
Simple and More Efficient PRFs with Tight Security
from LWE and Matrix-DDH?

Tibor Jager1, Rafael Kurek1, and Jiaxin Pan2

1 Paderborn University, Paderborn, Germany
{tibor.jager, rafael.kurek}@upb.de

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
jiaxin.pan@kit.edu

Abstract. We construct efficient and tightly secure pseudorandom functions
(PRFs) with only logarithmic security loss and short secret keys. This yields
very simple and efficient variants of well-known constructions, including those
of Naor-Reingold (FOCS 1997) and Lewko-Waters (ACM CCS 2009). Most
importantly, in combination with the construction of Banerjee, Peikert and Rosen
(EUROCRYPT 2012) we obtain the currently most efficient LWE-based PRF
from a weak LWE-assumption with a much smaller modulus than the original
construction. In comparison to the only previous construction with this property,
which is due to Döttling and Schröder (CRYPTO 2015), we use a modulus of
similar size, but only a single instance of the underlying PRF, instead of λ·ω(log λ)
parallel instances, where λ is the security parameter. Like Döttling and Schröder,
our security proof is only almost back-box, due to the fact that the number of
queries made by the adversary and its advantage must be known a-priori.
Technically, we introduce all-prefix universal hash functions (APUHFs), which
are hash functions that are (almost-)universal, even if any prefix of the output is
considered. We give simple and very efficient constructions of APUHFs, and show
how they can be combined with the augmented cascade of Boneh et al. (ACM
CCS 2010) to obtain our results. Along the way, we develop a new and more direct
way to prove security of PRFs based on the augmented cascade.

Keywords: Pseudorandom functions, LWE, MDDH, augmented cascade, tight
security.

1 Introduction

A pseudorandom function (PRF) is a function F : K × D → G with the follow-
ing security property. For random k

$← K, the function F (k, ·) is computationally
indistinguishable from a random function R(·), given oracle access to either F (k, ·)
or R(·). PRFs are a foundational cryptographic primitive with countless applications,
see [Gol01,Bel06,BG90,GGM84,Kra10] for example. While PRFs can be constructed
generically from one-way functions (via pseudorandom generators) [GGM86], this
generic construction is rather inefficient. Therefore we seek to construct efficient PRFs
from as-weak-as-possible assumptions and with tight security proof.
? The first and second authors were supported by DFG grant JA 2445/1-1. The third author was

supported by DFG grant HO 4534/4-1.

Tight security. In a cryptographic security proof, we often consider an adversary A
against a primitive like a PRF, and describe a reduction B that runs A as a subroutine
to break some computational problem which is assumed to be hard. Let (tA, εA) and
(tB, εB) denote the running time and success probability of A and B, respectively. Then
we say that the reduction B loses a factor `, if

tB
εB
≥ ` · tA

εA

A reduction is usually considered “efficient”, if ` is bounded by a polynomial in the
security parameter. We say that a reduction is “tight”, if ` is small. Our goal is to construct
reductions B such that ` is as small as possible. Ideally we would like to have ` = O(1)
constant, but there are many examples of cryptographic constructions and primitives
where this is impossible to achieve [Cor02,KK12,HJK12,LW14,BJLS16].

State of the art. Many constructions of efficient number-theoretic PRFs, including
the very general Matrix-DDH-based construction of [EHK+17] (with the well-known
algebraic constructions of Naor-Reingold [NR97] and Lewko-Waters [LW09] as special
cases), as well as the LWE-based PRF of Banerjee, Peikert, and Rosen [BPR12], can
in retrospect be seen as concrete instantiations of the augmented cascade framework
of Boneh et al. [BMR10]. For these constructions, the size of the secret key and the
loss in the security proof grow linearly3 with the length n of the function input. Thus,
efficiency and security both depend on the size of the input space. In order to extend
the input space to {0, 1}∗, one can generically apply a collision-resistant hash function
H : {0, 1}∗ → {0, 1}n, where n = 2λ and λ denotes the security parameter, to the
input before processing it in the PRF. This yields secret keys consisting of n = O(λ)
elements (where the concrete type of elements depends on the particular instantiation of
the augmented cascade) and a security loss of ` = n = O(λ).

Contributions. We introduce all-prefix universal hash functions (APUHFs) as a special
type of hash functions that are universal, even if the output of the hash function is
truncated. We also describe a very simple and efficient construction, which is based on
the hash function of Dietzfelbinger et al. [DHKP97], as well as a generic construction
from pairwise independent hash functions with range {0, 1}n for some n ∈ N.

Then we show that by combining the augmented cascade with an APUHF, we are
able to significantly improve both the asymptotic size of secret keys and the security loss
of these constructions. Specifically, we achieve keys consisting of only a slightly super-
logarithmic number of elements m = ω(log λ) and an only logarithmic security loss
O(log λ). Both the number of elements in the secret key and tightness are independent
of the input size n, except for the key of the APUHF, which consists of n bits when
instantiated with the APUHF of Dietzfelbinger et al. [DHKP97]. Based on this generic
result, we then obtain simple variants of algebraic PRFs based on a large class of Matrix-
DDH assumptions [EHK+17], which include the PRFs of Naor and Reingold [NR97]
and its generalization by Lewko and Waters [LW09] as special cases.

3 As common in the literature, we count the number of elements here, not their bit size that
increases with the security parameter.

2

Furthermore, we obtain a simple variant of the PRF of Banerjee, Peikert and
Rosen [BPR12] (BPR). This PRF is based on the learning-with-errors (LWE) assump-
tion [Reg05], and has the property that the required size of the LWE modulus depends on
the length of the PRF input. More precisely, the lower bound on the LWE modulus p is
exponential in the input length n = Θ(λ). We observe this in almost all the well-known
LWE-based PRFs such as [BLMR13,BP14]. In order to improve efficiency and to base
security on a weaker LWE assumption, it is thus desirable to make p as small as possible.
We show that simply encoding the PRF input with an APUHF before processing it in
the original BPR construction makes it possible to reduce the lower bound on the LWE
modulus p from exponential to only slightly super-polynomial in the security parameter,
which yields a weaker assumption and a significant efficiency improvement (see Sec-
tion 5.2 for details). Furthermore, even for an arbitrary polynomially-bounded input size
n, our construction requires to store onlym = ω(log λ) matrices, independent of the size
n of the input space {0, 1}n, plus a single bitstring of length n when instantiated with
the APUHF of Dietzfelbinger et al. [DHKP97]. In contrast, the original construction
from [BPR12] requires Θ(n) matrices.

A similar improvement of the LWE modulus p was achieved by a different BPR
variant due to Döttling and Schröder in [DS15], via a technique called on-the-fly adap-
tation. However, their construction requires to run λ · ω(log λ) copies of the BPR PRF
in parallel, while ours requires only a single copy plus an APUHF. Thus, our approach
is significantly more efficient, and also more direct, as it essentially corresponds to the
original BPR function, except that an APUHF is applied to the input. This simplicity
gives not only a useful conceptual perspective on the construction of tightly secure PRFs,
but it also makes schemes easier to implement securely.

Another advantage of our approach is that the resulting PRF construction is extremely
simple. It is essentially identical to the augmented cascade from [BMR10], except that
an APUHF h is applied to the input before it is processed by the PRF. More precisely, let
F̂m be a PRF that is constructed from an m-fold application of an underlying function F
via the augmented cascade construction from [BMR10]. Then our construction F̂ (K,x)
has the form

F̂ (K,x) := F̂m(s, h(x))

where the key of our new function is a tuple K = (s, h) consisting of a random key s
for the augmented cascade construction and a random function h $← H from a family
H = {h : {0, 1}n → {0, 1}m} of APUHFs.

We remark that we require an additional property called perfect one-time security(“1-
uniformity”) of the underlying function F of the augmented cascade, and thus technically
our variant of [BMR10] is slightly less general. However, this is a minor restriction,
as we show that this property is satisfied by all known instantiations of the augmented
cascade. Furthermore, our security proof assumes that the reduction “knows” sufficiently
close approximations of the number of queries Q and the advantage εA of the adversary.
Thus, the proof shows how such non-black-box knowledge can be used to achieve more
efficient PRFs with short keys and very tight security from weaker assumptions.

Technical approach. Technically, our argument is inspired by the construction of
adaptively-secure PRFs from non-adaptively secure ones by Berman and Haitner [BH12].

