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Abstract. This paper is devoted to analyzing the variant of Regev’s learning with errors (LWE) problem in which
modular reduction is omitted: namely, the problem (ILWE) of recovering a vector s ∈ Zn given polynomially
many samples of the form (a, 〈a, s〉 + e) ∈ Zn+1 where a and e follow fixed distributions. Unsurprisingly, this
problem is much easier than LWE: under mild conditions on the distributions, we show that the problem can be
solved efficiently as long as the variance of e is not superpolynomially larger than that of a. We also provide almost
tight bounds on the number of samples needed to recover s.

Our interest in studying this problem stems from the side-channel attack against the BLISS lattice-based signature
scheme described by Espitau et al. at CCS 2017. The attack targets a quadratic function of the secret that leaks in
the rejection sampling step of BLISS. The same part of the algorithm also suffers from a linear leakage, but the
authors claimed that this leakage could not be exploited due to signature compression: the linear system arising
from it turns out to be noisy, and hence key recovery amounts to solving a high-dimensional problem analogous to
LWE, which seemed infeasible. However, this noisy linear algebra problem does not involve any modular reduction:
it is essentially an instance of ILWE, and can therefore be solved efficiently using our techniques. This allows us to
obtain an improved side-channel attack on BLISS, which applies to 100% of secret keys (as opposed to ≈ 7% in
the CCS paper), and is also considerably faster.

Keywords: LWE problem, lattice-based cryptography, side-channel analysis, BLISS, least squares regression, sta-
tistical learning, compressed sensing, concentration inequalities.

1 Introduction

Learning with errors. Regev’s learning with errors problem (LWE) is the problem of recovering a uniformly random
vector s ∈ (Z/qZ)n given polynomially many samples of the form (a, 〈a, s〉+ e mod q), with a uniform in (Z/qZ)n,
and e sampled according to a fixed distribution over Z/qZ (typically a discrete Gaussian). Regev showed [1] that for
suitable parameters, this problem is as hard as worst-case lattice problems, and is polynomial-time equivalent to its
decision version, which asks to distinguish the distribution of tuples (a, 〈a, s〉+ e mod q) as above from the uniform
distribution over (Z/qZ)n+1. These results are a cornerstone of modern lattice-based cryptography, which is to a large
extent based on LWE and related problems.

Many variants of the LWE problem have been introduced in the literature, mostly with the goal of improving
the efficiency of lattice-based cryptography. For example, papers have been devoted to the analysis of LWE when
the error e has a non-Gaussian distribution and/or is very small [2, 3, 4], when the secret s is sampled from a non-
uniform distribution [5, 6, 7, 8, 9], or when the vectors a are non-uniform [10, 11]. A long line of research has
considered variants of LWE in which auxiliary information is provided about the secret s [12, 13, 6, 14]. Extensions
of LWE over more general rings have also been extensively studied, starting from the introduction of the Ring-LWE
problem [15, 16, 17, 18]. Yet another notable variant of LWE is the learning with rounding (LWR) problem [19, 20, 21],



2in which the scalar product 〈a, s〉 is partly hidden not by adding some noise e, but by disclosing only its most significant
bits.

Recently, further exotic variants have emerged in association with schemes submitted to the NIST postquantum
cryptography standardization process. One can mention for example Compact-LWE [22, 23], which has been bro-
ken [24, 25, 26]; learning with truncation, considered in pqNTRUSign [27]; and Mersenne variants of Ring-LWE,
introduced for ThreeBears [28] and Mersenne–756839 [29].

The ILWE problem. In this paper, we introduce a simpler variant of LWE in which computations are carried out over
Z rather than Z/qZ, i.e. without modular reduction. More precisely, we consider the problem which we call ILWE
(“integer LWE”) of finding a vector s ∈ Zn given polynomially many samples of the form (a, 〈a, s〉 + e) ∈ Zn+1,
where a and e follow fixed distributions on Z.

This problem may occur more naturally in statistical learning theory or numerical analysis than it does in cryptog-
raphy; indeed, contrary to LWE, it is usually not hard. It can even be solved efficiently when the error e is much larger
than the inner product 〈a, s〉 (but not superpolynomially larger), under relatively mild conditions on the distributions
involved.

The fact that standard learning techniques like least squares regression should apply to this problem can be regarded
as folklore, and is occasionally mentioned in special cases in the cryptographic literature (see e.g. [10, §7.6]). The main
purpose of this work is to give a completely rigorous treatment of this question, and in particular to analyze the number
of samples needed to solve ILWE both in an information-theoretic sense and using concrete algorithms.

ILWE and side-channel attacks on BLISS. Our main motivation for studying the ILWE problem is a side-channel
attack against the BLISS lattice-based signature scheme described by Espitau et al. at CCS 2017 [30].

BLISS [31] is one of the most prominent, efficient and widely implemented lattice-based signature schemes, and
it has received significant attention in terms of side-channel analysis. Several papers [32, 33, 30] have pointed out that,
in available implementations, certain parts of the signing algorithm can leak sensitive information about the secret key
via various side-channels like cache timing, electromagnetic emanations and secret-dependent branches. They have
shown that this leakage can be exploited for key recovery.

We are in particular interested in the leakage that occurs in the rejection sampling step of BLISS signature gen-
eration. Rejection sampling is an essential element of the construction of BLISS and other lattice-based signatures
following Lyubashevsky’s “Fiat–Shamir with aborts” framework [34]. Implementing it efficiently in a scheme using
Gaussian distributions, as is the case for BLISS, is not an easy task, however, and as observed by Espitau et al., the
optimization used in BLISS turns out to leak two functions of the secret key via side-channels: an exact, quadratic
function, as well as a noisy, linear function.

The attack proposed by Espitau et al. relies only on the quadratic leakage, and as a result uses very complex and
computationally costly techniques from algorithmic number theory (a generalization of the Howgrave-Graham–Szydlo
algorithm for solving norm equations). In particular, not only does the main, polynomial-time part of their algorithm
takes over a CPU month for standard BLISS parameters, technical reasons related to the hardness of factoring make
their attack only applicable to a small fraction of BLISS secret key (around 7%; these are keys satisfying a certain
smoothness condition). They note that using the linear leakage instead would be much simpler if the linear function
was exactly known, but cannot be done due to its noisy nature: recovering the key then become a high-dimensional
noisy linear algebra problem analogous to LWE, which should therefore be hard.

However, the authors missed an important difference between that linear algebra problem and LWE: the absence of
modular reduction. The problem can essentially be seen as an instance of ILWE instead, and our analysis thus shows
that it is easy to solve. This results in a much more computationally efficient attack taking advantage of the leakage in
BLISS rejection sampling, which moreover applies to all secret keys.

Our contributions. We propose a detailed theoretical analysis of the ILWE problem and show how it can be applied
to the side-channel attack on BLISS. We also provide numerical simulations showing that our proposed algorithms
behave in a way consistent with the theoretical predictions.



3On the theoretical side, our first contribution is to prove that, in an information-theoretic sense, solving the ILWE
problem requires at least m = Ω

(
(σe/σa)

)2
samples from the ILWE distribution when the error e has standard

deviation σe, and the coefficients of the vectors a in samples have standard deviation σa. We show this by estimating
the statistical distance between the distributions arising from two distinct secret vectors s and s′. In particular, the
ILWE problem is hard when σe is superpolynomially larger than σa, but can be easy otherwise, including when σe
exceeds σa by a large polynomial factor.

We then provide and analyze concrete algorithms for solving the problem in that case. Our main focus is least
squares regression followed by rounding. Roughly speaking, we show that this approach solves the ILWE problem
with m samples when m ≥ C ·

(
σe/σa)2 log n for some constant C (and is also a constant factor larger than n,

to ensure that the noise-free version of the corresponding linear algebra problem has a unique solution, and that the
covariance matrix of the vectors a is well-controlled). Our result applies to a very large class of distributions for a and
e including bounded distributions and discrete Gaussians. It relies on subgaussian concentration inequalities.

Interestingly, ILWE can be interpreted as a bounded distance decoding problem in a certain lattice in Zn (which is
very far from random), and the least squares approach coincides with Babai’s rounding algorithm for the approximate
closest vector problem (CVP) when seen through that lens. As a side contribution, we also show that even with a
much stronger CVP algorithm (including an exact CVP oracle), one cannot improve the number of samples necessary
to recover s by more than a constant factor. And on another side note, we also consider alternate algorithms to least
squares when very few samples are available (so that the underlying linear algebra system is not even full-rank), but
the secret vector is known to be sparse. In that case, compressed sensing techniques using linear programming [35]
can solve the problem efficiently.

After this theoretical analysis, we concretely examine the noisy linear algebra problem arising from the linear part
of the BLISS rejection sampling leakage, and show that is strongly resembles an ILWE problem, which allows us to
estimate the number of side-channel traces needed to recover the secret key.

Simulation results both for the vanilla ILWE problem and the BLISS attack are consistent with the theoretical
predictions (only with better constants). In particular, we obtain a much more efficient attack on BLISS than the one
in [30], which moreover applies to 100% of possible secret keys. The only drawback is that our attack requires a larger
number of traces (around 20000 compared to 512 in [30] for BLISS–I parameters), and even that is to a large extent
counterbalanced by the fact that we can easily handle errors in the values read off from side-channel traces, whereas
Espitau et al. need all their leakage values to be exact.

