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Abstract. Key-Alternating Feistel (KAF) ciphers, a.k.a. Feistel-2 models, refer to Feistel networks with
round functions of the form Fi(ki⊕xi), where ki is the (secret) round-key and Fi is a public random function.
This model roughly captures the structures of many famous Feistel ciphers, and the most prominent
instance is DES.
Existing provable security results on KAF assumed independent round-keys and round functions (ASI-
ACRYPT 2004 & FSE 2014). In this paper, we investigate how to achieve security under simpler and more
realistic assumptions: with round-keys derived from a short main-key, and hopefully with identical round
functions.
For birthday-type security, we consider 4-round KAF, investigate the minimal conditions on the way to
derive the four round-keys, and prove that when such adequately derived keys and the same round function
are used, the 4-round KAF is secure up to 2n/2 queries.
For beyond-birthday security, we focus on 6-round KAF. We prove that when the adjacent round-keys are
independent, and independent round-functions are used, the 6 round KAF is secure up to 22n/3 queries.
To our knowledge, this is the first beyond-birthday security result for KAF without assuming completely
independent round-keys.
Our results hold in the multi-user setting as well, constituting the first non-trivial multi-user provable
security results on Feistel ciphers. We finally demonstrate applications of our results on designing key-
schedules and instantiating keyed sponge constructions.
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1 Introduction

Overview. We extend provable security of models of practical Feistel ciphers along multi-axes. First, we (sig-
nificantly) reduce the key-sizes needed for super pseudorandom security. Second, we provide the first non-trivial
multi-user provable results. We also exhibit applications of our results: on designing key-schedules for practical
Feistel ciphers, and on instantiating keyed sponges.

Background. Practical iterative blockcipher (BC) designs roughly fall into two classes (with some rare ex-
ceptions such as IDEA), namely Feistel ciphers and their generalizations, and substitution-permutation net-
works (SPNs). In a Feistel cipher, in the i-th round, the intermediate state x = xL‖xR is updated ac-
cording to xL‖xR 7→ xR‖xL ⊕ Gi(ki, xR), where Gi is called the i-th round function. On the other hand,
their counterpart SPNs could be further abstracted as the iterated Even-Mansour (IEM) ciphers, or key-
alternating ciphers, which consist of alternatively applying round-key additions and keyless round permutations,
i.e. IEMP1,...,Pt

k0,k1,...,kt
(M) = kt ⊕ Pt(. . . (k1 ⊕ P1(k0 ⊕M))).

The traditional security notion for BCs is pseudorandomness: for any adversary with reasonable resources
(e.g. polynomial complexity), the BC with a random and secret key should be indistinguishable from a truly
random permutation. Proving such security for concrete BCs such as AES seems out of the reach of current
techniques. Yet, by idealizing the underlying round functions, security could be proved. Following this line, both
idealized Feistel [37,35] and IEM [22,11] have been proposed and analyzed.
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To obtain a 2n-bit BC, the IEM model requires 2n-bit permutations. Whereas following the Feistel approach,
several n-to-n-bit functions suffice. Moreover, these functions need not to be invertible (this might be the reason
why Feistel ciphers were extremely popular before 1990s). In all, Feistel ciphers could be built upon primitives
with smaller domain and less structural properties, which is particularly appealing from a theoretical point of
view. From the security point of view, without any additional hardness assumption other than the idealness
of round functions, provable security is limited by the domain-size of the round functions [48]. Therefore, IEM
benefits from the use of larger primitives: with t independent 2n-bit random permutations and 2tn key bits,

t-round IEM is provably secure up to 2
2tn
t+1 adversarial queries [15] which approaches 22n for large t. In contrast,

Feistel models can only be secure against at most 2n queries [48], which is far less than its domain-size 22n. This
upper bound is very unsatisfying. Despite this limitation as well as the gap between the idealized model and
the rather weak round functions in practice, this provable approach supplies insights into the BC structures,
excludes generic attacks, and may help refine designs. Due to these, this approach is valuable and has received
a lot of attention.

The Luby-Rackoff (LR) Scheme, in reference to the seminal work of Luby and Rackoff [37], might be the most
popular model for Feistel ciphers so far. In this model, the round functionsGi(ki, xR) are pseudorandom functions
(PRFs). Via a standard hybrid argument, this is transposed to the Feistel networks formed by uniformly random
and Secret round functions SGi(xR). Following [37], a long series of work established either better security
(maybe using a larger number of rounds)—with [39,48,30,3,43] to name a few,—or reduced complexity for
security [51,46,44,45].

Key-Alternating Feistel Ciphers. Works along the line of Luby and Rackoff are very generic and could
cover all possible forms of round functions. On the opposite side, the LR model falls short of showing how to
concretely design keyed primitives (BCs) from (conceptually) simpler keyless primitives—it just “defers” the
task to designing keyed round functions Gi(ki, xR), which is, however, not known to be simpler than designing
the BCs themselves.

In reality, general purpose Feistel ciphers usually employ length-preserving keyless round functions, and
xor each round-key before applying the corresponding round function. Examples include DES, GOST, Camellia
variant without FL/FL−1 functions [9], MIBS [33], and two recent designs LBlock [56] and Twine [54] (they are
multi-line generalizations of Feistel). This idea corresponds to Feistel networks with round functions instantiated
in the probably simplest form of Gi(ki, xi) = Fi(ki ⊕ xi), where Fi is keyless and public; and at the i-th round,
the intermediate state is updated according to

xL‖xR → xR‖xL ⊕ Fi(ki ⊕ xR).

This model was named Key-Alternating Feistel (KAF) by Lampe and Seurin [35], and is also known as Feistel-
2 schemes according to IACR Tikz library. It has been extensively studied by the cryptanalytic commu-
nity [9,32,28], and frequently became the instructive example for new attacks [10,2].

The gap between LR and KAF ciphers is non-negligible. For example, with less than 22n complexity, the best
known generic key recovery attacks break 4-round LR [32] which is in sharp contrast with 6-round KAF [28].
Moreover, 6- or even 5-round LR model is already sufficient for optimal information theoretic security against
2n queries [43, chapter 17]. However, for KAF we exhibit a generic distinguishing attack against t rounds using

O( (t−2)n
t−1 ) queries, which means O(n) number of rounds are necessary for optimal security. These indicate the

LR model misses some important structural properties in practical Feistel ciphers, and KAF is likely to be a
better model for the reality.

By the above, theoretical analysis of the KAF model is of significance. In this respect, one would assume the
(keyless) round functions Fi as public random functions that can be queried by the adversary in a black-box
way, and try to establish indistinguishability for the worlds (KAFk, F1, . . . , Ft) and (P, F1, . . . , Ft) in the random
oracle model, i.e. the cipher KAF with a secret random key k is indistinguishable from a random permutation P
even if given the access of the t random round functions F1, . . . , Ft. This is very similar to the setting introduced
for IEM [11]. In this vein, we are only aware of two works. First, an early work of Gentry and Ramzan (GR) [24]
proved a birthday-type security for a 4-round keyless Feistel scheme with pre- and post-whitening keys, which
can be translated into a 4-round KAF variant. Then, a recent work of Lampe and Seurin (LS) [35] proved

beyond-birthday security up to 2
tn
t+1 adversarial queries for 6t-round KAF, assuming the round functions and

round-keys are both completely independent [35].4

4 A more recent work of Gilboa et al. [25] analyzed a variant of 2-round IEM, which corresponds to a KAF variant with
whitening keys. We’ll elaborate later.
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Our Problem. The secret-key analyzes of KAF of GR [24] and LS [35] mentioned before leave two remarkable
gaps. The first gap lies between the models and ciphers in practice. In detail, both LS and GR assumed
completely Independent Round-Keys (INDRK). In contrast, BCs in practice utilize identical round functions as
well as round-keys derived from a short main-key (thus highly correlated rather than completely independent).
Security arguments with correlated round-keys are desired to bridge this gap.

On the theoretical side, arguments with correlated round-keys reduce the amount of key required by se-
cure cryptosystems, and sometimes lead to minimal designs [21,14]. Therefore, such arguments are of great
importance from both practical and theoretical points of view, and while the INDRK assumption is common
in seminal theoretical results, e.g. LR [37], IEM [11], and models for SPNs [40], subsequent works usually tried
to remove it. For example, Patarin et al. analyzed the possibility of designing secure LR variants using a single
random function (which is equivalent to pseudorandom function with a single round-key) [46,51,47,44,45]; Chen
et al. analyzed 2-round IEM with correlated round-keys and even identical permutations [14]; and Dodis et al.
proved results for SPN models with correlated round-keys [20].

Regarding the round complexity for beyond-birthday security, there is one more gap. While optimal security
up to 2n queries cannot be achieved by a small constant number of rounds of KAF (as discussed before), the
optimal security of 6-round LR motivates ones to expect that the 6-round KAF is at least beyond-birthday
secure. However, LS only proved (beyond-birthday) security against 2n/3 queries for 12-round KAF, which is
twice as the expected rounds.

Contribution I: Security with Correlated Round-Keys. We narrow the above gaps, and make the first
step towards minimizing sufficient conditions for the provable security of KAF models. The results consist of
two parts depending on the security goal.
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Fig. 1. (Left) The general 4-round KAFSF cipher in question. F is a public random function. (Right) the “minimal”
KAFSF scheme with birthday-type provable security. ϕ is a fixed orthomorphism of Fn2 .

Birthday-Type Security: Minimal Solution with 4 Rounds. In this regime, we consider the KAF ciphers
with all the round functions identical, as depicted in Fig. 1 (left), and denote it KAFSF to make a clear
distinction. For such variants, if the round-keys are also identical, then for S‖T = KAFSF(L‖R) it always holds
KAFSF−1(T‖S) = R‖L, which means it can be distinguished by 2 queries (more severely, this allows ruining
the secrecy of the plaintext in the CPA setting). Consequently, there have to be some non-trivial correlations
between the round-keys. To unveil this, we investigate the minimal conditions on the round-keys that suffice
for security. We prove that for the four n-bit round keys (k1, k2, k3, k4), as long as k1, k4, and k1 ⊕ k4 are all
uniform (a quite mild requirement), the 4-round KAFSF is secure up to 2n/2 queries. The bound is tight, since
any 4-round Feistel can be distinguished by 2n/2 queries [44].

This general result on the round-keys allows us to derive them from a short main-key in various ways. For
the best efficiency, one could drop k2 and k3, and set k1 ← K and k4 ← ϕ(K), where ϕ is an orthomorphism of
Fn2 , cf. Fig. 1 (right).5 This yields a super pseudorandom KAF cipher from a single random function and an n-bit
main-key. This construction is theoretically “minimal” in the sense that removing any of the components ruins
security: removing ϕ brings the severe weakness KAFSF(L‖R) = S‖T ⇔ KAFSF−1(T‖S) = R‖L back, while

5 A permutation ϕ of Fn2 is an orthomorphism if K 7→ K ⊕ ϕ(K) is also a permutation. The Feistel-like linear trans-
formation ϕ(KL‖KR) = KL ⊕KR‖KL is a very efficient instance. Orthomorphisms have found many cryptographic
applications, particularly in minimizing LR [51] and IEM models [14].
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removing any call to F brings us back to a 3-round Feistel network, which is not super pseudorandom. While
it appears crazy to completely drop k2 and k3, this actually matches an early theoretical result of Ramzan and
Reyzin [49], which will be discussed later. However, we stress our “minimal” scheme is of mainly theoretical
interest. Most importantly, we are not advocating following it to design general purpose Feistel ciphers.

Birthday-type security is now usually deemed as quite weak. For example, general purpose Feistel BCs usually
take 2n = 128, for which a birthday-bound merely ensures 32-bit security. Though, we believe it’s of significance
to deepen the understanding of birthday-type security, shape existing results, and derive theoretically minimal
constructions.

Beyond-Birthday Security: Improved Results with 6 Rounds. For KAF built upon independent
round functions, see Fig. 2 (left), we prove security up to 22n/3 adversarial queries as long as the six round-keys
(k1, k2, k3, k4, k5, k6) are uniform and adjacent round-keys are independent. It seems such a sequence of round-
keys can be easily derived from a 2n-bit main-key K‖K ′ via the “word-aligned”, feedback-shift-register-based
key-schedules that are widely adopted. As far as we know, this is the first beyond-birthday result on KAF
without INDRK assumption.

