
Information-Theoretic Broadcast

with Dishonest Majority for Long Messages

Wutichai Chongchitmate∗1 and Rafail Ostrovsky†2

1Department of Mathematics and Computer Science, Faculty of Science,
Chulalongkorn University, Bangkok, Thailand

wutichai.ch@chula.ac.th
2Department of Computer Science and Department of Mathematics,

University of California, Los Angeles, USA
rafail@cs.ucla.edu

Abstract

Byzantine broadcast is a fundamental primitive for secure computation. In a setting with
n parties in the presence of an adversary controlling at most t parties, while a lot of progress
in optimizing communication complexity has been made for t < n/2, little progress has been
made for the general case t < n, especially for information-theoretic security. In particular, all
information-theoretic secure broadcast protocols for `-bit messages and t < n and optimal round
complexity O(n) have, so far, required a communication complexity of O(`n2). A broadcast
extension protocol allows a long message to be broadcast more efficiently using a small number of
single-bit broadcasts. Through broadcast extension, so far, the best achievable round complexity
for t < n setting with the optimal communication complexity of O(`n) is O(n4) rounds.

In this work, we construct a new broadcast extension protocol for t < n with information-
theoretic security. Our protocol improves the round complexity to O(n3) while maintaining
the optimal communication complexity for long messages. Our result shortens the gap between
the information-theoretic setting and the computational setting, and between the optimal com-
munication protocol and the optimal round protocol in the information-theoretic setting for
t < n.

∗Work done while the author was at Department of Computer Science, University of California, Los Angeles.
†Research supported in part by NSF grant 1619348, DARPA SafeWare subcontract to Galois Inc., DARPA

SPAWAR contract N66001-15-1C-4065, US-Israel BSF grant 2012366, OKAWA Foundation Research Award, IBM
Faculty Research Award, Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata Research
Award, and Lockheed-Martin Corporation Research Award. The views expressed are those of the authors and do
not reflect position of the Department of Defense or the U.S. Government.

1

1 Introduction

A (Byzantine) broadcast protocol allows a party, called “sender,” to distribute a message among n
parties such that (1) all honest parties receive the same message, and (2) if the sender is honest,
the received message is indeed sent from the sender. This guarantee holds even in the presence
of a malicious adversary corrupting up to t parties, possibly including the sender. The adversary
controls the behavior of the corrupted parties and may divert from the protocol.

Broadcast is one of the most fundamental primitives used in cryptographic protocols—especially
secure multi-party computation (MPC). Most MPC protocols assume broadcast is given by default.
However, without a specific hardware setup, broadcast must be built from point-to-point commu-
nications. While efficient broadcast can be done with an honest majority, the opposite case is much
more common in applications.

Although a lot of progress has been made to improve broadcast protocol in the honest ma-
jority case, the best-known result for any number of corruptions has not seen any improvement
since [DS83] for computational security and [PW96] for information-theoretic security.

Traditionally, broadcast protocols are designed for single bits [PSL80]. However, most appli-
cations that use broadcast as a subprotocol often broadcast long messages. While any broadcast
protocol can be used multiple times in parallel to broadcast messages of any length, it leads to
inefficiency, especially in communication complexity.

Broadcast extension protocol, introduced in [TC84], uses bit broadcast (or broadcast for fixed-
length messages) as a subprotocol, similar to oblivious transfer (OT) extension [Bea96, IKNP03,
NNOB12, LZ13]. The goal is to reduce the communication complexity of broadcasting long mes-
sages, compared to trivially executing multiple broadcast protocols.

Broadcast with Dishonest Majority Unlike when the number of corrupted parties t < n/3,
it has been shown that broadcast for t < n cannot be achieved in the plain model [PSL80]. To
circumvent the impossibility result, Dolev and Strong considered the broadcast protocol in the
setup model [DS83]. They implemented broadcast from any public-key signature assuming public-
key infrastructure (PKI) for distributing signing and verification keys for the signature scheme.
Their protocol achieves the lower bound Ω(n) on the round complexity, and Ω(n2) on the number
of messages exchanged.

For the information-theoretic case, Pfitzmann and Waidner introduce the notion of pseudosig-
nature [PW92], formalizing unconditionally secure signature in [CR90], to replace the public-key
signature in [DS83]. The resulting protocol [PW92, PW96] is in the correlated randomness model
where each party holds a random string generated from some joint distribution instead of PKI.
Similar to the computational case, this protocol achieves the lower bound on the round complexity
and the number of messages exchanged.

In terms of communication complexity, the broadcast protocol of [PW96] uses O(`n2+n6λ) bits
of communication, while that of [DS83] uses O(`n2 + n3λ) bits to broadcast a message of length
`. In both protocols, a sender sends a message and a corresponding signature to every party, who
then sign and pass the message to all other parties in the first two rounds.

In fact, [DR85] shows that any broadcast protocol must communicate at least Ω(n2) bits.
Thus, to broadcast a message of length ` directly using such protocol requires at least Ω(`n2) bits
of communication. To circumvent this limitation, an extension protocol is designed to reduce the
multiplicative factor to the length ` of the message to lower than n2 while increasing the part that
is independent of `, thus reducing the overall communication complexity when `� λ. Since every
party must receive the message, the lower bound on the communication complexity is Ω(`n).

2

Broadcast Extension While Turpin and Coan [TC84] introduced the construction of a broad-
cast protocol for long messages from bit broadcast, their protocol tolerating t < n/3 has the
communication complexity of O(`n2 + n(B(1))), where B(s) is the communication complexity
of s-bit broadcast. Fitzi and Hirt [FH06] first showed how to achieve broadcast with communi-
cation complexity O(`n + poly(n, λ)) in an information-theoretic setting tolerating t < n/2 with
poly(n, λ) = n3λ+nB(n+λ). Liang and Vaidya [LV11] later constructed perfectly secure broadcast
tolerating t < n/3 with communication complexity O(`n+

√
`n2B(1) +n4B(1)), and Patra [Pat11]

improved it to O(`n+n2B(1)). As mentioned earlier, the best result for communication complexity
in an information-theoretic setting tolerating t < n is by Hirt and Raykov [HR14] with commu-
nication complexity O(`n+ (n4 + n3λ)B(1)) and round complexity O(n4). They also constructed
another protocol based on collision-resistant hash functions (CRHF) in the same setting with com-
munication complexity O(`n + (n2 + nλ)B(1)) and round complexity O(n3). The CRHF-based
construction is later improved in round complexity by Ganesh and Patra [GP17] to O(n2), while
communication complexity slightly increases to O(`n+ (nλ+ n3 log n)B(1)).

