec(·) : FORGE

]
,

≤ Pr
[
AS(e,·),Z[S](d,·) : FORGE

]
+ Advfcs

SE(A,S).
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Now since SE is (ε,RS ,RA)-FCS-I secure, there exists a simulator such that the first term is zero and the
second term is bounded by ε, thus:

≤ ε.

�

B Simulatable Channels with Integrity are Universally Composable

B.1 Technical Details

Before proving UC security of channel simulatable protocols with integrity we fill in a few more details.
In principle, the adversary may decide to corrupt parties, either at the outset of the execution (static

corruptions) or while the execution is running (adaptive corruptions). This choice affects even the design of
the ideal functionality. However, for channels based on symmetric keys, corrupting one of the participating
parties discloses the secret key and the channel can no longer provide any security guarantees. Hence, we
assume that the adversary neither corrupts the sender nor the receiver in our scenario.

Some technicalities of the UC framework are relevant to our setting. The first is that it suffices to
consider so-called dummy adversaries ÃUC in the real world. These are adversaries which are under full
control of the environment and are only supposed to follow the EUC’s orders, like injecting messages into
the network communication. In other words, the core of the attack resides in the environment EUC and
the adversary only acts as in interface. Remarkably, if a protocol securely realises a functionality with
respect to dummy adversaries, then it also does in general.

The second noteworthy property is delayed outputs in the ideal functionality [Can00]. In the real-world
the adversary has full control over the network and may decide when to deliver, say, channel messages.
To capture this ability in the ideal model for communication between the ideal functionality and the
parties one usually deploys delayed-output instructions, informing the adversary about a message waiting
to be delivered to some party. These allow the adversary to decide at which point in time a message
eventually gets delivered, by providing a corresponding command to the functionality. However, delayed-
output instructions, as defined in [Can00], do not make any stipulation about preserving the order in which
messages are delivered. Since this is a crucial characteristic of a secure channel, we enforce such behaviour
by associating delayed-output instructions to a queueing mechanism in the ideal functionality.

B.2 Proof of Theorem 6.2

Proof. The UC simulator is essentially given by the simulator for channel simulatability. More precisely,
simulator SUC runs an internal copy of the dummy real-world adversary ÃUC with which it relays the
communication with the environment, e.g., if the environment asks the adversary to report the network
communication. Our simulator will also run an internal copy of the encryption simulator S, also main-
taining its state, and for each session a pruned transcript Tc which only stores ciphertexts (instead of
message-ciphertext pairs). It initialises the variable sync to true and sequences F and C to empty. The
simulator SUC operates as follows.

• If the adversary ÃUC, at the beginning, decides to corrupt either party (different from the sender
and receiver) then SUC corrupts the same party.

• If the simulator is informed of a message (EstCh, sid, Pi, Pj) by the functionality FSC it internally
stores (sid, Pi, Pj).
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• If the simulator is informed of a message (Sent, sid, `) by the functionality, then it calls the encryption
simulator S(e, `) to create a ciphertext c (where the simulator S possibly updates its state). The UC
simulator SUC appends c to Tc and returns (sid, c) to its internal copy of ÃUC.

• If the adversary sends a ciphertext fragment (sid, f ′) to a party Pj in the emulation, and SUC has
indeed stored (sid, Pi, Pj), then the simulator SUC emulates the steps of ZS(f ′) (without knowing
the enqueued messages in Tc, though). That is, it first calls (v1,m

′
1), . . . , (v`,m′`) ← S(d, f ′) to

update the internal state of the simulator, and updates F ← F ‖ f ′. If sync is false then it ignores
this message. If Tc is empty then it sets sync ← false and ignores the messages. Otherwise it
repeatedly computes c ← Tc.next(), updates C ← C ‖ c. As long as C is still a prefix of F then it
will permit delivery of the waiting message (Sent, sid,m) to Pj by forwarding (Deliver, sid) to the
ideal functionality (where the simulator SUC does not get to see m). If it reaches an out-of-sync
ciphertext it sets sync to false and from then on ignores all incoming messages (sid, f ′) to Pj .

