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Abstract

We present CLARC (Cryptographic Library for Anonymous Reputation and Credentials),
an anonymous credentials system (ACS) combined with an anonymous reputation system.
Using CLARC, users can receive attribute-based credentials from issuers. They can efficiently
prove that their credentials satisfy complex (access) policies in a privacy-preserving way. This
implements anonymous access control with complex policies. Furthermore, CLARC is the first
ACS that is combined with an anonymous reputation system where users can anonymously
rate services. A user who gets access to a service via a credential, also anonymously receives
a review token to rate the service. If a user creates more than a single rating, this can be
detected by anyone, preventing users from spamming ratings to sway public opinion.

To evaluate feasibility of our construction, we present an open-source prototype implemen-
tation.
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1 Introduction
Usually, authentication is done via identification, i. e. a user supplies his identity and proves
possession of some secret in order to gain access to some service or resource. Because user
identities are readily available to service providers, providers can exchange collected data about
any particular user among themselves.

Anonymous credential systems To mitigate such privacy breaches and to give the user
more control over her data, one can employ anonymous credential systems (ACS). In an ACS, a
user acts under an arbitrary number of unlinkable pseudonyms rather than under his identity.
Any two services know a user under different pseudonyms, making it hard to link user data
between the two services. A user may even generate multiple pseudonyms for the same service,
allowing her to partition generated user data between several unlinkable pseudonyms. In the
most extreme case, a user may choose a new pseudonym for every single transaction with any
service, making all user actions unlinkable.
Usually, different users have different access rights to some services. In an ACS, these access

rights are described by attributes. A service provider can issue a credential to a user, which
is parameterized with attributes. These attributes can, for example, encode access rights to a
service or some user data. The user can then prove possession of a credential to the same or to
other service providers in a privacy-preserving way. This process is called showing a credential.
This mechanism essentially allows users to carry (authenticated) data and access rights between
their different pseudonyms and enables service providers to enforce access restrictions when
confronted with anonymous users. Note that in this scenario, the user is in full control of her
data and can actively decide what parts of it to reveal to service providers.

Attributes and policies A credential may be, for example, used to encode citizen cards issued
by the government. Through this credential, the state certifies attributes such as “citizenship”,
“student status”, and “age”. The citizen can store this credential, for example, on her smartphone
and use it to prove statements about her certified attributes while staying unlinkable across
services. The showing of credentials will be done via wireless communications channels of the
smartphone, e. g. NFC. As an example, a public transportation provider may provide ticket
discounts to students, young people, and senior citizens. To get the discount in this scenario, the
user would need to prove possession of a credential whose attributes satisfy a complex policy as
in Figure 1. It is a challenge to do this without disclosing the user’s specific attribute values to
the transportation provider. Note that disclosing (some of) the user’s specific attribute values
gives the provider quite specific information about the user, which may be used to de-anonymize
her. Ideally, the transportation provider only learns a single bit about the attributes, namely
that they satisfy the policy.

Reputation systems After using the transportation service, the citizen may want to rate her
experience using a reputation system. On the one hand, the citizen wants to submit her rating
anonymously. On the other hand, rated services want to ensure that only people who used the
service can rate it. Furthermore, to prevent rating spam, every (anonymous) user should only be
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∧

a1=“registered” a2=“country A” ∨

a3=“student” 0≤a4≤17 a4>65

Figure 1: Example (sub-)policy. The attribute a1 stands for the registration status of the user, a2

encodes the citizenship, a3 the student status, and a4 encodes the user’s age.

able to submit a single rating. It is a challenge to ensure these properties while simultaneously
preserving the user’s anonymity.

1.1 Contribution

As a solution to the aforementioned challenges, we present our combination of an anonymous
credential and reputation system called CLARC (Cryptographic Library for Anonymous Repu-
tation and Credentials). We present the formal construction of the system and the main ideas
behind its implementation.

CLARC works as follows: Figure 2 shows the system and involved roles on a high level. We
consider one system manager and several users, service providers, and issuers. In the following
we describe a usage scenario alongside the numerical order as shown in Figure 2.

3. request credential on nym1

4. credentialUser
usk

5. show credential on nym2

Issuer
(ipk, isk)

Service Provider
Policy ϕ
(rpk, rsk)

6. grant access to service;

7. issue review token

8. publish rating

1. register 2. issue registration 
information

Reputation 
Board

User Registry

request to reveal identity of a user
System Manager

Figure 2: Overview of our system
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1.–2. A user has a unique identifier called usk and registers with the system manager, which is a
trusted party. The system manager keeps a registration record of the user and is able to
reveal the identity of registered users in case of misuse.

3.–4. A registered user is able to request a credential from an issuer under a pseudonym. The
decision whether a request is answered with the issuance of a credential and which attributes
are certified depends on the application.

5.–6. Credentials can be shown under a different pseudonym of the same user to service providers.
For this, a service provider publishes a policy φ that determines which combinations of
attributes in credentials can access her service.

7.–8. If the service provider accepts the showing of the credential she provides the service and
issues a review token to the user. This review token enables the user to rate the provided
service once. Reviews are published publicly on a reputation board, which is a public storage
service. The reviews are anonymous as long as the user is only rates the service once. If a
single user rates the same service twice, his two ratings can be publicly linked by anyone.
Using this mechanism, the application can detect and decide to ignore duplicate ratings.