3

Essentially, an augmented cascade PRF with m-bit input is a function F̂m : Sm ×K ×
{0, 1}m → K with key space Sm ×K. In the sequel, let (s1, . . . , sm, k) ∈ Sm ×K
be a key for F̂m and h : {0, 1}n → {0, 1}m. For a string a ∈ {0, 1}m we write av:w to
denote the substring (av, . . . , aw) ∈ {0, 1}w−v+1 of a. Let j be an integer with j ≤ m
(we will explain later how to choose j in a suitable way).

We start from the observation that, for each j ∈ {1, . . . ,m}, we can implement an
augmented cascade PRF F̂m equivalently as a two-step algorithm, which proceeds as
follows.

1. In the first step, the function F̂m processes only the first j bits h(x)1:j ∈ {0, 1}j of
h(x), to compute an intermediate value kx that depends only on the first j bits of
h(x):

kx = F̂ j((s1, ..., sj), k, h(x)1:j)

2. Then the remaining m− j bits are processed, starting from kx, by computing

y = F̂m−j((sj+1, ..., sm), kx, h(x)j+1:m)

The resulting function is identical to the function F̂m, so this is merely a specific way to
implement F̂m, which will be particularly useful to describe our approach.

To explain how we prove security, let x(1), . . . , x(Q) denote the sequence of pairwise
distinct oracle queries issued by the adversary in the PRF security experiment, and
suppose for now that it holds h(x(u))1:j 6= h(x(v))1:j for u 6= v. Our goal is to show that
then the security of F̂m is implied by the security of F̂ j , which is a PRF with shorter
input. Intuitively, this holds due to the following two-step argument.

1. We replace F̂ j with a random functionR, which is computationally indistinguishable
thanks to the security of F̂ j . Note that now the intermediate value kx = R(h(x)1:j)
is an independent random value for each oracle query made by the adversary, because
we assume h(x(u))1:j 6= h(x(v))1:j for u 6= v.

2. Next we argue that now also F̂m is distributed exactly like a random function. We
achieve this by identifying an additional property required from F̂m−j that we call
perfect one-time security. This property guarantees that

Pr
kx

$←K

[
F̂m−j((sj+1, ..., sm), kx, h(x)j+1:m) = y

]
=

1

|K|

for all (sj+1, ..., sm), h(x)j+1:m, y) ∈ Sm−j × {0, 1}m−j ×K. This is sufficient
to show that indeed now the function

F̂m−j((sj+1, ..., sm), R(h(x)1:j), h(x)j+1:m)

is a random function, because we have h(x(u))1:j 6= h(x(v))1:j for u 6= v.

It remains to ensure that h(x(u))1:j 6= h(x(v))1:j holds for all u 6= v with “suffi-
ciently large” probability and for some “sufficiently small” value of j. Here we use the
all-prefix universal hash function, in combination with an argument which on a high
level follows similar proofs from [BH12] and [DS15]. The main difference is that we use

4

the all-prefix universality to argue that setting j :=
⌈
log(2Q2/εA)

⌉
= O(log λ), where

Q is the number of oracle queries made by the adversary in the PRF security experiment
and εA is its advantage, is sufficient to guarantee that h(x(u))1:j 6= h(x(v))1:j holds with
sufficiently large probability for all u 6= v.

Note that we have j = O(log λ), so that we only have to require security of a
“short-input” augmented cascade F̂ j with j = O(log λ). For our algebraic instanti-
ations based on Matrix-DDH problems, this yields tightness with a security loss of
only O(log λ). For our application to the LWE-based PRF of Banerjee, Peikert and
Rosen [BPR12], this yields that we have to require only a weaker LWE assumption.
Furthermore, since we need only that m ≥ j holds for all possible values of j, and we
have j =

⌈
log(2Q2/εA)

⌉
= O(log λ), it is sufficient to setm = ω(log λ) slightly super-

logarithmic, which yields short secret keys and efficient evaluation for all instantiations.
Our proof technique, in particular the perfect one-time security property, can also be

seen as an alternative and more direct way of proving the augmented cascade construction
secure, while Boneh et al. used the somewhat more complex q-parallel security of the
underlying PRF.

Why all-prefix universal hash functions? We stress that we need an all-prefix universal
hash function, which works for any possible prefix length j. This is necessary to make
the construction and the security proof independent of particular values Q and εA
of a particular adversary, because j depends on these values via the definition j =⌈
log(2Q2/εA)

⌉
. All-prefix universality guarantees basically that a suitable value of

j exists for any efficient adversary. This is also required to achieve tightness. See
Section 4.7 for further discussion.

More related work. There were several other works about the domain extension of PRFs.
The first one is due to Levin [Lev87]. It shows that larger inputs can be hashed with a
universal hash function if the underlying PRF has a sufficiently large domain. Otherwise
it is vulnerable to the so called “birthday attack”. The framework of Jain, Pietrzak, and
Tentes [JPT12] works for small domains, but has a rather lossy security proof and is
not very efficient, as it needs O(log q) invocations of the underlying pseudo-random
generator (PRG), where q is the upper bound of queries to the PRF. Additionally, as
the authors already mention, it seems not to work for number-theoretic PRFs like the
Naor-Reingold PRF. It was revisited by Chandran and Garg [CG14]. Bernam et al. show
how to circumvent the “birthday attack” using Cuckoo Hashing [BHKN13] via two
invocations of the original PRF.

2 Preliminaries

Let λ ∈ N denote a security parameter. All our results are in the asymptotic setting,
that is, we view all expressions involving λ as functions in λ. This includes the running
time tA = tA(λ) and success probability εA = εA(λ) of adversaries, even though
we occasionally omit λ in this case to simplify our notation. Similarly, all algorithms
implicitly receive the security parameter 1λ as their first input. We say that an algorithm
is efficient, if it runs in (probabilistic) polynomial time in λ.

5

Notation. If A is a finite set, then we write a $← A to denote the action of sampling a
uniformly random element a from A. If A is a probabilistic algorithm, then a $← A(x)
denotes the action of running A(x) on input x with uniform coins and output a. For
v, w ∈ N and v < w, we write Jv, wK := {v, . . . , w} ⊂ N to denote the interval
of positive integers from v to w, and set JwK := {1, . . . , w} ⊂ N. For a bit string
a = (a1, . . . , an) ∈ {0, 1}n and v, w ∈ JnK with v ≤ w, we write av:w to denote the
substring (av, . . . , aw) of a, and ai to denote the i-th bit ai.

2.1 Pseudorandom Functions

Let K,D be sets such that there is an efficient algorithm that samples uniformly random
elements k $← K. Let F : K × D → G be an efficiently computable function. For an
adversary A define the following security experiment ExpprfA,F (λ).

1. The experiment generates a random key k $← K and tosses a coin b $← {0, 1}.
2. The experiment provides adversary AO(1λ) with an oracle O which takes as input
x ∈ D and responds as follows.

O(x) =

{
F (k, x) if b = 1

R(x) if b = 0

where R : D → G is a random function. When the adversary terminates and outputs
a bit b′, then the experiment outputs 1 if b = b′, and 0 otherwise.

Let x1, . . . , xQ ∈ D be the sequence of queries issued by A throughout the security
experiment. We assume that we always have Q ≥ 1, as otherwise the output of A is
independent of b. Furthermore, we assume that A never issues the same query twice.
More precisely, we assume xu 6= xv for u 6= v. This is without loss of generality, since
both F (k, ·) and R(·) are deterministic functions.

Definition 1. We say that adversary A (tA, εA, Q)-breaks the pseudorandomness of F ,
if A runs in time tA, issues Q queries in the PRF security experiment, and

Pr
[
ExpprfA,F (λ) = 1

]
≥ 1/2 + εA

2.2 (Almost-)Universal Hash Functions

Let us first recall the standard definition of universal hash functions.

Definition 2 ([CW79]). A familyH of hash functions mapping finite set {0, 1}n to finite
set {0, 1}m is universal, if for all x, x′ ∈ {0, 1}n with x 6= x′ holds that

Pr
h

$←H
[h(x) = h(x′)] ≤ 2−m.

We will also consider almost-universal hash functions, as defined below.

6

Definition 3. A family H of hash functions mapping finite set {0, 1}n to finite set
{0, 1}m is almost-universal, if for all x, x′ ∈ {0, 1}n with x 6= x′ holds that

Pr
h

$←H
[h(x) = h(x′)] ≤ 2−m+1.

Universal and almost-universal hash functions can be constructed efficiently and without
additional complexity assumptions, see e.g. [CW79,DHKP97,IKOS08].