2 Preliminaries

2.1 Notation

For r ∈ R, we denote by drc the nearest integer to r (rounding down for half-integers), and by brc the largest
integer less or equal to r. For a vector x = (x1, . . . , xn) ∈ Rn, the p-norm ‖x‖p of x, p ∈ [1,∞), is given by

‖x‖p =
(
|x1|p + · · · + |xn|p

)1/p
, and the infinity norm by ‖x‖∞ = max

(
|x1|, . . . , |xn|

)
. For a matrix A ∈ Rm×n,

the operator norm ‖A‖op
p of A with respect to the p-norm, p ∈ [1,∞], is given by:

‖A‖op
p = sup

x∈Rn\{0}

‖Ax‖p
‖x‖p

= sup
‖x‖p=1

‖Ax‖p.

For any random variable X , we denote by E[X] its expectation and by Var(X) = E[X2] − E[X]2 its variance. We
write X ∼ χ to denote that X follows the distribution χ. If χ is a discrete distribution over some set S, then for any
s ∈ S, we denote by χ(s) the probability that a sample from χ is equal to s. In particular, if f : S → R is any function
and X ∼ χ, we have:

E[f(s)] =
∑
s∈S

f(s) · χ(s).

Similarly, the statistical distance ∆(χ, χ′) of two distributions χ, χ′ over the set S is:

∆(χ, χ′) =
1

2

∑
s∈S

∣∣χ(s)− χ(s′)
∣∣.



4Let ρ(x) = exp(−πx2) for all x ∈ R. We define ρc,σ(x) = ρ
(
(x − c)/σ

)
the Gaussian function of parameters c, σ.

For any subset S ⊂ R such that the sum converges, we let:

ρc,σ(S) =
∑
s∈S

ρc,σ(s).

The discrete Gaussian distribution Dc,σ centered at c and of parameter σ is the distribution on Z defined by

Dc,σ(x) =
ρc,σ(x)

ρc,σ(Z)
=

exp
(
− π(x− c)2/σ2

)
ρc,σ(Z)

for all x ∈ Z. We omit the subscript c in ρc,σ and Dc,σ when c = 0.

2.2 LWE over the Integers

It is possible to define a variant of the LWE problem “over the integers”, i.e. without modular reduction. We call this
problem ILWE(“integer-LWE”), and define it as follows. The problem arising from the scalar product leakage in the
BLISS rejection sampling is essentially of that form.

Definition 2.1 (ILWE Distribution). For any vector s ∈ Zn and any two probability distributions χa, χe over Z, the
ILWE distribution Ds,χa,χe

associated with those parameters (which we will simply denote Ds for short when χa, χe
are clear) is the probability distribution over Zn × Z defined as follows: samples from Ds,χa,χe

are of the form

(a, b) =
(
a, 〈a, s〉+ e

)
with a← χna and e← χe.

Definition 2.2 (ILWE Problem). The ILWE problem is the computational problem parametrized by n,m, χa, χe in
which, given m samples {(ai, bi)}1≤i≤m from a distribution of the form Ds,χa,χe

for some s ∈ Zn, one is asked to
recover the vector s.

2.3 Subgaussian Probability Distributions

In this paper, the distributions χa, χe we will consider will usually be of mean zero and rapidly decreasing. More
precisely, we will assume that those distributions are subgaussian. The notion of a subgaussian distribution was intro-
duced by Kahane in [36], and can be defined as follows.

Definition 2.3. A random variable X over R is said to be τ -subgaussian for some τ > 0 if the following bound holds
for all s ∈ R:

E
[

exp(sX)
]
≤ exp

(τ2s2

2

)
. (2.1)

A τ -subgaussian probability distribution is defined in the same way.

This section collects useful facts about subgaussian random variables; most of them are well-known, and presented
mostly in the interest of a self-contained and consistent presentation (as definitions of related notions tend to vary
slightly from one reference to the next).

For a subgaussian random variable X , there is a minimal τ such that X is τ -subgaussian. This τ is sometimes
called the subgaussian moment of the random variable (or of its distribution).

As expressed in the next lemma, subgaussian distributions always have mean zero, and their variance is bounded
by τ2.

Lemma 2.4. A τ -subgaussian random variable X satisfies:

E[X] = 0 and E[X2] ≤ τ2.



5Proof. For s around zero, we have:

E[exp(sX)] = 1 + sE[X] +
s2

2
E[X2] + o(s2).

Since, on the other hand, exp(s2τ2/2) = 1 + s2

2 τ
2 + o(s2), the result follows immediately from (2.1). ut

Many usual distributions over Z or R are subgaussian. This is in particular the case for Gaussian and discrete
Gaussian distributions, as well as all bounded probability distributions with mean zero.

Lemma 2.5. The following distributions are subgaussian.

(i) The centered normal distribution N (0, σ2) is σ-subgaussian.
(ii) The centered discrete Gaussian distribution Dσ of parameter σ is σ√

2π
-subgaussian for all σ ≥ 0.283.

(iii) The uniform distribution Uα over the integer interval [−α, α] ∩ Z is α√
2

-subgaussian for α ≥ 3.

(iv) More generally, any distribution over R of mean zero and supported over a bounded interval [a, b] is
(
b−a

2

)
-

subgaussian.

Moreover, in the cases (i)–(iii) above, the quotient τ ≥ 1 between the subgaussian moment and the standard deviation
satisfies:

(i) τ = 1;
(ii) τ <

√
2 assuming σ ≥ 1.85;

(iii) τ ≤
√

3/2

respectively.

Proof. See Appendix A.1. ut

The main property of subgaussian distributions is that they satisfy a very strong tail bound.

Lemma 2.6. Let X be a τ -subgaussian distribution. For all t > 0, we have

Pr[X > t] ≤ exp
(
− t2

2τ2

)
. (2.2)

Proof. Fix t > 0. For all s ∈ R we have, by Markov’s inequality:

Pr[X > t] = Pr[exp(sX) > est] ≤ E[exp(sX)]

est

since the exponential is positive. Using the fact that X is τ -subgaussian, we get:

Pr[X > t] ≤ exp
(s2τ2

2
− st

)
and the right-hand side is minimal for s = t/τ2, which exactly gives (2.2). ut

The following result states that a linear combination of independent subgaussian random variables is again sub-
gaussian.

Lemma 2.7. Let X1, . . . , Xn be independent random variables such that Xi is τi-subgaussian. For all µ1, . . . , µn ∈
R, the random variable X = µ1X1 + · · ·+ µnXn is τ -subgaussian with:

τ2 = µ2
1τ

2
1 + · · ·+ µ2

nτ
2
n.



6Proof. Since the Xi’s are independent, we have, for all s ∈ R:

E[exp(sX)] = E
[

exp
(
s(µ1X1 + · · ·+ µnXn)

)]
= E

[
exp(µ1sX1) · · · exp(µnsXn)

]
=

n∏
i=1

E
[

exp(µisXi)
]
.

Now, since Xi is τi-subgaussian, we have

E
[

exp(µisXi)
]
≤ exp

(s2(µiτi)
2

2

)
for all i. Therefore:

E[exp(sX)] ≤
n∏
i=1

exp
(s2(µiτi)

2

2

)
= exp

(s2τ2

2

)
with τ2 = µ2

1τ
2
1 + · · ·+ µ2

nτ
2
n as required. ut

The previous result shows that the notion of a subgaussian random variable has a natural extension to higher
dimensions.

Definition 2.8. A random vector x in Rn is called a τ -subgaussian random vector if for all vectors u ∈ Rn with
‖u‖2 = 1, the inner product 〈u,x〉 is a τ -subgaussian random variable.

It clearly follows from Lemma 2.7 that if X1, . . . , Xn are independent τ -subgaussian random variables, then the
random vector x = (X1, . . . , Xn) is τ -subgaussian. In particular, if χ is a τ -subgaussian distribution, then a random
vector x ∼ χn is τ -subgaussian. A nice feature of subgaussian random vectors is that the image of such a random
vector under any linear transformation is again subgaussian.

Lemma 2.9. Let x be a τ -subgaussian random vector in Rn, and A ∈ Rm×n. Then the random vector y = Ax is
τ ′-subgaussian, with τ ′ = ‖AT ‖op

2 · τ .

Proof. Fix a unit vector u0 ∈ Rm. We want to show that the random variable 〈u0,y〉 is τ ′-subgaussian. To do so, first
observe that:

〈u0,y〉 = 〈ATu0,x〉 = µ〈u,x〉

where µ = ‖ATu0‖2, and u = 1
µA

Tu0 is a unit vector of Rn. Since x is τ -subgaussian, we know that the inner
product 〈u,x〉 is a τ -subgaussian random variable. As a result, by Lemma 2.7 in the trivial case of a single variable,
we obtain that 〈u0,y〉 = µ〈u,x〉 is

(
|µ|τ

)
-subgaussian. But by definition of the operator norm, |µ| ≤ ‖AT ‖op

2 , and
the result follows. ut

3 Information-Theoretic Analysis

A first natural question one can ask regarding the ILWE problem is how hard it is in an information-theoretic sense.
In other words, given two vectors s, s′ ∈ Zn, how close are the ILWE distributions Ds,Ds′ associated to s and s′, or
equivalently, how many samples do we need to distinguish between those distributions?

In this section, we show that, at least when the error distribution χe is either uniform or Gaussian, the statistical
distance between Ds and Ds′ admits a bound of the form O

(
σa

σe
‖s− s′‖

)
. In particular, distinguishing between those

distributions with constant success probability requires

Ω

(
1

‖s− s′‖2
(σe
σa

)2
)

samples, and the distributions are statistically indistinguishable when σe is superpolynomially larger than σa. To see
this, we first give a relatively simple expression for the statistical distance.