Round Complexity of Broadcast Protocols While broadcast can be accomplished in constant
round with honest majority, [DS83] shows that a broadcast protocol secure against an adversary
corrupting any number of parties requires at least O(n) rounds. In the t < n/3 and t < n/2
settings, the broadcast extension protocols achieve optimal constant round complexity similar to
that of bit broadcast [GP17]. [HR14] first achieved broadcast protocols for `-bit messages using
O(`n) communication complexity for t < n with round complexity O(n3) for computational security
and O(n4) for information-theoretic security, respectively. They left an open question:

Are there broadcast protocols with O(`n) communication complexity for t < n with round
complexity lower than O(n3) for computational security and lower than O(n4) for

information-theoretic security?

[GP17] answered the first part of the question: they constructed a computationally secure protocol
with communication complexity of O(n2). This result still leaves the second part of the open
question unsolved.

1.1 Our Results

We construct a broadcast extension protocol in the information-theoretic setting against adversaries
corrupting up to t < n parties. Our result improves the current best-known result in the same
setting of [HR14] in round complexity by a multiplicative factor of n while maintaining the same
communication complexity. More formally, we obtain the following theorem.

Theorem 1.1. Assuming an oracle for broadcasting short messages, there exists a broadcast pro-
tocol achieving information-theoretic security in t < n setting for an `-bit message in O(n2) rounds
by communicating O(`n+n3(B(λ) +nB(log n))) bits, where B(l) is the communication complexity
of broadcasting l bits.

Thus, combining the above result with the broadcast protocol of [PW96] gives the following
corollary.

Corollary 1.2. There exists a broadcast protocol achieving information-theoretic security in t < n
setting for an `-bit message in O(n3) rounds by communicating O(`n+ n10λ) bits.

This result shortens the gap in round complexity between the information-theoretic case and
the computational case where O(n2) rounds is achieved in [GP17]. Closing this gap entirely is left
as an open question.

3

1.2 Our Techniques

Block broadcast The traditional broadcast protocol of [DS83] for t < n prevents a corrupted
sender from sending different values to different receivers using signature (or pseudosignature for
information-theoretic security [PW92, PW96]). The receivers then send their signed values to each
other. This means in order to broadcast a message m, both m and the corresponding signature
need to be sent and received O(n2) times. Thus, the communication complexity of broadcasting
a message of length ` is at least O(`n2). Similar to the existing broadcast extension protocols
in literature [HR14, GP17], a sender in our broadcast protocol cuts a long message into multiple
blocks. Each block is sent via point-to-point channels—first from the sender, and later from any
parties publicly known to hold the block. Then a broadcast protocol for short messages (multiple
times, but independent of `) is used to verify the correctness of the blocks using a universal hash
function as in [HR14]. This keeps the multiplicative factor in the communication complexity linear
in n instead of n2. Similar to [HR14], our protocol processes one block at a time sequentially.

Multi-party block sending In [HR14], each block is sent between one pair of parties at a time.
In order to improve the round complexity, we use the technique in [GP17] for the computational
security setting where a block is sent between multiple pairs of parties at the same time. In each
round, a block is sent to every party not holding the block and satisfying a certain condition from
a designated party that holds the block and is still trusted by the receiving party. In particular, if
all parties are honest, they will all receive a block in one round.

Checking block validity In order to ensure that all honest parties receive each message block
with the same value, we use a universal hash function similar to the protocol in [HR14]. Once
a party receives a block from the designated party, it will randomly generate and broadcast a
universal hash function key. The original sender Ps will respond by broadcasting the hash value of
the block. All parties holding a block will also compute the hash values of their own blocks and
compare to the value broadcast by Ps. They then broadcast whether or not the values are the
same. Unlike in [HR14], multiple sessions of this correspondence can happen in parallel—one for
each pair of parties transmitting a block. In order to guarantee that blocks received by multiple
honest parties in the same round have the same value, we also require parties that just receive
blocks to broadcast their hash checking result as well.

Trust graph We combine and expand the techniques for keeping track of a party’s interactions
in [HR14] and [GP17]. As in [HR14], each party collectively keeps track of conflict between each
pair of parties. A conflict occurs between two parties Pa and Pb—both holding a block with Pb

receiving a block from Pa earlier in the protocol—if one approves a hash value from Ps while another
rejects it. In [GP17], each party instead keeps track of a set of corrupted parties from their own
perspective. In both constructions, a party only tries to obtain a block from another party if it is
not in conflict with that party or the party is not corrupted. We expand this idea to the concept
of the public trust graph. A trust graph starts as a complete graph where vertices are all parties.
When a pair of parties are in conflict in the same sense as in [HR14], an edge between them is
removed. If a party publicly does not follow the protocol, it will be isolated in the trust graph.
While the conflict set in [HR14] can be directly translated to our trust graph, we make additional
use of the graph property to strengthen our protocol.

Condition to forfeit a block Unlike the collision-resistant hash function used in [GP17], a
universal hash function cannot be computed once and for all. If an adversary knows a hash key

4

before it chooses whether to send a block, it can find a different block that hashes to the same
value. In order to get around this limitation, the protocol in [HR14] lets the receiver choose a new
hash key after it receives a block via point-to-point channel.