3 All-Prefix Universal Hash Functions

In this section, we define all-prefix almost universal hash functions and describe two
constructions. The first one is based on the almost-universal hash function of Dietzfel-
binger et al. [DHKP97], and yields an all-prefix almost-universal hash function. The
second one is based on pairwise independent hash functions with suitable range, and
yields an all-prefix universal hash function.

3.1 Definitions

Recall that for a bit string a = (a1, . . . , an) ∈ {0, 1}n and v, w ∈ JnK with v ≤ w, we
write av:w := (av, . . . , aw).

Definition 4. LetH be a family of hash functions mapping {0, 1}n to {0, 1}m. We say
that H is a family of all-prefix universal hash functions, if for all x, x′ ∈ {0, 1}n with
x 6= x′ and all w ∈ JmK holds that

Pr
h

$←H
[h(x)1:w = h(x′)1:w] ≤ 2−w.

Note that all-prefix universality essentially means that for all prefixes of length w the
truncation of h to its first w bits h(x)1:w is a universal hash function. We also define the
slightly weaker notion of all-prefix almost-universality.

Definition 5. LetH be a family of hash functions mapping {0, 1}n to {0, 1}m. We say
that H is a family of all-prefix almost-universal hash functions (APUHFs), if for all
x, x′ ∈ {0, 1}n with x 6= x′ and all w ∈ JmK holds that

Pr
h

$←H
[h(x)1:w = h(x′)1:w] ≤ 2−w+1.

3.2 First Construction (Almost-Universal)

We construct a simple and efficient APUHF family based on the almost-universal hash
function of Dietzfelbinger et al. [DHKP97], which is defined as follows. Let m,n ∈ N
with m ≤ n. Let

Hn,m := {ha : a ∈ J2n − 1K and a is odd} (1)

7

be the family of hash functions, which for x ∈ Z2n is defined as

ha(x) := (ax mod 2n) div 2n−m, (2)

Before we prove that this function is all-prefix almost-universal, we first state the
following lemma of Dietzfelbinger et al. [DHKP97].

Lemma 1 ([DHKP97]). Let n and m be positive integers with m ∈ JnK. If x, y ∈ Z2n

are distinct and ha ∈ Hn,m is chosen at random, then

Pr[ha(x) = ha(y)] ≤ 2−m+1

Thus,Hn,m is a family of almost-universal hash functions in the sense of Definition 3.

All-prefix almost-universality of Hn,m. Now we prove that the hash function family
Hn,m of Dietzfelbinger et al. [DHKP97] is not only almost-universal, but also satisfies
the stronger property of all-prefix almost-universality.

Theorem 1. Hn,m is a family of all-prefix almost-universal hash functions in the sense
of Definition 5.

PROOF. Let ω,m, n be any positive integers with ω ≤ m ≤ n. Note that if ha(·) is a
function inHn,m then ha(·)1:ω is a function inHn,ω . Further note that Lemma 1 holds
for all ω ∈ JnK, which proves the claim. �

In the sequel, we will sometimes write h instead of ha, when it is clear from the
context that h is be chosen uniformly random fromHn,m.

3.3 Second Construction (Universal)

While the almost-universal construction from Section 3.2 is already sufficient for all
our applications, it is natural to ask whether also all-prefix universal hash functions
(not almost-universal) can be constructed. We will show that each pairwise-independent
family of hash functions with range {0, 1}n is also a family of all-prefix universal hash
functions. To this end, let us first recall the notion of pairwise independent hash functions.

Definition 6. Let H be a family of hash functions with domain {0, 1}n and range
{0, 1}m. We say that H is pairwise independent, if for all x, x′ ∈ {0, 1}n with x 6= x′

and all y, z ∈ {0, 1}m holds that

Pr
h

$←H
[h(x) = y ∧ h(x′) = z] = 2−2m.

We first show that pairwise independence implies all-prefix pairwise independence,
which is defined below. Then we show that this implies all-prefix universality.

Let us write xi to denote the i-th bit of the bit string x.

8

Definition 7. LetH be a family of hash functions mapping {0, 1}n to {0, 1}m. We say
thatH is all-prefix pairwise independent, if for all x, x′ ∈ {0, 1}n with x 6= x′ and all
y, z′ ∈ {0, 1}m holds that

Pr
h

$←H
[h(x)1:w = y1:w ∧ h(x′)1:w = z1:w] = 2−2w

for all w ∈ JmK.

Lemma 2. IfH is pairwise independent, then it is also all-prefix pairwise independent.

PROOF. We have

Pr
h

$←H
[h(x)1:j = y1:j ∧ h(x′)1:j = z1:j]

= Pr
h

$←H

 ⋃
y′∈{0,1}m−j

h(x) = (y1:j ‖ y′)

 ∧
 ⋃
z′∈{0,1}m−j

h(x′) = (z1:j ‖ z′)

=

∑
y′∈{0,1}m−j

∑
z′∈{0,1}m−j

Pr
h

$←H
[h(x) = (y1:j ‖ y′) ∧ h(x′) = (z1:j ‖ z′)]

=
∑

y′∈{0,1}m−j

∑
z′∈{0,1}m−j

1

22m
=

2m−j · 2m−j

22m
=

1

22j
.

�

Now it remains to show that all-prefix pairwise independence implies all-prefix
universality.

Lemma 3. IfH is all-prefix pairwise independent, then it is also all-prefix universal.

PROOF. It holds that

Pr
h

$←H
[h(x)1:j = h(x′)1:j] =

∑
y1:j∈{0,1}j

Pr
h

$←H
[h(x)1:j = y1:j ∧ h(x′)1:j = y1:j] (3)

=
∑

y1:j∈{0,1}j

1

22j
=

1

2j
,

where (3) holds because of Lemma 2. �

Example instantiation. Let n ∈ N and let

Hn := {ha,b : a, b ∈ {0, 1}n}

be the family of hash functions

ha,b : GF (2
n)→ GF (2n);x 7→ ax+ b,

where the arithmetic operations are in GF (2n). Since it is well-known that Hn is
pairwise independent we leave the following theorem without proof.

9

Input: Key (s1, ..., sm, k0) ∈ Sm ×K and (x1, ..., xm) ∈ Xm

For i = 1, ...,m :
ki ← F ((si, ki−1), xi)

Return km.

Fig. 1. Definition of function F̂m of Boneh et al. [BMR10].

Theorem 2. Hn is a family of all-prefix universal hash functions.

Note that in the explicit construction of GF (2n) the choice of the irreducible polynomial
has big impact on the efficiency of the arithmetic operations.

4 Augmented Cascade PRFs with Tighter Security

In this section, we show that APUHFs enable the instantiation of augmented cascade
PRFs [BMR10] with shorter keys of sligtly super-logarithmic size ω(log λ). The security
proof loses only a factor O(log λ), independent of the input size of the PRF, assuming
that (reasonably close bounds) on the number of queries Q and the success probability
1/2+ εA of the PRF adversaryA are known a priori. In contrast, the loss of the previous
security proof of [BMR10] is linear in the input size of the PRF (which is usually linear
in λ), but does not assume any a priori knowledge about A.

4.1 Augmented Cascade PRFs

Boneh et al. [BMR10] showed how to construct a PRF

F̂m : (Sm ×K)×Xm → K

with key space (Sm ×K) and input space X from an augmented cascade of functions

F : (S ×K)×X → K

The augmented cascade construction is described in Figure 1. Boneh et al. [BMR10]
prove that F̂m is a secure PRF, if F is parallel secure in the following sense.

Definition 8 ([BMR10]). For a function F : (S ×K) ×X → K define F (Q) as the
function

F (Q) : (S ×KQ)× (X × JQK)→ K ((s, k1, ..., kq), (x, i)) 7→ F ((s, ki), x) .

We say that A (tA, εA, Q)-breaks the Q-parallel security of F : (S ×K)×X → K, if
it (tA, εA, Q)-breaks the pseudorandomness of F (Q) in the sense of Definition 1.

Theorem 3 ([BMR10]). From each adversary A that (tA, εA, Q)-breaks the pseu-
dorandomness of F̂m, one can construct an adversary B that (tB, εB, Q)-breaks the
Q-parallel security of F (Q) with

tB = Θ(tA) and εB ≥
εA
m

Note that the security loss of this construction is linear in the length m of the input of
function F̂m.

10

4.2 The Augmented Cascade with Encoded Input

We consider augmented cascade PRFs which are almost identical to the construction of
Boneh et al. [BMR10], except that we apply an all-prefix almost-universal hash function
to the input before processing it in the augmented cascade, and show that this enables
a tighter security proof. We consider the special case with input space X = {0, 1},
which encompasses the MDDH-based construction of Escala et al. [EHK+17] and thus
includes in particular both the instantiations of Naor-Reingold [NR97] and Lewko-
Waters [LW09].