An attack by an adversary ÃUC, instructed by the environment EUC, can be turned into an adversary
A against channel simulatability under fragmentation (with integrity). That is, given an environment EUC
(and the dummy adversary ÃUC) we can construct adversary A as follows.
• If EUC never establishes a channel and all messages are ignored, then the adversary can trivially

emulate the attack by doing nothing.

• For established channels, for any input (Send, sid,m) of EUC to party Pi, adversary A calls its
encryption oracle interface (E(K, ·) or S(e, | · |)) about m to get c and returns (sid, c) to EUC. It also
stores (m, c) in a list T.

• For any network message (sid, f ′) for established channels, sent upon request of EUC to Pj , adversary
A calls its decryption oracle interface (D(K, ·) or S(d, ·)) about f ′ and returns (Sent, sid,mi), in this
order, for any replies (v1,m1), . . . , (v`,m`) with vi = >.

• Finally, A returns the environment’s output bit.
Assume that the environment EUC can successfully tell apart the real world setting from the ideal world
scenario. We claim that, by the construction above, this translates into a successful adversary A against
channel simulatability. First note that, if A interacts with the encryption and decryption interfaces E(K, ·)
and D(K, ·) for a randomly chosen key K ← K, then A perfectly emulates an attack of EUC against the real
protocol πSC (in the FKE-hybrid model). The reason is that the key in πSC then has the same distribution
as the sending and receiving interfaces. It follows that A’s oracles, together with the recovery strategy,
perfectly emulate the real-world protocol πSC.

If, on the other hand, adversary A interacts with the simulated channel interfaces S(e, | · |) and S(d, ·),
then this corresponds to the environment EUC communicating with the ideal world and the simulator SUC.
There are two differences, though. First, in the simulation through SUC we use the storage system of the
ideal functionality to deliver the next message mi, whereas Z[S] in A’s calls uses its internal message-
ciphertext list to restore the message. But this is only a syntactic difference. The other divergence lies in
the way how out-of-order ciphertexts c′ in f ′ are treated: The UC simulator SUC will ignore such ciphertexts
right away; the adversary A would first receive a reply (v,m′) from its simulator’s decryption interface.
But by the channel integrity this can only result in v = ⊥ such that the adversary A, too, ignores this
ciphertext. It follows that the derived channel adversary A from the environment EUC perfectly emulates
the ideal-world attack when having access to the channel simulator S.

Note that the channel simulator S works for any adversary A. Hence, our UC simulalator SUC, which is
fully determined by the scheme, the simulator S and the dummy adversary ÃUC, works for any environment
EUC. This means that the protocol πSC securely realises the functionality FSC in the FKE-hybrid model.
�
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C Proof of Theorem 7.1
We prove the theorem through a sequence of games, where we gradually morph the encryption and decryp-
tion algorithms into the desired simulator. Throughout all games, the decryption algorithm is augmented
with the wrapper Z described in Figure 3. Let Afcs denote the FCS-I adversary and assume that its runtime
is bounded by t, it makes at most qe encryption queries totalling µe bits, and at most qd decryption queries
totalling µd bits.

G0 In this game the adversary is given oracle access to SSH-CTR-EK(·) and Z[SSH-CTR-DK ](·). The
descriptions of SSH-CTR-EK(·) and SSH-CTR-DK(·) can be found in Figure 6.