The reputation board can be implemented by any public storage system. Ratings cannot be
forged or manipulated. However, the storage system should ensure that service providers cannot
delete or hide unfavorable ratings. One way to ensure this is by using a public ledger (e. g., a
blockchain) as the reputation board.
CLARC supports the following features:

Access Policies for Service Provider Service providers can specify complex access policies
for their services. A sub-policy models the statement “the user has a credential by issuer ipk with
attributes satisfying φ“. As such, a sub-policy consists of an issuer’s public key and a threshold
policy over basic attribute statements. Basic attribute statements in our case are equality (ai = k)
and inequality (ai 6= k) of an attribute value ai to a public value k, set membership (ai ∈ S),
and range proofs (A ≤ ai ≤ B). These basic attribute statements can be arbitrarily connected
by threshold gates to form a statement φ about attributes. In the examples, we sometimes refer
to the special case of threshold policies in the form of Boolean formulas (e. g., Figure 1).
A policy consists of any number of sub-policies, connected by threshold gates. This allows

the service provider to specify policies like “the user has a credential by ipk1 with attributes
satisfying φ1, or a credential by ipk2 with attributes satisfying φ2”. In this case, the service
provider would not learn whether an authenticated user has been issued sufficient attributes
from ipk1 or from ipk2.

Traceability of users In case of misuse, a trusted third party called system manager, can
reveal the identity of a credential holder using a special key osk. For more information, see Section
3.4.

Decentralized validation of ratings Ratings are published on some (untrusted) reputation
board. In our system, anyone can verify the validity of ratings.
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Attribute-based ratings Optionally, users can choose to reveal some credential-authenticated
statement about themselves when creating a rating. This enables, for example, the creation of
authenticated “expert ratings”, where the specific author of the rating remains anonymous (cf.
Section 3.6).

Anonymity While interacting with users, other entities only learn the information that is
revealed by the user (e. g., statements over attributes). Furthermore, a user is anonymous
while receiving credentials or rating tokens. Ratings by two buyers of the same product are
indistinguishable.

Credential unforgeability Users cannot claim to possess credentials that they have not been
issued. That is, users cannot claim to satisfy policies for which they have not been issued
satisfying credentials.

Rating authenticity and public linkability Users cannot rate products unless they have
been issued a rating token for it. If a malicious user tries to create two ratings for the same
product, the two ratings can be linked publicly.

Non-impersonation Attackers cannot successfully claim possession of some honest user’s
pseudonym (even if they control a service provider or a credential issuer). Furthermore, attackers
cannot generate interactions that a system manager would trace to an honest user.

Open-source prototype implementation We have implemented CLARC as an open-source
Java library under the Apache license. The implementation contains several building blocks that
may be of independent interest (cf. Section 5).

1.2 Related Work

A standard way to construct an ACS is the framework presented by Camenisch and Lysyan-
skaya [CL03; Lys02]. Here, a signature scheme, a commitment scheme and efficient protocols
suffice to construct a secure ACS. Pairing-based examples for signature schemes that are suitable
to be applied in this framework are [CL04; PS16]. Apart from pairing-based systems there
also are RSA-based systems, e. g. [CL01; CL03]. There are two techniques to add attributes to
credentials. The simplest way is to sign a block of messages, where each message stands for one
attribute value. Another way is to map the attribute values to prime numbers. Then, a product
of primes is signed to get an attribute-based credential Camenisch and Groß [CG08]. Moreover,
Fuchsbauer, Hanser, and Slamanig [FHS14] present attribute-based anonymous credentials sup-
porting selective disclosure using structure preserving signatures on equivalence classes and set
commitments.
In comparison to basic credential systems, e. g. [CL03; Lys02], we add attributes to the

credentials; a reputation system; expressive policies (cf. Section 4) to the show protocol;
revocation and open mechanisms.
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Table 1: Comparison of the credential signatures
Group Sig. size Sec. assmp.

Sec. 3.1 BN curve [BN06] 2G1 Assmp. 2 [PS16]
Idemix [CV02] RSA 1ZN + 2Z strong RSA [CL03]
U-Prove [PZ13] G ⊂ Z∗

p 2G + 3Zq no sec. proof

Table 2: Comparison of supported relations between credential systems
Equality Inequ. Set/Range Proof Threshold Policy Sel. Disclosure

Section 3.1 X X X X X
ABC4Trust [RCS14] X X — — X

idemix [CV02] X X — — X
U-Prove [PZ13] X X — — X

The signature scheme proposed by Pointcheval and Sanders [PS16] is a good candidate for the
application to anonymous credentials, since the signatures consist of only two group elements,
independent of the number of message to be signed. For this reason, we base our construction
on [PS16]. Originally, Pointcheval and Sanders proved their signature scheme’s security under
an interactive assumption. However, Pointcheval and Sanders [PS17] showed recently that the
scheme is also secure under a variant of the SDH assumption, which is non-interactive.

There are several implemented credential systems. Among those realizations are Idemix [CV02]
and U-Prove [PZ13], both of which are used in the ABC4Trust [RCS14] project. In Table 1, we
compare the signatures used as credentials in our system (Section 3.1), idemix and U-Prove.
Compared to our CLARC library, the realizations used in ABC4Trust are limited in the sense that
they only support disclosing subsets of attribute values when showing a credential (or showing
equality of attribute values in multiple credentials). In contrast, CLARC offers more expressive
policies (cf. Table 2 for a comparison).
Furthermore, there are two active projects that are focused on bringing credential systems

to the end user and cloud providers. These projects are called PRISMACLOUD [and18b] and
CREDENTIAL [and18a]. PRISMACLOUD is focused on cryptographic constructions to protect
the privacy of users while enabling the usage of cloud services. The CREDENTIAL (Secure
Cloud Identity Wallet) project is focused on evaluating and showcasing access control for cloud
based services via credential systems. In [Hör+16; Kos+17] the authors focus on the main
functions and adoption of the CREDENTIAL concept. Even though the CREDENTIAL concept
is based on different cryptographic schemes than our scheme (redactable signature compared to
normal signatures) the main concepts (account and identity management) are similar to the one
of CLARC.
In addition to anonymous credential systems, anonymous reputation systems are of interest.