LetHn,m be a family of all-prefix almost-universal hash functions according to Defi-
nition 5, and let F : (S ×K)× {0, 1} → K be a function. We define the corresponding
augmented cascade PRF withHn,m-encoded input as the function

F̂Hn,m : Sm ×K ×Hn,m × {0, 1}n → K

((s1, ..., sm), k, h, x) 7→ F̂m((s1, ..., sm), k, h(x)) (4)

where F̂m is the augmented cascade construction of Boneh et al. [BMR10], applied to
F as described in Figure 1.

Remark 1. Note that evaluating the PRF requires only m recursions in the augmented
cascade, and that, accordingly, the secret key consists of only m elements and the
description of h, while the input size can be any polynomial number of n bits, with
possibly n � m. We will later show that it suffices to set m = ω(log λ) slightly
super-logarithmic, thanks to the input encoding with an all-prefix almost-universal hash
function. Also the security loss of this construction is only O(log λ) and independent of
the size of the input n.

4.3 Preparation for the Security Proof

In this section we describe a few technical observations which will simplify the security
proof. Furthermore, we define perfect one-time security as an additional property of a
function F (s, x, k), which will also be required for the proof. We will argue later that
the Matrix-DDH-based instantiations of the augmented cascade of [EHK+17], including
the functions of Naor-Reingold [NR97] and Lewko-Waters [LW09], all satisfy this
additional notion. Moreover, we will show that the LWE-based PRF of [BPR12] can be
viewed as an augmented cascade and it is perfectly one-time secure.

An observation about the augmented cascade. The following observation will be useful
to follow the security proof more easily. Suppose we want to compute

z = F̂m((s1, ..., sm), k, h(x))

then, due to the recursive definition of F̂m, we can equivalently proceed in the following
two steps.

1. Let i ∈ JmK. We first process the first i bits h(x)1:i of h(x) with (s1, . . . , si, k), and
compute and “intermediate key” kx as

kx := F̂ i((s1, . . . , si), k, h(x)1:i)

11

2. Then we process the remaining m− i bits h(x)i+1:m of h(x) with the remaining
key elements (si+1, . . . , sm, kx) by computing

z = F̂m−i((si+1, ..., sm), kx, h(x)i+1:m)

We formulate this observation as a lemma.

Lemma 4. For all i ∈ JmK, we have

F̂m((s1, ..., sm), k, h(x)) = F̂m−i((si+1, ..., sm), kx, h(x)i+1:m)

where kx := F̂ i((s1, . . . , si), k, h(x)1:i).

Perfect One-Time Security. We will furthermore require an additional security property
of F , which we call perfect one-time security, and show that this property is satisfied by
all instantiations of function F considered in this section. We demand that F (s, x, k) is
identically distributed to a random function R(x), if it is only evaluated once. This must
hold over the uniformly random choice k $← K, and for any s ∈ S and x ∈ {0, 1}.

Definition 9. We say that a function F : S ×K × {0, 1}m → K is perfectly one-time
secure, if

Pr
k

$←K
[F (s, k, x) = k′] =

1

|K|

for all (s, x, k′) ∈ S × {0, 1}m ×K.

Perfect one-time security basically guarantees uniformity of the hash function, if it is
evaluated only once (“1-uniformity”).

The following lemma follows directly from Definition 9. It will be useful to prove
security of our variant of the augmented cascade.

Lemma 5. Let m ∈ N and F : S × K × {0, 1} → K be perfectly one-time secure.
Then the augmented cascade F̂m constructed from F is also perfectly one-time secure.
That is

Pr
k

$←K

[
F̂m((s1, ..., sm), k, x) = k′

]
=

1

|K|

for all ((s1, ..., sm), k′, x) ∈ Sm ×K × {0, 1}m.

PROOF. For a uniformly random chosen k it holds that Pr [F (s1, k, x1) = k1] =
1
|K|

for all (s1, k, x1) ∈ S × K × {0, 1} because of the perfect one-time security of F .
Thus the input for the second iteration stays uniformly random. Due to the recursive
construction executing all the following iterations will keep this distribution, which gives
us the perfect one-time security of F̂m. �

12

4.4 Security Proof

Now we are ready to prove the following theorem.

Theorem 4. Let m = ω(log λ) be (slightly) super-logarithmic, Hn,m be a family of
all-prefix almost universal hash functions and F be perfectly one-time secure.

From each adversary A that (tA, εA, Q)-breaks the pseudorandomness of F̂Hn,m

with Q/εA = poly(λ) for some polynomial poly, we can construct an adversary B that
(tB, εB, Q)-breaks the pseudorandomness of F̂ j , where

j = O(log λ) and tB = Θ(tA) and εB ≥ εA/2

PROOF. In the sequel let j = j(λ) be defined such that

j :=
⌈
log(2Q2/εA)

⌉
(5)

Observe that we have j(λ) ≤ m(λ) for sufficiently large λ, because the fact that we
have Q/εA = poly(λ) for some polynomial poly and j < log(2Q2/εA) + 1 together
yield that j = O(log λ), while we have m = ω(log λ).

Remark 2. Note that although we have j = O(log(2Q2/εA)) = O(log λ), the constant
hidden in the big-O notation depends on the adversary.

We describe a sequence of games, where Game 0 is the original PRF security
experiment, and in the last game the probability that the experiment outputs 1 is 1/2, such
that no adversary can have any advantage. Let Xi denote the event that the experiment
outputs 1 in Game i, and let Oi denote the oracle provided by the experiment in Game i.

Game 0. This is the original security experiment. In particular, we have

O0(x) =

{
F̂Hn,m((s1, ..., sm), k, h, x) if b = 1

R(x) if b = 0

where R is a random function. Therefore, by definition, it holds that

Pr [X0] = 1/2 + εA

Game 1. We change the way how the oracle implements function F̂Hn,m . That is, we
modify the behaviour of O1 in case b = 1, while in case b = 0 oracle O1 proceeds
identical to O0. Recall that

F̂Hn,m((s1, ..., sm), k, h, x) = F̂m ((s1, ..., sm), k, h(x))

O1 implements this function in a specific way. Using the observation from Lemma 4, it
computes F̂m ((s1, ..., sm), k, h(x)) in two steps:

1. kx := F̂ j((s1, . . . , sj), k, h(x)1:j),
2. z := F̂m−j((sj+1, ..., sm, kx, h(x)j+1:m),

where j is as defined above, and we use that j ≤ m. By Lemma 4, this is just a
specific way to implement function F̂m, so the change is purely conceptual and we have

Pr [X1] = Pr [X0]

13

Game 2. This game is identical to Game 1, except that we replace the function F̂m

implemented by oracle O1 partially with a random function. More precisely, oracle
O2 chooses a second random function Rj : {0, 1}j → K. If b = 1, then it computes
z = O2(x) as

1. kx := Rj(h(x)1:j)
2. z := F̂m−j((sj+1, ..., sm), kx, h(x)j+1:m)

If b = 0, then it proceeds exactly likeO1. The proof of the following lemma is postponed
to Section 4.5.

Lemma 6. From each A that runs in time tA and issues Q oracle queries one can
construct an adversary B that (tB, εB, Q)-breaks the pseudorandomness of F̂ j where

tB = Θ(tA) and εB = |Pr [X1]− Pr [X2]| (6)

Game 3. This game is identical to Game 2, but O3 performs an additional check.
Whenever A makes an oracle query x, O3 checks whether there has been a previous
oracle query x′ such that

h(x)1:j = h(x′)1:j

If this holds, then O3 raises event coll, and the experiment outputs a random bit and
terminates. Note that the check is always performed, for both values b ∈ {0, 1}. Since
both games are identical until coll, we have

|Pr [X2]− Pr [X3]| ≤ Pr [coll]

Again, the proof of the following lemma is postponed, to Section 4.6.

Lemma 7. If F is perfectly one-time secure, then Pr [coll] ≤ εA/2 and Pr
[
X3 | coll

]
=

1/2.