G1 We now replace BC and MAC with matching random functions RE and RM. Then for any adversary
Afcs we have that:

Pr
[
AG1

fcs ⇒ 1
]
− Pr

[
AG0

fcs ⇒ 1
]
≤ Advprf

BC(t′, qf ) + Advprf
MAC(t′, qm),

where qf = dµe+40qe

blocksizee + qe + dµd+40qd
blocksize e + qd, qm = qe + qd, and t′ ≈ t. By further applying the

PRP/PRF switching lemma we then obtain:

Pr
[
AG1

fcs ⇒ 1
]
− Pr

[
AG0

fcs ⇒ 1
]
≤ Advprp

BC(t′, qf ) +
q2
f

2blocksize+1 + Advprf
MAC(t′, qm), (1)

In addition we dispose of the keys (as they are no longer needed) and set the global variable IV
to a random value upon the adversary’s first query. Note that this modification does not affect the
behaviour of any of the two oracles and hence the above inequality remains valid.

G2 In this game we introduce a list C that will be shared by the encryption and decryption oracles. Now
we modify the encryption oracle so that before outputting a ciphertext it will append it to this list.
At the decryption side, we replace line 26 in Figure 6 with:

ĉ← α[1, clen−macsize]B
ptxt′ ← ptxt′ ‖ (z ⊕ ĉ[blocksize + 1, ∗])

and the if condition at line 29 with:

if ĉ ‖ τ ′ 6= C.next()

The change at line 26 simply introduces the variable ĉ without affecting the functionality. The change
at line 29 will now cause the decryption oracle to return (⊥, INVALID_MAC) and set the closed flag
as soon as it detects that the reconstructed ciphertext has been modified by the adversary. On the
other hand as long as the adversary remains passive, simply forwarding and fragmenting ciphertexts
without altering them, the decryption oracle’s behaviour is the same as in the previous game. Thus
the two games are equivalent until the following condition (bad event) occurs:

ĉ ‖ τ ′ 6= C.next() ∧ τ ′ = RM(〈d-seqnr〉32 ‖ ptxt′).

Now, to calculate the probability of this event there are two cases to consider:
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a. The ĉ part has been modified. This implies that ptxt′ is different and consequently that RM()
is called on a fresh input. Then τ ′ is independent of RM(〈d-seqnr〉32 ‖ ptxt′) and the probability
of the two values being equal is 2−macsize.

b. The ĉ part is unchanged but τ ′ has been modified. Since the ĉ is unchanged then also ptxt′ is
unchanged, and it follows that the probability that τ ′ = RM(〈d-seqnr〉32 ‖ ptxt′) is zero.

Thus we have that:
Pr
[
AG2

fcs ⇒ 1
]
− Pr

[
AG1

fcs ⇒ 1
]
≤ 2−macsize. (2)

At this point the encryption and decryption algorithms look as described in Figure 7.

G3 In this game we make two changes which leave the overall behaviour of the game unchanged. The
first alteration is to defer plaintext recovery during decryption to the point right before padding-
length validation, which is where it is first needed. This is possible because decryption no longer
needs to compute a MAC over the plaintext. More precisely, we move lines 21 to 25 and line 27 in
Figure 7, without changing their order, to the point just preceding line 33 in that same figure.
As for the second modification, we introduce an additional random function R′E, whose output is 32
bits long, which will be used solely for the purpose of encrypting and decrypting the length field.
Specifically, during encryption the counter value that is input to RE for processing the first plaintext
block is also fed to R′E, and the first 32 bits of the output from RE are replaced with the output
from R′E. This is handled with the addition of lines 17 and 21 in Figure 8. As for decryption, we
change line 11 of Figure 7 to only decrypt the length field instead of the whole first block, using R′E,
and without incrementing the counter d-ctr. The decryption of the remaining part of the first block
is now handled when decrypting the remaining blocks in the highlighted code starting at line 26 of
Figure 8. From the above it follows that:

Pr
[
AG3

fcs ⇒ 1
]

= Pr
[
AG2

fcs ⇒ 1
]
, (3)