However, the verification in [HR14] is done separately for each receiver. In the situation where
the sender Ps and block holders Pa and Pb collude, they can approve two different block values for
honest Pi and Pj , who receive blocks from Pa and Pb, respectively. When Pj learns of the conflict
between Pa and Pi, it cannot tell which of Pa and Pi is corrupted. In this case, Pj removes an
edge {Pa, Pi} from its trust graph. Since the conflict is known to every honest party via broadcast,
the honest parties can maintain a consistent trust graph locally. In [HR14], whenever such conflict
occurs, Pj must forfeit the block it has. Any pairs of parties in conflict do not send or receive a
block from one another ever again across all message blocks. This guarantees that any two honest
parties hold message blocks with the same value. As in [HR14], this means that each honest party
may need to receive a block more than once. Since the trust graph has O(n2) edges, such a conflict
can occur at most O(n2) times. By dividing the message into blocks appropriately, [HR14] can
keep the communication complexity to the optimal O(`n+poly(n, λ)). However, our parallel block
sending further increases the number of such forfeits as more than one party may try to get a block
and fail at the same time. We solve this problem by implementing a stronger condition for a party
to forfeit a block. Namely, Pj only forfeits a block when there is no trust path of block holders
from Pj to Ps. Together with the next technique to increase the number of such paths, we can also
keep the communication complexity the same as in [HR14].

Condition to receive a block In order to reduce the number of forfeits which leads to an
increase in communication complexity, we add additional conditions for when a party is to be sent
a block. The idea is to make it harder for an adversary to force a party, who has already received a
block, to forfeit it in a later round. The protocol in [HR14] uses a tree with Ps as a root to represent
how a block is sent between parties. However, their protocol entirely resets this tree whenever a
conflict occurs. Doing so, along with the parallel block sending technique, leads to an increase
in both round complexity and communication complexity by a factor of n. Our first solution is,
instead of resetting the tree, to disconnect the pair in conflict and remove those no longer connected
to Ps. Unfortunately, this does not solve the problem. An adversary can still force a long path
between Ps and honest parties, and repeatedly disconnect them from Ps. Instead, our protocol
uses a graph Hj to represent the connection for jth block. Hj is an induced subgraph of the trust
graph G on a subset of parties that have received a block. Due to the verification via universal
hash function, all honest parties in Hj hold a block with the same value. When a party Pi is added
to Hj , we add all edges between Pi and all parties in Hj that connect to Pi in G as well. Thus,
in order for a party to be removed from Hj—which is equivalent to forfeiting a block—all of its
neighbors in Hj need to be removed as well.

Varying block size Our protocol takes O(dj + ∆j) rounds to broadcast the jth block, where
dj is the maximum distance between the sender and receiving parties in the trusted graph and ∆j

is the number of edges removed from the graph while broadcasting the block. If the blocks are of
the same size either `/n2, as in [HR14], or `/n, as in [GP17], the resulting protocol will provide
no improvement in round complexity. We solve this problem by using a non-constant block size of
`dj−1/n

2. Since 1 ≤ dj−1 ≤ n, our block size is between that of [HR14] and [GP17]. In the case
of an honest sender, dj = 1 for all j, we get the same block size as in [HR14]. Intuitively, as the
corrupted parties are known and the distance from receiving parties in G grows, we want to send
a larger block because the number of edges that can be disconnected is smaller. It is more difficult

5

for the corrupted parties to make the honest parties resend a block.

2 Definitions

Let λ denote the security parameter. A negligible function ν(λ) is a non-negative function such
that for any constant c < 0 and for all sufficiently large λ, ν(λ) < λc. We will denote by Prr[X] the
probability of an event X over coins r, and Pr[X] when r is not specified. For a randomized algo-
rithm A, let A(x; r) denote running A on an input x with random coins r. If r is chosen uniformly
at random with an output y, we denote y ← A(x). Let P be a set of n parties {P1, . . . , Pn}. For
a finite subset A ⊂ U , let A denote U \A when U is clear from context. For a vertex v of a graph
G, we may use v ∈ G to denote v ∈ V (G).

Definition 2.1 (Byzantine Broadcast). A protocol Π for a set of n parties P, with secure private
channel between every pair of parties, and a distinguished party Ps for some s ∈ [n], called a sender,
who holds an input m ∈M, is a secure (Byzantine) broadcast protocol if, at the end of the protocol,
the following holds except with negligible probability:

• All honest parties output the same value m′ ∈M∪ {⊥}; and

• If the sender Ps is honest, m′ = m.

Definition 2.2 (Universal Hash Function). A family of functions {Hk}k∈SH where Hk :M→ Y
is ε-universal if for any two distinct m,m′ ∈M,

Pr[k ← SH : Hk(m) = Hk(m′)] ≤ ε.

A universal hash function can be constructed as follows. Let SH = Y = F = F2λ . Let
m ∈M = {0, 1}` be represented by a polynomial m(x) over F by cutting m in blocks of size λ. We
compute Hk(m) = m(k) ∈ Y .

3 Broadcast Extension

In this section we give an overview of the broadcast constructions of [HR14] and [GP17].

3.1 Information-Theoretic Secure Broadcast in O(n4) Rounds

We first describe the broadcast extension protocol of [HR14]. Informally, the sender Ps cuts a
long message into blocks. The protocol broadcasts each block sequentially using ITBlockBC. The
subprotocol ITBlockBC works as follows. In each loop, a party Pa who has the block sends it to
another party Pb that has not received it. Pb then generates and broadcasts a key k for information-
theoretically secure universal hash function. Next, Ps computes and broadcasts the hash value of
the block using the received key. Every party that has the block responds as to whether the block
they have gives the same hash value. If there is a pair of parties Pc and Pd where Pd has received
a block from Pc and the two disagree on the hash value, the subprotocol is restarted and {Pc, Pd}
is added to a “dispute set” where they will not interact again. This set is kept across multiple
executions of ITBlockBC—one for each block. Thus, the conflict can only occur at most O(n2)
times across the executions. When no such conflict occurs, each execution of ITBlockBC takes O(n)
rounds with oracle access to (short) broadcast. By cutting the message into n2 blocks, the protocol
gives O(n3) rounds with the oracle access, and O(n4) rounds when the oracle is substituted by an
O(n)-round broadcast protocol of [PW96].