More generally, when k1, k3, and k5 are uniform in 2n values, while k2, k4, and k6 are uniform in only
2n−r values, security is up to 2(2n−r)/3 queries. While such round-keys appear quite artificial, it’s valuable for
two reasons: first, it appears the first step towards modeling key-schedules of the form {0, 1}cn → {0, 1}tn for
non-integers c; second, it cinches interesting implications on “partial-key” Even-Mansour and keyed sponges,
which will be discussed latter.
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Fig. 2. (Left) The 6-round KAF ciphers with notations used in this paper. F1, . . . , F6 are six independent public random
functions. (Right) The single-key Even-Mansour cipher based on a 6-round keyless Feistel permutation LR6.

Application: A Concret Proposal for KAF Key-Schedules. Although our results turn heuristic once
instantiated [13], we believe they shed some light on how to design key-schedules for practical Feistel ciphers,
which appear quite non-trivial. In particular, key-schedules of KAF ciphers need not to be overly strong nor
“one-way”, and actually key-schedules with some simple combinatorial properties could be a good starting point
(a similar conclusion has been made for the IEM ciphers [14]).

To further illustrate, based on our results and some additional intuitions, we propose to consider key-
schedules that produce pair-wise independent round-keys6 in KAF ciphers. We further demonstrate examples of
such key-schedules. However, we stress that these proposals only serve as starting points for further research,
and should not be used without deeper investigations.

Multi-User (MU) Setting. The discussed super pseudorandomness model is now termed as single-user (SU)
setting. It has been noticed that in practice, cryptosystems are typically deployed en masse and attackers

6 This should be distinguished from complete independence. For example, given the main-key K‖K′, the round-keys
K,K′,K ⊕ K′ are pair-wise independent, but they aren’t completely independent. In fact, appealing to pair-wise
independence instead of complete independence is an approach to derandomization [36].
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are often satisfied with compromising some users among many, which can be substantially easier [8]. In fact,
massively parallel attacks on many keys at once have been considered as the most promising way to break
AES-128 [6]. These motivated the multi-user (MU) security notion [5] and a lot of follow up works—please
see [12] and the references therein. For BCs, this could even affect higher-level systems: frequently rekeying is
sometimes used in BC-based modes in order to achieve better security bounds [26] or leakage resilience [53],
and the security of such modes inherently relies on the MU security of the underlying BCs.

According to Mouha and Luykx [41], the MU security of BCs was formalized as m > 1 instances of BCs
with m independent user-keys being indistinguishable from m independent random permutations. This could
be related to the SU security: with m independent keys, a generic reduction shows the MU security is logm
bits less than the SU security (Jager et al. showed that this is unavoidable for generic reductions [34]). This
is quantitatively weaker. Yet, interestingly, dedicated analyzes could usually establish MU bounds that are
quantitatively the same as SU bounds [41,55,31].

Contribution II: MU Security of KAF. As mentioned, the MU security may be quantitatively weaker
than the MU security. Yet, our positive results are proved via establishing the so-called point-wise proximity
of Hoang and Tessaro [31], and our bounds satisfy their “super-additiveness” requirement. Therefore, by their
general transition, these establish MU security against 2n/2 queries at 4 rounds and against 2(2n−r)/3 queries
at 6 rounds. To our knowledge, these constitute the first non-trivial MU provable results on Feistel ciphers.

We remark that it’s not as trivial as it appears to ensure “super-additiveness” during the analysis. For
example, this requires to get rid of terms of the form f(qf ) or f(qf ) · √qe. In particular, our proof follows a
“two-step” approach used by Cogliati et al. for analyzing tweakable Even-Mansour [16,17], yet neither of the
bounds given in these works fulfills this requirement. To resolve this, we eschew many concrete approaches used
in [16,17] (in particular, the use of Markov inequality), and extensively use the expectation method from [31]
instead, to derive more “smooth” bounds.

As a final remark, Hoang and Tessaro proved that the SU and MU security bounds of IEM with INDRK are
quantitatively the same [31]. While our results appear to indicate the same conclusion, we don’t expect this to
be true for KAF in general. A deeper investigation is left for future.

Implications. As multi-user secure BCs, our provable KAF constructions could be plugged into many BC-based
(secret-key) modes to reduce the size of (ideal) primitives in use, or to drop the requirement on the invertibility
of the underlying ideal primitives. The latter is particularly attractive in the multi-party computation setting,
in which invertibility could be quite expensive [50]. In addition, depending on the concrete parameters, in some
cases, e.g. truncated CBC [23], this even does not result in a security loss.

Less obviously, our general results on 6-round KAF imply that it’s secure to alternatively use an n-bit key K
and another (n−r)-bit key K ′ at each round. With such an alternating key-schedule, the 6-round KAF collapses
to a 1-round IEM with key 0r‖K ′‖K and the permutation instantiated by a 6-round keyless Feistel permutation
LR6, as in Fig. 2 (right). Therefore, this shows instantiating the permutation π in the 1-round “Partial-Key”
Even-Mansour

PKEMπ
0r‖K′‖K(M) = (0r‖K ′‖K)⊕ π((0r‖K ′‖K)⊕M) (1)

by a 6-round keyless Feistel permutation LR6 preserves security, and for r > n/2 the security is beyond-birthday
with respect to the domain-size of the underlying ideal primitives. This extends the birthday-type result of
GR [24] (two more Feistel rounds for beyond-birthday security).

This results in even more interesting implications. Sponge functions are versatile cryptographic primitives [7].
Keyed sponges can be used for encryption and message authentication. Many variants of lightweight keyed
sponges can be rewritten as a construction built upon the aforementioned PKEMπ

0r‖K′‖K cipher, and the sponge
is secure as long as PKEMπ

0r‖K′‖K is secure (maybe in the MU setting) [42,1,23]. Thus by the above implication,

such keyed sponges could rely on PKEMLR6

0r‖K′‖K instead of PKEMπ
0r‖K′‖K . With the keys canceled, we obtain a

sponge built upon LR6. Therefore, our results indicate: the random permutation underlying many keyed sponge
variants could be securely instantiated with a 6-round keyless Feistel permutation LR6. For concrete security
results please see Section 7.

We stress that these results cannot be derived from existing provable results on IEM/keyed sponges and
keyless Feistel via general transitions. The most relevant results are the correlation intractability [38] and
CP-indifferentiability [52] positive results on LR6. But they are quantitatively weak: q4/2n for correlation in-
tractability of LR6 [38], and q6/2n for CP-indifferentiability of LR5 [52].
Discussion, and Comparison to Related Works. It would be tempting to ask how we are able to halve the
round complexity for 2n/3 security (compared with LS [35]). Briefly, LS divided a KAF cipher into two halves,
proved NCPA (non-adaptive chosen-plaintext attack) security for each half, and then applied a composition to
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Table 1. Comparison to existing provable results on KAF. We stress that our results include more general ones that
allow deriving the round-keys in flexible ways. And rows 4 and 5 are the theoretically best possible ones derived from the
general ones.

Key size Rounds Num. of rand. func. SU bound MU bound Reference

4n 4 2 n/2 missed GR [24]

12n 12 12 2n/3 missed LS [35]

6tn 6t 6t tn/(t+ 1) missed LS [35]

n 4 1 n/2 n/2 Section 4

2n 6 6 2n/3 2n/3 Section 5

obtain CCA security. And (informally) their coupling argument could only reduce certain collision probability
every 3 rounds. Consequently, they only obtained 2n/3 NCPA security at 6 rounds and 2n/3 CCA security
at 12 rounds. In comparison, we follow a “two-step” approach [16,17] for analyzing the transcripts of queries
and answers of the distinguisher, transform the transcripts into input-output pairs of the inner four rounds,
and then employ a more fine-grained and dedicated analysis. This allows us to remove much redundancy from
the structures and successfully halve the rounds. Due to the randomness of the 1st and 6th round functions,
every resulted input-output pair of the inner four rounds would only be involved in a single collision (one could
see Fig. 4 for illustration), and this significantly simplifies the analysis. Still, the analysis for 4 rounds remains
complicated, and the complexity is further increased by the aim of “super-additiveness” (as mentioned). We
remark that such an analysis for 4-round KAF seems missing in the literature—Patarin’s mirror theory-based
analysis for 4-round LR [43, chapter 17] does not seem to be transposable to KAF.

On the other hand, our 6-round construction(s) could probably be further simplified while retaining 2n/3-bit
security. However, we figured out some difficulties, see appendix A. Since verifiability of the proof is equally
important, we favored the current construction and its relatively simpler proof. Despite this, our 6-round con-
struction with 2n-bit main-keys has significantly improved upon existing results. In Table 1, we make comparison
with the results of LS [35] and GR [24]. We remark that GR’s main motivation was to deepen the understanding
of the Even-Mansour cipher [22], rather than to study KAF ciphers.

Also, we list the relevant results on the popular LR and IEM models in Table 2 for comparison. We remark
that LR results are in the standard model, and are better than the ideal model results on IEM and KAF in some
theoretical sense. Yet, as emphasized before, KAF is closer to reality.

The results in Table 2 in particular include the aforementioned work of Gilboa et al., which proved n/2
security for a 2-round IEM variant with identical round-permutations and identical round-keys [25]. Moreover,
the round-permutation is instantiated with a 2-round LR construction built upon a public random permutation.
This construction is somewhat related to KAF: but it can only be transformed into a KAF variant with whitening
keys rather than the “bare” KAF model studied in this paper (thus we denote KAFSP∗). Consequently, our result
on 4-round KAFSF—as well as the usefulness of orthomorphisms in this setting—could not be derived from [25].

Table 2. Comparison to LR and IEM super pseudorandom provable results. For the LR results, κ is the key-size of the
underlying PRFs. For the first row: the proof used the mirror theory [43, chapter 14], and was only sketched in [43,
chapter 17.5]. For row 2: it’s the best result to our knowledge. For row 4 & 5, the MU bounds of EMIP and EMSP models
were not given, yet are trivial: (a) with 2n key bits, it ≤ n-bit [8], while (b) it ≥ n-bit, which is the MU security of the
1-round single-key IEM [31].

Model Block Prim. Key Rounds Number SU MU Reference
Size Size Size of Prim. Bound Bound

LR 2n n 5κ 5 5 ≈ n missed [43]

LR 2n n κ 4 1 n/2 missed Nandi [44]

IEM 2n 2n 2tn t t 2tn/(t+ 1) 2tn/(t+ 1) CS&HT[15,31]

EMIP 2n 2n 2n 2 2 4n/3 n Chen et al. [14]

EMSP 2n 2n 2n 1 2 4n/3 n Chen et al. [14]

KAFSP∗ 2n n 2n 4 1 n/2 missed Gilboa et al. [25]

KAF 2n n 6tn 6t 6t tn/(t+ 1) missed LS [35]

KAFSF 2n n n 4 1 n/2 n/2 Section 4

KAF 2n n 2n 6 6 2n/3 2n/3 Section 5

In addition, Ramzan and Reyzin proved birthday-type security for a variant of 4-round LR, in which the
middle two round functions are public rather than secret [49]. As mentioned before, an interesting fact is that our
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4-round minimal construction also captures the idea of leaving the middle two round functions “unprotected” (as
the middle two round-keys are absent). In this sense, our minimal construction also deepen the understanding
of the secrecy of round functions in Feistel ciphers.

Last, a series of papers analyzed idealized BCs in the indifferentiability framework, which is a different
security model. Please see [19] and the references therein. Among them is a positive result [27] on a variant
of KAF abstracted from NSA’s cipher SIMON [4]. These works shed lights on designing key-schedules from a
different point of view, and are thus complementary to ours.

Organization. Section 2 supplies notations and definitions. Section 3 describes the generic distinguishing attack
against any number of rounds. Then, Sections 4 and 5 respectively present our results on 4-round KAFSF and
6-round KAF and their security proofs. After these, based on our results, Section 6 presents our key-schedule
proposal, while Section 7 makes discussion on the implications.

