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Abstract

The success rate is the most common evaluation metric for measuring the per-
formance of a particular side channel attack scenario. We improve on an analytic
formula for the success rate.
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1 Introduction

In [1] a general statistical model for side-channel attack analysis is proposed. Based on
this model one can calculate a success rate of an attack by numerical simulation. This
success rate is the most common evaluation metric for measuring the performance of a
particular attack scenario. In [5] it is stated:
”Closed-form expressions of success rate are desirable because they provide an explicit
functional dependence on relevant parameters such as number of measurements and
signal-to-noise ratio which help to understand the effectiveness of a given attack and how
one can mitigate its threat by countermeasures. However, such closed-form expressions
involve high-dimensional complex statistical functions that are hard to estimate.”
In the following, we will derive an analytic formula for the success rate. Simulation
experiments confirm that this analytic formula is a good approximation for the success
rate for a wide class of leakage functions.

2 Leakage model

We restrict ourselves to the case of a side-channel attack on AES. We further assume
the simplest setting:

• The attacker tries to find the 8-bit subkey k0 of a specific S-Box-computation in
the first round of AES.

• We have m measurements. m is a multiple of 256 and all plaintext inputs pw of
this S-Box are equally distributed over these m measurements.
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• The side-channel measurement is a trace of a certain number of points. We assume
that the key-dependent leakage occurs in just one point of time which is known to
the attacker.

• The measurement in this point of time is the sum of a deterministic signal and
Gaussian noise. It can be written in the form

b̃w = h̃(pw ⊕ k0) + τ̃w

h̃ is a deterministic function that only depends on the input pw ⊕ k0 of the S-Box-
computation. h̃ is completely known to the attacker. τ̃w describes the noise of the
measurement. We assume that τ̃w are realizations of m independent random vari-
ables T̃w, each one is normally distributed with known expectation and variance.
We further assume

E(T̃w) = 0, V (T̃w) = σ2,
255∑
z=0

h̃(z) = 0,
255∑
z=0

h̃(z)2 = 256δ̃2

• We can calculate the mean value of all b̃w with the same pw. In the representation
of b̃w this just reduces the variance of T̃w. Additionally, by applying a constant
factor to each b̃w we can normalize the representation of b̃w. To this end, we get a
representation in the form

bw = h(w ⊕ k0) + τw, w = 0, · · · , 255

with

E(Tw) = 0, V (Tw) = 1,
255∑
z=0

h(z) = 0,
255∑
z=0

h(z)2 = 256δ2

If we start with the representation of b̃w, the normalized representation bw has
parameter δ with

δ2 =
m

256

δ̃2

σ2

As in [1] we now apply the maximum likehihood attack: We compute the conditional
probability density function of the observations bw under each hypothesis k. We choose
as the correct key that k which maximizes the probability density function. An easy
calculation shows that we have to compare the values

255∑
w=0

(bw − h(w ⊕ k))2

This can further be reduced to the values

255∑
w=0

h(w ⊕ k)bw
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since
∑255
w=0 h(w ⊕ k)2 does not depend on k. The success rate as defined in [1] is the

probability that
Pr(Xk0 > Xk for all k 6= k0)

where Xk is the random variable

Xk =
255∑
w=0

h(w ⊕ k)(h(w ⊕ k0) + Tw)

This success rate can certainly be computed by numerical simulation of the Tw.

3 An approximation of the success rate

Let A be the 256×256-matrix with entries h(w ⊕ k). The rows of A are

ak = (h(k), . . . , h(w ⊕ k), . . . , h(255⊕ k))

Let T be the random vector (as column) of length 256 with entries Tw. Let d = A · atk0
with entries dk. We define the set R of all vectors of length 256 with entries yk that
fulfill

yk < yk0 + 256δ2 − dk for all k 6= k0

An easy calculation shows that the success rate can be written as

Pr(Xk0 > Xk for all k 6= k0) = Pr(A · T ∈ R)

A is a symmetric matrix and therefore there exists a orthonormal basis of eigenvectors
v0, . . . , v255 with corresponding eigenvalues λ0, · · · , λ255 of A. Each T can be written in
the basis of eigenvectors in the form

T = X0v0 + · · ·+X255v255

where the Xi are independent random variables with standard normal distribution. The
distribution of A · T is the image of the standard normal distribution under A. Each
vector in the distribution of T is stretched in direction of the eigenvectors of A with the
corresponding eigenvalue as factor.