We finish the proof of Theorem 4 before we prove Lemmas 6 and 7. We have

Pr [X3] = Pr [X3 | coll] · Pr [coll] + Pr
[
X3 | coll

]
· (1− Pr [coll]) (7)

Recall that X3 denotes the probability that the experiment outputs 1, which happens
if and only if A outputs b′ with b = b′. By construction of the experiment, we abort and
output a random bit in Game 3, if coll occurs. In combination with Lemma 7 we thus get

Pr [X3 | coll] = Pr
[
X3 | coll

]
= 1/2

Plugging this into (7) yields

Pr [X3] = 1/2 · Pr [coll] + 1/2 · (1− Pr [coll]) = 1/2 (8)

Lower bound on εB. Finally, using (8), the bounds from Lemmas 6 and 7, and the fact
that Pr [X0] = Pr [X1], we obtain a lower bound on εB:

1/2 + εA = Pr [X0] = Pr [X1] ≤ Pr [X2] + εB ≤ 1/2 + εA/2 + εB

⇐⇒ εB ≥ εA/2

Furthermore, by Lemma 6, algorithm B runs in time tB = Θ(tA) and issues Q oracle
queries. �

14

4.5 Proof of Lemma 6

Adversary B plays the pseudorandomness security experiment with function F̂ j . Let O
denote the PRF oracle provided to B in this game. B runsA as a subroutine by simulating
the security experiment as follows.

Initialization. B samples a bit b $← {0, 1}, a hash function h ← Hn,m, and picks
(sj+1, ..., sm), where si ← S for all i ∈ Jj + 1,mK

Handling of oracle queries. Whenever A queries x ∈ {0, 1}n, B proceeds as follows.

– If b = 0, then B proceeds exactly like the original experiment. That is, it responds
with R(x), where R : {0, 1}n → K is a random function.

– If b = 1, then B computes h(x) and queries O to obtain kx := O(h(x)1:j). Then it
computes

z := F̂m−j((sj+1, ..., sm), kx, h(x)j+1:m)

and returns z to A.

Finalization. Finally, when A terminates, then B outputs whatever A outputs, and
terminates.

Analysis of B. Note that the running time of B is essentially identical to the running time
ofA plus a minor number of additional operations, thus we have tB = Θ(tA). IfO(x) =
F̂ j((s1, ..., sj , k), h(x)1:j), then by Lemma 4 it holds that z = F̂m((s1, ..., sm, k),
h(x)). Thus, the view of A is identical to Game 1. If O(x) implements a random
function, then its view is identical to Game 2. This yields the claim.

4.6 Proof of Lemma 7

In order to show that Pr [coll] ≤ εA/2, we prove that all queries of A are independent
of h, regardless of b = 0 or b = 1, until coll occurs. This allows us to derive an upper
bound on coll. Consider the sequence of queries x1, . . . , xQ made by A. Recall that we
assume xu 6= xv for u 6= v without loss of generality.

The case b = 0. In this case, O3(xi) is a random function R(xi), and therefore all
information observed by A is independent of h, until coll occurs. Thus, the view of A is
equivalent to a world in which the experiment does not choose h at the beginning, but
only after A has made all queries, and only then computes h(xi)1:j for all i ∈ JQK and
outputs a random bit if a collision occurred. By the almost-universality, we thus obtain
that

Pr [coll | b = 0] ≤
Q∑
i=2

i− 1

2j−1
≤ Q2

2j
≤ Q2εA

2Q2
=
εA
2
.

Note that we use here that j ≥ log(2Q2/εA), which holds due to the definition of j in
(5).

15

The case b = 1. We may assume without loss of generality that Q > 0, as otherwise A
receives no information about b and thus we would have εA = 0. Consider the first query
O3(x1) of A. The oracle proceeds as follows. At first it computes kx1 := Rj(h(x1)1:j).
SinceRj is a random function, this value is independent of h. In the next step it computes
z1 := F̂m−j((sj+1, ..., sm), kx1

, h(x1)j+1:m), which is still uniformly random. To see
this, note that the perfect one-time security of F guarantees perfect one-time security of
F̂m−j as shown in Lemma 5. Thus A gains no information about h at this point and the
next query cannot be adaptive with regard to h.

Now if A queries O3(x2), then the experiment will evaluate the random functions
Rj on a different position than in the first query, unless

h(x1)1:j = h(x2)1:j (9)

Due to the fact that the response to x1 was independent of h and the almost-universality
of h, (9) happens with probability at most 1/2j−1. Therefore, again by the perfect one-
time security of F ,A receives another uniformly random value z2, which is independent
of h, except with probability at most 1/2j−1. Continuing this argument inductively over
all Q queries of A, we see that on its i-th query A will receive a random response which
is independent of h, except with probability (i − 1)/2j−1, provided that all previous
responses were independent of h. A union bound now yields

Pr [coll | b = 1] ≤
Q∑
i=2

i− 1

2j−1
≤ Q2

2j
≤ Q2εA

2Q2
=
εA
2
.

It remains to show that Pr
[
X3 | coll

]
= 1/2. Let us consider the case b = 1. If coll

occurs, then there are no collisions, such that the oracle calls random function Rj on
always different inputs, each time receiving an independent, uniformly random value.
Applying the perfect one-time security of F̂m−j again, the response of the oracle to
each query is therefore uniformly distributed and independent of all other queries. Thus,
provided that no collision occurs, the view in case b = 1 is perfectly indistinguishable
from the case b = 0, which yields the claim.

4.7 On the necessity of the “all-prefix” property

One may ask at this point whether the “all-prefix” property is really necessary, or
whether it is possible to use a standard universal hash function with fixed output space
{0, 1}j instead.

Let us explain why the “all-prefix” property is not only sufficient, but also necessary.
Recall that j depends on the particular values ofQ and εA of a particular given adversary,
via the definition j =

⌈
log(2Q2/εA)

⌉
in (5). One may wonder why we set j so precisely,

depending on the given adversary, rather than simply choosing j sufficiently large such
that it would work for any efficient adversary.

The purpose of this precise choice is because we have to find the right balance
between two properties that we need to obtain tight security:

1. On the one hand, we need j to be sufficiently large, such that the probability of a
collision of (the j-bit prefix of) the universal hash function is sufficiently unlikely.

16

2. On the other hand, we have to keep j short enough, in order to get a tight reduction.

This is why we make the value j dependent on the given adversary, specifically on the
particular values of Q and εA.

We stress that we do this only in the security proof, but not in the PRF construction
itself. That is, we do not simply fix j to be the largest value of j such that the collision
probability is sufficiently small for any adversary, because then for certain adversaries
j could be “too large” such that the reduction would not be tight. Similarly, if we used
a standard universal hash function with output length j, then this would also fix j to
some specific value in the construction of the PRF, and thus would again make the PRF
construction only tightly secure for certain adversaries that match this particular choice
of j, but not necessarily for all efficient adversaries.

For example using a standard UHF with m = ω(log λ) is sufficient to bound the
collision probaility, but this yields only super-logarithmic tightness, and thus would be
worse than in the construction of Döttling and Schröder [DS15], while with an APUHF
we achieve logarithmic tightness.

Hence, the important new feature that all-prefix universality provides is that it
guarantees that a suitable choice of j exists for any efficient adversary. This makes the
construction independent of a particular class of adversaries that match a certain fixed
value of j, while at the same time it ensures that the security proof depends tightly on
the particularly given adversary. Hence, using an APUHF instead of a standard universal
hash function is not just sufficient, but also necessary in order to capture all efficient
adversaries and to keep the security proof tight.

We note that Döttling and Schröder [DS15] also use multiple instances of the un-
derlying pseudorandom function, with increasing security, in order to achieve tightness.
Essentially, we replace these multiple instances with a single instance, in combination
with an all-prefix universal hash function. From an abstract high-level perspective, in
our approach each prefix implicitly corresponds to one PRF instance of [DS15]. This
makes our construction significantly more efficient.

5 Applications

5.1 Efficient and Tightly-Secure PRF from Matrix Diffie-Hellman Assumptions

We recall the definition of the matrix Diffie-Hellman (MDDH) assumption and the
pseudorandom function (PRF) from [EHK+17]. We consider a variant where an all-
prefix almost-universal hash function is applied to the input before it is processed
by the PRF. We note that the MDDH assumption generalizes the Decisional Diffie-
Hellman (DDH) and Decisional d-Linear (d-LIN) assumptions, and, moreover, it gives
us a framework to analyze the algebraic structure behind the Diffie-Hellman-based
cryptographic primitives. Thus, our results can be carried on to the Naor-Reingold PRF
(based on the DDH assumption) [NR97] and the Lewko-Waters PRF (based on the
d-LIN assumption) [LW09].