2 Preliminaries

Notation and General Definitions. In all the following, we fix an integer n ≥ 1 and denote N = 2n. Further
denote F(n) the set of all functions of domain {0, 1}n and range {0, 1}n, and P(2n) the set of all permutations
on {0, 1}2n. For a random variable ε(s) that relies on another random variable s, we denote by Es∈S [ε(s)] the
expectation of ε(s) taken over all s ∈ S, and Es[ε(s)] for short when the set S is clear from the context. For
X,Y ∈ {0, 1}n, X‖Y or simply XY denotes their concatenation.

Assume that the i-th round function of KAF is Fi : {0, 1}n → {0, 1}n, and the corresponding n-bit round-key
is ki, then the i-th round transformation of KAF is the permutation on {0, 1}2n defined as

ΨFiki (Wi−1‖Wi) = Wi‖Wi+1 = Wi‖Wi−1 ⊕ Fi(Ki ⊕Wi),

where Wi−1 and Wi are the left and right n-bit halves of the inputs of the i-th round respectively. And the
t-round KAF is specified by t public round functions F = (F1, . . . , Ft) and a round-key vector k = (k1, . . . , kt):

KAFFk (W0‖W1) = ΨFtkt ◦ . . . ◦ Ψ
F1

k1
(W0‖W1).

These functions may be completely independent, or correlated, or even identical. To highlight, we denote by
KAFSF the variant with identical round function, i.e.

KAFSFFk (M) = ΨFkt ◦ . . . ◦ Ψ
F
k1(M).

Note that the key spaces of these schemes are not fixed, and depend on the concrete contexts.

As noted in [18], a KAF cipher with an even number of rounds can be seen as a special case of an IEM cipher.
In detail, two rounds of a KAF cipher can be rewritten as:

Ψ
Fi+1

ki+1
◦ ΨFiki (Wi−1‖Wi) = (ki+1‖ki)⊕ ΨFi+1

0 ◦ ΨFi0 ((ki+1‖ki)⊕ (Wi−1‖Wi)),

where Ψ
Fi+1

0 ◦ΨFi0 is a two-round keyless Feistel permutation. As a consequence, in general, KAF ciphers should
avoid using identical round-key, as otherwise the round-keys would cancel each other and the cipher would
collapse to a single round IEM cipher using a keyless Feistel as the permutation and k‖k as the pre- and
post-whitening key.7

For convenience—in particular, to simplify subscripts,—we follow a classical notation system (which has
been used for Luby-Rackoff schemes [48]):

– for 4-round KAF(SF), we take L,R,X, Y, S, T as W0,W1,W2,W3,W4,W5 correspondingly, as depicted in
Fig. 1 (left);

– for 6-round KAF(SF), we take L,R,X, Y, Z,A, S, T as W0,W1, . . . ,W6,W7 correspondingly, as in Fig. 2
(left).

7 In page 5, we indeed take the implication on PKEM as an interesting one. But that implication concentrates on specific
theoretical models, and does not intend to say anything about general purpose Feistel ciphers.
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Multi-User (MU) Security of Blockciphers. We concentrate on the MU security with m users. The SU
security definition corresponds to the special case of m = 1. Concretely, consider a t-round KAF built from
t n-to-n-bit function oracles F = (F1, . . . ,Ft). Only the round-key vectors k with certain context-dependent
properties (will be identified) can ensure security. We denote by K the set of all k with such desired properties.
To study the indistinguishability, we consider a distinguisher D interacting with F. In the MU setting, D has
access to additional m 2n-bit permutation oracles, which are either m instances KAFF

k(1) , . . . ,KAF
F
k(m) with m

independent keys uniformly picked from K, or m independent random permutations P(1), . . . ,P(m). The goal of
D is to tell apart the two worlds (KAFF

k(1) , . . . ,KAF
F
k(m) ,F) (termed the real world) and (P(1), . . . ,P(m),F) (the

ideal world) by adaptively making forward and backward queries to each of the permutations and the functions.
Formally, D’s distinguishing advantage is defined as

AdvMU
KAF(D) = Pr[(P(1), . . . ,P(m))

$←− (P(2n))m,F
$←− (F(n))t : DP1,...,Pm,F = 1]

− Pr[(k(1), . . . , k(m))
$←− (K)m,F

$←− (F(n))t : D
KAFF

k(1)
,...,KAFF

k(m) ,F = 1].

Furthermore, we consider computationally unbounded distinguishers, and we assume without loss of generality
that the distinguisher is deterministic and never makes redundant queries. For non-negative integers qf and qe,
we define the insecurity of the idealized KAF cipher as:

AdvMU
KAF(qf , qe) = maxDAdvMU

KAF(D),

where the maximum is taken over all distinguishers D making exactly qf queries to each function oracle and in
total qe queries to the permutation oracles (termed as (qf , qe)-distinguishers).

If a collision occurs among the m user keys, e.g. k(i) = k(j), then D can easily distinguish: in the real
world, KAFF

k(i) and KAFF
k(j) are the same, while in the ideal world the corresponding oracles P(i) and P(j) are

independent. For (qf , qe)-distinguishers, the number of involved users m cannot exceed qe. Thus such a collision

happens with probability at most
q2e

2|K| . For simplicity, throughout the remaining, we only consider the MU

setting in which all the involved user keys are distinct; and the bounds in the “normal” MU setting can be

derived as our bounds plus the term
q2e

2|K| (this approach resembles [31]).

As mentioned, setting m← 1, we obtain AdvSU
KAF, which measures the advantage of D on distinguishing one

KAF instance from a random permutation.

H-Coefficients. We utilize the H-coefficient technique [46,15], and follow the paradigm of Hoang and Tessaro
(HT) [31]. For this, we summarize the interaction of D with its oracles in the queries transcripts. Suppose D
making qi queries to the i-th permutation oracle (P(i) or KAFF

k(i)), which are recorded as a set

QEi = {(L1R1, S1T1), . . . , (LqiRqi , SqiTqi)},

where for j = 1, . . . , qi the tuples (LjRj , SjTj) ∈ {0, 1}2n × {0, 1}2n indicate the queries and answers. On the
other hand, for i = 1, . . . , t, the queries made to Fi are recorded as

QFi = {(xi,1, yi,1), . . . , (xi,qf , yi,qf )},

in which for each j ∈ [1, . . . , qf ], it indicates Fi was queried on xi,j and answered with yi,j . Let QE =
(QE1

, . . . ,QEm) and QF = (QF1
, . . . ,QFt). Then the pair τ = (QE ,QF ) will be called the transcript of the

distinguisher in the MU setting: it contains all the information obtained by D during the interaction. In the
SU setting, we have to focus on only one permutation oracle; therefore, we drop the index i and simply write
QE = {(L1R1, S1T1), . . . , (LqiRqi , SqiTqi)} for the permutation query transcript and write τ = (QE ,QF ). Note
that queries are recorded in a directionless (for permutation queries) and unordered fashion, but since D is
assumed deterministic, there is a one-to-one mapping between this representation and the raw transcript of the
interaction of D with its oracles (a formal proof could be found in [15]). Also, the output of D is a deterministic
function of τ .

Given a set QFi of function queries and a function Fi, we say that Fi extends QFi , denoted Fi ` QFi , if
Fi(x) = y for all (x, y) ∈ QFi . Similarly, given a transcript of permutation queries QEi and a permutation P(i),
we say P(i) extends QEi , denoted P(i) ` QEi , if P(i)(LR) = ST for all (LR,ST ) ∈ QEi . The latter definition
also extends to the t-round KAF cipher built upon F and a key k(i); in that case, we write KAFF

k(i) ` QEi .
Finally, for QF = (QF1 , . . . ,QFt) and F = (F1, . . . ,Ft), if F1 ` QF1 ∧ . . . ∧ Ft ` QFt , then F ` QF .
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For all possible transcript τ that describes a possible interaction with either a tuple of oracles (P(1), . . . ,P(m),F)
or (KAFF

k(1) , . . . ,KAF
F
k(m) ,F), we denote Prre(τ), resp. Prid(τ), the probability that D’s interaction with the real

world, resp. the ideal world, produces τ . Formally,

Prre(τ) = Pr[(k(1), . . . , k(m))
$←− (K)m,F

$←− (F(n))t :

KAFF
k(1) ` QE1

∧ . . . ∧ KAFF
k(m) ` QEm ∧ F ` QF ],

Prid(τ) = Pr[(P(1), . . . ,P(m))
$←− (P(2n))m,F

$←− (F(n))t :

P(1) ` QE1
∧ . . . ∧P(m) ` QEm ∧ F ` QF ].

With these definitions, the core lemma of the H-coefficients technique states that the distinguishing advantage
could be inferred from the ratio of Prre(τ) and Prid(τ) (which is a function of qf and qe).

Lemma 1 (From [31]). Assume that in the atk setting (atk ∈ {SU,MU}), there is a function ε(qf , qe) > 0
such that for every possible transcript τ with qe and qf queries of the two types it holds

Prid(τ)− Prre(τ) ≤ Prid(τ) · ε(qf , qe), (2)

then it holds
Advatk

KAF(qf , qe) ≤ ε(qf , qe).

Following [31], the lower bound (2) is named “ε-point-wise proximity” of τ . We partition the key set K into two
disjoint subsets Kgood and Kbad such that K = Kgood ∪ Kbad. Let Prre(τ, k) be the probability that D interacts
with the real world, where k ∈ K is sampled as the key, and receives a transcript τ . Moreover, we assume there

is a fake key variable k in the ideal world that is uniformly selected from the key space K, i.e., k
$←− K, and

define Prid(τ, k) similarly. It is trivial that Prid(τ, k) = Prid(τ)×Pr[k
$←− K]. With these, HT provided a general

lemma for establishing point-wise proximity.

Lemma 2 (Lemma 1 of [31]). Fix a transcript τ with Prid(τ) > 0. Assume that: (i) Pr[k ∈ Kbad] ≤ δ, and

(ii) there is a function g : K → [0,∞) such that for all k ∈ Kgood, it holds Prre(τ,k)
Prid(τ,k)

≥ 1− g(k). Then we have

Prid(τ)− Prre(τ) ≤ Prid(τ) · (δ + Ek∈K[g(k)]). (3)

HT also proved that once such point-wise proximity results have been established for the SU setting, similar
results could be established for the MU setting via a general transformation. For this we restate Lemma 3 of [31]
in our KAF setting.

Lemma 3. Let t be the number of calls to F that a single call to KAF/KAF−1 makes. Let ε : N× N→ R≥0 be
a function such that

– ε(qf , qe) + ε(qf , q
′
e) ≤ ε(qf , qe + q′e) for every qf , qe, q

′
e ∈ N, and

– ε(·, q) and ε(q, ·) are non-decreasing functions on N for every q ∈ N.

Assume that in the SU setting, for every transcript τ with qf and qe queries of the two types, one has

Prid(τ)− Prre(τ) ≤ Prid(τ) · ε(qf , qe),

then in the MU setting, for every transcript τ with qf and qe queries, one has

Prid(τ)− Prre(τ) ≤ Prid(τ) · 2ε(qf + t · qe, qe).

3 Security Upper Bound: A Distinguishing Attack

Combining the idea of enumerating all the possible round-keys from [11] and the (round) function reduction

technique of [32], the t-round KAF can be distinguished by O(N
t−2
t−1 ) queries:

(1) Chooses λ plaintexts L1R1, . . . , LλRλ, with L1, . . . , Lλ pair-wise distinct, and R1 = . . . = Rλ = R, and
makes λ encryption queries Enck(L1, R1)→ (S1, T1), . . ., Enck(Lλ, Rλ)→ (Sλ, Tλ);
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(2) For ` from 2 to t− 1, asks λ arbitrary distinct queries x
(1)
` , x

(2)
` , . . . , x

(λ)
` to F`:

– F`(x
(1)
` )→ y

(1)
` ,

– . . .
– F`(x

(λ)
` )→ y

(λ)
` ;

(3) Denote CON = F1(k1 ⊕ R). For all k = (k1, . . . , kt) ∈ K and all 2n possible values of CON , if there
exists t−1 query-answer pairs (LiR,SiTi), (x2, y2), (x3, y3), . . ., (xt−1, yt−1) such that an almost completed
computation chain is formed:

– k2 ⊕ CON = Li ⊕ x2, and
– k3 = R⊕ y2 ⊕ x3, and
– . . .
– k`+1 = (k`−1 ⊕ x`−1)⊕ y` ⊕ x`+1, and
– . . .
– kt−1 = (kt−3 ⊕ xt−3)⊕ yt−2 ⊕ xt−1,

and further S = (kt−2 ⊕ xt−2)⊕ yt−1, then outputs 1 to indicates it’s the real world (otherwise 0).