6

Let {Hk}k∈SH be a family of universal hash functions with seeds in SH . Let P = {P1, . . . , Pn}
be a set of all parties. We describe the protocol ITBlockBC in Figure 1.

ITBlockBC(Ps,m)
For each party Pi on input dispute set ∆.

1. Initialize a set H = {Ps} and T = ∅.

2. While ∃Px, Py ∈ P such that Px ∈ H, Py ∈ H and {Px, Py} /∈ ∆ do the following:

Round 1: Px sends mx to Py via point-to-point channel. Py sets my := mx. Add (Px, Py) to
T .

Round 2: Py generates and broadcasts k ← SH .

Round 3: Ps broadcasts h := Hk(m).

Round 4: ∀Pi ∈ H ∪ {Py} \ {Ps} if h = Hk(mi) broadcasts 1; otherwise, 0.

Round 5: If all parties broadcast 1, add Py to H. Else,

– for all (Pi, Pj) ∈ T such that Pi broadcast 1 or Pi = Ps and Pj broadcast 0, add
{Pi, Pj} to ∆; and

– set H = {Ps} and T = ∅.

3. ∀Pi ∈ P, if Pi ∈ H, output mi; otherwise, output ⊥.

Figure 1: Information-Theoretic Block Broadcast of [HR14]

The broadcast protocol can be obtained by running ITBlockBC n2 times as shown in Figure 2

LongBC(Ps,m)

1. Parties initialize dispute set ∆ = ∅.

2. Sender Ps cuts m into n2 equal pieces m1, . . . ,mn2
(padding if required).

3. For c = 1, . . . , n2, invoke ITBlockBC(Ps,m
c) and let mc

i be the output of Pi.

4. For each Pi ∈ P, if mj
i = ⊥ for some j, output ⊥. Otherwise, output m1

i || . . . ||mn2

i .

Figure 2: Broadcast Extension Using ITBlockBC

Theorem 3.1 ([HR14]). Assuming an oracle for broadcasting short messages, there exists a broad-
cast protocol LongBC achieving information-theoretic security in t < n setting for an `-bit message
in O(n3) rounds by communicating O(`n+ n3(B(λ) + nB(1))) bits.

Corollary 3.2 ([HR14]). There exists a broadcast protocol achieving information-theoretic security
in t < n setting for an `-bit message in O(n4) rounds by communicating O(`n+ n10λ) bits.

7

3.2 Computationally Secure Broadcast in O(n2) Rounds

The construction of [GP17] improves on the computational case of [HR14]. In [HR14] a long message
is broadcast in blocks similar to the information-theoretic case above. Instead of generating a new
key for universal hash function every time a party receives a block, the sender Ps broadcasts a
hash value of the block using collision-resistant hash function (CRHF) at the beginning of the
subprotocol. When a party Pb receives a block from Pa, he can verify it locally with no additional
interaction. If the verification fails, Pb knows that Pa is corrupted. Thus, the failure can occur at
most O(n) times. By cutting the message into n blocks, the protocol gives O(n2) rounds with the
oracle access, and O(n3) rounds when the oracle is substituted by O(n)-round broadcast protocol
of [PW96].

In [GP17] this protocol is improved by allowing multiple parties to send and receive a block in
the same round. Several checks are added to ensure that this parallel process does not break the
correctness and security. This technique speeds up the protocol by a factor of n.

Let Hash be a collision-resistant hash function. We describe the protocol CryptoBC in Figure 3.

Theorem 3.3 ([GP17]). Assuming an oracle for broadcasting short messages and CRHFs, there
exists a broadcast protocol CryptoBC against a PPT adversary corrupting t < n parties for an `-bit
message in O(n) rounds by communicating O(`n+ (nλ+ n3 log n)B(1)) bits.

Corollary 3.4 ([GP17]). Assuming CRHFs, there exists a broadcast protocol against a PPT ad-
versary corrupting t < n parties for an `-bit message in O(n2) rounds by communicating O(`n +
n6λ log n) bits.

4 Our Construction

In this section we show how to improve information-theoretic secure broadcast for long messages
in [HR14]. In [GP17], Ganesh et al. show that it is possible to broadcast a message of arbitrary
length ` using O(n) rounds having O(n) black-box access to a broadcast protocol for single bit,
assuming CRHF. Thus, combining the result with [DS83] gives a broadcast protocol for a message
of arbitrary length in O(n2) rounds under the same assumption. On the other hand, the best
result for information-theoretic broadcast for arbitrary long messages by [HR14] uses O(n3) rounds
having O(n3) black-box access to a broadcast protocol for single bit. Thus, combining the result
with [PW92, PW96] gives a broadcast protocol in O(n4) rounds. We show that several techniques,
including parallel block broadcast in [GP17], can be used to improve this result to O(n3) rounds.

We first describe a protocol ImprovedBlockBC that broadcasts a block of a long message using
an oracle broadcasting short messages. Besides the message block as an input of the sender, each
party Pi maintains a trust graph Gi across executions of ImprovedBlockBC for all message blocks.
While our trust graph and the dispute set in [HR14] provide similar information, our protocol
takes into account some properties of graph such as the length of a shortest path between a pair
of nodes. Finally, we describe our broadcast protocol ImprovedLongBC running ImprovedBlockBC
as a subprotocol. This protocol is similar to LongBC (in Section 3) but with a varying number of
blocks depending on the state of the trust graph at the end of each execution of ImprovedBlockBC.