7Lemma 3.1. The statistical distance between Ds and Ds′ is given by:

∆(Ds,Ds′) = E
[
∆(χe, χe − 〈a, s− s′〉)

]
,

where χe + t denotes the translation of χe by the constant t, and the expectation is taken over a← χna .

Proof. By definition of the statistical distance, we have:

∆(Ds,Ds′) =
1

2

∑
(a,b)∈Zn+1

∣∣Pr
[
(a, b)← Ds

]
− Pr

[
(a, b)← Ds′

]∣∣ .
Now to sample from Ds, one first samples a according to χna , independently sample e according to χe, and returns
(a, b) with b = 〈a, s〉+ e. Therefore:

Pr
[
(a, b)← Ds

]
= χna(a) · χe(b− 〈a, s〉),

and similarly for Ds′ . Thus, we can write:

∆(Ds,Ds′) =
1

2

∑
(a,b)∈Zn+1

χna(a) · |χe(b− 〈a, s〉)− χe(b− 〈a, s′〉)|

=
∑
a∈Zn

χna(a) · 1

2

∑
b∈Z
|χe(b− 〈a, s〉)− χe(b− 〈a, s′〉)|

=
∑
a∈Zn

χna(a) · 1

2

∑
x∈Z
|χe(x)− χe(x+ 〈a, s− s′〉)|

where the last equality is obtained with the change of variables x = b− 〈a, s〉. We now observe that the expression

1

2

∑
x∈Z
|χe(x)− χe(x+ 〈a, s− s′〉)|

is exactly the statistical distance ∆(χe, χe − 〈a, s− s′〉), and therefore we do obtain:

∆(Ds,Ds′) = E
[
∆(χe, χe − 〈a, s− s′〉)

]
as required. ut

Thus, we can bound the statistical distance ∆(Ds,Ds′) using a bound on the statistical distance between χe and a
translated distribution χe + t. We provide such a bound when χe is either uniform in a centered integer interval, or a
discrete Gaussian distribution.

Lemma 3.2. Suppose that χe is either the uniform distribution Uα in [−α, α] ∩ Z for some positive integer α, or the
centered discrete Gaussian distributionDσ with parameter σ ≥ 1.60. In either case, let σe =

√
E[χ2

e] be the standard
deviation of χe. We then have the following bound for all t ∈ Z:

∆(χe, χe + t) ≤ C · |t|/σe

where C = 1/
√

12 in the uniform case and C = 1/
√

2 in the discrete Gaussian case.

Proof. See Appendix A.2. ut

Combining Lemma 3.1 and Lemma 3.2, we obtain a bound of the form announced at the beginning of this section.

Theorem 3.3. Suppose that χe is as in the statement of Lemma 3.2. Then, for any two vectors s, s′ ∈ Zn, the statistical
distance between Ds and Ds′ is bounded as:

∆(Ds,Ds′) ≤ C ·
σa
σe
‖s− s′‖2,

where C is the constant appearing in Lemma 3.2.



8Proof. Lemma 3.1 gives:
∆(Ds,Ds′) = E

[
∆(χe, χe − 〈a, s− s′〉)

]
,

and according to Lemma 3.2, the statistical distance on the right-hand side is bounded as:

∆(χe, χe + 〈a, s− s′〉) ≤ C

σe
·
∣∣〈a, s− s′〉

∣∣.
It follows that:

∆(Ds,Ds′) ≤
C

σe
· E
[∣∣〈a, s− s′〉

∣∣] ≤ C

σe

√
E
[
〈a, s− s′〉2

]
where the second inequality is a consequence of the Cauchy–Schwarz inequality. Now, for any u ∈ Zn, we can write:

E
[
〈a,u〉2

]
= E

[ ∑
1≤i,j≤n

uiujaiaj

]
=

∑
1≤i,j≤n

uiujE[aiaj ] = σ2
a‖u‖22

since E[aiaj ] = σ2
aδij . As a result:

∆(Ds,Ds′) ≤ C ·
σa
σe
‖s− s′‖2

as required. ut

As discussed in the beginning of this section, this shows that distinguishing between Ds and Ds′ requiresΩ
(

1
‖s−s′‖2

(
σe

σa

)2
)

samples. In particular, recovering s (which implies distinguishing Ds from all Ds′ for s′ 6= s) requires

m = Ω
(
(σe/σa)2

)
(3.1)

samples. In what follows, we will describe efficient algorithms that actually recover s from only slightly more samples
than this lower bound.

Remark 3.4. Contrary to the results of the next section, which will apply to arbitrary subgaussian distributions, we
cannot establish an analogue of Lemma 3.2 using only a bound on the tail of the distribution χe. For example, if
χe is supported over 2Z, then ∆(χe, χe + t) = 1 for any odd t! One would presumably need an assumption of the
small-scale regularity of χe to extend the result.

4 Solving the ILWE Problem

We now turn to describing efficient algorithms to solve the ILWE problem. We are given m samples (ai, bi) from the
ILWE distribution Ds, and try to recover s ∈ Zn. Since s can a priori be any vector, we, of course, need at least n
samples to recover it; indeed, even without any noise, fewer samples can at best reveal an affine subspace on which s
lies, but not its actual value. We are thus interested in the regime when m ≥ n.

The equation for s can then be written in matrix form:

b = As + e (4.1)

where A ∈ Zm×n is distributed according to χm×na , e ∈ Zm is distributed as χme , A,b are known and e is unknown.
The idea to find s will be to use simple statistical inference techniques to find an approximate solution s̃ ∈ Rn

of the noisy linear system (4.1) and to simply round that solution coefficient by coefficient to get a candidate ds̃c =
(ds̃1c, . . . , ds̃nc) for s. If we can establish the bound:

‖s− s̃‖∞ < 1/2 (4.2)

or, a fortiori, the stronger bound ‖s− s̃‖2 < 1/2, then it follows that ds̃c = s and the ILWE problem is solved.



9The main technique we propose to use is least squares regression. Under the mild assumption that both χa and χe
are subgaussian distributions, we will show that the corresponding s̃ satisfies the bound (4.2) in the linear programming
setting with high probability when m is sufficiently large. Moreover, the number m of samples necessary to establish
those bounds, and hence solve ILWE, is only a log n factor larger than the information-theoretic minimum given in
(3.1) (with the additional constraint that m should be a constant factor larger than n, to ensure that A is invertible and
has well-controlled singular values).

We also briefly discuss lattice reduction as well as compressed sensing techniques based on linear programming.
We show that even an exact-CVP oracle cannot significantly improve upon the log n factor of the least squares method.
On the other hand, if the secret is known to be very sparse, compressed sensing techniques can recover the secret even
in cases when m < n, where the least squares method is not applicable.

4.1 Least Squares Method

The first approach we consider to obtain an estimator s̃ of s is the linear, unconstrained least squares method: s̃ is
chosen as a vector in Rn minimizing the squared Euclidean norm ‖b−As̃‖22. In particular, the gradient vanishes at s̃,
which means that s̃ is simply a solution to the linear system:

ATAs̃ = ATb.

As a result, we can compute s̃ in polynomial time (at most O(mn2)) and it is uniquely defined if and only if ATA is
invertible.

It is intuitively clear that ATA should be invertible when m is large. Indeed, one can write that matrix as:

ATA =

m∑
i=1

aia
T
i

where the ai’s are the independent identically distributed rows of A, so the law of large numbers shows that 1
mA

TA
converges almost surely to E

[
aaT

]
as m→ +∞, where a is a random variable in Zn sampled from χna . We have:

E
[
(aaT )ij

]
= E[aiaj ] = δijσ

2
a,

and therefore we expect ATA to be close to mσ2
aIn for large m.

Making this heuristic argument rigorous is not entirely straightforward, however. Assuming some tail bounds on
the distribution χa, concentration of measure results can be used to prove that, with high probability, the smallest
eigenvalue λmin(ATA) is not much smaller than mσ2

a (and in particular ATA is invertible) for m sufficiently large,
with a concrete bound on m. This type of bound on the smallest eigenvalue is exactly what we will need in the rest of
our analysis.

More precisely, when χa is bounded, one can apply a form of the so-called Matrix Chernoff inequality, such as
[37, Cor. 5.2]. However, we would prefer a result that applies to e.g. discrete Gaussian distributions as well, so we only
assume a subgaussian tail bound for χa. Such result can be derived from the following lemma due to Hsu et al. [38,
Lemma 2] (for simplicity, we specialize their statement to ε0 = 1/4 and to the case of jointly independent vectors).

Lemma 4.1. Let χ be a τ -subgaussian distribution of variance 1 over R, and consider m random vectors x1, . . . ,xm
in Rn sampled independently according to χm. For any δ ∈ (0, 1), we have:

Pr

[
λmin

( 1

m

m∑
i=1

xix
T
i

)
< 1− ε(δ,m) or λmax

( 1

m

m∑
i=1

xix
T
i

)
> 1 + ε(δ,m)

]
< δ

where the error bound ε(δ,m) is given by:

ε(δ,m) = 4τ2

(√
8 log 9 · n+ 8 log(2/δ)

m
+

log 9 · n+ log(2/δ)

m

)
.



10 Using this lemma, one can indeed show that for χa subgaussian, λmin(ATA) is within an arbitrarily small factor
of mσ2

a with probability 1− 2−η for m = Ω(n+ η) (and similarly for λmax).