When λ = N
t−2
t−1 and thus λt−1

Nt−2 = 1, the probability of forming a chain is approximately 1. By this, a 6-round
KAF ensure at most 4n/5-bit security. This should be contrasted with the results on the classical LR model (as
discussed in the Introduction).

We also note that the t-round IEM ciphers built upon n-bit random permutations and independent round-

keys tightly ensure tn
t+1 -bit security [31], which is better than the upper bound (t−2)n

t−1 -bit here. This matches
the folklore that compared to IEM ciphers, Feistel ciphers have more structural properties that are helpful for
attacks (as a consequence, to ensure the same amount of security, KAF needs more rounds). Tight security
bounds for t-round KAF remains an open problem.

4 Four Rounds for Birthday-Type Security

We first present a general positive result for 4-round KAFSF in subsection 4.1. Then in subsection 4.2, we
discuss how to schedule the desired round-keys from a short main-key, and present our “minimal” provably
secure construction.

4.1 A General Positive Result

The first step is to specify conditions on the round-key vector that will allow us to upper bound the probability
to obtain a round-bad key vector in the ideal world (the definition of bad key vectors will appear later).

Definition 1 (Suitable Round-Key Vector for 4 Rounds). A round-key vector k = (k1, k2, k3, k4) is
suitable if it satisfies the following conditions:

(i) k1 and k4 are uniform in {0, 1}n (but they need not to be independent);
(ii) k1 ⊕ k4 is also uniformly distributed in {0, 1}n.

If condition (i) is seriously compromised, the cipher would essentially lost 1 or 2 rounds. E.g., when k1 is only
uniform in n possibilities, an adversary could derive the second-round intermediate value X = L ⊕ F (k1 ⊕ R)
with n guesses. The less obvious condition (ii) is intended to prevent palindrome-like relations in the derived
round-keys, which have been found harmful [44]. To further help understanding, in appendix B we present
attacks against some round-keys that do not fulfill condition (ii).

Instantiated with such a suitable round-key vector, KAFSF ensures birthday security.

Theorem 1. For the 4-round idealized KAFSF cipher with a suitable round-key vector as specified in Definition
1, it holds

AdvSU
KAFSF(qf , qe) ≤

9q2e + 4qeqf
N

, and AdvMU
KAFSF(qf , qe) ≤

50q2e + 8qeqf
N

.

Proof. We devote to prove that in the SU setting, for any transcript τ , it holds

Prid(τ)− Prre(τ) ≤ Prid(τ) · 9q2e + 4qeqf
N

. (4)

This along with Lemmas 1 and 3 would yield the two main claims. Due to page limits, the proof of Eq. (4) is
deferred to appendix C. ut
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4.2 How to Schedule the Key: The Minimal Construction

By Definition 1, it can be seen that if pair-wise independence is ensured between round-keys, then the key
vector is suitable. We refer to Section 6 for how to derive such round-keys. Here it would be tempting to ask
how to schedule a single n-bit key K into a suitable key vector. Below we identify a condition on a key-schedule
γ = (γ1, γ2, γ3, γ4) (setting ki = γi(K) for i = 1, 2, 3, 4) that suffices for this purpose. We call such key-schedules
good:

Definition 2 (Good Key-Schedule for 4-Round KAFSF). We say that a key-schedule γ = (γ1, γ2, γ3, γ4),
where γi : {0, 1}n → {0, 1}n, is good if γ1, γ4, and γ1 ⊕ γ4 are all bijective maps of Fn2 .

As mentioned in the Introduction, one could take for γ1 the identity, and γ4 = ϕ, where ϕ is an orthomorphism
of Fn2 , as in Fig. 1 (right).

5 Six Rounds for Beyond-Birthday Security

Similarly to Section 4, we also specify conditions on the round-key vectors first.

Definition 3 (Suitable Round-Key Vector for 6 Rounds). A round-key vector k = (k1, k2, k3, k4, k5, k6)
is suitable if it satisfies the following conditions:

(i) k1, k3, and k5 are uniformly distributed in {0, 1}n;
(ii) k2, k4, and k6 are uniformly distributed in 2n−r possibilities;

(iii) for (i, j) ∈ {(1, 2), (2, 3), (4, 5), (5, 6), (1, 6)}, ki and kj are independent.

Unlike Section 4, in the subsequent analysis we find the uniformness of every round-key crucial. This is why we
require all of them to be uniform (this is also understandable, since beyond-birthday security requires various
types of collisions can be bounded by small enough probability, and thus requiring a larger amount of random-
ness). The (mild) independence is also crucially used in the analysis. To further understand the necessity, please
see Appendix A.

Instantiated with such a suitable round-key vector, KAF ensures beyond-birthday security.

Theorem 2. For the 6-round idealized cipher KAF with a suitable round-key vector as specified in Definition
3, it holds

AdvSU
KAF(qf , qe) ≤

7q3e + 13qeq
2
f + 22q2eqf

N2
+

2r(8qeq
2
f + 2q2eqf )

N2
, and

AdvMU
KAF(qf , qe) ≤

1214q3e + 26qeq
2
f + 356q2eqf

N2
+

2r(600q3e + 16qeq
2
f + 196q2eqf )

N2
.

Note that when r < n/2, the security is beyond-birthday—and when r = 0, the bound is of “typical” beyond-

birthday form O( q
3

N2 ).
We devote to prove the following point-wise proximity result for the SU setting: for any transcript τ , it holds

Prid(τ)− Prre(τ) ≤ Prid(τ) ·
7q3e + 13qeq

2
f + 22q2eqf + 2r(8qeq

2
f + 2q2eqf )

N2
. (5)

Gathering this and Lemmas 1 and 3 yields the claims.
Fix a transcript τ = (QE ,QF ) with QF = (QF1

,QF2
,QF3

,QF4
,QF5

,QF6
), |QE | = qe, and |QFi | = qf

for i = 1, . . . , 6, we first define bad key-vectors, then lower bound the probability Prre(τ, k). These two steps
correspond to the following two subsections respectively.

5.1 Bad Round-Key Vectors and Probability

Similarly to subsection 4.1, for any xi ∈ {0, 1}n, if there exists a corresponding record (xi, yi) in QFi , then
we write xi ∈ DomFi (and xi /∈ DomFi otherwise), and write ImgFi(xi) for the corresponding yi. Now, the
definition is as follows.
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Definition 4 (Bad Round-Key Vector for 6 Rounds). With respect to τ = (QE ,QF ), a suitable key vector
k fulfilling one of the conditions is bad:

– (B-1) there exists (LR,ST ) ∈ QE, (x1, y1) ∈ QF1
, and (x6, y6) ∈ QF6

such that k1 = R⊕x1 and k6 = S⊕x6;
– (B-2) there exists (LR,ST ) ∈ QE, (x1, y1) ∈ QF1 , and (x2, y2) ∈ QF2 such that k1 = R ⊕ x1 and k2 =
L⊕ y1 ⊕ x2;

– (B-3) there exists (LR,ST ) ∈ QE, (x5, y5) ∈ QF5
, and (x6, y6) ∈ QF6

such that k6 = S ⊕ x6 and k5 =
T ⊕ y6 ⊕ x5.

Otherwise we say k is good. Denote by Kbad the set of bad key vectors.

We now prove

Pr[k
$←− K : k ∈ Kbad] ≤

3 · 2r · qeq2f
N2

. (6)

Consider (B-1) first. Since we have at most qeq
2
f choices for (LR,ST ) ∈ QE and (x1, y1) ∈ QF1

and (x6, y6) ∈ QF6

and since k1, resp. k6, is uniform in 2n, resp. 2n−r possibilities, and further since k1 and k6 are independent (cf.

Definition 3), it holds Pr[(B-1)] ≤ qeq
2
f

22n−r ≤
2rqeq

2
f

N2 .
Similarly, since k1 and k2 are random and independent, and we have at most qeq

2
f choices for (LR,ST ) ∈ QE

and (x1, y1) ∈ QF1 and (x2, y2) ∈ QF2 , we have Pr[(B-2)] ≤ 2rqeq
2
f

N2 ; by symmetry, Pr[(B-3)] ≤ 2rqeq
2
f

N2 . The sum
yields (6).

5.2 Analysis for Good Keys

Fix a good round-key vector k, we are to derive a lower bound for the probability Pr[F
$←− (F(n))6 : KAFF

k `
QE | F ` QF ]. It consists of two steps. In the first step, we will lower bound the probability that a pair of
functions (F1,F6) satisfies certain “bad” conditions that will be defined. With the values given by a “good” pair
of functions (F1,F6), a transcript of the distinguisher on 6 rounds can be transformed into a special transcript
on 4 rounds; in this sense, we “peel off” the outer two rounds. Then in the second step, assuming (F1,F6) is
good, we analyze the induced 4-round transcript to yield the final bounds. In the following, each step would
take a subsubsection. As mentioned in the Introduction, this two-step approach is motivated by Cogliati et
al. [17,16].

Peeling off the Outer Two Rounds. Pick a pair of functions (F1,F6) such that F1 ` QF1
and F6 ` QF6

,
and for each (LR,ST ) ∈ QE we set X ← L ⊕ F1(k1 ⊕ R) and A ← T ⊕ F6(k6 ⊕ S). In this way we obtain
qe tuples of the form (RX,AS); for convenience we denote the set of such induced tuples by Q∗E(F1,F6). We
further denote by EQ(X) the set that contains all such induced tuples with their second coordinate equaling
X—formally,

– EQ(X) = {(RX,AS) : (RX,AS) ∈ Q∗E(F1,F6)}.
– Similarly, EQ(A) = {(RX,AS) : (RX,AS) ∈ Q∗E(F1,F6)}.

And we define several key-dependent quantities characterizing τ :

α1(k)
def

===|{((LR, ST ), (x1, y1)) ∈ QE ×QF1 : k1 = R⊕ x1}|,

α2(k)
def

===|{((LR, ST ), (x6, y6)) ∈ QE ×QF6 : k6 = S ⊕ x6}|,

α2,3(k)
def

===|{((LR, ST ), (x2, y2), (x3, y3)) ∈ QE ×QF2 ×QF3 : k3 = R⊕ y2 ⊕ x3}|,

α4,5(k)
def

===|{((LR, ST ), (x4, y4), (x5, y5)) ∈ QE ×QF4 ×QF5 : k4 = S ⊕ y5 ⊕ x4}|.

Then we define a predicate Bad(F1,F6) on the pair (F1,F6), which holds if the corresponding induced set
Q∗E(F1,F6) fulfills at least one of the following five “collision” conditions (see Fig. 3 for illustration):

– (C-1) there exists three records (RX,AS) ∈ Q∗E(F1,F6), (x2, y2) ∈ QF2
, and (x5, y5) ∈ QF5

such that
k2 = X ⊕ x2 and k5 = A⊕ x5;

– (C-2) there exists three records (RX,AS) ∈ Q∗E(F1,F6), (x2, y2) ∈ QF2 , and (x3, y3) ∈ QF3 such that
k2 = X ⊕ x2 and k3 = R⊕ y2 ⊕ x3;
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– (C-3) there exists three records (RX,AS) ∈ Q∗E(F1,F6), (x4, y4) ∈ QF4
, and (x5, y5) ∈ QF5

such that
k5 = A⊕ x5 and k4 = S ⊕ y5 ⊕ x4;

– (C-4) there exists two distinct (RX,AS), (R′X ′, A′S′) in Q∗E(F1,F6), and a pair (x2, y2) in QF2 such that
X = X ′ and k2 = X ⊕x2; or, symmetrically, two distinct (RX,AS), (R′X ′, A′S′) in Q∗E(F1,F6) and a pair
(x5, y5) in QF5

such that A = A′ and k5 = A⊕ x5;
– (C-5) there exists two distinct (RX,AS), (R′X ′, A′S′) in Q∗E(F1,F6) and a pair (x2, y2) in QF2

such that
A = A′ and k2 = X ⊕ x2; or, symmetrically, two distinct (RX,AS), (R′X ′, A′S′) in Q∗E(F1,F6) and a pair
(x5, y5) in QF5 such that X = X ′ and k5 = A⊕ x5.