Reputation systems are widely studied in economics and computer science, see for example
[And+08; SK13; Del00; DMS03; JI02; KSG03]. Anonymity and security have been identified
as key properties of reputation systems and a general formal security definition for reputation

6



systems was presented by Blömer, Juhnke, and Kolb [BJK15]. In [BJK15] the authors construct
a cryptographic reputation system based on group signatures. Additionally the authors [BJK15]
add the feature that multiple ratings by one user for one product can be detected. To the
best of our knowledge, ours is the first construction of an anonymous reputation and credential
system where users are anonymous when authenticating for a service and when rating it. A
public-ledger based credential system is presented in [Yan+17]. The system in [Yan+17] also
features a reputation system, but there the service providers rate the users after an authentication
process.
In previous provable-secure reputation systems [BJK15], users were not anonymous when

buying a product (i.e. when receiving a rating token allowing to rate it). Our reputation system
is based on credentials and supports public linkability. The linking technique was originally
presented in [BJK15].

2 Notation
Let R be an NP-relation. Similar to Camenisch and Stadler [CS97], we denote a Σ pro-
tocol ((interactive three-way) special honest-verifier zero-knowledge proof of knowledge) by
PoK{(w) : (x,w) ∈ R}. The instance x and relation R are public knowledge and a prover wants
to prove knowledge of witness w to some verifier, without revealing w. Similarly, we denote
the non-interactive proof obtained by applying the (strong) Fiat-Shamir transformation [FS87;
BPW12] to PoK{(w) : (x,w) ∈ R} by FS.NIPoK{(w) : (x,w) ∈ R}. In the strong Fiat-Shamir
transformation, the challenge is generated by hashing the statement and common input.
A signature of knowledge [CL06] for R on some message m ∈ {0, 1}∗ obtained by applying

the (strong) Fiat-Shamir transformation to PoK{(w) : (x,w) ∈ R} is denoted by FS.Sign{(w) :
(x,w) ∈ R}(m). The corresponding verification algorithm is denoted by FS.Verify.

3 Our Construction
In the following we show the details of our attribute-based anonymous credential and reputation
system. First, we show the algorithms and afterwards we explain how the algorithms are mapped
to the roles and parties shown in Figure 2. We also present further extensions of our construction
to support opening, revocation, and attribute-based ratings.

3.1 Algorithm Description

Our system CLARC is based on the ACS framework presented in [CL03; Lys02]. The framework
shows how to build ACS with anonymity, unforgeability and non-impersonation from three
building-blocks. First a hiding and binding commitment scheme for the pseudonyms. Second,
an existentially unforgeable signature scheme for the credentials. Third, protocols for issuing
and showing a credential. In CLARC we use Pedersen commitments [Ped92] for the pseudonyms
and the pairing-based signature scheme by Pointcheval and Sanders [PS16] to issue credentials.
Within the credential showing protocol, we use Schnorr-like Σ protocols combined with proofs of
partial knowledge [CDS94]. For more details on our protocols, we refer to Section 4.
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Let λ ∈ N be the security parameter. Let G be a type 3 bilinear group generator, let
ΠPed = (Ped.Setup,Ped.Com,Ped.Open) be the Pedersen’s commitment [Ped92] and let Πk

PS =
(PS.Setupk,PS.KeyGenk,PS.Signk,PS.Verifyk) be the Pointcheval-Sanders signature scheme for
k messages [PS16]. Further, let HG : {0, 1}∗ → G be a hash function hashing into a group G.
Our system Π consists of the following ppt algorithms and protocols.

• Setup(1λ): Generate a type 3 bilinear group grp := (p,G1,G2,GT , e) ← G(1λ) and
pseudonym public parameters ppnym := (gnym, hnym, p,G1) with gnym ← G1 \ {1} and
hnym ← G1. Additionally, create auxiliary public parameters ppaux used implicitly in the
system, e. g. needed to instantiate certain predicates. Return pp := (grp, ppnym).

• MKeyGen(pp) with pp = (grp,ppnym) = (p,G1,G2,GT , e,ppnym): Generate key pair (opk,
osk)← PS.KeyGen1(grp) for opening, choose public linkability basis b← G2 \{1} and set
user registry reg := ε. Return (mpk,msk) := ((opk, b), (osk, reg)).

• UsrInit(pp, opk) with pp = (grp, ppnym) and opening public key opk = (gopk, Yopk, g̃opk,

X̃opk, Ỹopk): Choose user secret key usk← Zp, set user public key upk := gusk
opk and return

(usk, upk).

• IssInit(pp, 1`) with pp = (grp,ppnym) and number of supported attributes ` ∈ N: Return
issuer key pair (ipk, isk)← PS.KeyGen`+1(grp).

• RvwInit(pp) with pp = (grp, ppnym): Return a review token issuer key pair (rpk, rsk) ←
IssInit(pp, 11).

• CreateNym(pp, usk) with pp = (grp, ppnym) and user secret usk: Return (nym, psk) ←
Ped.Com(ppnym, usk), where psk = (usk, d).

• (Join(pp, opk, usk, usk),MJoin(pp, opk, upk, osk, reg)) is an interactive protocol with com-
mon input pp = (p,G1,G2,GT , e,ppnym), opener public key opk = (gopk, Yopk, g̃opk, X̃opk,

Ỹopk) and ppnym = (gnym, hnym, p,G1). The system master parses the opener secret key osk
as (x, y). The user computes τ̃ := Ỹ usk

opk , sends τ̃ to the master and runs an argument of
knowledge of the form PoK{(usk) : upk = gusk

opk}. The master proceeds, if and only if she
accepts in this proof and e(upk, Ỹopk) = e(gopk, τ̃) holds. If there is an entry (upk, σ, ·) in
reg, the master returns σ and stops. Otherwise, the master chooses u← Z∗p, computes

σ = (σ1, σ2) := (guopk, (gxopk · upky)u) ,

sends σ to the user, and adds the entry (upk, σ, τ̃) to reg. Then, the user checks the
signature using PS.Verify1(pp, opk, usk, σ). If this check fails, she outputs the error symbol
⊥, otherwise registration information reginfo = (σ, opk).