G4 We now make our final alteration which yields the desired simulator, described in Figure 8. We
change the encryption oracle to take as input only the length of the message len and internally set
m to 0len (line 4). This change is possible because now the output of the decryption algorithm in
combination with the wrapper is independent of RE. To see this, note that while the adversary is
passive, and hence the condition on line 23 of Figure 8 always evaluates to false, the output of the
decryption algorithm is overwritten by Z, which is clearly independent of RE. On the other hand as
soon as the adversary becomes active, the closed flag is set and lines 26 to 39 (which is where RE is
used) are never executed. Accordingly, the distribution of the ciphertexts returned by the encryption
oracle is unchanged from the adversary’s point of view. Hence:

Pr
[
AG4

fcs ⇒ 1
]

= Pr
[
AG3

fcs ⇒ 1
]
, (4)

The algorithms described in G4 (Figure 8) now satisfy the required structure for the simulator. Combining
(1), (2), (3), and, (4), yields the bound in Theorem 7.1. Furthermore, from lines 23-25 and 4-5 of the
decryption simulator it follows that Z[S](d, ·) never returns an output other than (⊥, INVALID_MAC), and
therefore the integrity condition is also satisfied. �
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alg. SSH-CTR-E(m)

1 : if IV = ε then IV � {0, 1}blocksize

2 : if e-seqnr = 0
3 : e-ctr← IV // initialise on first call

4 : mlen← |m|B
5 : // calculate padding length

6 : padlen← blocksize− (5 + mlen)%blocksize
7 : if padlen < 4
8 : padlen← padlen + blocksize
9 : // encode the message

10 : pad � {0, 1}padlen·8

11 : len← 1 + mlen + padlen
12 : ptxt← 〈len〉32 ‖ 〈padlen〉8 ‖ m ‖ pad
13 : // encrypt and mac

14 : τ ← RM(〈e-seqnr〉32 ‖ ptxt)
15 : z ← ε

16 : while |z| < |ptxt|
17 : z ← z ‖ RE(e-ctr)
18 : e-ctr← e-ctr + 1
19 : c← (ptxt⊕ z) ‖ τ
20 : e-seqnr← e-seqnr + 1
21 : C.append(c)
22 : return c

alg. SSH-CTR-D(f)

1 : if IV = ε then IV � {0, 1}blocksize

2 : if d-seqnr = 0 ∧ α = ε

3 : d-ctr← IV // initialise on first call

4 : if closed
5 : out← (⊥,CONN_CLOSED); break
6 : α← α ‖ f ; out← ε // update buffer and reset output

7 : while (true) // process buffer (α)

8 : if |α|B < blocksize
9 : break // first ciphertext block is incomplete

10 : // decrypt first ciphertext block

11 : ptxt′ ← α[1, blocksize]⊕ RE(d-ctr)
12 : d-ctr← d-ctr + 1
13 : clen← 〈ptxt′[1, 32]〉−1 + 4 + macsize
14 : inRange← (16 + macsize ≤ clen ≤ 35000)
15 : isMult← ((clen−macsize)%blocksize 6= 0)
16 : if ¬ inRange ∨ isMult // validate length

17 : out← out ‖ (⊥, INVALID_LENGTH)
18 : closed← true; break
19 : if |α|B < clen
20 : break // wait to complete ciphertext

21 : z ← ε // decrypt and verify mac

22 : while |z| < (clen− blocksize−macsize)
23 : z ← z ‖ RE(d-ctr)
24 : d-ctr← d-ctr + 1
25 : z ← z[1, clen− blocksize−macsize] // trim

26 : ĉ← α[1, clen−macsize]B
27 : ptxt′ ← ptxt′ ‖ (z ⊕ ĉ[blocksize + 1, ∗])
28 : τ ′ ← α[clen−macsize + 1, clen]B
29 : α← α[clen + 1, ∗]B // remove decrypted ciphertext

30 : if ĉ ‖ τ ′ 6= C.next()
31 : out← out ‖ (⊥, INVALID_MAC)
32 : closed← true; break
33 : padlen← 〈ptxt′[5, 5]B〉−1 // validate padding length