L(C-1) R TSX Y A

X’

Z

L(C-2) R TSX Y AZ

L(C-3) R TSX Y AZ

L
(C-4)

R TSX A

L’ R’ S’ T’A’

L
(C-5)

R TSX A

L’ R’ S’ T’

Fig. 3. The five “collision” conditions characterizing a pair of functions (F1,F6) such that Bad(F1,F6) holds. The values
X, Y , Z, A in squares satisfy k2⊕X ∈ DomF2, k3⊕Y ∈ DomF3, k4⊕Z ∈ DomF4, and k5⊕A ∈ DomF5 respectively.

For convenience, if Bad(F1,F6) does not hold, then we say (F1,F6) is good; in this case, the induced tuples
(RX,AS) are easier to analyze. For Pr[Bad(F1,F6)] we have the following bound.

Lemma 4. It holds

PrF1,F6
[Bad(F1,F6) | F1 ` QF1

∧ F6 ` QF6
]

≤
qeq

2
f

N2
+

4q2eqf
N2

+
α2,3(k) + α4,5(k)

N
+
qf (α1(k) + α2(k))

N
.

Proof. Due to page limits please see appendix D for the proofs for:

Pr[(C-1)] ≤
qeq

2
f

N2
, Pr[(C-2)] ≤ α2,3(k)

N
, Pr[(C-3)] ≤ α4,5(k)

N
,

Pr[(C-4)] ≤ 2q2eqf
N2

, and Pr[(C-5)] ≤ 2q2eqf
N2

+
qf (α1(k) + α2(k))

N
.

Summing over them gives the result. All the arguments rely on the uniformness of entries of F, which are
uniform in 2n values rather than 2n−r. This clarifies why the bounds have nothing to do with the term 2r. ut

Analyzing the Inner Four Rounds. Let F∗ = (F2,F3,F4,F5). We denote

p(τ,F1,F6) = Pr[F∗
$←− (F(n))4 : KAFF∗

k ` Q∗E(F1,F6) | Fi ` QFi , i = 1, 2, 3, 4, 5, 6].

This captures the probability that the inner four rounds of KAF “extend” the tuples in Q∗E(F1,F6). The
probability Prre(τ, k) can be related to it.

Lemma 5. Assume that there exists a function ε : (F(n))2 × K → [0,∞) such that for any good (F1,F6), it
holds

p(τ,F1,F6)

/qe−1∏
i=0

(
1

N2 − i

)
≥ 1− ε(F1,F6, k). (7)
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Then we have

Prre(τ, k)

Prid(τ, k)
≥ 1− Pr[Bad(F1,F6) | F1 ` QF1

,F6 ` QF6
]

− EF1,F6 [ε(F1,F6, k) | F1 ` QF1 ,F6 ` QF6 ].

Proof. Define p(F1,F6)
def

=== Pr[(F∗1,F
∗
6)

$←− (F(n))2 : (F∗1,F
∗
6) = (F1,F6)] for convenience. Then, clearly, once

F1 and F6 are fixed such that F1 ` QF1 and F6 ` QF6 , the event KAFF
k ` QE is equivalent to KAFF∗

k `
Q∗E(F1,F6). Hence

Prre(τ, k) ≥
∑

F1`QF1
,F6`QF6

:(F1,F6) good

p(F1,F6) · p(τ,F1,F6)

|K| ·N4qf
.

Therefore,

Prre(τ, k)

Prid(τ, k)
≥
∑

F1`QF1
,F6`QF6

:(F1,F6) good p(F1,F6) · p(τ,F1,F6)

Pr[F1 ` QF1
,F6 ` QF6

] ·
∏qe−1
i=0

1
N2−i

≥
∑

F1`QF1
,F6`QF6

:(F1,F6) good p(F1,F6)(1− ε(F1,F6, k))

Pr[F1 ` QF1
,F6 ` QF6

]
(by (7))

≥ 1− Pr[Bad(F1,F6) | F1 ` QF1 ,F6 ` QF6 ]

≥ 11−
∑

F1`QF1
,F6`QF6

p(F1,F6)ε(F1,F6, k).

︸ ︷︷ ︸
=EF1,F6

[ε(F1,F6,k)|F1`QF1
,F6`QF6

]

as claimed. ut

We now prove the assumption of Lemma 5.

Lemma 6. For any fixed good tuple (F1,F6), there exists a function ε(F1,F6, k) of the function pair and the
round-key vector k such that the inequality (7) mentioned in Lemma 5 holds. Moreover,

EF1,F6,k[ε(F1,F6, k)] ≤
7q3e + 10qeq

2
f + 18q2eqf + 3 · 2r · qeq2f + 2 · 2r · q2eqf

N2
. (8)

Proof. The general expression of ε(F1,F6, k) is a function of several variables defined before, which suffers from
a bad readability. Therefore, we directly establish (and present) the bound on its expectation. However, due to
space constraints, the full proof has to be deferred to appendix E.

Below we present a sketch and the core results. According to the type of the involved collisions, we divide
the tuples in Q∗E(F1,F6) into four groups (see Fig. 4 for an illustration):

– G1 = {(RX,AS) ∈ Q∗E(F1,F6) : |EQ(X)| = |EQ(A)| = 1, and further k2⊕X /∈ DomF2∧k5⊕A /∈ DomF5},
– G2 = {(RX,AS) ∈ Q∗E(F1,F6) : k2 ⊕X ∈ DomF2},
– G3 = {(RX,AS) ∈ Q∗E(F1,F6) : k5 ⊕A ∈ DomF5},
– G4 = {(RX,AS) ∈ Q∗E(F1,F6) : |EQ(X)| ≥ 2, or |EQ(A)| ≥ 2}.

Let β1 = |G2|, β2 = |G3|, and β3 = |G4|. Note that by definition, these sets form a partition of Q∗E(F1,F6):

– G1 ∩ G2 = G1 ∩ G3 = G1 ∩ G4 = ∅ by definition;
– G2 ∩ G3 = ∅ since otherwise Q∗E(F1,F6) would satisfy (C-1);
– G2 ∩ G4 = ∅, since for any (RX,AS) ∈ G2, |EQ(X)| ≥ 2 would imply Q∗E(F1,F6) fulfilling (C-4), while
|EQ(A)| ≥ 2 would imply (C-5);

– G3 ∩ G4 = ∅, since for any (RX,AS) ∈ G3, |EQ(X)| ≥ 2 implies (C-5), while |EQ(A)| ≥ 2 implies (C-4).

We denote respectively EG1 , EG2 , EG3 , and EG4 the event that KAFF∗

k ` G1, G2, G3, and G4. It can be seen

p(τ,F1,F6) = Pr[EG1 ∧ EG2 ∧ EG3 ∧ EG4 | F ` QF ].

We next analyze the four groups in turn. The first one, i.e. Pr[EG1 | F ` QF ], involves the most complicated
analysis. Briefly, for each tuple (RX,AS) in G1, it consists of three cases:
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Fig. 4. Partition of the tuples in Q∗E(F1,F6). The value X, resp. A, in square satisfies k2 ⊕X ∈ DomF2, resp. k5 ⊕A ∈
DomF5.

(i) In the first case, neither of the two corresponding intermediate values Y and Z derived from F2 and F5

collides with values that have been in the history. The probability that KAFF
k extends (RX,AS) in this case

is roughly at least (
1− qf + qe + β1

N

)(
1− qf + qe + β2

N

)
1

N2
.

(ii) In the second case, the corresponding intermediate value Y collides with some “existing” values, yet the
further derived Z is “free”. The probability that KAFF

k extends (RX,AS) in this case is roughly at least(
qf + qe
N

−O
(

2r · q2f
N2

+
(qf + qe)

2

N2

))
1

N2
.

(iii) The third case is symmetrical to the second one: Z collides with “existing” values, yet Y is “free”. The
probability is roughly at least (

qf + qe
N

−O
(

(qf + qe)
2

N2

))
1

N2
.

Summing over the above, we obtain

Pr[EG1 | F ` QF ] ≥
|G1|∏
`=1

(
1− β1

N
− β2
N
−O

(
2r · q2f
N2

+
(qf + qe)

2

N2

))
1

N2
.

Yet, the above results are oversimplified due to the page limits. We in fact used many additional notations,
cf. appendix E. The concrete bound is

Ek
[

Pr[EG1 | F ` QF ]
]

≥

(
1−

2r · qeq2f
N2

− 2qe(2qf + qe)(qf + qe)

N2
− (qf + 2qe)(β1 + β2)

N

)
1

N2|G1|
. (9)

To analyze EG2 , EG3 , and EG4 , we again apply the bad predicate approach. These groups involve collisions, and
have relatively small sizes: |G2|, |G3|, |G4| = O(2r ·q2/N) (will be proved later). Therefore, any collisions between
tuples in these groups and values related to QF or G1 can be included in the bad predicates: for each tuple in
these three groups the probability would be O(q/N) with q = max{qe, qf}, yet it remains O(q/N)·O(2r ·q2/N) =
O(2r · q3/N2) in total. See appendix E.5 for the formal analyzes. In all, the results are

Pr[EG2 ∧ EG3 | EG1 ∧ F ` QF ] ≥
(

1− (β1 + β2)(qf + qe)

N

)
1

N2(|G2|+|G3|)
, (10)

Pr[EG4 | EG1 ∧ EG2 ∧ EG3 ∧ F ` QF ] ≥
(

1− 2β3(qf + qe)

N

)
1

N2|G4|
. (11)
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Summing Up would yield a lower bound of the form

p(τ,F1,F6) = Pr[EG1 ∧ EG2 ∧ EG3 ∧ EG4 | F ` QF ]

≥ (1− ε1)(1− ε2)(1− ε3)
1

N2(|G1|+|G2|+|G3|+|G4|)

≥ (1− (ε1 + ε2 + ε3))
1

N2qe
(since |G1|+ |G2|+ |G3|+ |G4| = qe),

where ε1, ε2, ε3 are in (9), (10), and (11) respectively. We note

1

N2qe

/(
qe−1∏
i=0

1

N2 − i

)
≥
(

1− qe
N2

)qe
≥ 1− q2e

N2
≥ 1− q3e

N2
,

Thus using (1−A)(1−B) ≥ 1− (A+B) we obtain

p(τ,F1,F6)∏qe−1
i=0

1
N2−i

≥ 1− ε(F1,F2, k),

for which

Ek
[
ε(F1,F6, k)

]
≤ (2qf + 3qe)(β1 + β2) + 2β3(qf + qe)

N

+
2r · qeq2f
N2

+
2qe(2qf + qe)(qf + qe) + q3e

N2
.

We now derive EF1,F6
[Ek[ε(F1,F2, k)] | F1 ` QF1

,F6 ` QF6
]. To this end, note that by definition, β1, β2, and

β3 are quantities that depend on (F1,F6):

β1 = |{(RX,AS) ∈ Q∗E(F1,F6) : k2 ⊕X = k2 ⊕ L⊕ F1(k1 ⊕R) ∈ DomF2}|,
β2 = |{(RX,AS) ∈ Q∗E(F1,F6) : k5 ⊕A = k5 ⊕ T ⊕ F6(k6 ⊕ S) ∈ DomF5}|,
β3 = |{(RX,AS) ∈ Q∗E(F1,F6) : ∃(R′X ′, A′S′) such that X = X ′, or:

∃(R′X ′, A′S′) ∈ Q∗E(F1,F6) such that A = A′}|.

We consider β1 first. For each (RX,AS) ∈ Q∗E(F1,F6), if k1 ⊕R ∈ DomF1, then k2 ⊕X /∈ DomF2 by ¬(B-2).
Thus conditioned on F1 ` QF1

, F1(k1 ⊕ R) remains uniform, and Pr[k2 ⊕ L ⊕ F1(k1 ⊕ R) ∈ DomF2] ≤ qf
N .

Therefore,

Ek[β1] ≤ qeqf
N

.