Notations and the MDDH Assumption. Let G := (G, P, q) be a description of an
additive group G with random generator P and prime order q. Following the “implicit

17

notation” of [EHK+13], we write [a] shorthand for aP . More generally, for a matrix
A = (aij) ∈ Zn×mq , we define [A]s as the implicit representation of A in G:

[A] :=

a11P ... a1mP

an1P ... anmP

 ∈ Gn×m

Let us first recall the definition of the matrix Diffie-Hellman (MDDH) problem
[EHK+13,EHK+17].

Definition 10 (Matrix distribution). Let `, d ∈ N and ` > d. We call D`,d a matrix
distribution if it outputs matrices in Z`×dq of full rank d in polynomial time, namely, it is
efficiently samplable. We define Dd := Dd+1,d.

Without loss of generality, we assume the first d rows of A $← D`,d form a full-rank and
invertible matrix, and we denote it by A and the rest `− d rows by A.

Definition 11 (Transformation matrix). Let D`,d be a matrix distribution and A be a
matrix from it. The transformation matrix of A is defined as T := A ·A−1 ∈ Z(`−d)×d

q .

The D`,d-MDDH problem is to distinguish the two distributions ([A], [Aw]) and
([A], [u]) where A

$← D`,d, w $← Zdq and u
$← Z`q .

Definition 12 (D`,d-Matrix Diffie-Hellman assumption, D`,d-MDDH). Let D`,d be
a matrix distribution. We say that adversary A (tA, εA)-breaks the D`,d-Matrix Diffie-
Hellman (D`,d-MDDH) assumption in group G, if A runs in time tA and

|Pr[A(G, [A], [Aw]) = 1]− Pr[A(G, [A], [u]) = 1]| ≥ εA,

where the probability is taken over A $← D`,d,w
$← Zdq ,u

$← Z`q .

Examples of D`,d-MDDH. [EHK+13,EHK+17] define distributions Ld, Cd, SCd,
ILd, and Ud which corresponds to the d-Linear, d-Cascade, d-Symmetric-Cascade,
d-Incremental-Linear, and d-Uniform assumption, respectively. All these assumptions
are proven secure in the generic group model [EHK+13,EHK+17] and form a hierarchy
of increasingly weaker assumptions.

A simple example is the L1-MDDH assumption for d = 1, which is the DDH
assumption: Choose a,w, z $← Zq, and the DDH assumption states that the following
two distributions are computationally indistinguishable:

([1, a, w, aw]) ≈c ([1, a, w, z]).

This can be represented via the L1-MDDH assumption which states the following two
distributions are computationally indistinguishable:

([a1] , [
aw
w]) =: ([A] , [Aw]) ≈c ([A] , [u]) := ([a1] , [

z
w]).

For d = 1 the transformation matrix T contains only one element, and for L1-MDDH
the corresponding transformation matrix is T = 1

a .
We give more examples of matrix distributions from [EHK+13,EHK+17] for d = 2

in Appendix A.

18

The PRF construction of [EHK+17] and its security. Let G := (G, P, q) be a description
of an additive group G with random generator P and prime order q. Let D`,d be a matrix
distribution and we assume that (`− d) divides d and define t := d/(`− d).

Following the approach of Section 5.3 of [EHK+17], we choose a random vector
h

$← Zdq , and, for i = 1, ...,m and j = 1, ..., t, we choose Ai,j
$← D`,d and compute

transformation matrices T̂i,j := Ai,jA
−1
i,j ∈ Z(`−d)×d

q and define the aggregated
transformation matrices

Ti :=

T̂i,1

...
T̂i,t

 ∈ Zd×dq ,

and S := (T1, ...,Tm). Here, for i ∈ {1, ...,m}, we require that Ti has full rank.
We note that this requirement can be satisfied by all the matrix distributions described
in [EHK+17] with overwhelming probability. This implies the distribution of our Ti’s
is statistically close to that in [EHK+17], up to a negligibly small statistical distance of
1/(q − 1). Thus, their security results can be applied here.

Now let S := Zd×dq , K := Gd, and X := {0, 1}. The basis of the PRF construction
from [EHK+17] is the function FMDDH : S ×K ×X → K defined as

FMDDH(T, [h], x) :=

{
[h] if x = 0

[T · h] if x = 1
(10)

By applying the augmented cascade of Boneh et al. [BMR10] (Figure 1) to FMDDH,
Escala et al. [EHK+17] obtain their PRF FmMDDH with key space (Z(d×d)

q)m ×Gd and
domain {0, 1}m:

FmMDDH : (Z(d×d)
q)m ×Gd × {0, 1}m → G

FmMDDH(S, [h], x) :=

[(∏
i:xi=1

Ti

)
· h

]
(11)

where S := (T1, ...,Tm). The following theorem was proven in [EHK+13,EHK+17].

Theorem 5 ([EHK+17, Theorem 12]). From each adversary A that (tA, εA, Q)-
breaks the security of FmMDDH with input space {0, 1}m we can construct an adversary B
that (tB, εB)-breaks the D`,d-MDDH assumption in G with

tB = Θ(tA) and εB ≥
εA
dm

Note that d is a constant, so that the security loss is linear in the size m of the input
space.

Our construction. By additionally encoding the input with an APUHF as described in
(4), we finally obtain the function FHn,m

MDDH : Sm ×K ×Hn,m × {0, 1}n → K as

F
Hn,m

MDDH(S, [h], h, x) = FmMDDH(S, [h], h(x)) =

 m∏
i:h(x)i=1

Ti

 · h
 (12)

19

In order to apply Theorem 4 to show that this particular instance of the augmented
cascade with encoded input is a secure PRF with key space Sm×K×Hn,m and domain
{0, 1}n, we merely have to prove that function FMDDH is perfectly one-time secure.

Lemma 8. Function FMDDH from (10) is perfectly one-time secure.

PROOF. We have to show that

Pr
[h]

$←Gd

[FMDDH(T, [h], x) = [h′]] =
1

|G|d
.

for all (T, x, [h′]) ∈ S × {0, 1} ×Gd.
If x = 0 then FMDDH(T, [h], 0) = [h], which is a random vector in Gd by definition.

If x = 1 then FMDDH(T, [h], 1) = [Th], which is again a random vector, due to the fact
that T is a full-rank matrix. �

By combining Theorem 4 with Theorem 5 we now obtain the following result, which
shows that setting m = ω(log λ) is sufficient to achieve tight security.

Theorem 6. Let m = ω(log λ) be (slightly) super-logarithmic and Hn,m be a family
of all-prefix almost universal hash functions. From each adversary A that (tA, εA, Q)-
breaks the security of FHn,m

MDDH with Q/εA = poly(λ) for some polynomial poly we can
construct an adversary B’ that (t′B, ε

′
B)-breaks the D`,d-MDDH assumption in G with

t′B = Θ(tA) and ε′B ≥
εA
2dj

where j = O(log λ).

PROOF. Theorem 4 shows that from each adversary A that (tA, εA, q)-breaks the pseu-
dorandomness of FHn,m

MDDH with Q/εA = poly(λ) for some polynomial poly, we can
construct an adversary B that (tB, εB, Q)-breaks the pseudorandomness of the function
F jMDDH with input space {0, 1}j , where

j = O(log λ) and tB = Θ(tA) and εB ≥ εA/2

Theorem 5 in turn shows that from each adversary B that (tB, εB, Q)-breaks the
security of F jMDDH we can construct an adversary B’ that (t′B, ε

′
B)-breaks the D`,d-

MDDH assumption in G with

t′B = Θ(tB) and ε′B ≥
εB
dj
≥ εA

2dj

which yields the claim. �

20

Comparison to the DDH-based PRF of [NR97]. One particularly interesting instantiation
of FmMDDH is based on the L1-MDDH assumption, which is an improvement over the
famous Naor-Reingold construction based on the DDH (namely,L1-MDDH) assumption
from [NR97]. In FmMDDH, we sample Ai from D`,d and then compute the aggregated
transformation matrices Ti. For the L1 distribution, we can equivalently pick random
elements Ti from Zq .

Let G be a group of prime order q, S := Zq, K := G, X := {0, 1}n and m =

ω(log λ) as above. Then we choose T1, ..., Tm, a
$← Zq and obtain a PRF with domain

{0, 1}n as

F
Hn,m

DDH (S, [a], h, x) =

 m∏
i:h(x)i=1

Ti

 · a
 .

Note that the resulting PRF is identical to the original Naor-Reingold function [NR97],
except that an APUHF h is applied to the input x before it is processed in the Naor-
Reingold construction. For the original construction from [NR97] both the size of the
secret key and the tightness loss of the security proof (based on the DDH assumption in
G) are linear in the bit-length of the function input. We show that merely by encoding
the input with an APUHF one can obtain shorter secret keys of size m = ω(log λ) and
with security loss O(log λ) (based on the same assumption as [NR97]), even for input
size n� m.