Theorem 4.2. Suppose that χa is τa-subgaussian, and let τ = τa/σa. Let A be an m × n random matrix sampled
from χm×na . There exist constants C1, C2 such that for all α ∈ (0, 1) and η ≥ 1, if m ≥ (C1n+ C2η) · (τ4/α2) then

Pr
[
λmin

(
ATA

)
< (1− α) ·mσ2

a or λmax

(
ATA

)
> (1 + α) ·mσ2

a

]
< 2−η. (4.3)

Furthermore, one can choose C1 = 28 log 9 and C2 = 29 log 2.

Proof. Let ai be the i-th row of A, and xi = 1
σa

ai. Then the coefficients of xi follow a τ -subgaussian distribution of
variance 1, and every coefficient of any of the xi is independent from all the others, so the xi’s satisfy the hypotheses
of Lemma 4.1. Now:

1

m

m∑
i=1

xix
T
i =

1

mσ2
a

m∑
i=1

aia
T
i =

1

mσ2
a

ATA.

Therefore, Lemma 4.1 shows that:

Pr
[
λmin

(
ATA

)
<
(
1− ε(2−η,m)

)
·mσ2

a or λmax

(
ATA

)
>
(
1 + ε(2−η,m)

)
·mσ2

a

]
< 2−η

with ε(δ,m) defined as above. Thus, to obtain (4.3), it suffices to take m such that ε(2−η,m) ≤ α.
The value ε(δ,m) can be written as 4τ2 · (

√
8ρ + ρ) where ρ =

(
log 9 · n + log(2/δ)

)
/m. For the choice of

m in the statement of the theorem, we necessarily have ρ < 1 since σa ≤ τa, and hence τ4 ≥ 1. As a result,
ε(δ,m) ≤ 16τ2 · √ρ. Thus, to obtain the announced result, it suffices to choose:

m ≥ 28τ4

α2

(
log 9 · n+ log 21+η

)
,

which concludes the proof. ut

Remark 4.3. The ratio τ between the subgaussian moment τa of χa and the actual standard deviation σa is typically
small (e.g. 1 for Gaussians,

√
3 for uniform distributions in a centered interval, etc.), so it isn’t the important factor in

the theorem.
The asymptotic bound saying that m = Ω

(
(n + η)/α2

)
suffices to ensure that λmin(ATA) is within a factor α

of the limit mσ2
a is a satisfactory result, but the implied constant in our theorem is admittedly rather large. This is an

artifact of our reliance on Hsu et al.’s lemma. A more refined analysis is carried out by Litvak et al. in [39], and can
in principle be used to reduce the constant C1 in our theorem to 1 + o(1) for sufficiently large n. The authors omit
concrete constants, however, and making [39, Th. 3.1] explicit is nontrivial.

From now on, let us suppose that the assumptions of Theorem 4.2 are satisfied for some α ∈ (0, 1), and η equal to
the “security parameter”. In particular, ATA is invertible with overwhelming probability, and we can thus write:

s̃ = (ATA)−1 ·ATb.

As discussed in the beginning of this section, we would like to bound the distance between the estimator s̃ and the
actual solution s of the ILWE problem in the infinity norm, so as to obtain an inequality of the form (4.2). Since by
definition b = As + e, we have:

s̃− s = (ATA)−1 ·AT
(
As + e

)
− s = (ATA)−1 ·ATe = Me,

where M is the matrix (ATA)−1 · AT . Now suppose that all the coefficients of e are τe-subgaussian. Since they are
also independent, the vector e is a τe-subgaussian random vector in the sense of Definition 2.8. Therefore, it follows
from Lemma 2.9 that s̃− s = Me is τ̃ -subgaussian, where:

τ̃ = ‖MT ‖op
2 · τe = τe

√
λmax(MMT ) = τe

√
λmax

(
(ATA)−1AT ·A(ATA)−1

)
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= τe

√
λmax

(
(ATA)−1

)
=

τe√
λmin(ATA)

.

As a result, under the hypotheses of Theorem 4.2, s̃ − s is a τe

σa

√
(1−α)m

-subgaussian random vector, except with

probability at most 2−η on the randomness of the matrix A.
This bound on the subgaussian moment can be used to derive a bound with high probability on the infinity norm

as follows.

Lemma 4.4. Let v be a τ -subgaussian random vector in Rn. Then:

Pr
[
‖v‖∞ > t

]
≤ 2n · exp

(
− t2

2τ2

)
.

Proof. If we write v = (v1, . . . , vn), we have ‖v‖∞ = max(v1, . . . , vn,−v1, . . . ,−vn). Therefore, the union bound
shows that:

Pr
[
‖v‖∞ > t

]
≤

n∑
i=1

Pr[vi > t] + Pr[−vi > t]. (4.4)

Now each of the random variables v1, . . . , vn,−v1, . . . ,−vn can be written as the scalar product of v with a unit
vector of Rn. Therefore, they are all τ -subgaussian. If X is one of them, the subgaussian tail bound of Lemma 2.6
shows that Pr[X > t] ≤ exp

(
− t2

2τ2

)
. Combined with (4.4), this gives the desired result. ut

This is all we need to establish a sufficient condition for the least squares approach to return the correct solution to
the ILWE problem with good probability.

Theorem 4.5. Suppose that χa is τa-subgaussian and χe is τe-subgaussian, and let (A,b = As + e) the data
constructed from m samples of the ILWE distribution Ds,χa,χe , for some s ∈ Zn. There exist constants C1, C2 > 0
(the same as in the hypotheses of Theorem 4.2) such that for all η ≥ 1, if:

m ≥ 4
τ4
a

σ4
a

(C1n+ C2η) and m ≥ 32
τ2
e

σ2
a

log(2n)

then the least squares estimator s̃ = (ATA)−1ATb satisfies ‖s− s̃‖∞ < 1/2, and hence ds̃c = s, with probability at
least 1− 1

2n − 2−η .

Proof. Applying Theorem 4.2 with α = 1/2 and the same constants C1, C2 as introduced in the statement of that
theorem, we obtain that for m ≥ τ4

a

σ4
a

(4C1n+ 4C2η), we have

Pr
[
λmin

(
ATA

)
< mσ2

a/2
]
< 2−η. (4.5)

Therefore, except with probability at most 2−η , we have λmin

(
ATA

)
≥ mσ2

a/2. We now assume that this condition
is satisfied.

We have shown above that s̃ − s is a τ̃ -subgaussian random vector with τ̃ = τe/
√
λmin(ATA). Applying

Lemma 4.4 with t = 1/2, we therefore have:

Pr
[
‖s̃− s‖∞ >

1

2

]
≤ 2n · exp

(
− 1

8τ̃2

)
≤ 2n · exp

(
− λmin(ATA)

8τ2
e

)
≤ exp

(
log(2n)− mσ2

a

16τ2
e

)
.

Thus, if we assume that m ≥ 32
τ2
e

σ2
a

log(2n), it follows that:

Pr
[
‖s̃− s‖∞ >

1

2

]
≤ exp

(
log(2n)− 2 log(2n)

)
=

1

2n
.

This concludes the proof. ut



12 In the typical case when τa and τe are no more than a constant factor larger than σa and σe, Theorem 4.5 with
η = log(2n) says that there are constants C,C ′ such that whenever

m ≥ Cn and m ≥ C ′ · σ
2
e

σ2
a

log n (4.6)

one can solve the ILWE problem with m samples with probability at least 1 − 1/n by rounding the least squares
estimator. The first condition ensures that ATA is invertible and to control its eigenvalues: a condition of that form
is clearly unavoidable to have a well-defined least squares estimator. On the other hand, the second condition gives a
lower bound of the form (3.1) on the required number of samples; we see that this bound is only a factor log n worse
than the information-theoretic lower bound, which is quite satisfactory.

We also note that the cost of this approach is equal to the complexity of computing (ATA)−1ATb, hence at
most O(n2 · m). This is quite efficient in practice (see §6 for concrete timings). In practice, arithmetic operations
can be implemented using standard floating point instructions, since the almost scalar nature of ATA ensures that the
computations are numerically very stable.

4.2 An Exact-CVP Oracle Will Not Help

One can interpret this approach to solving ILWE by computing a least squares estimator and rounding it as an appli-
cation of Babai’s rounding algorithm for the closest vector problem (CVP).

More precisely, consider the sublatticeL = ATA·Zn of Zn, which is full-rank whenATA is invertible (i.e.m large
enough). Then, the ILWE problem can be seen as the problem of recovering the lattice vector v = ATAs ∈ L given
the close vector ATb = v + ATe (which is essentially an instance of bounded distance decoding in L). Closeness in
this setting is best measured in terms of the infinity norm. Now, since for largem, the matrixATA is almost scalar, and
hence the corresponding lattice basis of L is somehow already reduced, one can try to solve this problem by applying
a CVP algorithm like Babai rounding directly on this basis. It is easy to see that this approach is identical to our least
squares approach.

One could ask whether applying another CVP algorithm such as Babai’s nearest plane algorithm could allow
solving the problem with asymptotically fewer samples (e.g. reduce the log n factor in (4.6)). The answer is no. In
fact, a much stronger result holds: one cannot improve Condition (4.6) using that strategy even given access to an
exact-CVP oracle for any p-norm, p ∈ [2,∞]. Given such an oracle, the secret vector v can be recovered uniquely if
and only if the vector of noiseATe lies in a ball centered on v and of radius half the first minimum of L in the p-norm,
λ

(p)
1 (L) = minx∈L ‖x‖p, that is:

‖ATe‖p ≤
λ

(p)
1 (L)

2
. (4.7)

To take advantage of this condition, we need to get sufficiently precise estimates of both sides.