4.1 Improved Block Broadcast

The protocol ImprovedBlockBC modifies ITBlockBC (in Section 3) using several techniques. Similar
to ITBlockBC, each party uses a universal hash function to verify whether a block it receives is
“correct”—meaning that all honest parties agree on the value of the message block. To speed

8

CryptoBC(Ps,m)
Hash Agreement phase:

1. Ps cuts m into n equal pieces m1, . . . ,mn (padding if required).

2. For c = 1, . . . , n, Ps computes and broadcasts hc = Hash(mc) to all parties.

Block Agreement phase: For each party Pi

1. Initialize

• Ci = ∅, ci = 1, r = 1;

• T k
i [j, l] = 1 for j, l, k ∈ [n];

• Hk
i = {Ps} for k ∈ [n];

2. While r ≤ n+ t do

(a) If Pi ∈ H
ci
i , ∃Pj ∈ Hci

i \ Ci and |Hci
i ∪ Ci| ≥ r − ci + 1, broadcast (send, j, ci).

(b) Let (send, x, y) be the output of the broadcast from Pj /∈ Ci.

i. if T y
i [x, j] = 1 and there is only one broadcast from Pj , then set T y

i [x, j] = 0,
and if x = i and Pi ∈ Hy

i , send my
i to Pj via point-to-point channel;

ii. else, add Pj to Ci.

(c) If Pi broadcast (send, j, ci) in Step 2(a), let mci
j be the message block received from

Pj

i. if hci = Hash(mci
j), then increment ci by 1, set mci

i = mci
j and broadcast

(happy, Hci
i , Ci, ci);

ii. else, broadcast (unhappy, ci) and add Pj to Ci.

(d) Let v be the output of the broadcast from Pj /∈ Ci in Step 2(c) who broadcast
(send, ?, ?) in Step 2(a) this round

i. if v = (happy, Hx
j , Cj , x), Hx

j ∪ Cj ⊆ Hx
i ∪ Ci and |Hx

j ∪ Cj | ≥ r − x + 1, then
add Hx

j ∪ {Pj} to Hx
i ;

ii. if v = (unhappy, x) do nothing;

iii. else, add Pj to Ci.

(e) If r = ci + t and Pi ∈ H
ci
i , then exit while loop.

3. If mk
i = ⊥ for some k ∈ [n], output ⊥. Otherwise, output m1

i || . . . ||mn
i .

Figure 3: Computationally Secure Broadcast of [GP17] against t < n corruption

9

up the protocol, it also employs some of the parallel processing technique in [GP17]. Similar to
CryptoBC of [GP17], ImprovedBlockBC allows multiple pair of parties to send and receive blocks at
the same time. Additional conditions are checked to ensure that all honest parties agree on which
parties sending and receiving blocks at all time. When all parties follow the protocol honestly,
every party receives the block concurrently and ImprovedBlockBC terminates in O(1) round (with
oracle access to short broadcast). On the other hand, ImprovedBlockBC operates on one block at
time, unlike CryptoBC where different pairs of parties may send and receive different blocks at the
same time. This is unavoidable due to the weaker guarantee of universal hash functions compared
to that of collision-resistant hash functions.

We replace the dispute set ∆, the set H of parties that have already received a block, and the
history set T with a trust graph Gi and a graph Hi. While they contain the same information,
we utilize the graph properties including connectivity and path length in our protocol. Similar to
ITBlockBC, a party may forfeit a block due to conflict in universal hash value. Instead of resetting
the block broadcast entirely as in ITBlockBC—which can lead to larger round complexity—we
minimize the number of such forfeits using two techniques. First, a party Pj is only sent a block
when all of its neighbors in the trust graph that are closer to the sender already have the block.
(In that case, we say Pj is “ready to receive a block.”) Second, Pj only forfeits a block if it is
disconnected to Ps in Hi, which only occurs when all of the neighbors above are also disconnected.

Let {Hk}k∈SH be a family of universal hash functions with seeds in SH . Let P = {P1, . . . , Pn}
be a set of all parties with fixed ordering, e.g., P1 > P2 > . . . > Pn. Each party Pi keeps its trusted
graph Gi, where each node represents a party in P, throughout ImprovedBlockBC for all message
blocks. In the beginning of the first block, Gi is initialized to a complete graph Cn. If a broadcast
protocol from Pa fails, Pi isolates Pa in Gi by removing all edges connecting to Pa. Let G(Ps)
denote the connected component of G containing Ps. We describe the protocol ImprovedBlockBC in
Figure 4. Note that all broadcasts in the same step can be done in parallel. Pi ignores all messages
it does not expect as specified by the protocol.

Definition 4.1. Let G be a graph on P and H ⊆ G(Ps). We say Pj is ready to receive a block
from Pi with respect to (H,G,Ps) if all of the following holds:

• Pj is a neighbor of Pi in Gi;

• Pj /∈ H;

• For every shortest path from Pj to Ps, (Pj , Pjk , . . . , Ps), Pjk ∈ H;

• Pi is the maximal such Pjk (with respect to the ordering given above).

Now we prove the following properties of ImprovedBlockBC. The following lemma shows that Gi

and Hi of honest parties are the same as they are only updated using information that is broadcast.

Lemma 4.2. Suppose all honest parties hold the same Gi at the beginning of ImprovedBlockBC.
Then, at the end of each while loop, all honest parties hold the same Gi and Hi.

Proof. Assuming all honest parties hold the same Gi and Hi at the beginning of a while loop. Then
in Round 1,2 and 3, all honest parties agree whether Py is ready to receive a block from Px. Then,
by the agreement property of broadcast, all honest parties agree on edge removal of Gi in Round 3
and hold the same recording (ky, Px, Py)’s. Also by the agreement property, all honest parties agree
on edge removal of Gi in Round 4 and 5. Finally, by the agreement property and the consistency
of GI , they also agree on modification of Hi in Round 5. Since the honest parties hold the same
Gi and initialize the same Hi at the beginning of the protocol, the consistency of Gi and Hi holds
at the end of each while loop.

10

ImprovedBlockBC(Ps,m)
For each party Pi on input a trust graph Gi.