Comparison to the Matrix-DDH PRF of [DS15]. Döttling and Schröder [DS15] also
described a variant of the Matrix-DDH-based PRF of [EHK+13]. Their PRF is the
function

FDS15
MDDH(S, [h], x) :=

 m∏
j=1

(Ti + x2
j

· I)

 · h
 (13)

where S, [h], and m are as in our construction, and x ∈ Zq. Thus, in comparison, our
construction from (12) uses the same value of m, but is somewhat simpler that (13) and
also slightly more efficient to evaluate. In particular, the computation of the terms of the
form (x2

j · I) is replaced with a single evaluation of the APUHF h. Another difference
is that the domain of their function is restricted to x ∈ Zq , while in our case x ∈ {0, 1}n
can be any bit string of polynomially-bounded length n = n(λ).

5.2 More Efficient LWE-based PRFs

We recall the learning with error (LWE) assumption. Then we apply our results to the
LWE-based PRF from Banerjee, Peikert and Rosen [BPR12].

Definition 13 (Learning With Errors assumption, LWE). Let p be a modulus, N be
a positive integer, and χα := DZp,α be a Gaussian distribution with noise parameter

21

α. Let h $← ZNp be a random vector. We say that adversary A (tA, εA)-breaks the
LWEp,N,α assumption if it runs in time tA and

|Pr[A(h,h>s+ e) = 1]− Pr[A(h, u) = 1]| ≥ εA,

where h
$← ZNp , s $← ZNp , e $← χα and u $← Zp.

Let b·e be the rounding function, which rounds a real number to the largest integer
which does not exceed it. Let p ≥ q. For an element h ∈ Zp, we define the rounding
function b·eq : Zp → Zq as bheq := b(q/p)he, and for a vector h ∈ ZNp , the rounding
function bheq is defined component-wise.

The PRF construction of [BPR12] and its security. Let S := χN×Nα and K := ZNp , and
X := {0, 1}. We assume that S ∈ S has full rank. The basis of the PRF of [BPR12] is
the function FLWE : S ×K ×X → K,

FLWE(S,h, x) :=

{
h if x = 0

S · h if x = 1
(14)

We apply a slightly different augmented cascade transformation in Figure 1 to obtain
the PRF of [BPR12] with key space (χ

(N×N)
α)m × ZNp and domain {0, 1}m:

FmLWE : (χ(N×N)
α)m × ZNp × {0, 1}m → Zq

FmLWE(S,h, x) :=

⌊(
m∏

i:xi=1

Si

)
· h

⌉
q

(15)

where S := (S1, ...,Sm) and h
$← ZNp . Different to Figure 1, we apply the rounding

function on the output of Figure 1.

Theorem 7 ([BPR12, Theorem 5.2]). Let χα = DZ,α be a Gaussian distribution with
parameter α > 0, let m be a positive integer that denotes the length of message inputs.
Define B := m(Cα

√
N)m for a suitable universal constant C. Let p, q be two moduli

such that p > q ·B ·Nω(1).
From each adversary A that (tA, εA, Q)-breaks the security of FmLWE with input

space {0, 1}m (for an arbitrary positive integer m) we can construct an adversary B
that (tB, εB)-breaks the LWEp,N,α assumption with

tB = Θ(tA) and εB ≥
εA

m ·N

Note that B is an important parameter, since it determines the size of the LWE modulus
p and contains the expensive term Nm/2, which is exponential in m. Thus, a smaller
m can give us a smaller p, which in turn yields a weaker LWE assumption and a much
more efficient PRF. In the following, we apply our results to FmLWE to reduce m from
polynomial to logarithmic in security parameter λ.

22

Our construction. By additionally encoding the input with an APUHF as described in
(4), we finally obtain FHn,m

LWE : (χ
(N×N)
α)m × ZNp ×Hn,m × {0, 1}m → ZNq as

FmLWE(S,h, h(x)) :=

 m∏
i:h(x)i=1

Si

 · h

q

(16)

In order to apply Theorem 4 to show that this particular instance of the augmented
cascade with encoded input is a secure PRF with key space Sm×K×Hn,m and domain
{0, 1}n, we have to prove that function FLWE is perfectly one-time secure.

Lemma 9. Function FLWE from (14) is perfectly one-time secure.

PROOF. We have to show that

Pr
h

$←Zp

[FLWE(S,h, x) = h′] =
1

pN
.

for all (S, x,h′) ∈ S × {0, 1} × ZNp .
If x = 0 then FLWE(S,h, 0) = h, which is a random vector in ZNp by definition. If

x = 1 then FLWE(S,h, 1) = S · h, which is again a random vector, due to the fact that
S is a full-rank matrix. �

We recall the following useful notations and corollary for the proof of Theo-
rem 8 given below. We define an error sampling function E : {0, 1}j → ZN
and for x ∈ {0, 1}j and j ∈ JmK we define the randomized version of F jLWE as

F̃ jLWE(x) =
(∏j

i:xi=1 Si

)
· h + E(x). The proof of Theorem 5.2 and Lemma 5.5

in [BPR12] show that F̃ jLWE is pseudorandom based on the decisional LWE assumption

and it holds that FmLWE(x) =
⌊(∏m

i>j∧xi=1 Si

)
· F̃ jLWE(x)

⌉
q
, except with negligible

probability. We summarize this in the following corollary.

Corollary 1. Let all the parameters be defined as in Theorem 7. There exists an effi-
ciently randomized error sampling function E : {0, 1}j → ZN , such that, from each

adversaryA that (tA, εA, Q)-breaks the security of F̃ jLWE(x) =
(∏j

i:xi=1 Si

)
·h+E(x)

with input x ∈ {0, 1}j (for j ∈ JmK) we can construct an adversary B that (tB, εB)-
breaks the LWEp,N,α assumption with

tB = Θ(tA) and εB ≥
εA

m ·N
.

Moreover, except with probability 2−Ω(N), we have

FmLWE(x) =

 m∏
i>j∧xi=1

Si

 · F̃ jLWE(x)

q

.

23

Theorem 8. Let m = ω(log λ) be (slightly) super-logarithmic andHn,m be a family of
all-prefix almost universal hash functions. Let χα = DZ,α be a Gaussian distribution
with parameter α > 0, let m be a positive integer denotes the length of message inputs.
Define B := m(Cα

√
N)m for a suitable universal constant C. Let p, q be two moduli

such that p > q ·B ·Nω(1).
From each adversaryA that (tA, εA, Q)-breaks the security of FHn,m

LWE with Q/εA =
poly(λ) for some polynomial poly we can construct an adversary B’ that (t′B, ε

′
B)-breaks

the LWEp,N,α assumption with

t′B = Θ(tA) and ε′B ≥
εA

2j ·N
− 2−Ω(N)

where j = O(log λ).

PROOF. The proof is the same as the one for Theorem 4. The only difference is between
Games 1 and 2. Here we do one intermediate game transition Game 1’: We simulate
O1(x) by returning FmLWE(x) =

⌊(∏m
i>j∧xi=1 Si

)
· F̃ jLWE(x)

⌉
q

and O0 by returning a

random vector in ZNq .
By the second statement of Corollary 1, the difference between Games 1 and 1’ is

bounded by the statistical difference 2−Ω(N). Moreover, the difference between Games
1’ and 2 is bounded by the security of F̃ jLWE. By the first statement of Corollary 1 we can
conclude the proof. �

Comparison to the LWE PRF of [DS15]. Döttling and Schröder [DS15] describe a
different variant of the BPR PRF. Their approach is to instantiate their Construction 1
with the BPR PRF and then obtain the following function

FDS15
LWE (K,h, x) =

L⊕
i=1

λ⊕
j=1

F 2i

LWE(S,h,Bin(j)||H2i,j(x))

where L = ω(log λ), for each j ∈ JλK the function H2i,j : {0, 1}n → {0, 1}i+1 is
chosen from a suitable universal hash function family with range {0, 1}i+1, and S is
chosen the same as ours.

Compared with FDS15
LWE , our variant has shorter secret keys: instead of having L · λ

many hash functions, we only have a single one. In terms of computation efficiency,
instead of running Hi and F iLWE for L · λ times, we only run the hash function and FmLWE
once.