Estimation of the first minimum. Due to the quasi-scalar shape of the matrix ATA, one can estimate accurately
the λ(p)

1 (L). Indeed, ATA has a low orthogonality defect, so that it is in a sense already reduced. Hence, the shortest
vector of this basis constitutes a very good approximation of the shortest vector of L.

Lemma 4.6. Suppose that χa is τa-subgaussian, and let τ = τa/σa. Let A be an m×n random matrix sampled from
χm×na . Let L be the lattice generated by the rows of the matrix ATA. There exist constants C1, C2 (the same as in
Theorem 4.2) such that for all α ∈ (0, 1), p ≥ 2 and η ≥ 1, if m ≥ (C1n+ C2η) · (τ4/α2) then

Pr
[
λ

(p)
1 (L)

(
ATA

)
> mσ2

a(1 + α)
]
≤ 2−η. (4.8)

Proof. Remark first that by norm equivalence in finite dimension, x ∈ Rn we have ‖x‖p ≤ ‖x‖2 so that λ(p)
1 (L) ≤

λ
(2)
1 (L), this bound being actually sharp. Without loss of generality it then suffices to prove the result in 2-norm. From



13Theorem 4.2, we can assert that except with probability at most 2−η , ‖ATA‖op
2 ≤ mσ2

a(1 +α); for any integral vector
x ∈ Zn we therefore have by definition of the operator norm:

‖ATAx‖2 ≤ mσ2
a‖x‖2(1 + α).

In particular, for any x ∈ Zn of unit 2-norm, λ(2)
1 (L) ≤ ‖ATAx‖2 ≤ (1 + α)mσ2

a. ut

Estimation of the p-norm of AT e. Suppose that χe is a centered Gaussian distribution of standard deviation σe. The
distribution of ATe for e ∼ χne is then a Gaussian distribution of covariance matrix σ2

eA
TA ≈ mσ2

aσ
2
eIn. We deal

with the cases p =∞ and p ≤ ∞ separately.

Case p <∞: The expected p-th power of the p-norm of ATe satisfies:

E
[
‖ATe‖pp

]
= nE[xp] = n(2m)p/2σpeσ

p
a ·

Γ
(
p
2 + 1

2

)
√
π

,

where x is drawn under the centered gaussian distribution of variance mσ2
eσ

2
a, and Γ is classically the Euler’s

Gamma function. But by the partial converse of Jensen’s inequality for norms of Stadje [40] we have:

E
[
‖ATe‖pp

]
≤ 2pΓ

(
p

2
+

1

2

)√
π

(p−1)E
[
‖ATe‖p

]p
so that:

n1/pσeσa

√
m

2π
≤ E

[
‖ATe‖p

]
Case p =∞: The estimate is obtained by the order statistic theory of Gaussian distributions (see e.g. [41]):

C∞σeσa
√
m log n ≤ E

[
‖ATe‖∞

]
,

where C∞ = 3
2

(
1− 1

e

)
− 1√

2π
≈ 0.23

Now that we have access to the expected value of the random variable ‖ATe‖p, we are going to use the concen-
tration of its distribution around its expected value. Explicitly by the random version of Dvoretzky’s theorem proven
in [42], there exist absolute constants K, c > 0 such that for any 0 < ε < 1:

Pr
[∣∣∣ATe− E

[
‖ATe‖p

]∣∣∣ > εE
[
‖ATe‖p

]
≤ Ke−cβ(n,p,ε) (4.9)

with

β(m, p, ε) =


ε2n if 1 < p ≤ 2

max(min(2−pε2n, (εn)2/p), εpn2/p) if 2 < p ≤ c0 log n

ε log n if p > c0 log n

,

for 0 < c0 < 1 a fixed absolute constant.

Summing up. Taking ε = 1/2 in (4.9) ensures that, except with probability Ke−cβ(n,p,1/2),

1

2
E
[
‖ATe‖p

]
≤ ‖AT e‖p ≤

3

2
E
[
‖ATe‖p

]
. (4.10)

For any fixed p, the probability can be made as small as desired for large enough n. We can therefore assume that
(4.10) occurs with probability at least 1− δ for some small δ > 0.



14 In that case, Condition (4.7) asserts that if E
[
‖ATe‖p

]
> λ

(p)
1 (L) then s can’t be decoded uniquely in L. Now

using the result of Lemma 4.6 with α = 1/2 and the previous estimates, we know that this is the case when:

n1/pσeσa

√
m

2π
>

3

2
mσ2

a, that is, m <

(
σe
σa

)2
2n2/p

9π
,

when p <∞, and

0.23σeσa
√
m log n >

3

2
mσ2

a, that is, m < 0.02

(
σe
σa

)2

log n,

otherwise. In both cases, it follows that we must have m = Ω
(
(σe/σa)2 log n

)
for the CVP algorithm to output the

correct secret with probability> δ. Thus, this approach cannot improve upon the least squares bound 4.5 by more than
a constant factor.

4.3 Sparse Secret and Compressed Sensing

Up until this point, we have supposed that the number m of samples we have access to is greater than the dimension
n. Indeed, without additional information on the secret s, this condition is necessary to get a well-defined solution to
the ILWE problem even without noise.

Suppose however that the secret s is known to be sparse, with only a small number S � n of non zero coefficients.
Even if the positions of these non zero coefficients are not known, knowledge of the sparsity S may help in determining
the secret, possibly even with fewer samples than the ambient dimension n with the sole additional knowledge of its
sparsity (though of course more than S samples are necessary!). Such a recovery is made possible by compressed
sensing techniques, epitomized by the results of Candes and Tao in [35]. The idea is once again to find an estimator s̃
such that the infinity norm ‖s̃ − s‖∞ is small enough to fully recover the secret s from it. This can be done with the
Dantzig selector introduced in [35], and efficiently computable as a solution s̃ = (s̃1, . . . , s̃n) of the following linear
program with 2n unknowns s̃i, ũi, 1 ≤ i ≤ n:

min

n∑
i=1

ui such that − ui ≤ s̃i ≤ ui and

−σeσa
√

2m log n ≤
[
AAT (ATb−ATAs̃)

]
i
≤ σeσa

√
2m log n.

(4.11)

In the case when the distributions χe and χa are Gaussian distributions of respective standard deviations σe and σe,
the quality of the output of the program defined by (4.11) is quantified as follows.

Theorem 4.7 (adapted from [35]). Suppose s ∈ Zn is any S-sparse vector so that log(mσ2
a/n)S ≤ m Then with

large probability, s̃ obeys the relation

‖s̃− s‖22 ≤ 2C2
1S log n

(
σe√
mσa

)2

(4.12)

for some constant C1 ≈ 4.

Hence as before, if ‖s̃ − s‖22 ≤ 1/4, we have ‖s̃ − s‖∞ ≤ 1/2 and one can then decode the coefficients of s by
rounding s̃. This is satisfied with high probability as soon as:

2C2
1

S log n

m

(
σe
σa

)2

≤ 1

4
.

Since we aim at solving the ILWE problem in parsimonious sample setting, where m < n we deduce that the com-
pressed sensing methodology can be successfully applied when

S ≤ n

8C2
1 log n

(
σa
σe

)2

. (4.13)
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Table 1: Maximum value of the ratio σe/σa to recover a S sparse secret in dimension n with the Dantzig selector

n

(S/n)
0.1 0.3 0.5 0.7 0.9

128 16.2 9.4 7.3 6.1 5.4
256 15.2 8.8 6.8 5.7 5.0
512 14.3 8.3 6.4 5.4 4.8
1024 13.6 7.8 6.0 5.1 4.5
2048 13.0 7.5 5.8 4.9 4.3

Let us discuss the practicality of this approach with regards to the parameters of the ILWE problem. First of all,
note that in order to make Condition (4.13) non-vacuous, one needs σe and σa to satisfy:

2C1

√
2 log n

n
≤ σa
σe
≤ 2C1

√
2 log n,

where the lower bound follows from the fact that S is a positive integer, and the upper bound from the observation
that the right-hand side of (4.13) must be smaller than n to be of any interest compared to the trivial bound S ≤ n.
Practically speaking, this means that this approach is only interesting when the ratio σe/σa is relatively small; concrete
bounds are provided in Table 1 various sparsity levels and dimensions ranging from 128 to 2048.

We note that the required sparsity is much higher than proposed parameters for BLISS, for example. Moreover,
the complexity of this linear programming based approach is worse than least squares regression. However, only this
method is applicable when only m < n samples are available.

5 Application to the Side-channel Attack of BLISS

5.1 BLISS Signatures and Rejection Sampling Leakage

The BLISS signature scheme [31] is a lattice-based signature scheme based on the Ring-Learning With Error (RLWE)
assumption. Its signing algorithm is recalled in Figure 1.

The rejection sampling. The BLISS signature scheme follows the “Fiat–Shamir with aborts” paradigm of Lyuba-
shevsky [34]. In particular, signature generation involves a rejection sampling step (Step 8 of function SIGN in Fig-
ure 1) which is essential for security: in order to ensure that the distribution of signatures is independent of the secret
key s = (s1, s2), a signature candidate

(
z = (z1, z2), c

)
should be kept with probability

1

/(
M exp

(
− ‖sc‖

2

2σ2

)
cosh

(
〈z, sc〉
σ2

))
.