34 : mlen′ ← clen− padlen− 4− 1−macsize
35 : if (mlen′ > 32789) ∨ (mlen′ < 1)
36 : out← out ‖ (⊥, INVALID_PAD_LENGTH)
37 : closed← true; break
38 : m′ ← ptxt′[6, clen−macsize− padlen]B
39 : out← out ‖ (>,m′)
40 : d-seqnr← d-seqnr + 1
41 : return out

Figure 7: The encryption and decryption algorithms used in G2. The highlighted code indicates the changes with respect to
G0.
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alg. S(e, len)

1 : if IV = ε then IV � {0, 1}blocksize

2 : if e-seqnr = 0
3 : e-ctr← IV // initialise on first call

4 : m← 0len

5 : mlen← |m|B
6 : // calculate padding length

7 : padlen← blocksize− (5 + mlen)%blocksize
8 : if padlen < 4
9 : padlen← padlen + blocksize
10 : // encode the message

11 : pad � {0, 1}padlen·8

12 : len← 1 + mlen + padlen
13 : ptxt← 〈len〉32 ‖ 〈padlen〉8 ‖ m ‖ pad
14 : // encrypt and mac

15 : τ ← RM(〈e-seqnr〉32 ‖ ptxt)
16 : z ← ε

17 : z′ ← R′E(e-ctr)
18 : while |z| < |ptxt|
19 : z ← z ‖ RE(e-ctr)
20 : e-ctr← e-ctr + 1
21 : z[1, 32]← z′

22 : c← (ptxt⊕ z) ‖ τ
23 : e-seqnr← e-seqnr + 1
24 : C.append(c)
25 : return c

alg. S(d, f)

1 : if IV = ε then IV � {0, 1}blocksize

2 : if d-seqnr = 0 ∧ α = ε

3 : d-ctr← IV // initialise on first call

4 : if closed
5 : out← (⊥,CONN_CLOSED); break
6 : α← α ‖ f ; out← ε // update buffer and reset output

7 : while (true) // process buffer (α)

8 : if |α|B < blocksize
9 : break // first ciphertext block is incomplete

10 : // decrypt first ciphertext block

11 : ptxt′ ← α[1, 32]⊕ R′E(d-ctr)
12 : clen← 〈ptxt′[1, 32]〉−1 + 4 + macsize
13 : inRange← (16 + macsize ≤ clen ≤ 35000)
14 : isMult← ((clen−macsize)%blocksize 6= 0)
15 : if ¬ inRange ∨ isMult // validate length

16 : out← out ‖ (⊥, INVALID_LENGTH)
17 : closed← true; break
18 : if |α|B < clen
19 : break // wait to complete ciphertext

20 : ĉ← α[1, clen−macsize]B
21 : τ ′ ← α[clen−macsize + 1, clen]B
22 : α← α[clen + 1, ∗]B // remove extracted ciphertext

23 : if ĉ ‖ τ ′ 6= C.next()
24 : out← out ‖ (⊥, INVALID_MAC)
25 : closed← true; break
26 : z ← ε // recover plaintext

27 : while |z| < (clen−macsize)
28 : z ← z ‖ RE(d-ctr)
29 : d-ctr← d-ctr + 1
30 : z ← z[33, clen−macsize] // trim

31 : ptxt′ ← ptxt′ ‖ z ⊕ ĉ[33, ∗]
32 : padlen← 〈ptxt′[5, 5]B〉−1 // validate padding length

33 : mlen′ ← clen− padlen− 4− 1−macsize
34 : if (mlen′ > 32789) ∨ (mlen′ < 1)
35 : out← out ‖ (⊥, INVALID_PAD_LENGTH)
36 : closed← true; break
37 : m′ ← ptxt′[6, clen−macsize− padlen]B
38 : out← out ‖ (>,m′)
39 : d-seqnr← d-seqnr + 1
40 : return out

Figure 8: The Simulator S used to prove Theorem 7.1.
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