6 Conclusion

We have introduced all-prefix (almost-)universal hash functions (APUHFs) as a tool to
generically improve the augmented cascade construction of pseudorandom functions by
Boneh, Montgomery, and Raghunathan [BMR10]. By generically applying an APUHF
to the function input before processing it in the augmented cascade, we are able to reduce

24

both the key size and the tightness of the security proof by one order of magnitude.
We gave simple and very efficient constructions of such a function families, based on
the almost-universal hash function family of Dietzfelbinger et al. [DHKP97], which
can be evaluated by essentially a single modular multiplication, and generically on
pairwise-independent hash functions.

For the instantiation based on Matrix-DDH assumptions of [EHK+13], which
includes the classical constructions of Naor-Reingold [NR97] and the Lewko-
Waters [LW09] as special cases, this yields asymptotically short keys consisting of
only ω(log λ) elements, and tight security with loss only O(log λ). These parameters
are similar to the respective constructions of Döttling and Schröder [DS15], but our
instantiation is conceptually much simpler and slightly more efficient.

For the LWE-based instantiation based of Banerjee, Peikert and Rosen [BPR12]
(BPR), we are able to reduce the required size of the LWE modulus p from exponential
to super-polynomial in the security parameter, which significantly improves efficiency
and allows to prove security under a weaker LWE assumption. Again, the latter is similar
to a result from [DS15], but we replace their relatively expensive generic construction,
which requires to run λ ·ω(log λ) instances of the BPR function in parallel, with a single
instance plus an all-prefix almost-universal hash function.

We believe that APUHFs may have many further applications in cryptography beyond
pseudorandom functions. This may include, for example, constructions of more efficient
cryptosystems with tight provable security, such as digital signatures or public-key
encryption schemes. In particular constructions using arguments similar to pseudorandom
functions based on the augmented cascade, such as [CW13,GHKW16], seem to be
promising targets.

References
Bel06. Mihir Bellare. New proofs for NMAC and HMAC: Security without collision-

resistance. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages
602–619. Springer, Heidelberg, August 2006.

BG90. Mihir Bellare and Shafi Goldwasser. New paradigms for digital signatures and
message authentication based on non-interative zero knowledge proofs. In Gilles Bras-
sard, editor, CRYPTO’89, volume 435 of LNCS, pages 194–211. Springer, Heidelberg,
August 1990.

BH12. Itay Berman and Iftach Haitner. From non-adaptive to adaptive pseudorandom
functions. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 357–
368. Springer, Heidelberg, March 2012.

BHKN13. Itay Berman, Iftach Haitner, Ilan Komargodski, and Moni Naor. Hardness preserving
reductions via Cuckoo hashing. In Amit Sahai, editor, TCC 2013, volume 7785 of
LNCS, pages 40–59. Springer, Heidelberg, March 2013.

BJLS16. Christoph Bader, Tibor Jager, Yong Li, and Sven Schäge. On the impossibility of tight
cryptographic reductions. In Marc Fischlin and Jean-Sébastien Coron, editors, EURO-
CRYPT 2016, Part II, volume 9666 of LNCS, pages 273–304. Springer, Heidelberg,
May 2016.

BLMR13. Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key
homomorphic PRFs and their applications. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 410–428. Springer, Heidelberg,
August 2013.

25

BMR10. Dan Boneh, Hart William Montgomery, and Ananth Raghunathan. Algebraic pseu-
dorandom functions with improved efficiency from the augmented cascade. In Ehab
Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM CCS 10, pages
131–140. ACM Press, October 2010.

BP14. Abhishek Banerjee and Chris Peikert. New and improved key-homomorphic pseudo-
random functions. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part I, volume 8616 of LNCS, pages 353–370. Springer, Heidelberg, August 2014.

BPR12. Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and
lattices. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 719–737. Springer, Heidelberg, April 2012.

CG14. Nishanth Chandran and Sanjam Garg. Balancing output length and query bound in
hardness preserving constructions of pseudorandom functions. In Willi Meier and
Debdeep Mukhopadhyay, editors, INDOCRYPT 2014, volume 8885 of LNCS, pages
89–103. Springer, Heidelberg, December 2014.

Cor02. Jean-Sébastien Coron. Optimal security proofs for PSS and other signature schemes.
In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of LNCS, pages 272–
287. Springer, Heidelberg, April / May 2002.

CW79. Larry Carter and Mark N. Wegman. Universal classes of hash functions. J. Comput.
Syst. Sci., 18(2):143–154, 1979.

CW13. Jie Chen and Hoeteck Wee. Fully, (almost) tightly secure IBE and dual system groups.
In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of
LNCS, pages 435–460. Springer, Heidelberg, August 2013.

DHKP97. Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Penttonen. A
reliable randomized algorithm for the closest-pair problem. Journal of Algorithms,
25(1):19–51, 1997.

DS15. Nico Döttling and Dominique Schröder. Efficient pseudorandom functions via
on-the-fly adaptation. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 329–350. Springer, Heidelberg,
August 2015.

EHK+13. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic
framework for Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147. Springer, Heidelberg,
August 2013.

EHK+17. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic
framework for Diffie–Hellman assumptions. Journal of Cryptology, 30(1):242–288,
Jan 2017.

GGM84. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the cryptographic applica-
tions of random functions. In G. R. Blakley and David Chaum, editors, CRYPTO’84,
volume 196 of LNCS, pages 276–288. Springer, Heidelberg, August 1984.

GGM86. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. Journal of the ACM, 33(4):792–807, October 1986.

GHKW16. Romain Gay, Dennis Hofheinz, Eike Kiltz, and Hoeteck Wee. Tightly CCA-secure
encryption without pairings. In Marc Fischlin and Jean-Sébastien Coron, editors,
EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages 1–27. Springer, Heidelberg,
May 2016.

Gol01. Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge
University Press, Cambridge, UK, 2001.

HJK12. Dennis Hofheinz, Tibor Jager, and Edward Knapp. Waters signatures with optimal
security reduction. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors,
PKC 2012, volume 7293 of LNCS, pages 66–83. Springer, Heidelberg, May 2012.

26

IKOS08. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with
constant computational overhead. In Richard E. Ladner and Cynthia Dwork, editors,
40th ACM STOC, pages 433–442. ACM Press, May 2008.

JPT12. Abhishek Jain, Krzysztof Pietrzak, and Aris Tentes. Hardness preserving constructions
of pseudorandom functions. In Ronald Cramer, editor, TCC 2012, volume 7194 of
LNCS, pages 369–382. Springer, Heidelberg, March 2012.

KK12. Saqib A. Kakvi and Eike Kiltz. Optimal security proofs for full domain hash, revisited.
In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 537–553. Springer, Heidelberg, April 2012.

Kra10. Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme.
In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 631–648. Springer,
Heidelberg, August 2010.

Lev87. Leonid A. Levin. One way functions and pseudorandom generators. Combinatorica,
7(4):357–363, Dec 1987.

LW09. Allison B. Lewko and Brent Waters. Efficient pseudorandom functions from the
decisional linear assumption and weaker variants. In Ehab Al-Shaer, Somesh Jha, and
Angelos D. Keromytis, editors, ACM CCS 09, pages 112–120. ACM Press, November
2009.

LW14. Allison B. Lewko and Brent Waters. Why proving HIBE systems secure is difficult.
In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441
of LNCS, pages 58–76. Springer, Heidelberg, May 2014.

NR97. Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In 38th FOCS, pages 458–467. IEEE Computer Society Press,
October 1997.

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM
Press, May 2005.

A Further Examples of Matrix Distributions

Let us recall some further examples for matrix distributions from [EHK+13,EHK+17]
for completeness and self-containedness.

L2 : A =
(
a1 0
0 a2
1 1

)
, C2 : A =

(
a1 0
1 a2
0 1

)
, IL2 : A =

(
a1 0
0 a1+1
1 1

)
,

SC2 : A =
(
a1 0
1 a1
0 1

)
, U2 : A =

(
a1 a2
a3 a4
a5 a6

)
,

where a1, . . . , a6
$← Zq . The corresponding transformation matrices are as follow,

L2 : T = (
1

a1
,
1

a2
), C2 : T = (± 1

a1a2
,∓ 1

a2
), IL2 : T = (

1

a1
,

1

a1 + 1
)

SC2 : T = (± 1

a21
,∓ 1

a1
), U2 : T = (

a4a5 − a3a6
a1a4 − a2a3

,
a1a6 − a2a5
a1a4 − a2a3

).

The advantage of SCd and ILd is that they can be represented by one group element
and have the same security guarantee as the d-Linear assumption.

27

	Simple and More Efficient PRFs with Tight Security from LWE and Matrix-DDH