Similarly by symmetry, using the randomness supplied by F6, Ek[β2] ≤ qeqf
N .

Then we consider β3. We fix a record (LR,ST ) such that k1⊕R /∈ DomF1, and consider another (L′R′, S′T ′).
If R = R′ then it has to be L 6= L′ and thus X 6= X ′. Otherwise, as k1 ⊕ R /∈ DomF1, F1(k1 ⊕ R) remains
random conditioned on F1 ` QF1 , and Pr[X = X ′] = Pr[F1(k1 ⊕ R) = L ⊕ L′ ⊕ F1(k1 ⊕ R′)] = 1

N . The
number of distinct pairs of such tuples is at most q2e . Thus we know the expectation of the number of pairs

((RX,AS), (R′X ′, A′S′)) such that X = X ′ is at most
q2e
N . Thus

Ek[|{(RX,AS) : k1 ⊕R /∈ DomF1, and ∃(R′X ′, A′S′) s.t. X = X ′}|] ≤ q2e
N
.

As the number of (LR,ST ) such that k1 ⊕R ∈ DomF1 is α1(k), we obtain

Ek[|{(RX,AS) : ∃(R′X ′, A′S′) s.t. X = X ′}|] ≤ q2e
N

+ α1(k).

Symmetrically, Ek[|{(RX,AS) : ∃(R′X ′, A′S′) s.t. A = A′}|] ≤ q2e
N + α2(k). Thus Ek[β3] ≤ 2q2e

N + α1(k) + α2(k).
Finally, since k1, resp. k6, are uniform in 2n, resp. 2n−r possibilities,

Ek[α1(k)] =
∑

(LR,ST )∈QE

∑
(x1,y1)∈QF1

Pr[k1 = R⊕ x1] ≤ qeqf
N
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and Ek[α2(k)] ≤ 2r·qeqf
N . Gathering all the above yields

EF1,F6,k

[
ε(F1,F6, k)

]
≤

4qeq
2
f + 6q2eqf

N2
+

2(qe + qf )(2q2e + qeqf + 2rqeqf )

N2

+
2r · qeq2f
N2

+
2qe(2qf + qe)(qf + qe) + q3e

N2

=
7q3e + 10qeq

2
f + 18q2eqf + 3 · 2r · qeq2f + 2 · 2r · q2eqf

N2
,

as claimed in (8). ut

5.3 Concluding the Point-Wise Proximity Proof

Gathering Lemma 2, Lemma 5, and (6), we obtain

Prre(τ)

Prid(τ)
≥ 1−

(
3 · 2rqeq2f

N2
+ Ek

[
Pr[Bad(F1,F6) | F1 ` QF1

,F6 ` QF6
]
]

+ Ek
[
EF1,F6

[ε(F1,F6, k) | F1 ` QF1
,F6 ` QF6

]
])
,

where ε(F1,F6, k) is the function specified in (7). Note that its expectation has been bounded in Lemma 6.
For Ek[Pr[Bad(F1,F6) | F1 ` QF1

,F6 ` QF6
]], since k3 and k4 are both uniformly distributed (in 2n and

2n−r values, respectively), we have

Ek[α2,3(k)] ≤
qeq

2
f

N
, and Ek[α4,5(k)] ≤

2rqeq
2
f

N
.

At the end of the previous subsection we have shown Ek[α1(k)] ≤ qeqf/N and Ek[α2(k)] ≤ 2rqeqf/N . Injecting
them into the bound of Lemma 4 yields

Ek[Pr[Bad(F1,F6) | F1 ` QF1
,F6 ` QF6

]] ≤
3qeq

2
f

N2
+

2 · 2rqeq2f
N2

+
4q2eqf
N2

.

Gathering all the above eventually establishes (5).

5.4 (2n− r)/3-bit Security from 2n− r bits Main-Key, and PKEM

According to Definition 3, a suitable round-key vector could be derived from two independent main keys K and
K ′, where |K| = n and |K ′| = n − r. A specific case is to alternatively apply the two keys. In this case, the
construction collapses to a “partial-key” Even-Mansour variant

PKEMLR6

0r‖K′‖K(M) = (0r‖K ′‖K)⊕ LR6((0r‖K ′‖K)⊕M) (12)

for LR6 the 6-round keyless Feistel permutation built from 6 independent random functions; see Fig. 2 (right).
On the other hand, with an orthomorphisms ϕ one could set the key vector to (K,K ′, ϕ(K), ϕ(K ′),K,K ′),
with which the KAF would be a “normal” Feistel cipher rather than “collapsing” to PKEM.

6 Application: A Proposal for KAF Key-Schedules

To further show the usefulness of our theoretical results, we propose some concrete key-schedules for KAF
ciphers. In detail, we propose to consider key-schedules with produced round-keys (k1, . . . , kt) satisfying the
following three conditions:

(i) Uniformness: every ki is uniform in {0, 1}n;
(ii) Pair-Wise Independence (PWI): any two round-keys ki and kj are independent;

(iii) Distinctness: it’s hard to find weak keys K that gives rise to identical round-keys k1 = . . . = kt.
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The considerations behind PWI are two-fold. First, such round-keys satisfy both Definitions 1 and 3, and
are thus supported by our theoretical results. Second, it’s intuitively good: independence between round-keys
plays a crucial role in our analysis, and would probably help simplify the proof for tighter bounds for 5 and 6
rounds.

The property distinctness is rather informal. It’s intended to prevent the KAF cipher from collapsing to
1-round IEM. Note that PWI is able to prevent such collapsing with “significant probability”; however, this is
not enough, since the number of (weak) main-keys that would cause such collapsing may not be small enough
from the view of practitioners; see Appendix F for an example.

As discussed in the Introduction, common “word-aligned” key-schedules usually ensure independence between
adjacent round-keys. This deviates from PWI, and the latter is not clear to be achieved by ad hoc designs.
Fortunately, the three properties can be achieved from a 2n-bit main-key K = K1‖K2 by efficient linear
functions [36]. Below we exhibit an example. Let Fn2 be the set {0, 1}n seen as the field with 2n elements defined
by some irreducible polynomial of degree n over F2, the field with two elements, and denote a ⊗ b the field
multiplication of two elements a, b ∈ Fn2 . In addition, for 1 ≤ t � 2n, let the constants at and at+1 be the t
and (t+ 1)th values in the prime sequence 1, 2, 3, 5, 7, 11, 13, . . . respectively. Then, for t� 2n rounds (which is
usually the case), one can set

k1 = K1 + 2⊗K2, k2 =2⊗K1 + 3⊗K2,

k3 = 3⊗K1 + 5⊗K2, k4 =5⊗K1 + 7⊗K2,

. . . , kt =at ⊗K1 + at+1 ⊗K2,

The proof for PWI is quite simple, and is given in Appendix F.
PWI cannot be achieved from κ < 2n main-key bits. However, nowadays it’s rather uncommon for a BC to

have key-size smaller than its block-size. On the other hand, instances of Feistel ciphers with 2n-bit blocks and
2n-bit keys do exist: e.g. SIMON96/96 and SIMON128/128 [4].

More generally, with a cn-bit main-key for c integer we conjecture c-wise independent round-keys are desir-
able. This is however not revealed by our results. We leave this as an interesting future direction.

7 Other Implications

As multi-user secure BCs, our provable KAF constructions could be plugged into many BC-based modes to
reduce the size of (ideal) primitives in use. In some cases, this even does not result in a security loss.

For example, Gaži et al. proved that when the adversary makes q queries of length ` < 2n/4, the PRF

security bound of the truncated CBC mode built upon a 2n-bit random permutation is roughly q(q+`)
22n−d

+ `q2

22n ,
where d is the length of the output [23]. By this, instantiated with our 6-round KAF (with r = 0), the resulted
bound is

(`q)3

22n
+

(`q)2qf
22n

+
(`q)q2f

22n
+
q(q + `)

22n−d
+
`q2

22n
,

where qf is the number of adversarial function queries. It can be seen that this is the same as the original when
d ≥ 7n/6 (i.e. the output is sufficiently long) and qf � 22n/3. We refer to Appendix G.1 for details about
truncated CBC.

7.1 Lightweight Keyed Sponges

A more interesting implication is on keyed sponges. Many lightweight keyed sponges with permutation π have
their security rely on the (MU) security of the Even-Mansour variant PKEMπ

0r‖K′‖K defined in (1) [42,1,23]. As

our results imply the MU security of PKEMLR6

0r‖K′‖K (subsection 5.4, (12)), these keyed sponges could be based

on PKEMLR6

0r‖K′‖K instead. And after the keys are canceled, we obtain keyed sponge variants using LR6 as the

permutation. This means the permutation underlying many keyed sponges can be securely instantiated with
LR6. This results in an improved implementation efficiency (maybe at the expense of a decreased security). And
when r < n/2, security of resulted construction is beyond-birthday with respect to n, the size of the underlying
ideal functions. This is usually fulfilled in lightweight sponges, since relatively large c = 2n − r is desired: e.g.
all the members in the Photon family [29].

Concretely, consider the “inner-keyed” sponge with a 2n-bit permutation π first. By [1], for any distinguisher
making qc queries to the sponge and qπ queries to π, the corresponding distinguishing advantage (from a random
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oracle) is
q2c

22n−r + AdvSU
PKEMπ

0r‖K‖K′
(qπ, σ), where σ is the total number of blocks in the qc construction queries.

Therefore, by our results, the security bound of the inner-keyed sponge with LR6 is

q2c
22n−r

+
σ3

22n
+
σ2qf
22n

+
σq2f
22n

,

where qf is the number of adversarial random function queries. It’s not hard to see similar implications can be
derived on “outer-keyed” sponge; however, we are unable to derive concrete bounds. We refer to Appendix G.2
for more details.

Another example is Chaskey [42], which is a sponge-like MAC of Mouha et al. With a 2n-bit permutation

π, the designers proved that the MAC security bound of Chaskeyπ is (roughly) σ2

22n + 1
d + AdvMU

PKEMπ
K‖K′

(qπ, σ),

where d is the tag size, σ is total number of blocks in the adversarial MAC queries, and qπ is the number of

adversarial queries to π. Therefore, the security bound of the variant ChaskeyLR6 is σ2

22n + 1
d + σ3

22n +
σ2qf
22n +

σq2f
22n ,

where qf is the number of adversarial random function queries. We refer to Appendix G.3 for the details of
Chaskey.
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A Difficulties on Further Improving Attempts, and Comparison to IEM

For our 4-round result, the only space for improvements is to exhibit other conditions on the round-keys that are sufficient
for security yet not implied by Definition 1. This seems to be only of theoretical interest.

For our 6-round result, further improvements could be in two directions. The first one is to prove beyond-birthday
security for 6-round with less than 2n-bit main-key (hopefully an n-bit main-key, like [14]). In other words, dropping the
independence assumption in Definition 3. But there are some obstacles as follows (these also clarify why we need some
independence between the round-keys.)

If only a single n-bit main-key is used, then the MU security is at most n/2-bit, since an attack utilizing key-
collisions could be launched [8]. Therefore, the obstacles are only meaningful for the SU security proof. In detail, we
figured out obstacles in the argument for bad keys. Assume that k1 and k2 are derived from the same n-bit main-key K
via two efficiently computable n-bit permutations: k1 = γ1(K), k2 = γ2(K). Then, to bound the probability of (B-2) (in
Definition 4), one would define BadK as the set of main-keys K such that there exists (LR, ST ) ∈ QE , (x1, y1) ∈ QF1 ,
and (x2, y2) ∈ QF2 such that

– γ1(K) = R⊕ x1, and
– γ2(K) = L⊕ y1 ⊕ x2.

Then one tries to prove
|BadK|
|K| =

|BadK|
N

= O

(
q3/2

N

)
.

It seems very hard to handle if γ1 and γ2 are non-linear.8 On the other hand, when they are linear, these imply

γ−1
2 (y1)⊕ γ−1

1 (x1) = (γ−1
1 (R)⊕ γ−1

2 (L))︸ ︷︷ ︸
A

⊕ γ−1
2 (x2)︸ ︷︷ ︸
B

.