1. Initialize a graph Hi ⊆ Gi(Ps) with only one vertex Ps and no edge.

2. While Pi ∈ Gi(Ps) and |V (Hi)| < |V (Gi(Ps))|, clear all records and do

Round 1: If Pi ∈ Hi, for each Pj ready to receive a block from Pi with respect to (Hi, Gi, Ps)
Pi sends mi to Pj via point-to-point channel.

Round 2: If Pi /∈ Hi and is ready to receive a block from Pj with respect to (Hi, Gi, Ps),

(a) if Pi does not receive mj or receive more than one block from Pj in Round 1,
broadcast (fail, Pj) and remove {Pi, Pj} from E(Gi);

(b) else, sample k ← SH and broadcast (k, Pj) and record (k, Pj , Pi).

Round 3: When Pi outputs (Ay, Px) broadcast by Py, if {Px, Py} /∈ E(Gi) or Py is not ready
to receive a block from Px with respect to (Hi, Gi, Ps), isolate Py in Gi. Else

(a) if Ay = fail, remove {Px, Py} from E(Gi);

(b) if Ay = ky, record (ky, Px, Py);

(c) if Pi = Ps, broadcast (Hky(m), Py);

(d) if Pi receives multiple broadcast messages from Py this round or Ay is not one
of the above, isolate Py in Gi.

Round 4: When Pi outputs (hy, Py) broadcast by Ps, if (ky, Px, Py) is not recorded, output
⊥ and abort; else if Pi ∈ Hi or received mj in Round 1, check if Hky(mi) = hy or
Hky(mj) = hy, respectively. Broadcast (true, Py) or (false, Py) accordingly. If there
exists a record (ky, Px, Py) without (hy, Py) broadcast, output ⊥ and abort.

Round 5: When Pi outputs (true, Py) or (false, Py) with (ky, Px, Py) recorded broadcast by Pb

either in Hi or with (kb, Pa, Pb) recorded, Pi appends (Pb, true/false) to the recording
(ky, Px, Py). Isolate any Pb broadcasting both (true, Py) and (false, Py), or Pb either
in Hi or with (kb, Pa, Pb) recorded broadcasting neither. At the end of this round,
Pi processes each recorded (ky, Px, Py, . . .) one by one in the order of Py as follows.

(a) For each Pb ∈ Hi whose (Pb, false) is appended,

i. for each Pa, Pb’s neighbor in Gi, if (Pa, true) is appended (or Pa = Ps),
remove {Pa, Pb} from E(Gi) and E(Hi);

ii. remove Pb from Hi.

(b) For each Pb with (kb, Pa, Pb, . . .) recorded, if (Pa, true) is appended (or Pa = Ps),
remove {Pa, Pb} from E(Gi) and append fail to (kb, Pa, Pb, . . .).

(c) Ignore Pb that is removed from Hi earlier this round.

After processing all records, remove any Pa no longer connected to Ps in Hi from
Hi. For each recorded (ky, Px, Py, . . .), if Px is still in Hi, {Px, Py} is still in E(Gi)
and no fail appended, add Py to V (Hi) and {Px, Py} to E(Hi) and if Pi = Py, set
mi = my.

3. If Pi ∈ Hi, output mi. Otherwise, output ⊥.

Figure 4: Improved Block Broadcast

11

From this point onward, we assume all honest parties hold the same Gi at the beginning of
ImprovedBlockBC, and denote the same Gi and Hi for all honest Pi by G and H, respectively. The
following lemma shows the consistency of the values hold by honest parties. We use the property
of universal hash functions when the keys are chosen uniformly at random by honest parties.

Lemma 4.3. Except with negligible probability, at the end of each while loop, all honest parties in
H hold the same value m.

Proof. Assume that at the beginning of a loop, all honest parties in H hold the same value m.
Suppose Pi is an honest party added to H in this loop. The statement holds trivially if there is no
other honest party in H at the end of the loop. Suppose there is another honest party Pj in H at
the end of the loop. Then Pi broadcasts (kj , Pa) for some Pa ∈ H in Round 2 and Ps broadcasts
(hi, Pi) in Round 3. Also, Pj broadcasts (true, Pi) in Round 4; otherwise, Pj would be removed
from or not added to Hi. Since Pi and Pj are honest Hki(ma) = Hki(mj) = hi. By the property
of universal hash function, since ki is chosen honestly independent of the messages, except with
negligible probability, ma = mj = m. The result follows as the first loop has V (H) = {Ps}.

Let Good be the event that, at the end of each while loop, all honest parties in H hold the same
value m.

Lemma 4.4. Assuming the event Good occurs, for any two different honest parties Pi and Pj,
{Pi, Pj} ∈ E(G) at any point in the protocol. Furthermore, at the end of the protocol, either all
honest parties are in H and output the same m, or output ⊥.

Proof. An honest Pa removes {Pi, Pj} from E(G) when one of the following holds:

1. Pj is ready to receive a block from Pi but does not get one or get more than one in Round 1
and broadcasts (fail, Pi) in Round 2;

2. Pj broadcasts malformed or multiple messages in Round 2;

3. Pi and Pj broadcast different (true/false, Py) with (ky, Px, Py) recorded in Round 4.

By Lemma 4.2, the first two conditions do not occur for honest Pi and Pj . By Lemma 4.3, the last
condition does not occur for honest Pi and Pj . Thus, {Pi, Pj} is never removed from E(G).

By the agreement property of broadcast, honest parties agree on the abort condition in Round 4.
If the abort condition does not occur, the protocol ends when Pi /∈ G(Ps) or |V (H)| = |V (G(Ps))|.
Since honest parties are connected in G, they agree on the first condition. The honest parties also
agree on the second condition by Lemma 4.2, and if the first condition does not hold, it implies
Pi ∈ H = G(Ps) for all honest Pi. By Lemma 4.3, they all output m.