• (ProveNym(pp, nym, psk),VerifyNym(pp, nym)) is an interactive protocol with common
input pp = (grp, ppnym) with ppnym = (gnym, hnym, p,G1) and pseudonym nym. Then the
prover parses the pseudonym secret psk as (usk, d) and runs with the verifier PoK{(usk, d) :
nym = gdnym h

usk
nym}.
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• (RcvCred(pp, ipk, nym, (ai)`i=1, usk, psk), IssCred(pp, nym,
(ai)`i=1, isk)) is an interactive protocol with common input pp = (grp, ppnym) with ppnym =
(gnym, hnym, p,G1), issuer public key ipk = (g, Y0, . . . , Y`, g̃, X̃, Ỹ0, . . . , Ỹ`) and pseudonym
nym. The receiver parses the pseudonym secret psk as (usk, d) and generates pprcv = (g, Y0,
p,G1) and computes (C, (usk, r))← Ped.Com(pprcv, usk). Then, she sends C to the issuer
and runs

PoK
{
(usk, d, r) : nym = gdnym h

usk
nym ∧ C = gr Y usk

0

}
with the issuer. If the proof accepts, the issuer chooses u← Z∗p, computes

(σ′1, σ′2) :=

gu,(gxC · ∏̀
i=1

Y ai
i

)u
and sends (σ′1, σ′2) to the receiver. The receiver computes σ = (σ′1, σ′2 · (σ′1)−r), and checks
the signature’s validity via PS.Verify`+1(pp, ipk, (usk, a1, . . . , a`), σ). If the check fails, she
outputs ⊥, else a credential cred = (σ, (a1, . . . , a`), ipk).

• (RcvToken(pp, rpk, nym, item, usk, psk), IssToken(pp, nym,
item, rsk)) is an interactive protocol, where RcvToken performs the same steps as RcvCred
except that it uses rpk instead of ipk and HZp(item) instead of (ai)`i=1. Analogously,
IssToken performs the same steps as IssCred except that it uses rsk instead of isk, and
again, HZp(item) instead of (ai)`i=1. After having computed σ, the user checks the signature’s
validity via PS.Verify2(rpk, (usk, HZp(item)), σ). If the check fails, she outputs the error
symbol ⊥ and else a review token token = (σ, item, rpk).

• (ProveCred(pp, opk, nym, (ipki, φi)mi=1, ψ, usk, psk, reginfo, cred)mi=1), VerifyCred(pp, opk, nym,
(ipk, φ)mi=1, ψ)) is an interactive protocol with common input pp = (grp,ppnym), ppnym
= (gnym, hnym, p,G1), opener public key opk = (gopk, Yopk, g̃opk, X̃opk, Ỹopk), pseudonym
nym, issuer public keys ipki = (g(i), Y

(i)
0 , . . . , Y

(i)
`i
, g̃(i), X̃(i), Ỹ

(i)
0 , . . . , Ỹ

(i)
`i

), and predicates
φi and ψ. We call a pair (ipki, φi) a subpolicy, which consists of an issuer’s public key ipki
and a predicate φi over attributes. ψ is a monotone threshold formula over subpolicies.
The prover parses her private input as psk = (usk, d), reginfo = ((σ̂1, σ̂2), opk), credi =
((σ(i)

1 , σ
(i)
2 ), (a(i)

1 , . . . , a
(i)
`i

), ipk).
Otherwise, she chooses s← Z∗p, sets σ̂′ := (σ̂s1, σ̂s2) and sends σ̂′ to the verifier. The user
computes a Fiat-Shamir heuristic non-interactive argument π as seen in Figure 3. This
argument can be efficiently instantiated using generalized Schnorr protocols (cf. Section 4).
The verifier accepts if and only if σ̂′1 6= 1 holds and π is valid.

• Open(opk, osk, reg, t) with opening public key opk = (gopk, Yopk, g̃opk, X̃opk, Ỹopk), open
secret key osk, registry information reg and a transcript t = ((σ̂′1, σ̂′2), ·) of a (ProveCred,
VerifyCred) run: Use VerifyCred to check, whether the transcript is valid. If it is invalid,
it outputs the error symbol ⊥. Otherweise, iterate over the entries (upk, ·, τ̃) of reg, until
e(σ̂′2, g̃opk) e(σ̂′1, X̃)−1 = e(σ̂′1, τ̃) holds. If it finds such an entry, it outputs upk, else ⊥.
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FS.NIPoK


(

usk, d,
(
(a(i)
j , d

(i)
j )`j=1, σi, ϕi

)m
i=1

)
:

nym = gdnym h
usk
nym

∧e(σ̂′1, Ỹopk)usk = e(σ̂′2,g̃opk)
e(σ̂′1,X̃opk)

∧ϕi = 1⇔ (φi(a(i)
1 , . . . , a

(i)
`i

) = 1
∧PS.Verify`i+1(pp, ipki,

(usk, a(i)
1 , . . . , a

(i)
`i

), σi) = 1)
∧Ψ(ϕ1, . . . , ϕm) = 1


Figure 3: Fiat-Shamir proof used in ProveCred

FS.Sign

(usk, ζ, r) :

e(σ̂′2, g̃opk)
e(σ̂′1, X̃opk)

= e(σ̂′1, Ỹopk)usk ∧ L1 = HG1(rpk, item)ζ+usk ∧ L2 = bζ

∧ e(σ′2, g̃)
e(σ′1, X̃) e(σ′1, Ỹ1)HZp (item) = e(σ′1, g̃)r e(σ′1, Ỹ0)usk

 (m)