A · T = λ0X0v0 + · · ·+ λ255X255v255

We easily compute
E(||A · T ||2) = 2562δ2 = λ20 + · · ·+ λ2255

Since 256 is a relatively large number the typical vector in the distribution of A · T has
square of norm 2562δ2. As a heuristic approximation for the success rate we just replace
the distribution of A ·T by the normal distribution stretched by the constant factor 16δ:

1st approx. formula: Pr(16δ · T ∈ R)
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In addition we omit the influence of d and get

2nd approx. formula: Pr(T ∈ R̃)

where R̃ is the set of all vectors tk that fulfill

tk < tk0 + 16δ for all k 6= k0

The last probability can be in fact computed as a two-dimensional integral

Pr(T ∈ R̃) =

∫ ∞
−∞

1√
2π

exp(−1

2
a2)

[∫ a+16δ

−∞

1√
2π

exp(−1

2
t2)dt

]255
da

This expression only depends on δ, so that it can easily be listed for different δ by
numerical methods. Figure 1 plots this approximated success rate as computed by
MAPLE software.

Figure 1: 2nd approx. formula. Success rate as function in δ

Remarks:

• If we start with the representation of b̃w, the success rate as computed by the 2nd
approximating formular only depends on

δ2 =
m

256

z2

σ2

• The approximating formulas are only valid if the eigenvalues do not vary too much.
As an extreme example we can consider the case that only one eigenvalue is large
whereas the others can be neglected. Let λ0 > 0 be this large eigenvalue. Then
A · T is roughly distributed as λ0X0v0. Pr(A · T ∈ R) can be written as a one-
dimensional integral over the random variable X0.

• In our approach we replaced the covariance matrix A2 by a diagonal matrix. In
effect we treated Xk as independent random variables.

• Pr(T ∈ R̃) ≥ 1
256 with equality for δ = 0. The probability of 1

256 for δ = 0 follows

from the symmetry of the set R̃.
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4 More on the matrix A

The properties of the matrix A are used in the context of dyadic codes, see [2]. In [3]
the matrix A is called dyadic matrix. Due to the structure of A we can compute the
eigenvectors of A explicitly: There are 256 GF(2)-linear functions L

L : GF(2)8 −→ GF(2)

For every L, vL = [(−1)L(w)]w is a vector of length 256. For every k we have∑
w

h(k ⊕ w)(−1)L(w) =
∑
y

h(y)(−1)L(y⊕k) = (−1)L(k)
∑
y

h(y)(−1)L(y)

Therefore, vL is an eigenvector with eigenvalue
∑
y h(y)(−1)L(y). The rank of A is the

number of non-zero eigenvalues.

5 Example: h depends on a single bit

Let S be the S-Box of the AES and G a fixed GF(2)-linear function. We assume that
the leakage function h only depends on G ◦ S, i.e. after normalization

h(w ⊕ k) = δ(−1)G(S(w⊕k))

The eigenvalues of A are now∑
y

h(y)(−1)L(y) = δ
∑
y

(−1)G(S(y))(−1)L(y)

With other words: The set of eigenvalues is exactly the Walsh spectrum of the boolean
function G ◦ S multiplied by δ. Each eigenvalue is a measure how good G ◦ S can
be approximated by a linear function L. S is the composition of the inversion over
F = GF(256) and an affine function. The Walsh spectrum of any function of the form
G ◦ S is well-known: It can be expressed by the so called Kloosterman sums, see [4].