Let G∗ be the trust graph G at the end of the protocol. Let H∗ = G∗(Ps). We let d(Pi) denote
the length of the shortest path from Pi to Ps in H∗ and d = maxi d(Pi). For j = 1, . . . , d, let ∆j

be the number of edges removed from G when all parties Pi with d(Pi) ≤ j are last added to H
(i.e., not removed later in the protocol). We have 0 ≤ ∆1 ≤ ∆2 ≤ . . . ≤ ∆d ≤ ∆

Lemma 4.5. Suppose a party Pi is in H at the end of the protocol, then Pi is last added to H in
ti = t(Pi) ≤ d(Pi) + ∆d(Pi) loops. In particular, assuming the event Good occurs, the protocol ends
in 5(d+ ∆) rounds.

12

Proof. We prove the statement by induction on d(Pi). Clearly, when d(Pi) = 1, (Pi, Ps) ∈ E(G∗)
and Ps sends a block to Pi every loop until Pi is added to H. If Pi fails to be added, a neighbor
of Pi broadcasts (false, Pi), and thus there must be an edge (Pa, Pb) that gets removed from E(G).
Thus, ti = t(Pi) ≤ d(Pi) + ∆1. Suppose any Pj with d(Pj) = d(Pi) − 1 is last added to H in
tj ≤ d(Pj) + ∆d(Pj) = d(Pi) + ∆d(Pj) − 1 loops. In the (tj + 1)th loop, either Pi ∈ H or Pi /∈ H.
Suppose Pi ∈ H. Then Pi is not removed in or after this loop as Pj is not. Otherwise, a neighbor
Pj of Pi on the shortest path will have to be added after tjth loop, which is a contradiction. Thus,
ti ≤ tj ≤ d(Pi) + ∆d(Pi). Now suppose Pi /∈ H. Then Pi is ready to receive a block from one of its
neighbors every loop after tj as all of its neighbors on the shortest path are in H and have never
been removed. Thus, in every loop after tj , either Pi gets a block or an edge gets removed from
E(G). Therefore, ti = tj + 1 + (∆d(Pi) −∆d(Pi)−1) ≤ d(Pi) + ∆d(Pi).

Now assume that the event Good occurs. If an honest party is in H at the end of the protocol,
then by Lemma 4.4, all honest parties are in H at the end of the protocol. The last honest party is
last added to H in d+ ∆ loops, i.e., 5(d+ ∆) rounds. Otherwise, suppose all honest parties are not
in H at the end of the protocol. By Lemma 4.4 and the agreement property of broadcast, honest
parties terminate at the same time. Let t∗ be the last loop before the termination. Suppose that
every party follows the protocol correctly from the next loop onward. Then an honest party Pi will
stay in Gi(Ps) and be added to H within t′ ≤ d+ ∆ loops. We have t∗ ≤ t′ ≤ d+ ∆ as well.

Lemma 4.6. Let d0 be the maximum length of the shortest path from any honest party to Ps at the
beginning of the protocol. Let d1 be the maximum length of the shortest path from any honest party
to Ps at the end of the protocol. The number of times a block is sent to and from honest parties is
at most O(n+ ∆ + n(d1 − d0)).

Proof. Every party in G∗(Ps) must receive a block at least once. Thus, we need n times. A party
receives a block more than once under two conditions:

1. Pj /∈ H is ready to receive a block from Pi but fails due to

(a) Pi does not send a block; or

(b) (Pi, Pj) is removed from E(G); or

(c) Pi is removed from H.

2. Pj ∈ H is removed from H.

For 1(a) and 1(b), |E(G)| decreases by 1. For 1(c) and 2, the shortest path of some party increases
by at least 1. Thus, the number of additional times a party needs to get a block is bounded by
∆ + n(d1 − d0).

4.2 Improved Broadcast Extension

Now we are ready to describe our main construction of broadcast extension using block broadcast
ImprovedBlockBC as a subprotocol. As in [HR14], in order to broadcast a message m of arbitrary
length `, we cut m into q blocks. Unlike in [HR14], the block size will vary depending on the trust
graph G at the end of the previous block. In particular, each block mj has length `j = `dj−1/n

2

where dj is the maximum length of the shortest path from Ps to any Pi connected to Ps at the
end of jth execution of ImprovedBlockBC. We let d0 = 1 and allow the last block to be shorter
so that the length of all q blocks add up to `. We then run ImprovedBlockBC in Figure 4 q times
sequentially as shown in Figure 5.

13

ImprovedLongBC(Ps,m)

1. Each party Pi initializes a trust graph Gi = Cn, a complete graph on V = P.

2. Sender Ps initializes m1, the first `1 bits of m where `1 = `/n2 (padding if ` is not divisible
by n2), and sets c = 1.

3. While
∑c

j=1 `j < `, do the following:

(a) Invoke ImprovedBlockBC(Ps,mc) and let mi
c be the output of Pi.

(b) If |mi
c| 6= `c, Pi aborts.

(c) Compute dc the maximum length of the shortest path from Ps to any Pi connected
to Ps.

(d) Let `c+1 = `dc/n
2 and mc+1 be the next `c+1 bits of m.

(e) increase c by 1.

4. For each Pi, if mi
j = ⊥ for some j, output ⊥. Otherwise, output mi

1|| . . . ||mi
q where q is

the number of ImprovedBlockBC invoked.

Figure 5: Broadcast Extension Using ImprovedBlockBC

Now we prove the round complexity and communication complexity of ImprovedLongBC. Let
dj be the maximum length of the shortest path from Ps to any Pi connected to Ps at the end of
jth execution of ImprovedBlockBC, and ∆i be the decrease in number of edges of G.

Lemma 4.7. Assuming an oracle for broadcasting short messages, ImprovedLongBC takes at most
O(n2) rounds.

Proof. The round complexity of LongBC is the sum of the round complexity of ImprovedBlockBC.
By Lemma 4.5, the round complexity is

q∑
j=1

5(dj + ∆j) = 5

 q∑
j=1

dj +

q∑
j=1

∆j


Since ` =

∑q
j=1 `j = `(1 +

∑q−1
j=1 dj)/n

2,

q∑
j=1

dj = n2 − 1 + dq ≤ n2 + n− 1

and
∑q

j=1 ∆j ≤ |E(Cn)| ≤ n2/2. We have the round complexity O(n2).