Figure 4: Signature of knowledge for Rate

• Rate(pp,mpk, rpk, item, reginfo, token, usk,m) with pp = (grp, ppnym), ppnym = (gnym,
hnym, p,G1), master public key mpk = (opk, b) with opener public key opk = (gopk, Yopk,
g̃opk, X̃opk, Ỹopk), review token issuer public key rpk = (g, Y0, Y1, g̃, X̃, Ỹ0, Ỹ1), item identifier
item ∈ {0, 1}∗, registration information reginfo and review token token, user secret usk and
rating text m ∈ {0, 1}∗: Parse reginfo = ((σ̂1, σ̂2), opk) and token = ((σ1, σ2), item, rpk). If
PS.Verify1(opk, usk, (σ̂1, σ̂2)) = 0 and PS.Verify2(rpk, (usk, HZp(item)), (σ1, σ2)) = 0, out-
put ⊥ and stop. Otherwise, choose s ← Z∗p and (u, r) ← Z∗p × Zp, and set σ̂′ := (σ̂s1, σ̂s2)
and σ′ := (σ′1, σ′2) := (σu1 , (σ2 · σr1)u). For public linkability, choose ζ ← Zp and compute
values L1 := HG1(rpk, item)ζ+usk and L2 := bζ . Compute ρ as given in Figure 4 and output
rating = ((m, item),mpk, rpk, σ̂′, σ′, ρ, L1, L2). Note that w := (usk, ζ, r) is a witness for
instance x := (pp,mpk, rpk, item, σ̂′, σ′) of the relation given in Figure 4.

• Verify(pp,mpk, rpk, item, rating,m) with pp = (grp, ppnym), ppnym = (gnym, hnym, p,G1),
master public key mpk = (opk, b) with the opener’s opk = (gopk, Yopk, g̃opk, X̃opk, Ỹopk),
review token issuer public key rpk = (g, Y0, Y1, g̃, X̃, Ỹ0, Ỹ1), item identifier item ∈ {0, 1}∗,
rating = ((m, item), (mpk, rpk, σ̂′, σ′, ρ, L1, L2)) for item and m ∈ {0, 1}∗: Let FS.Verify be
instantiated with the same relation as given in Figure 4. Run FS.Verify(m, ρ) and output
the result.

• Link(pp,mpk, rpk, rating, rating∗) with public parameters pp = (grp, ppnym), master pub-
lic key mpk = (opk, b), review token issuer public key rpk, and two ratings rating =
((m, item), (mpk, rpk, σ̂′, σ′, ρ, L1, L2)) and rating∗ = ((m∗, item), (mpk, rpk, σ̂′∗, σ′∗, ρ∗, L∗1,
L∗2)) for item: First, check whether rating and rating∗ are valid ratings using the Verify. If
one of these check fails, output ⊥ and stop. Otherwise, return 1 if and only if the following
equation holds:

e

(
L1
L∗1
, b

)
= e

(
HG1(rpk, item), L2

L∗2

)
.
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3.2 How to use the system

Let Π be the credential and reputation system described above. The algorithms of Π have to
be executed by different parties in the system. One party can act under different roles, e. g. a
party can be a service provider and an issuer. In the following we present a usual mapping from
algorithms to roles and highlight the interactions between the parties. We refer to Figure 2 for
the system overview.

System Manager Uses Setup and MKeyGen to generate the public parameters pp and
parameters opk used to support opening. The system manager also takes part in the join/register
protocol (Join,MJoin) and executes the MJoin algorithm. In case of misuse a service user can
ask the system manger to execute Open and determine which user is responsible.

User First, a user has to initialize its parameters and user secret with UsrInit. Next, she
has to join at the system manager using Join. A user can derive new pseudonyms from
her user secret whenever she wants by using CreateNym. To receive a credential she executes
RcvCred of the protocol (RcvCred, IssCred) with the corresponding issuer. She can show that her
credentials satisfy some access policy by executing the left-hand side of the (ProveCred,VerifyCred)
protocol. The user can also get a review token from a service provider through the execution
of (RcvToken, IssToken). The result of RcvToken is a review token bound to the identifier item
of the accessed service. The review token enables the user to form an anonymous review by
executing Rate. The message m involved in Rate is the actual review. For example, this can be
a textual description or a star rating, depending on the application.

Issuer An issuer joins the system by locally executing IssInit. If a user requests a credential
the issuer executes the right-hand side of the protocol (RcvCred, IssCred) and can determine
which attributes are certified in the credential.

Service Provider A normal service provider just needs to publish access policies for her
services. If she also wants to issue review tokens to users she executes RvwInit and publishes
the corresponding public key rpk. To issue a review token she runs IssToken in the protocol
(RcvToken, IssToken) with a user.

Any Party Anyone with access to the public parameters of the system can verify published
reviews by executing the Verify algorithm. To check whether two ratings for the same service
have been created by the same user, anyone can execute the Link algorithm.

3.3 Security

The reputation and credential system Π as described in Section 3.1 fulfills the following security
properties:
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Theorem 3.1. If the Pointcheval-Sanders assumption [PS16] and the q-SDH assumption [Ngu05;
BB04] hold for G, then Π offers non-impersonation,credential unforgeability, and rating authen-
ticity (cf. Section 1.1) in the random oracle model.

Theorem 3.2. If the decisional Diffie-Hellman assumption holds in G1, the Pointcheval-Sanders
assumption and the q-SDH assumption hold for G, and Π offers credential unforgeability, then Π
offers anonymity (cf. Section 1.1) in the random oracle model.

Because of space restrictions we omit the formal proofs. The proofs follow the framework
presented in [CL03; Cam+15] (for the general construction of credential systems), Pointcheval
and Sanders [PS16] (for signature protocols and Open), and Blömer, Juhnke, and Kolb [BJK15]
(for public linkability).