Since the y1 values are given by F1 and thus uniform, it would be tempting to bound |BadK| by the sum-capture
lemma (as done by Chen et al. for 2-round Even-Mansour [14]). However, to reach the desired bound of O(q3/2/N), the
sum-capture lemma requires that the number of choices for the above A and B are both O(q). While for B = γ−1

2 (x2)
the number of choices is indeed qf = O(q), for A it is clearly possible to relate all the qe queries (LR, ST ) to the same
value of γ−1

1 (R)⊕ γ−1
2 (L). This would make the proof approach fail.

In fact, the above failure is not because the proof approach is not fine-grained enough, but because Pr[(B-2)] 6=
O(q3/2/N)—there indeed exists an attack that could make (B-2) fulfilled in O(

√
N) queries:

8 Moreover, we prefer concentrating on linear (or affine) key-schedules, because: (i) they are more efficient, and closer to
reality (e.g. the key-schedule of SIMON [4] is affine), and (ii) theoretically, they appear less demanding than non-linear
ones.
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(1) Chooses q =
√
N distinct 2n-bit values L1R1, L2R2, . . . , LqRq such that

γ−1
1 (R1)⊕ γ−1

2 (L1) = γ−1
1 (R2)⊕ γ−1

2 (L2) = . . . = γ−1
1 (Rq)⊕ γ−1

2 (Lq);

(2) Arbitrarily asks q distinct queries x
(1)
1 , x

(2)
1 , . . . , x

(q)
1 to F1:

– F1(x
(1)
1 )→ y

(1)
1 , F1(x

(2)
1 )→ y

(2)
1 , . . ., F1(x

(q)
1 )→ y

(q)
1 .

(3) Let c← γ2(γ−1
1 (R1))⊕ L1.

(4) Computes x
(1)
2 ← γ2(γ−1

1 (x
(1)
1 ))⊕ y(1)1 ⊕ c, x

(2)
2 ← γ2(γ−1

1 (x
(2)
1 ))⊕ y(2)1 ⊕ c, . . ., x

(q)
2 ← γ2(γ−1

1 (x
(q)
1 ))⊕ y(q)1 ⊕ c. Asks

these q queries to F2:
– F2(x

(1)
2 )→ y

(1)
2 , F2(x

(2)
2 )→ y

(2)
2 , . . ., F2(x

(q)
2 )→ y

(q)
2 .

After the above four steps, we remark that it’s possible to observe three records (LiRi, SiTi), (x
(j)
1 , y

(j)
1 ), and (x

(j)
2 , y

(j)
2 )

such that

k1 = Ri ⊕ x(j)1 and k2 = Li ⊕ y(j)1 ⊕ x
(j)
2 .

For this, we note that due to step (1), for all the q =
√
N choices of LiRi, it holds

c = γ2(γ−1
1 (Ri))⊕ Li.

Furthermore, since x
(j)
2 = γ2(γ−1

1 (x
(j)
1 )) ⊕ y(j)1 ⊕ c holds for all the q =

√
N choices of ((x

(j)
1 , y

(j)
1 ), (x

(j)
2 , y

(j)
2 )), we have

q2 = N tuples (LiRi, (x
(j)
1 , y

(j)
1 ), (x

(j)
2 , y

(j)
2 )) such that there exists K such that

γ1(K) = Ri ⊕ x(j)1 and γ2(K) = Li ⊕ y(j)1 ⊕ x
(j)
2 .

For each such tuple, PrK [K = γ−1
1 (Ri⊕ x(j)1 )] = 1/N , thus one or more tuples are expected to render the key “bad”. By

the above, with the linear key-schedule as assumed, it holds Pr[(B-2)] = O(q2/N) which is not of beyond-birthday type.
A similar argument can be carried for (B-3).

The second direction is to consider 6-round KAFSF. With some additional (yet still mild) assumptions on the round-
keys, this seems plausible. However, the proof is expected to be much more involved than our Section 5 (which is already
more complicated than existing analyzes on tweakable Even-Mansour [16,17]—largely because the structural features of
KAF are more complex than tweakable Even-Mansour). As mentioned in Introduction, we’d like to have a better proof
verifiability. Therefore, we only leave this direction for future.

B Attacking Some Unsuitable Round-Keys

The simplest example is the round-key vector k = (K,K,K,K). As already discussed in the Introduction, with this
schedule we have the severe weakness KAFSFk(LR) = ST ⇔ KAFSFk(TS) = RL. Below we consider a less trivial
example: we consider a xoring-constant-based key vector k = (K, 0, 0,K ⊕ c), where c is a public constant. With this
schedule, there is an attack against the 4-round KAFSF, which proceeds in 3 steps as follows:

(1) Arbitrarily chooses L and R, and makes 2 encryption queries:
– KAFSFk(L‖R)→ S‖T , and KAFSFk(L⊕ c‖R)→ S′‖T ′;

(2) Makes 2 more encryption queries:
– KAFSFk(T‖S ⊕ c)→ L′′‖R′′ and KAFSFk(T ′‖S′ ⊕ c)→ L′′′‖R′′′;

(3) If L′′ = L′′′ ⊕ c and R′′ = R′′′ then outputs 1 to indicate it’s the real world, otherwise outputs 0.

As to the idea, it’s not hard to see if we denote by X,Y the intermediate values of the encryption query KAFSFk(L‖R)→
S‖T , and by X ′, Y ′ those of the query KAFSFk(L ⊕ c‖R) → S′‖T ′, then we have X ′ = X ⊕ c. Moreover, (in the real
world) for the other two encryption queries we have

– T‖S ⊕ c R1−−→ S ⊕ c‖Y R2−−→ Y ‖X ⊕ c = Y ‖X ′ R3−−→ X ′‖R′′ R4−−→ R′′‖L′′, and

– T ′‖S′ ⊕ c R1−−→ S′ ⊕ c‖Y ′ R2−−→ Y ′‖X ′ ⊕ c = Y ′‖X R3−−→ X‖R′′′ R4−−→ R′′′‖L′′′.

Therefore, in the real world, it necessarily holds

R′′ = Y ⊕ F (X ′) = R⊕ F (X)⊕ F (X ′) = Y ′ ⊕ F (X) = R′′′

and L′′ ⊕ L′′′ = X ⊕X ′ = c.
Adding some restrictions on the derived k2 and k3 may cinch a security proof without the condition (ii). However, such

a definition of suitable round-key vector cannot be deemed simpler than Definition 1. Therefore, the current Definition
1 has been minimal in some sense—although it’s not necessary.

As a comparison, Nandi has characterized the round-key vectors secure for the LR cipher. His result was that non-
palindromeness (i.e. the order of key indices is not same with its reverse order) is necessary and sufficient for the security
of LR [44]. This also reveals the difference between LR and KAFSF: while our first example (K,K,K,K) is palindrome,
our second example (K, 0, 0,K ⊕ c) is clearly not palindrome. Still, (K, 0, 0,K ⊕ c) is not secure for KAFSF.

22



C Proof of Eq. (4)

To prove Eq. (4), we follow the paradigm mentioned in Lemma 2: we fix a transcript τ = (QE ,QF ) with |QE | = qe and
|QF | = qf , then distinguish good and bad key-vectors with respect to τ , and finally analyze the probability Prre(τ, k) for
good k. For convenience, for any x ∈ {0, 1}n, if there exists a corresponding record (x, y) in QF , then we write x ∈ DomF
(and x /∈ DomF otherwise).

Bad Keys are now defined as follows.

Definition 5 (Bad Round-Key Vector for 4 Rounds). With respect to τ = (QE ,QF ), a suitable round-key vector
k is bad, if at least one of the following conditions is fulfilled (note that the analysis is in the SU setting):

– (B-1) there exists (LR, ST ) ∈ QE such that either k1 ⊕R ∈ DomF or k4 ⊕ S ∈ DomF ;
– (B-2) there exists two (not necessarily distinct) (LR, ST ) and (L′R′, S′T ′) in QE such that k1 ⊕R = k4 ⊕ S′.

Otherwise we say k is good. Denote by Kbad the set of bad round-key vectors.

For each of the qe records (LR, ST ), since both k1 and k4 are uniformly distributed in {0, 1}n and since |DomF| =

|QF | = qf , the probability that it fulfills (B-1) does not exceed
2qf
N

. On the other hand, for each of the q2e pairs of
records (LR, ST ) and (L′R′, S′T ′), since k1 ⊕ k4 is uniform, the probability that the pair fulfills (B-2) does not exceed
1
N

. Therefore,

Pr[k
$←− K : k ∈ Kbad] ≤

2qeqf + q2e
N

. (13)

Lowering Bounding the Probability for Good Keys. We now lower bound the probability Prre(τ, k) for
an arbitrary good round-key vector k. For this, we follow a clean “predicate” approach from [20]: we define a “bad”
predicate Bad(F) on F, such that if Bad(F) does not hold (the probability of which has a lower bound), then the event
KAFSFF

k ` QE is equivalent to 2qe new and distinct equations on the random round function F. For convenience, we
first define

ExtF def
=== {x ∈ {0, 1}n :(LR, ST ) ∈ QE for R = k1 ⊕ x and some L, S, T, or

(LR, ST ) ∈ QE for S = k4 ⊕ x and some L,R, T.}.

Clearly, |ExtF| ≤ 2qe. Then, for any n-to-n-bit function F ` QF , the predicate Bad(F) holds, if one of the following
conditions is fulfilled:

– (C-1) ∃(LR, ST ) ∈ QE such that k2 ⊕ L⊕ F(k1 ⊕R) ∈ DomF ∪ ExtF , or k3 ⊕ T ⊕ F(k4 ⊕ S) ∈ DomF ∪ ExtF ;
– (C-2) there exists two (not necessarily distinct) (LR, ST ) and (L′R′, S′T ′) in QE such that k2 ⊕ L ⊕ F(k1 ⊕ R) =
k3 ⊕ T ′ ⊕ F(k4 ⊕ S′);

– (C-3) there exists two distinct (LR, ST ) ∈ QE and (L′R′, S′T ′) ∈ QE such that L⊕ F(k1 ⊕ R) = L′ ⊕ F(k1 ⊕ R′),
or T ⊕ F(k4 ⊕ S) = T ′ ⊕ F(k4 ⊕ S′).

To compute Pr[F
$←− F(n) : Bad(F) | F ` QF ], we consider the conditions in turn. First, as k is good, for any

(LR, ST ) ∈ QE we have k1⊕R /∈ DomF ∪ExtF and k4⊕S /∈ DomF ∪ExtF . Thus conditioned on F ` QF , the values
F(k1 ⊕R) and F(k4 ⊕ S) remain uniformly distributed, and thus

– Pr[k2 ⊕ L⊕ F(k1 ⊕R) ∈ DomF ∪ ExtF ] ≤ qf+2qe
N

, and

– Pr[k3 ⊕ T ⊕ F(k4 ⊕ S) ∈ DomF ∪ ExtF ] ≤ qf+2qe
N

.

So Pr[(C-1)] ≤ 2qe(qf+2qe)

N
. Second, for any two tuples (LR, ST ) and (L′R′, S′T ′) from QE , the two function values

F(k1 ⊕R) and F(k4 ⊕ S′) are independent by ¬(B-2). Then as argued, we have

– Pr[k2 ⊕ L⊕ F(k1 ⊕R) = k3 ⊕ T ′ ⊕ F(k4 ⊕ S′)] = 1
N

,

and thus Pr[(C-2)] ≤ q2e
N

. Third, for any two tuples (LR, ST ) and (L′R′, S′T ′), if R = R′ then L 6= L′ and L⊕F(k1⊕R) =
L′ ⊕ F(k1 ⊕ R′) is not possible. Otherwise, since F(k1 ⊕ R) is uniform (as argued before), the probability to have
L ⊕ F(k1 ⊕ R) = L′ ⊕ F(k1 ⊕ R′) is 1

N
. It’s similar for the other condition T ⊕ F(k4 ⊕ S) = T ′ ⊕ F(k4 ⊕ S′), thus

Pr[(C-3)] ≤ 2q2e
N

, and

Pr[F
$←− F(n) : Bad(F) | F ` QF ] ≤ 2qe(qf + 2qe)

N
+
q2e
N

+
2q2e
N
≤ 7q2e + 2qeqf

N
.