Since it would be impractical to directly compute this expression involving transcendental functions with sufficient
precision, all existing implementations of BLISS [43, 44, 45] rely instead on the iterated Bernoulli trials technique de-
scribed in [31, §6]. A signature (z, c) is kept if the function calls SAMPLEBERNEXP(xexp) and SAMPLEBERNCOSH(xcosh)
both return 1, where functions SAMPLEBERNEXP and SAMPLEBERNCOSH are described in Figure 2 and the values
xexp, xcosh are given respectively by xexp = logM − ‖sc‖2 and xcosh = 2 · 〈z, sc〉.



16Fig. 1: BLISS signing algorithm. The hash function H is modeled as a RO with values in the set of polynomials in R with 0/1-
coefficient and Hamming weight κ. See [31] for details regarding notation like ζ, d·cd and p not discussed in this paper.

1: function SIGN(µ, pk = v1, sk = s = (s1, s2))
2: y1,y2 ← Dn̄

σ

3: u = ζ · v1 · y1 + y2 mod 2q
4: c← H(ducd mod p, µ)
5: choose a random bit b
6: z1 ← y1 + (−1)bs1c
7: z2 ← y2 + (−1)bs2c
8: continue with probability 1/

(
M exp(−‖sc‖2/(2σ2)) cosh(〈z, sc〉/σ2

)
; otherwise restart

9: z†2 ← (ducd − du− z2cd) mod p
10: return (z1, z

†
2, c)

Fig. 2: Sampling algorithms for the distributions Bexp(−x/2σ2) and B1/ cosh(x/σ2). The values ci = 2i/f precomputed, and the
xi’s are the bits in the binary expansion of x =

∑`−1
i=0 2ixi. BLISS uses x = K − ‖sc‖2 for the input to the exponential sampler,

and x = 2〈z, sc〉 for the input to the cosh sampler.

1: function SAMPLEBERNEXP(x)
2: for i = 0 to `− 1 do
3: if xi = 1 then
4: Sample a← Bci
5: if a = 0 then return 0
6: return 1

1: function SAMPLEBERNCOSH(x)
2: if x < 0 then x← −x
3: Sample a← Bexp(−x/f)

4: if a = 1 then return 1
5: Sample b← B1/2

6: if b = 1 then restart
7: Sample c← Bexp(−x/f)

8: if c = 1 then restart
9: return 0

Side-channel leakage of the rejection sampling. Based on their description in Figure 2, it is clear that SAMPLEBERNEXP
and SAMPLEBERNCOSH do not run in constant time. In fact, they iterate over the bits of their input, and part of the
code is executed when the bit is 1 and skipped over when the bit is 0. As a result, as observed by Espitau et al. [30, §3],
the inputs xexp, xcosh of these functions can be read off directly on a trace of power consumption or electromagnetic
emanations, in much the same way as naive square-and-multiply implementations of RSA leak the secret exponent
via simple power analysis [46, §3.1]. As a result, side-channel analysis allows to reliably recover the squared norm
‖sc‖2 = ‖s1c‖2 + ‖s2c‖2 and the scalar product 〈z, sc〉 = 〈z1, s1c〉+ 〈z2, s2c〉 from generated signatures.

Espitau et al. show that the norm leakage can be leveraged in practice to recover the secret key from a little
over n̄ signature traces, where n̄ is the extension degree of the ring R (n̄ = 512 for the most common parameters).
However, the recovery technique is mathematically quite involved and computationally costly (it is based on the
Howgrave-Graham–Szydlo solution to cyclotomic norm equations [47], and takes over a month of CPU time for
typical parameters). More importantly, it has the major drawback of relying on the ability to factor this norm and
thus only applying to “weak” signing keys satisfying a certain semismoothness condition (around 7% of BLISS secret
keys).

It is natural to think that the scalar product leakage, which is linear rather than quadratic in the secret key, is a
more attractive target to attack. And indeed, Espitau et al. point out that in a simplified version of BLISS where z2 is
returned in full as part of signatures, it is very easy to recover the secret key from about 2n̄ side-channel traces using
elementary linear algebra. However, in the actual BLISS scheme, the element z2 is returned in a compressed form z†2,
so that the linear system arising from scalar product leakage is noisy. Solving this linear system amounts to solving
a problem analogous to LWE [1] in dimension about 2n̄, which leads Espitau et al. to conclude that this approach is
unlikely to be helpful. In doing so, however, they overlook a crucial difference between standard LWE and the problem
that actually arises in this way, namely the lack of modular reduction.



175.2 Description of the Attack

As we have mentioned already, recovering the secret s ∈ Z2n̄ = Zn from the linear leakage 〈z, sc〉 essentially amounts
to an instance of the ILWE problem. We now describe more precisely in what sense. To do so, we need to write this
inner product in terms of the known ring elements (c, z1, z

†
2) that appear in the signature on the one hand, and unknown

elements on the other hand. This can be done as follows:

〈z, sc〉 = 〈z1, s1c〉+ 〈z2, s2c〉 = 〈z1c
∗, s1〉+ 〈2dz†2, s2c〉+ 〈z2 − 2dz†2, s2c〉

= 〈z1c
∗, s1〉+ 〈2dz†2c∗, s2〉+ e = 〈a, s〉+ e,

where we let:
a = (z1c

∗, 2dz†2c
∗) ∈ Z2n̄ = Zn and e = 〈z2 − 2dz†2, s2c〉.

The vector a can be computed from the signature, and is therefore known to the side-channel attacker, whereas e is
some unknown value. In these expressions, c∗ is the conjugate of c with respect to the inner product (i.e. the matrix of
multiplication by c in the polynomial basis of Z[x]/(xn̄ + 1) is the transpose of that of c).

Now the rejection sampling ensures that the coefficients of z1 are independent and distributed according to a
discrete Gaussian D of standard deviation σ. On the other hand, c is a random vector with coefficients in {0, 1} and
exactly κ non zero coefficients; thus, c∗ has a similar shape possibly up to the sign of coefficients. It follows that the
coefficients of z1c

∗ are all linear combinations with ±1 coefficients of exactly κ independent samples from D and the
signs clearly do not affect the resulting distribution.

Therefore, if we denote by χa the distribution D∗κ obtained by summing κ independent samples from D, the
coefficients of z1c

∗ follow χa. It is not exactly correct that z1c
∗ as a whole follows χn̄a (as its coefficients are not

rigorously independent), but we will heuristically ignore that subtlety and pretend it does. Note that χa is a distribution
of variance:

σ2
a = Var

(
D∗κ

)
= κ ·Var(D) = κσ2.

We have not precisely described how the BLISS signature compression works, but roughly speaking, z†2 is essentially
obtained by keeping the (log q− d) most significant bits of z2, and therefore the distribution of 2dz†2 is close to that of
z2. The distributions cannot coincide exactly, since all the coefficients of 2dz†2 are multiples of 2d while this normally
does not happen for z2, but the difference will not matter much for our purposes, and we will therefore heuristically
assume that the entire vector a is distributed as χna .

We now turn our attention to the noise value e, which we write as 〈w,u〉 with w = z2 − 2dz†2 and u = s2c. Now,
w is obtained as the difference between z2 and 2dz†2, where again the latter is roughly speaking obtained by zeroing
out the d least significant bits of z2 in a centered way. We can therefore heuristically expect that the coefficients of w
are distributed uniformly in [−2d−1, 2d−1] ∩ Z, i.e. w ∼ U n

α with α = 2d−1. In particular, these coefficients have
variance α(α+ 1)/3 ≈ 22d/12.

As for u, its coefficients are obtained as sums of κ coefficients of s2. Now s2 itself (ignoring the constant co-
efficient, which is shifted by 1) is obtained as a random vector with δ1n̄ coefficients equal to ±2, δ2n̄ coefficients
equal to ±4 and all its other coefficients equal to zero. This is a somewhat complicated distribution to describe, but
we do not make a large approximation by pretending that all the coefficients are sampled independently in the set
{−4,−2, 0, 2, 4} with probabilities δ2/2, δ1/2, (1− δ1− δ2), δ1/2 and δ2/2 respectively. Making that approximation,
it follows that the coefficients of u have variance κ · (4δ1 + 16δ2).

Write u = (u1, . . . , un̄) and w = (w1, . . . , wn̄). Under the heuristic approximations above, since w and u are
independent and their coefficients have mean zero, the error e follows a certain bounded distribution χe of variance σ2

e

given by:

σ2
e = E[e2] = E

[( n̄∑
i=1

wiui

)2
]

= E
[∑
i,j

wiwjuiuj

]
= E

[ n̄∑
i=1

w2
i u

2
i

]

=

n̄∑
i=1

E[w2
i ] · E[u2

i ] = n̄ ·Var
(
Uα

)
· κ(4δ1 + 16δ2) ≈ 22d

3
(δ1 + 4δ2)n̄κ.
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Table 2: Parameter estimation for ILWE instances arising from the side channel attack

BLISS–0 BLISS–I BLISS–II BLISS–III BLISS–IV

n = 2n̄ 512 1024 1024 1024 1024
σa (theory) 346 1031 513 1369 1692
σe (theory) 1553 49695 49695 38073 24535
σa1 (exp.) 347 1031 513 1370 1691
σa2 (exp.) 349 2009 1418 1782 1814
σe (exp.) 1532 42170 32319 38627 23926

With these various approximations, recovering s from the leakage exactly becomes an ILWE problem with distri-
butions χa and χe, where each side-channel trace provides a sample. It should therefore be feasible to recover the full
secret key with least squares regression using m = O

(
(σe/σa)2 log n

)
traces.