3.4 Open Mechanism

From the user’s point of view anonymity is a desirable property and the main motivation to
use an anonymous credential and reputation system. However, anonymity can also be seen as
a disadvantage from a service provider’s point of view as it protects entities that misbehave.
To counteract this issue, we provide the feature of traceability in our system. Traceability is
one of the classical features of a group signature scheme as defined by Bellare, Micciancio, and
Warinschi [BMW03]. Here, it allows the group manager to reveal the identity of the signer of a
message. In a credential system we are not interested in the entity that issued the credential in
the case of misuse, but the entity that owns the credential, which for example, was used to get
the access that resulted in a misbehavior.

In our construction (Section 3.1), the system master can use the algorithm Open to reveal the
user public key upk of some misbehaving user based on a transcript of (ProveCred,VerifyCred).
The particular construction of Open is adapted from the group signature scheme presented by
Pointcheval and Sanders in [PS15, Appendix A.1]. To implement this approach, we ask every user
willing to use our system to register at the system manager. This is done by running the protocol
(Join,MJoin). By doing so, the system manager builds up a user directory reg keeping track of
every registered user. Note that the system manager during the execution of (Join,MJoin) only
learns gusk

opk and not usk itself. The user then additionally needs to show in (ProveCred,VerifyCred)
that she is registered at the system manager. A service provider needs to store every transcript of
(ProveCred,VerifyCred) runs performed—provided the service provider wants to be able to trace
a user later on. If the service provider notices a misbehavior (e. g. spamming), she can issue a
request at the system manager to open the transcript that was used by the misbehaving user to
gain access to her service. In practice, it is required to give a sound reason for this request. Then,
the system manager will open the transcript and can reveal the upk of the misbehaving user.

3.5 Revocation

Closely related to the traceability of users described in Section 3.4 is the feature of revocation.
In the context of our system, revocation means invalidating certain elements. In this section, we
present ideas for revocation of users and revocation of credentials.
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3.5.1 Revocation of Users

In Section 3.4, we have already seen how we can reveal the identity of a user in the case of misuse.
Still, this procedure only reveals the identity without preventing the user from continuing to
misbehave. To do so, an option is to exclude the user from the system by revoking the user.
A simple, yet inefficient approach, is to let the system manager publish a list of all revoked
users, called revocation list. In detail, to revoke a user the system manager adds the pair (upk, τ̃)
generated in the joining phase to the revocation list. Consequently, verifiers need to check
whether the user requesting access to a service is not revoked. Therefore, the verifier running
VerifyCred in the protocol (ProveCred,VerifyCred) performs the same steps as described in Open
but replaces reg by the public revocation list. If the output is not the error symbol ⊥, the user is
classified non-revoked. However, as mentioned before, this approach is quite inefficient if many
users are revoked, i. e. the size of the revocation list is large.

Note that the check of a user being revoked can be done without interaction with the system
manager. This approach therefore is verifier-local.

3.5.2 Revocation of Credentials

Sometimes it also can be useful for an issuer to revoke certain credentials, e. g. if attributes do
not hold anymore for some users. This can be solved similar to the approach presented in Section
3.5.1: An issuer includes a unique identifier in the credential. Then, the issuer publishes a list
of all credential identifiers that are revoked, called credential revocation list. In this scenario,
users also need to show in (ProveCred,VerifyCred) that the credential they show is not on the
issuer’s credential revocation list. To implement this, one can make use of an AND-composition
of inequality proofs showing that the identifier contained in the credential is unequal to every
element of the credential revocation list. The dynamic accumulator based approach is formalized
by Baldimtsi et al. [Bal+17] as an anonymous revocation component that can be added to
any anonymous system. Another approach would be to implement a non-membership proof as
proposed in [LLX07].

3.6 Attribute-Based Ratings

Another extension for our system are attribute-based ratings. Although, we aim for anonymity
of raters, it is useful to add further information (e. g. about her qualifications) to the rating
than only a rating text and the fact that the rater bought the service. For illustration, recall the
public transport example given in Section 1: A rating of a seasonal ticket owner is more valuable
than a rating of a single-ticket owner, since the former likely uses the public transport more
often.
To integrate this feature in our system (Section 3.1) a simple adaption of algorithm Rate

suffices. In detail, a user creating a rating integrates a non-interactive proof over some policy
(similar to the proof sent in ProveCred) into the rating. The policy represents the information the
rater wants to disclose about himself, e.g. “seasonal ticket owner OR 10 years public transport
customer”.

13



TraceabiltyProof
Public: randomized registration credential, nym, opk
Private: psk, usk

PolicyProvingWithMasterCredProtocol
Public: policies and issuer keys, nym, opk
Private: usk, psk, randomized registration credential, credentials

PolicyProvingProtocol
Public: policies, nym
Private: usk, psk, credentials

SubPolicyProvingProtocol
Public: single policy, issuer key, nym
Private: usk, psk, single credential, attributes
Generates: randomized credential, commitments to attributes

ProveCred
Public: randomized credential, commitments to attributes, nym
Private: credential derandomization values, open values to commitments, psk

PredicateProvingProtocol
Public: single policy, commitments to attributes
Private: open values to commitments

InequalityProof
Public: commitment to attribute
Private: open value

SetMembershipProof
Public: commitment to attribute
Private: open value

RangeProof
Public: commitment to attribute
Private: open value

EqualityProof
Public: commitment to attribute
Private: open value

1 1

1..n PoPK

1 1

0..n PoPK 0..n PoPK 0..n PoPK 0..n PoPK

Figure 5: The hierarchical structure of ProveCred. Not pictured: the inequality, set membership,
equality, and range proofs themselves consist of internal protocols

4 Protocol design
When showing a credential, our implementation supports a large class of access policies. For
this reason, given some access policy, we need to be able to generate a corresponding protocol
proving that the access policy is satisfied. Our approach to generate such protocols is based
on the idea of a hierarchical suite of (Σ) protocols that can be composed ad-hoc as required.
The key insight is that almost all relevant protocols can be interpreted as Σ protocols with a
slightly weakened notion of soundness (namely computational soundness, see below). This allows
us to generically apply standard techniques for Σ protocols such as proofs of partial knowledge
[CDS94], Damgård’s technique [Dam00], and the Fiat-Shamir heuristic [FS87]. An overview of
the involved protocols and their (hierarchical) relations is pictured in Figure 5. In this section, we
describe this approach by conceptually building a credential proof protocol bottom-up, starting
with the protocols on the bottom level of Figure 5.