K(a) =
∑
y∈Fx

(−1)tr(y
−1+ay)

where tr(y) denotes the trace of y over F . Any GF(2)-linear function L : F −→ GF(2)
can be written as L(y) = tr(ly) for exactly one l ∈ F . Therefore, we find c ∈ F such
that

G(S(y))⊕ L(y) = tr(cy−1 ⊕ ly) for all y ∈ F x

or
G(S(y))⊕ L(y) = tr(cy−1 ⊕ ly)⊕ 1 for all y ∈ F x

Note that for c 6= 0 ∑
y∈Fx

(−1)tr(cy
−1+ly) = K(c · l)

The distribution of the Kloosterman sums can be described by values of certain class
numbers, see [4, Prop. 9.1], which can be interpreted in terms of the Walsh spectrum.
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6 Example: h depends on the Hamming weight of the input

In this example h does not depend on the function S, but on the Hamming weight of
the input. After normalization we can write

h(w ⊕ k) = δg(w ⊕ k) and g(z) =
1√
8

((−1)z1 + · · ·+ (−1)z8)

There are exactly 8 eigenvectors with eigenvalues 6= 0 and these are given by the 8 linear
projections

vj =
1

16
[(−1)zj ]z=(z1,...,z8)

The eigenvalues of these 8 eigenvectors are equal to δ 256√
8

. We have

A · T = λ0X0v0 + · · ·+ λ255X255v255 = δ
256√

8
(X1v1 + · · ·+X8v8)

The success rate can be described as an 8-dimensional integral. We cannot expect that
the 2nd approx. formula is a good approximation in this case.
For an illustration we consider the following probability

Pr(A · T ≤ 256δ2)

where we consider the inequality in every entry of A · T . If we approximate A · T by
16δ · T we get as approximation

Pr(A · T ≤ 256δ2) ≈
[∫ 16δ

−∞

1√
2π

exp(−1

2
t2)dt

]256

The condition A · T ≤ 256δ2 is equivalent to

δ
16√

8
(X1(−1)k1 + · · ·+X8(−1)k8) ≤ 256δ2 for all k = (k1, . . . , k8)

k runs over all 256 values so that any combination of signs will occur. Therefore we get
equivalently the condition

(|X1|+ · · ·+ |X8|) ≤ 16δ
√

8

With other words: Pr(A ·T ≤ 256δ2) can be considered as the 256 times the probability
under a normal distribution of the 8-dimensional simplex given by

x1 + · · ·+ x8 ≤ 16δ
√

8, xi ≥ 0
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δ = 0.1 δ = 0.2 δ = 0.3

2nd approx. formula 0.13 0.64 0.97

h=δ(−1)f 0.12· · · 0.13 0.62· · · 0.63 0.96
h=δg ◦ P 0.12 0.62· · · 0.63 0.95· · · 0.96

h=δg 0.07 0.33 0.69

Table 1: Comparison of success rates

7 Simulation results

We computed the success rate for different h and δ by numerical simulation of the Tw.
Table 1 compares the success rate with the 2nd approximated formula. In table 1 f is
chosen as a random function GF(2)8 −→ GF(2), but uniformly distributed. P is chosen
as a random permutation on GF(2)8. g is the function from paragraph 6. We repeated
the simulation 10 times with different f and P , so that a range is given in table 1.

We note that the 2nd approximating formula and the numerical values for h = δ(−1)f

and h = δg ◦ P match very well, which is not the case for h = δg.

8 Success rate in the case of masking

Similar to [5], we can apply the 2nd approximating formula to the case of masking. For
a concrete example, we adapt our leakage model in the following way:

• We have m measurements. m is a multiple of 256 and all plaintext inputs pw of
this S-Box are equally distributed over these m measurements.

• There are exactly two points of time when meaning-full leakages occur. Both points
of time are known to the attacker. One leakage is mask-dependent; the other one
is key-dependent, but on the input of an S-Box-computation.

• The measurements can be written in the form

b̃′w = µ(pw ⊕ k0 ⊕mw) + τ̃ ′w

b̃′′w = µ(mw) + τ̃ ′′w

µ is a centralized form of the Hamming weight, i.e.

µ(z) = (−1)z1 + · · ·+ (−1)z8

τ̃ ′w and τ̃ ′′w describe the noise of the measurement. We assume that τ̃ ′w and τ̃ ′′w
are realizations of 2m independent random variables T̃ ′w, T̃ ′′w, each one is normally
distributed with expectation 0 and variance σ2. mw describes the mask. mw are
the realizations of m independent uniformly distributed random variables Mw on
GF(256).