5.3 Experimental Distributions

The description of the previous section made a number of heuristic approximations which we know cannot be precisely
satisfied in practice. In order to validate those approximations nonetheless, we have carried out numerical simulations
comparing in particular our estimates for the standard deviations σa and σe of the distributions of a and e with the
standard deviations obtained from the actual rejection sampling leakage in BLISS.

These simulations were carried out in Python using the numpy package. We used 10000 ILWE samples arising
from side channel leaks for each BLISS parameter set. Results are collected in Table 2; experimental values for σa are
provided separately for the two halves (a1,a2) of the vector a, which we have seen are computed differently. As we
can see, the experimental values match the heuristic estimates quite closely overall.

6 Numerical Simulations

In this section, we present simulation results for recovering ILWE secrets using linear regression, first for normal
ILWE instances, and then for ILWE instances arising from BLISS side-channel leakage, as described in §5.2, leading
to BLISS secret key recovery. These results are based on simulated leakage data rather than actual side-channel traces.
However, we note that the leakage scenario for BLISS is essentially identical to the one described in [30] (namely, a
SPA/SEMA setting where each trace reveals the exact value of a certain function of the secret key—in our case, the
linear function given by the inner product), and was therefore experimentally validated in that paper.

6.1 Plain ILWE

Recall that the ILWE problem is parametrized by n,m ∈ Z and probability distributions χa and χe. Samples are
computed as b = As + e, where s ∈ Zn, b ∈ Zm, A ∈ Zm×n with entries drawn from χa, and e ∈ Zm with entries
drawn from χe. Choosing χa and χe as discrete gaussian distributions with standard deviations σa and σe respectively,
we investigated the number of samples, m required to recover ILWE secret vectors s ∈ Zn for various concrete values
of n, σa and σe. We sampled sparse secret vectors s uniformly at random from the set of vectors with d0.15ne entries
set to ±1, d0.15ne entries set to ±2, and the rest zero.

We present two types of experimental results for plain ILWE. In our first experiment, we began by estimating the
number of samples m required to recover the secret perfectly with good probability, for different values of n, σa, and
σe. Then, fixing m, we measured the probability of recovering s over the random choices of s, A and e. Our results
are displayed in Table 3.

In our second experiment, we investigated the distribution of the minimum value of m required to recover the
secret perfectly, over the random choices of s, A, and e, when the linear regression method was run to completion. In



19other words, for fixed n, σa, and σe, we generated more and more samples until the secret could be perfectly recovered.
Our results for σe = 2000 are plotted in Figure 3. Additional results comprising Figures 4, 5 and 6, for σe = 1000,
3000 and 5000 respectively,and some additional notes,may be found in Appendix B. Each figure plots the dimension
n against the mean number of samples m required to recover the secret, for σa = 100, 200, and 500. Here, ‘mean’
refers to the interquartile mean number of samples. The error bars show the upper and lower quartiles for the number
of samples required.

The results of our second experiment are consistent with the theoretical results given in §4.1. According to (4.6),
we require

m ≥ C ′ · σ
2
e

σ2
a

log n

samples in order to recover the secret correctly. The dimension n on the horizontal axis of each graph is plotted on a
logarithmic scale. Therefore, theory predicts that we should observe a straight line, which the graphs confirm.

The gradient of the graph corresponds to the constantC ′ giving the number of samples required for secret-recovery
in practice. Note that in this case, where χa and χe follow the discrete Gaussian distribution, Theorem 4.5 gives
C ′ = 32 for a small failure probability of 1

2n . However, in this experiment, we are likely to succeed much sooner,
with a smaller number of samples. For example, in any particular trial, as soon as m is such that the failure probability
is at least one half, we are likely to recover the secret. This explains why the gradient is much lower than given by
Theorem 4.5. Computing the gradients of the lines of best fit and dividing by (σe/σa)2 gives an estimate for the
observed value of the constant C ′. These are displayed in Table 6 in Appendix B, and indicate that one might expect
to use 4 ≤ C ′ ≤ 6 in practice.

Fig. 3: Results for σe = 2000
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Table 3: Practical results of the experiments on ILWE

n σa σe m Success

100 1000 3300 6/10

100 2000 11500 6/10

100 5000 65000 4/10

200 1000 900 5/10

200 2000 4000 7/10

200 5000 17000 4/10

300 1000 550 10/10

300 2000 1890 8/10

300 5000 9000 7/10

400 1000 350 8/10

400 2000 800 5/10

400 5000 5750 7/10

500 1000 350 10/10

500 2000 700 6/10

12
8

500 5000 3300 4/10

100 1000 5600 9/10

100 2000 14500 6/10

100 5000 95000 7/10

200 1000 1300 6/10

200 2000 4700 8/10

200 5000 23000 6/10

300 1000 900 9/10

300 2000 1800 5/10

300 5000 12000 8/10

25
6

400 1000 550 10/10

n σa σe m Success

400 5000 6000 5/10

500 1000 450 7/10

500 2000 950 8/10

25
6

500 5000 4200 5/10

100 1000 5100 7/10

100 2000 16000 4/10

200 1000 1600 9/10

200 2000 5200 7/10

300 1000 1000 8/10

300 2000 2600 8/10

400 1000 900 10/10

400 2000 1500 4/10

500 1000 800 10/10

51
2

500 2000 1250 8/10

100 1000 5950 10/10

100 2000 19000 5/10

200 1000 2250 6/10

200 2000 5900 6/10

300 1000 1550 7/10

300 2000 3350 6/10

400 1000 1350 9/10

400 2000 2300 7/10

500 1000 1500 10/10

10
24

500 2000 1900 8/10
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Table 4: Number of samples required to recover the secret key (minimum, lower quartile, interquartile mean, upper quartile,
maxium)

# Trials Min LQ IQM UQ Max

BLISS–0 12 1203 1254 1359.5 1515 1641
BLISS–I 12 14795 18648 20382.9 21789 24210
BLISS–II 8 19173 20447 22250.3 24482 29800

Table 5: Typical timings for secret key recovery

Typical ILWE sample gen. Typical time for regression

BLISS–0 ≈ 2m ≈ 5s
BLISS–I ≈ 10m ≈ 2m
BLISS–II ≈ 10m ≈ 2m

6.2 BLISS Side-Channel Attack

Having obtained an instance of the ILWE problem from BLISS side-channel leakage as described in §5.2, we used
linear regression to recover BLISS secret keys. We performed several trials. For each trial, we generated ILWE samples
using side-channel leakage until we could recover the secret key. For BLISS–0, we simply used regression to recover
the entire secret key. For BLISS–I and BLISS–II, we usually ran into memory issues before being able to successfully
recover the entire secret key. However, we noticed that in practice, we could recover the first half of the secret key
correctly using far fewer samples. Since the two halves of the secret key are related by the public key, this is sufficient
to compute the entire secret key. Therefore, for BLISS–I and BLISS–II, we stopped generating samples as soon as the
least-squares estimator correctly recovered the first half of the secret.

For these two different scenarios, we obtain the results displayed on Table 4, which gives information on the range,
quartiles, and interquartile mean of the number of samples required. Typical timings for the side-channel attacks, using
SAGEMath, on a laptop with 2.60GHz processor, are displayed in Table 5. Timings are in the orders of minutes and
seconds. By comparison, some of the attacks from [30] may take hours, or even days, of CPU time.
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24A Omitted proofs

A.1 Proof of Lemma 2.5

(i) Let X ∼ N (0, σ2) be a Gaussian random variable of standard deviation σ. We have:

E[exp(sX)] =
1√

2πσ2

∫
R

exp(sx) · exp
(
− x2

2σ2

)
dx

=
1√

2πσ2

∫
R

exp
(
− x2 − 2sσ2x

2σ2

)
dx

=
1√

2πσ2

∫
R

exp
(
− (x− sσ2)2 − s2σ4

2σ2

)
dx

= exp
(s2σ2

2

)
· 1√

2πσ2

∫
R

exp
(
− (x− sσ2)2

2σ2

)
dx

= exp
(s2σ2

2

)
,

and thus X is σ-subgaussian. In particular, τ = 1.
(ii) Let X ∼ Dσ be a discrete Gaussian random variable of parameter σ. We have:

E[exp(sX)] =
1

ρσ(Z)

∑
x∈Z

exp(sx) · exp
(
− πx2

σ2

)
=

1

ρσ(Z)

∑
x∈Z

exp
(
− πx2 − sσ2x

σ2

)
=

1

ρσ(Z)

∑
x∈Z

exp
(
− π(x− sσ2/2π)2 − s2σ4/4π

σ2

)
= exp

(s2σ2

4π

)
· 1

ρσ(Z)

∑
x∈Z

exp
(
− π(x− sσ2/2π)2

σ2

)
= exp

(s2σ2

4π

)
· ρc,σ(Z)

ρσ(Z)

where c = sσ2

2π . Now we know by [48, Lemma 2.4] that if, for some ε ∈ (0, 1), σ satisfies σ > ηε(Z), where
ηε(Z) = inf{s > 0 | ρ1/s(Z \ {0}) ≤ ε} is the smoothing parameter of Z, then:

ρc′,σ(Z)

ρσ(Z)
≤ 1 for all c′ ∈ R,

and therefore E[exp(sX)] ≤ exp
(
s2σ2

4π

)
. In particular, by continuity of the smoothing parameter at ε = 1, as

long as σ > η1(Z), the random variable X is σ√
2π

-subgaussian.
Numerically, we can easily compute that η1(Z) is slightly less than 0.282097, which shows that X is σ√

2π
-

subgaussian as soon as σ ≥ 0.283 as stated.
Moreover, for σ ≥ 2ηε(Z), ε ∈ (0, 1), it is known (see [49, Lemma 4.2]) that the variance of X satisfies:∣∣∣E[X2]− σ2

2π

∣∣∣ ≤ εσ2

1− ε
.