Generalized Schnorr protocol The original Schnorr protocol is a well-known Σ protocol
allowing to prove knowledge of the discrete logarithm x of a given group element gx. A folklore
generalization allows proving knowledge of values (x1, . . . , xn) ∈ Znp satisfying

m∧
j=1

(
Aj =

n∏
i=1

gxi
i,j

)
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for any given public groups G1, . . . ,Gm of prime order p and public Aj , gi,j ∈ Gj . We have
implemented this construction s.t. given a set of symbolic equations as above, the corresponding
generalized Schorr protocol can be derived automatically.

Basic commitment proofs We implement protocols that, given a public Pedersen commit-
ment C, show that the prover knows values d, a ∈ Zp such that C = gahd and

• a = a∗ for some public value a∗ (EqualityProof)

• a 6= a∗ for some public value a∗ (InequalityProof) [CS03]

• a ∈ S∗ for some public set S∗ ⊂ Zp (SetMembershipProof) [Ngu05]

• A∗ ≤ aint ≤ B∗ for public values A∗, B∗ ∈ Z and hidden aint ∈ Z with 0 ≤ aint < p and
aint ∈ [a]p (RangeProof) [Sch01].

The EqualityProof can be implemented directly as a generalized Schnorr protocol, proving
knowledge of d s.t. C · g−a∗ = hd. The other protocols require some more setup. As an example,
for the InequalityProof, the protocol reads as follows: The prover computes W = (ga−a∗)z
with a random z ← Z∗p and sends W to the verifier. She then runs a generalized Schnorr protocol
proving knowledge of a, z, xza, xzd such that (1) 1 = gxzahxzd(C−1)z and (2) W = (g−a∗)zgxza .
As a witness for the Schnorr protocol, she uses a, z and xza = z · a, xzd = z · d. The verifier
accepts iff (3) W 6= 1 and the Schnorr protocol accepts. It is easy to see that (1) implies
C = gxza/zhxzd/z ∧ a∗ 6= xza/z if z 6= 0. For z = 0 we have xza 6= 0 because of (2) and (3), and
0 = logh(g) · xza + xzd from (1), hence in that case logh(g) can be computed from a Schnorr
witness. We implemented this two-step protocol (compute W, then Schnorr) as a (single) Σ
protocol.
For this, we introduce a mechanism we call protocol wrapping. Protocol wrapping allows

us to wrap two-step protocols into a single (computationally sound) Σ protocol. Applied to
the inequality proof above, the Σ protocol Σineq resulting from protocol wrapping works as
follows: The prover starts by computing W as above, then she internally instantiates a Schnorr
protocol ΣSchnorr for the required equations. Note that the equations depend on the concrete
W , which is considered public input for the Schnorr protocol. As the first message of Σineq,
the prover sends W and the message A, generated by the internal ΣSchnorr as the first message.
The verifier chooses her challenge c uniformly at random from Zp as usual. The prover’s final
message for Σineq is the final message R of her internal ΣSchnorr, given challenge C. Upon
receiving the final message, the Σineq verifier locally instantiates the ΣSchnorr protocol using W
received from the prover in the first message. She accepts if ΣSchnorr accepts the transcript
(A,C,R) and W 6= 1. Note that Σineq is a proper (computationally sound) Σ protocol for the
relation Rineq = {((C, a∗), (a, d)) | C = gahd ∧ a 6= a∗}: An extractor, given two transcripts
((W,A), C,R) and ((W,A), C ′, R′) internally runs the Schnorr extractor on (A,C,R), (A,C ′, R′)
to retrieve a, z, xza, xzd and then use the observations above to compute a proper witness (a, d)
with C = gahd and a 6= a∗ or to compute logh(g) if z = 0. This example motivates our notion
of computational soundness: For computationally bounded adversaries, it is hard to come up
with two transcripts for which the extractor would not output a proper witness for Rineq (in
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this example, finding such transcripts would imply breaking the discrete logarithm assumption).
Special honest zero knowledgeness still unconditionally holds for Σineq.

We apply the protocol wrapping mechanism also for SetMembershipProofs (sending a blinded
accumulator witness alongside the first message) and RangeProofs (sending a blinded accumulator
witness for each digit in the u-ary representation of aint). As a result of protocol wrapping, all
the basic commitment proof protocols introduced in this section are (computationally sound) Σ
protocols.