7



We set

cν =
256

m

∑
w,pw=ν

b̃′w b̃
′′
w

The sum is taken over m
256 realizations of independent random variable. For any fixed

mask mw, we compute

E((µ(pw ⊕ k0 ⊕mw) + T̃ ′w)(µ(mw) + T̃ ′′w)) = µ(pw ⊕ k0 ⊕mw)µ(mw)

and

V ((µ(pw ⊕ k0 ⊕mw) + T̃ ′w)(µ(mw) + T̃ ′′w))

= E((µ(pw ⊕ k0 ⊕mw) + T̃ ′w)2(µ(mw) + T̃ ′′w)2)− µ(pw ⊕ k0 ⊕mw)2µ(mw)2

= σ2(µ(pw ⊕ k0 ⊕mw)2 + µ(mw)2) + σ4

If m
256 is not too small, we approximate cν as realizations of 256 independent normally

distributed random variables, each with expectation

256

m

∑
w,pw=ν

µ(pw ⊕ k0 ⊕mw)µ(mw) =
256

m

∑
w,pw=ν

µ(ν ⊕ k0 ⊕mw)µ(mw)

and variance (
256

m

)2 ∑
w,pw=ν

(
σ2(µ(ν ⊕ k0 ⊕mw)2 + µ(mw)2) + σ4

)
Again if m

256 is not too small, we approximate these sums by the expectation over the
random variables Mw. An easy calulation shows

256

m

∑
w,pw=ν

µ(pw ⊕ k0 ⊕mw)µ(mw) ≈ µ(ν ⊕ k0)

and (
256

m

)2 ∑
w,pw=ν

(
σ2(µ(ν ⊕ k0 ⊕mw)2 + µ(mw)2) + σ4

)
≈ 256

m
(16σ2 + σ4)

Since
∑
z µ(z)2 = 8 · 256 we can apply the leakage model of paragraph 2 with

δ2 =
8m

256(16σ2 + σ4)
=

m

32(16σ2 + σ4)

Given the measurements b̃′w, b̃
′′
w, we directly compare the values∑

ν

µ(ν ⊕ k)cν

for different k and decide for the k with the largest value. For large m, we can expect
that the success rate of this ad-hoc attack only depends on δ2 = m

32(16σ2+σ4)
. Table 2
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σ = 37.6 σ = 26.6 σ = 21.6
δ = 0.1 δ = 0.2 δ = 0.3

Simulation 0.07 0.32 0.7
h = δg 0.07 0.33 0.69

Table 2: Success rates in the case of masking (m = 10 · 2562, input-dependency)

gives the success rates of this attack computed by numerical simulation. We compare
this success rates with the values for the example from paragraph 6 (h = δg). Note that
the values match very well.

Table 3 gives similar data, but for m = 2562.

σ = 21.1 σ = 14.8 σ = 11.9
δ = 0.1 δ = 0.2 δ = 0.3

Simulation 0.08 0.34 0.72
h = δg 0.07 0.33 0.69

Table 3: Success rates in the case of masking, (m = 2562, input-dependency)

Remark:
The leakage in b̃′w depends on the input of an S-Box-computation. We can certainly
consider the case, that the leakage depends on the output of an S-Box-computation, i.e.

b̃′w = µ(S(pw ⊕ k0)⊕mw) + τ̃ ′w

The computation is completely analog, but we expect that the 2nd approximating for-
mula applies. Table 4 and 5 compares the numerical values for the success rate with the
2nd approximating formula.

σ = 37.6 σ = 26.6 σ = 21.6
δ = 0.1 δ = 0.2 δ = 0.3

Simulation 0.13 0.63 0.96
2nd approx. formula 0.13 0.64 0.97

Table 4: Success rates in the case of masking, (m = 10 · 2562, output-dependency)
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σ = 21.1 σ = 14.8 σ = 11.9
δ = 0.1 δ = 0.2 δ = 0.3

Simulation 0.12 0.62 0.96
2nd approx. formula 0.13 0.64 0.97

Table 5: Success rates in the case of masking, (m = 2562, output-dependency)
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