This implies that:

τ2 ≤ σ2/2π

E[X2]
≤ σ2/2π

σ2/2π − εσ2/(1− ε)
=

1− ε
1− (1 + 2π)ε

,

provided that (1 + 2π)ε < 1. Taking for example (1 + 2π)ε = 1/2, we get τ ≤
√

2(1− ε) <
√

2. This is
satisfied for σ ≥ 2ηε(Z). The numerical estimate ηε(Z) ≈ 0.9235 yields the desired result.



25(iii) Let X ∼ Uα be a uniform random variable over the integer interval [−α, α] ∩ Z, α ≥ 3. Let a = bαc, so that X
is uniform over the (2a+ 1)-element set {−a,−a+ 1, . . . , a}. We have:

E[exp(sX)] =
1

2a+ 1

a∑
x=−a

exp(sx) =
e−as

2a+ 1
·
(
1 + es + · · ·+ e2as

)
=

e−as

2a+ 1
· e

(2a+1)s − 1

es − 1
=

1

2a+ 1
· e

2a+1
2 s − e− 2a+1

2 s

es/2 − e−s/2

=
1

2a+ 1
·

sinh
(

2a+1
2 s

)
sinh(s/2)

.

Denote by f(s) the function above, and g(s) = f(s) · exp(−a2s2/4). We want to prove that g(s) ≤ 1 for all s.
Since g is an even function, it suffices to prove it for s > 0. Denote by g1 = g′/g the logarithmic derivative of g
over (0,+∞). For all s > 0 we have:

g1(s) =
(2a+ 1)/2

tanh
(
(2a+ 1)s/2

) − 1/2

tanh(s/2)
− a2s

2

=
2a+ 1

2

(
1 +

2

e(2a+1)s − 1

)
− 1

2

(
1 +

2

es − 1

)
− a2s

2

=
2a+ 1

e(2a+1)s − 1
− 1

es − 1
− a2

2
s+ a.

A simple computation shows that the Taylor expansion of g1(s) at s = 0+ is given by:

g1(s) = −a(a− 2)

6
s+ o(s),

and in particular g1 is negative around 0, since we have assumed that α ≥ 3, and hence a ≥ 3. Moreover, one
can check that g1 is concave over (0,+∞), by computing the second derivative as:

g′′1 (s) =
x(x+ 1)

(x− 1)3

(
(2a+ 1)3x

2a(x2a − x2a−1 + · · ·+ 1)

(x2a + x2a−1 + · · ·+ 1)3
− 1

)
(x = es)

and verifying that the parenthesis is negative for x > 1. As a result, g1 is negative over (0,+∞), and hence
g is decreasing. Now g(0+) = f(0+) = 1, and therefore g(s) ≤ 1 for all s > 0 as required. Thus, Uα is
a√
2

-subgaussian, and a fortiori α√
2

-subgaussian. Since the subgaussian moment is at most a/
√

2, the ratio τ
satisfies

τ2 ≤ a2/2

E[X2]
=

a2/2∑a
x=−a x

2
=

a2/2

a(a+ 1)/3
≤ 3

2

as claimed.
(iv) This is known as Hoeffding’s lemma. See e.g. [50, Theorem 2.8]. ut

A.2 Proof of Lemma 3.2

Consider first the case when χe ∼ Uα. We have

∆(χe, χe + t) =
1

2

∑
x∈Z

∣∣∣χe(x)− χe(x− t)
∣∣∣

and the difference inside the sum is 1/(2α + 1) for x in the symmetric difference S between the integer intervals
[−α, α] ∩ Z and [−α+ t, α+ t] ∩ Z, and 0 otherwise. Hence:

∆(χe, χe + t) =
1

2α+ 1
· #S

2
.



26Now #S = 2(2α + 1) − 2#I , where the intersection I of the integer intervals is empty for |t| ≥ 2α + 1, is given
by I = [−α + t, α] ∩ Z (of cardinality 2α + 1 − |t|) for 0 ≤ t ≤ 2α and by I = [−α, α − |t|] ∩ Z (of cardinality
2α+ 1− |t| again) for −2α ≤ t ≤ 0). This gives:

#S =

{
2|t| for |t| ≤ 2α

2(2α+ 1) otherwise

and hence:

∆(χe, χe + t) = min
(

1,
|t|

2α+ 1

)
for all t ∈ Z. In particular, the statistical distance is bounded by |t|/(2α + 1). On the other hand, the variance of this
uniform distribution is given by σ2

e = 2
2α+1

∑α
x=1 x

2 = α(α+ 1)/3. This gives:

(2α+ 1)2 = 4α(α+ 1) + 1 = 12σ2
e + 1.

Therefore:

∆(χe, χe + t) ≤ |t|√
12σ2

e + 1
≤ C · |t|

σe

with C = 1/
√

12 as required.
Consider now the case when χe ∼ Dσ , so that:

χe(x) =
1

ρσ(Z)
· exp

(
− πx2

σ2

)
.

In order to bound the statistical distance between χe and χe + t, we will first find an expression for their Kullback–
Leibler divergence. We have:

DKL(χe‖χe + t) =
∑
x∈Z

χe(x) · log
χe(x)

χe(x− t)
.

By definition of χe, the last factor can be written as:

log
χe(x)

χe(x− t)
= log exp

(
− πx

2 − (x− t)2

σ2

)
= −π 2tx− t2

σ2
.

Therefore, we obtain:

DKL(χe‖χe + t) =
∑
x∈Z

πχe(x) · t
2 − 2tx

σ2
= E

[
π
t2 − 2tχe

σ2

]
=
πt2

σ2

since χe is centered. It then suffices to apply Pinsker’s inequality to get a bound on the statistical distance:

∆(χe, χe + t) ≤
√

1

2
DKL(χe‖χe + t) =

√
π

2
· |t|
σ
.

Moreover, as we have seen in the proof of Lemma 2.5, if σ satisfies σ ≥ 2ηε(Z) for some ε ∈ (0, 1), then by [49,
Lemma 4.2]), we have: ∣∣∣E[χ2

e]−
σ2

2π

∣∣∣ ≤ εσ2

1− ε
.

Hence σe =
√
E[χ2

e] ≤ σ
√

1
2π + ε

1−ε , which gives:

∆(χe, χe + t) ≤

√
π

2

(
1

2π
+

ε

1− ε

)
· |t|
σe

= Cε ·
|t|
σe



27where C2
ε = 1

4 + π
2

ε
1−ε . Taking for example ε = 1/(1 + 2π), we get:

C2
ε =

1

4
+
π

2
· 1

1 + 2π − 1
=

1

4
+

1

4
=

1

2
.

Thus, we get ∆(χe, χe + t) ≤ C · |t|/σe with C = 1/
√

2 as required provided that σ ≥ 2ηε(Z), ε = 1/(1 + 2π).
Since we find, numerically, that ηε(Z) ≈ 0.7955, the stated result follows. ut

B Additional Information on Numerical Experiments

In this section, we display additional numerical results in Figures 4, 5 and 6, for σe = 1000, 3000 and 5000 respec-
tively, estimated constants C ′ sufficient to recover an ILWE secret in practice, and some additional notes. Each figure
plots the dimension n against the mean number of samplesm required for recovery, for σa = 100, 200, and 500. Here,
‘mean’ refers to the interquartile mean number of samples. The error bars show the upper and lower quartiles for the
number of samples required.

We note that Figure 4 contains results for n = 1024, whereas the other figures do not. Further, Figure 6 does not
contain a data-point for σa = 100, n = 512. This was primarily due to lack of time, as these parameters required the
largest number of samples and the longest computing time, as indicated by the theory in §4.1.

We used least-squares regression to estimate the gradient of lines-of-best-fit in Figures 4, 3, 5 and 6, and hence
estimate the value of C ′ observed in practice, such that C ′(σe/σa)2 log n samples are sufficient to recover an ILWE
secret. Our results indicate that 4 ≤ C ′ ≤ 6 is sufficient in practice. The estimated constant C ′ for σe = 1000 and
σa = 500 is 18, which is very different from the other values. This can be explained as follows: according to (4.6), one
can solve the ILWE problem with good probability with m samples if m ≥ Cn and m ≥ C ′ · σ

2
e

σ2
a

log n, for suitable
constants C and C ′. In this case, σe = 1000 and σa = 500, (σe/σa)2 is particularly small, and the number of samples
required to recover the secret is close to n. Thus, the first condition, which ensures that the least-squares estimator is
well-defined, is more important in determining how many samples are sufficient.

Fig. 4: Results for σe = 1000
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Fig. 5: Results for σe = 3000

Fig. 6: Results for σe = 5000
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Table 6: Estimated Constants C′ sufficient for ILWE Secret Recovery

σe σa C′

1000 100 5.26
1000 200 6.70
1000 500 18.43
2000 100 4.46
2000 200 4.78
2000 500 6.77
5000 100 4.41
5000 200 5.22
5000 500 5.27
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