Proving knowledge of a credential satisfying an access policy Using the protocols above,
we can now set up a protocol SubPolicyProvingProtocol proving possession of a credential.
Specifically, a Σ protocol for the relation {((pp, ipk, nym, φ), (usk, psk, cred,~a)) | cred is a credential
on usk and attributes ~a, and φ(~a)}. Here, φ is a monotone predicate over |φ| atomic expressions
of the form “ai = a∗”, “ai 6= a∗”, “ai ∈ S∗”, or “A∗ ≤ a ≤ B∗” (cf. basic commitment proofs).
This SubPolicyProvingProtocol on the prover side randomizes the credential’s signature σ,
yielding σ′. and generates a Pedersen commitment Ci = gaihri on each attribute ai. It then sets
up a Σ protocol ProveCred that shows that the prover can derandomize σ′ to a valid signature
on her user secret usk and the attributes ~a such that the Ci are commitments to the ai and nym
is a commitment to usk. It furthermore sets up basic commitment proofs Σ1, . . . ,Σ|φ| as in the
first paragraph, one for each atomic expression in φ. Σj for the j-th expression proves that some
Ci can be opened to an attribute ai satisfying the j-th expression. Finally, the Σ1, . . . ,Σ|φ| are
composed using (generalized) proofs of partial knowledge (Theorem4.1) with access structure
according to φ, yielding a (computationally sound) Σ protocol PredicateProvingProtocol. Let
Σcomposed be the ∧-composition of ProveCred and PredicateProvingProtocol. The overall
SubPolicyProvingProtocol then sends σ′, (Ci)`i=1 alongside the first message of Σcomposed and
runs Σcomposed using protocol wrapping.

This construction is enabled by the following theorem, generalized from [CDS94; AAS16].

Theorem 4.1 (Proofs of partial knowledge). Let Σ1, . . . ,Σn be Σ protocols for the relations
R1, . . . , Rn, respectively. Let Φ be a monotone formula Φ : {0, 1}n → {0, 1} represented as
a circuit consisting of threshold gates. Then, there exists a Σ protocol ΣΦ for the relation
RΦ = {((x1, . . . , xn), (w1, . . . , wn, Z1, . . . , Zn)) | (Zi = 1 ⇔ (xi, wi) ∈ Ri) ∧ Φ(Z1, . . . , Zn) = 1}.
Furthermore, the protocol ΣΦ can be efficiently computed given Σ1, . . . ,Σn and Φ.

In contrast to prior work we allow the composition of several different Σ protocols and relations.

Proving an access policy over multiple credentials Since SubPolicyProvingProtocol
is a (computationally sound) Σ protocol, multiple such proofs can be connected by arbi-
trary monotone threshold formulas using proofs of partial knowledge, yielding a protocol
PolicyProvingProtocol. This allows us, for example, to prove that a user has a creden-
tial by issuer A satisfying policy φA, or a credential by issuer B satisfying φB without disclosing
which of the two the user holds.

Proving an access policy that requires accountability A verifier may insist that the
anonymous user can be identified by a trusted party in case of dispute. To enable this, we
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simply ∧-compose the PolicyProvingProtocol with a TraceabilityProof. The latter is a Σ
protocol that proves knowledge of a (randomized) registration credential σreg. The registration
credential σreg is a perfectly binding commitment to the user’s usk and can be linked to the
user’s identity by the trusted party (using the special key osk). Sending σreg alongside the first
message using protocol wrapping, the TraceabilityProof runs a Schnorr proof proving that
σreg is well-formed (essentially guaranteeing that it can be linked by the trusted party) and
consistent with the pseudonym nym.

Finalizing the protocol As the final step, we apply Damgård’s technique (for an interactive
argument), or the Fiat-Shamir heuristic (for a non-interactive argument or a signature of
knowledge, respectively) on the top-level Σ protocol PolicyProvingWithMasterCredProtocol.
The result is a secure argument against computationally bounded verifiers even when many such
protocols are run concurrently.

5 Implementation
We implemented CLARC in Java 8, building upon the upb.crypto library, which offers elliptic
curve math and several useful utilities (e.g. hashing). As building blocks for the anonymous
credential and reputation system, we implemented Pointcheval-Sanders signatures [PS16], Peder-
sen’s commitment [Ped92] including a hash-then-commit variant, Nguyen’s accumulator [Ngu05],
basic tree-based Shamir secret sharing [BL90], generalized Schnorr protocols, proofs of partial
knowledge [CDS94], Damgård’s technique for concurrently black-box secure Σ protocols [Dam00],
the Fiat-Shamir heuristic [FS87], several general zero-knowledge protocols (see Section 4). These
may be of independent interest. For the anonymous credential system, the library offers an
easy-to-use lightweight API. This API is conceptually easy to consume and does not require
any cryptographic knowledge. However, advanced users can always access lower levels of the
library to customize functionality to their use-case. We have evaluated our API and library by
implementing a simple example application.
The implementation of CLARC is open-source1.

5.1 Performance

Since the most time critical operations in our system are issuing/receiving a credential and
proving that a certain policy is satisfied by a credential, we focus our evaluation on the efficiency
of these processes. We considered the following test cases.

1. Equality of a single attribute:
• Policy: citizenship = “Germany”

• Credential: certifying only this attribute

2. Range proof over a single attribute:

1https://github.com/upbcuk
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Table 3: Avg. performance of the CLARC implementation on an Intel i7-8650U over 10 runs.
Policy (1) (2) (3) (4) (5)

IssCred 25ms 25ms 40ms 31ms 27ms
ProveCred 32ms 60ms 44ms 36ms 211ms
VerifyCred 28ms 69ms 37ms 34ms 170ms

• Policy: 0 ≤ age ≤ 17

• Credential: certifying an age of 16 years

3. AND-composition of two equality proofs over two attributes:
• Policy: citizenship = “Germany” ∧ status = “student”

• Credential: certifying these two attributes

4. OR-composition of two equality proofs over a single attribute:
• Policy: status = “student” ∨ status = “teacher”

• Credential: certifying student state

5. Complex policy:
• Policy: citizenship = “Germany” ∧ (status = “student” ∨ 0 ≤ age ≤ 17 ∨ age ≥

66) ∧ residence ∈ {“Germany”, “Austria”, “Switzerland”}

• Credential: certifying citizenship in Germany, a student state, an age of 20 and
residence in Germany

Each of these policies includes a proof of system membership. The timings achieved by our
library using the bilinear groups provided by mcl2 (bn256) are presented in Table 3. They do not
include time for communication. In our tests, user creation, joining the system, and creating a
pseudonym took roughly 200ms in total.
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