Let d′j be the maximum length of the shortest path from Ps to any honest Pi connected to Ps

at the end of jth execution of ImprovedBlockBC. Let B(l) be the communication complexity of
broadcasting l bits.

Lemma 4.8. The number of bits sent and received by honest parties in ImprovedLongBC is at most
O(`n+ n3(B(λ) + nB(log n))).

14

Proof. The communication complexity of ImprovedLongBC is the sum of the communication com-
plexity of ImprovedBlockBC.

By Lemma 4.6, the number of blocks communicated is bj ≤ n+ ∆j + n(dj − dj−1) where each
block incurs the communication of `j +B(|k|+ log n) +B(|h|+ log n) + nB(1 + log n). Thus, the
communication complexity is

q∑
j=1

bj`j +

q∑
j=1

bj (B(|k|+ log n) +B(|h|+ log n) + nB(1 + log n))

The first sum is

q∑
j=1

dj`j ≤
q∑

j=1

(n+ ∆j + n(dj − dj−1))
`dj−1
n2

= `

(∑q
j=1 dj−1

n
+

∑q
j=1 ∆jdj−1

n2
+

∑q
j=1 dj−1(d

′
j − d′j−1)

n

)

≤ `

n2
n

+
n
∑q

j=1 ∆j

n2
+

(∑q
j=1 dj−1

)(∑q
j=1(d

′
j − d′j−1)

)
nq


≤ `

(
n+ n+

n3

nq

)
≤ 3`n.

as d′j ≤ dj ≤ n and q ≥ n. Since
∑q

j=1 bj ≤ nq +
∑q

j=1 ∆j + nd′q ≤ n3 + 2n2, the communication
complexity is

3`n+ (n3 + 2n2) (B(|k|+ log n) +B(|h|+ log n) + nB(1 + log n)) = O(`n+n3(B(λ) +nB(log n))).

Since the correctness of ImprovedLongBC follows directly from the correctness of ImprovedBlockBC
from Lemma 4.3 and 4.4, we get the following theorem.

Theorem 4.9. Assuming an oracle for broadcasting short messages, there exists a broadcast pro-
tocol achieving information-theoretic security in t < n setting for an `-bit message in O(n2) rounds
by communicating O(`n+ n3(B(λ) + nB(log n))) bits.

Combining the above result with the broadcast protocol of [PW96] gives the following corollary.

Corollary 4.10. There exists a broadcast protocol achieving information-theoretic security in t < n
setting for an `-bit message in O(n3) rounds by communicating O(`n+ n10λ) bits.

This result improves round complexity from instantiating the broadcast extension protocol
in [HR14] with the broadcast protocol in [PW96] while maintaining the communication complexity.

5 Conclusion

We studied the broadcast protocols for long messages in the t < n setting with the information-
theoretic security. We modify and improve the broadcast extension protocol in [HR14], with the
previously best-known round complexity of O(n3) assuming an oracle for short messages. Our

15

broadcast extension protocol has round complexity of O(n2) while maintaining the same communi-
cation complexity. Combining our result with the broadcast protocol of [PW96] gives a broadcast
extension protocol in the t < n setting that achieves the communication complexity O(`n+ n10λ)
and the round complexity of O(n3). We leave an open question on how to further improve the
round complexity to O(n2) matching the computational case in [GP17] or to the optimal round
complexity of O(n).

References

[Bea96] Donald Beaver. Correlated pseudorandomness and the complexity of private compu-
tations. In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 479–488. ACM, 1996.

[CR90] David Chaum and Sandra Roijakkers. Unconditionally-secure digital signatures. In
Conference on the Theory and Application of Cryptography, pages 206–214. Springer,
1990.

[DR85] Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for byzantine
agreement. Journal of the ACM (JACM), 32(1):191–204, 1985.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agree-
ment. SIAM Journal on Computing, 12(4):656–666, 1983.

[FH06] Matthias Fitzi and Martin Hirt. Optimally efficient multi-valued byzantine agreement.
In Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed
computing, pages 163–168. ACM, 2006.

[GP17] Chaya Ganesh and Arpita Patra. Optimal extension protocols for byzantine broadcast
and agreement. IACR Cryptology ePrint Archive, 2017:63, 2017.

[HR14] Martin Hirt and Pavel Raykov. Multi-valued byzantine broadcast: The t < n case. In
International Conference on the Theory and Application of Cryptology and Information
Security, pages 448–465. Springer, 2014.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Annual International Cryptology Conference, pages 145–161. Springer,
2003.

[LV11] Guanfeng Liang and Nitin Vaidya. Error-free multi-valued consensus with byzantine
failures. In Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium on
Principles of distributed computing, pages 11–20. ACM, 2011.

[LZ13] Yehuda Lindell and Hila Zarosim. On the feasibility of extending oblivious transfer. In
Theory of Cryptography, pages 519–538. Springer, 2013.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In Advances
in Cryptology–CRYPTO 2012, pages 681–700. Springer, 2012.

[Pat11] Arpita Patra. Error-free multi-valued broadcast and byzantine agreement with optimal
communication complexity. In International Conference On Principles Of Distributed
Systems, pages 34–49. Springer, 2011.

16

[PSL80] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the pres-
ence of faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

[PW92] Birgit Pfitzmann and Michael Waidner. Unconditional byzantine agreement for any
number of faulty processors. STACS 92, pages 337–350, 1992.

[PW96] Birgit Pfitzmann and Michael Waidner. Information-theoretic pseudosignatures and
byzantine agreement for t > n/3. IBM, 1996.

[TC84] Russell Turpin and Brian A Coan. Extending binary byzantine agreement to multivalued
byzantine agreement. Information Processing Letters, 18(2):73–76, 1984.

17