Using an arbitrary order, write QE = {(L1R1, S1T1), . . . , (LqeRqe , SqeTqe)}, and for a given F, let

x
(1)
2 = k2 ⊕ L1 ⊕ F(k1 ⊕R1), . . . , x

(qe)
2 = k2 ⊕ Lqe ⊕ F(k1 ⊕Rqe), and

x
(1)
3 = k3 ⊕ T1 ⊕ F(k4 ⊕ S1), . . . , x

(qe)
3 = k3 ⊕ Tqe ⊕ F(k4 ⊕ Sqe).

It can be seen that for each (LiRi, SiTi) ∈ QE , we have
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Pr[KAFSFF
k (LiRi) = SiTi] = Pr[F(x

(i)
2 ) = Ri ⊕ Yi ∧ F(x

(i)
3 ) = Xi ⊕ Si].

Additionally, conditioned on F ` QF and ¬Bad(F), (a) the induced values x
(1)
2 , . . . , x

(qe)
2 , x

(1)
3 , . . . , x

(qe)
3 are 2qe distinct

ones (otherwise: if x
(i)
2 = x

(j)
2 or x

(i)
3 = x

(j)
3 for some i 6= j then (C-3) is fulfilled; if x

(i)
2 = x

(j)
3 then (C-2) is fulfilled), and

(b) the 2qe images F(x
(1)
2 ), . . . ,F(x

(qe)
2 ),F(x

(1)
3 ), . . . ,F(x

(qe)
3 ) remain fully undetermined and thus uniform, otherwise

(C-1) is fulfilled. Therefore, for each i ∈ {1, . . . , qe} we have Pr[F(x
(i)
2 ) = Ri⊕ Yi ∧F(x

(i)
3 ) = Xi⊕Si] = 1

N2 ; and for any
k ∈ Kgood,

Prre(τ, k)

Prid(τ, k)
=

(
1

|K| ·Nqf
· Pr[KAFSFF

k ` QE | F ` QF ]

)/(
1

|K| ·Nqf
·
qe−1∏
i=0

1

N2 − i

)

≥Pr[KAFSFF
k ` QE | F ` QF ∧ ¬Bad(F)] · (1− Pr[Bad(F) | F ` QF ])∏qe−1

i=0
1

N2−i

≥
(

1− 7q2e + 2qeqf
N

)(
1

N2qe

)/(
qe−1∏
i=0

1

N2 − i

)

≥
(

1− 7q2e + 2qeqf
N

)(
1− q2e

N2

)
≥ 1− 7q2e + 2qeqf

N
− q2e
N2

.

Gathering this and (13) and Lemma 2 yields the claim of (4).

D Proof of Lemma 4

We upper bound the probabilities of the bad conditions in turn.

Condition (C-1). For any (RX,AS) ∈ Q∗E(F1,F6), if there exists (x2, y2) ∈ QF2 and (x5, y5) ∈ QF5 such that
k2 = X ⊕ x2 and k5 = A ⊕ x5, then we would have L ⊕ F1(k1 ⊕ R) = k2 ⊕ x2 and T ⊕ F6(k6 ⊕ S) = k5 ⊕ x5 for the
corresponding (LR, ST ) ∈ QE . It cannot be k1 ⊕ R ∈ DomF1, as otherwise k1 ⊕ R ∈ DomF1 along with k2 = X ⊕ x2
fulfill (B-2) in Definition 4; similarly, it cannot be k6 ⊕ S ∈ DomF6. Thus conditioned on F1 ` QF1 and F6 ` QF6 , the
two values F1(k1⊕R) and F6(k6⊕S) remain uniform. Thus for each 3-tuple ((LR, ST ), (x2, y2), (x5, y5)), the probability
that both L⊕F1(k1 ⊕R) = k2 ⊕ x2 and T ⊕F6(k6 ⊕ S) = k5 ⊕ x5 hold is at most 1

N2 . Since we have at most qeq
2
f such

3-tuples, the total probability does not exceed
qeq

2
f

N2 .

Conditions (C-2) and (C-3). Consider (C-2) first. By definitions, the number of triplets ((LRX,AST ), (x2, y2), (x3, y3))
such that k3 = R ⊕ y2 ⊕ x3 is α2,3(k), where (LRX,AST ) is a “merged” notation for (LR, ST ) and the corresponding
induced X and A. On the other hand, k2 = X ⊕ x2 would imply L ⊕ F1(k1 ⊕ R) = k2 ⊕ x2. Now if k1 ⊕ R ∈ DomF1,
then it cannot be L ⊕ ImgF1(k1 ⊕ R) = k2 ⊕ x2, otherwise (B-2) is fulfilled. Whereas when k1 ⊕ R /∈ DomF1, then
conditioned on F1 ` QF1 , the value F1(k1 ⊕R) remain uniform, and thus Pr[L⊕ F1(k1 ⊕R) = k2 ⊕ x2] = 1

N
. By these

analyzes, we have Pr[(C-2)] ≤ α2,3(k)

N
. For the condition (C-3) it’s similar by symmetry, resulting in Pr[(C-3)] ≤ α4,5(k)

N
.

Condition (C-4). Consider the first half of (C-4) first, and consider such two tuples (LRX,AST ) and (L′R′X ′, A′S′T ′).

We note that neither k1 ⊕R nor k1 ⊕R′ can be in DomF1, as otherwise it fulfills (B-2). Thus conditioned on F1 ` QF1 ,
both F1(k1 ⊕R) and F1(k1 ⊕R′) remain uniform. Thus

Pr[X = X ′ ∧ k2 ⊕X = x2]

≤Pr[F1(k1 ⊕R) = L⊕ L′ ⊕ F1(k1 ⊕R′)] · Pr[F1(k1 ⊕R) = L⊕ k2 ⊕ x2] ≤ 1

N2
.

The number of choices of (LRX,AST ), (L′R′X ′, A′S′T ′), and (x2, y2) is at most q2eqf , thus the probability of the first

half is at most
q2eqf
N2 in total. For the second half it’s similar by symmetry, leading to the same bound

q2eqf
N2 . Thus

Pr[(C-4)] ≤ 2q2eqf
N2 .

Condition (C-5). Consider the first half of the condition, and consider such three tuples (LRX,AST ), (L′R′X ′, A′S′T ′),
and (x2, y2) ∈ QF2 respectively. By ¬(B-2), k1 ⊕R /∈ DomF1. Depending on the state of S, we distinguish two cases:

– Case 1: k6⊕S /∈ DomF6. Then we have at most qe choices for (LRX,AST ) and at most qe choices for (L′R′X ′, A′S′T ′).
Conditioned on F6 ` QF6 , F6(k6 ⊕ S) remains random, thus

Pr[A = A′] = Pr[T ⊕ F6(k6 ⊕ S) = T ′ ⊕ F6(k6 ⊕ S′)] ≤ 1
N
.

Conditioned on F1 ` QF1 , the value F1(k1 ⊕ R) is also random, thus we similarly have Pr[L ⊕ F1(k1 ⊕ R) ⊕ k2 ∈
DomF2] ≤ qf

N
. Thus the probability is at most

q2eqf
N2 in total;
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– Case 2: k6⊕S ∈ DomF6. Then we have α2(k) choices for (LRX,AST ). Similarly to Case 1, Pr[L⊕F1(k1⊕R)⊕k2 ∈
F2] ≤ qf

N
. Thus the probability that there exists at least one such tuple (LRX,AST ) is at most

qfα2(k)

N
.

Summing over the two cases results in
q2eqf
N2 +

qfα2(k)

N
. The analysis for the second half is similar by symmetry, giving

q2eqf
N2 +

qfα1(k)

N
. Thus Pr[(C-5)] ≤ 2q2eqf

N2 +
qf (α1(k)+α2(k))

N
.

E Proof of Lemma 6

Lower Bounding the Probability Pr[EG1 | F ` QF ]. We write G1 = {(R1X1, A1S1), . . . , (R|G1|X|G1|, A|G1|S|G1|)} us-

ing some arbitrary order. Let E` be the event that KAFF
k extends the `-th tuple (R`X`, A`S`). Then EG1 = E|G1|∧ . . .∧E1.

We next focus on lower bounding Pr[E`+1 | E` ∧ . . .∧E1 ∧F ` QF ] for the (`+ 1)th tuple (R`+1X`+1, A`+1S`+1). The
approach is to lower bound the probability that E`+1 is equivalent to 2 new and distinct equations on F2, F3, F4, and
F5. For this, we define four sets for positions “occupied by previous tuples”:

ExtF (`)
3

def
==={x3 : ∃(RiXi, AiSi) ∈ G1, i ≤ ` s.t. x3 = k3 ⊕Ri ⊕ F2(k2 ⊕Xi)},

G2F3
def

==={x3 : ∃(RX,AS) ∈ G2 s.t. x3 = k3 ⊕R⊕ ImgF2(k2 ⊕X)},

ExtF (`)
4

def
==={x4 : ∃(RiXi, AiSi) ∈ G1, i ≤ ` s.t. x4 = k4 ⊕ Si ⊕ F5(k5 ⊕Ai)},

G3F4
def

==={x4 : ∃(RX,AS) ∈ G3 s.t. x4 = k4 ⊕ S ⊕ ImgF5(k5 ⊕A)}.

We note that for any x3 ∈ ExtF (`)
3 , conditioned on E` ∧ . . . ∧ E1, the value F3(x3) has been “fixed” according to a

corresponding tuple, and cannot be deemed random. Similarly for F4(x4) with x4 ∈ ExtF (`)
4 .

Let x
(`+1)
2 = k2 ⊕ X`+1 and x

(`+1)
5 = k5 ⊕ A`+1. Then, given the round functions F2,F3,F4,F5, two intermediate

values Y`+1 and Z`+1 would be determined. Depending on their state, the event E`+1 consists of at least three cases:

– Case 1, “no collision”: The two induced values Y`+1 = R`+1 ⊕ F2(x
(`+1)
2 ) and Z`+1 = S`+1 ⊕ F5(x

(`+1)
5 ) satisfy

k3 ⊕ Y`+1 /∈ DomF3 ∪ ExtF (`)
3 ∪ G2F3, and k4 ⊕ Z`+1 /∈ DomF4 ∪ ExtF (`)

4 ∪ G3F4.

And then it holds F3(k3 ⊕ Y`+1) = X`+1 ⊕ Z`+1 and F4(k4 ⊕ Z`+1) = Y`+1 ⊕A`+1;

– Case 2, “left collision”: The induced value Y`+1 = R`+1 ⊕ F2(x
(`+1)
2 ) satisfies

k3 ⊕ Y`+1 ∈ DomF3 ∪ ExtF (`)
3 ,

but the further induced Z`+1 = X`+1 ⊕ F3(k3 ⊕ Y`+1) satisfies

k4 ⊕ Z`+1 /∈ DomF4 ∪ ExtF (`)
4 ∪ G3F4.

And then it holds F4(k4 ⊕ Z`+1) = Y`+1 ⊕A`+1 and F5(x
(`+1)
5 ) = Z`+1 ⊕ S`+1;

– Case 3, “right collision”: Similarly to Case 2 by symmetry, the induced value Z`+1 = S`+1 ⊕ F5(x
(`+1)
5 ) satisfies

k4 ⊕ Z`+1 ∈ DomF4 ∪ ExtF (`)
4 , but the further induced Y`+1 = A`+1 ⊕ F4(k4 ⊕ Z`+1) satisfies k3 ⊕ Y`+1 /∈

DomF3 ∪ ExtF (`)
3 ∪ G2F3. And then it holds F2(x

(`+1)
2 ) = R`+1 ⊕ Y`+1 and F3(k3 ⊕ Y`+1) = X`+1 ⊕ Z`+1.

By these, we have

Pr[E`+1 | E` ∧ . . . ∧ E1 ∧ F ` QF ]

=
∑

i=1,2,3

Pr[E`+1 ∧Case i | E` ∧ . . . ∧ E1 ∧ F ` QF ].

Let e
(`)
3 = |ExtF (`)

3 \DomF3| and e
(`)
4 = |ExtF (`)

4 \DomF4|. We use three subsections to bound each probability in turn.

E.1 Case 1

As (R`+1X`+1, A`+1S`+1) is in G1, we have x
(`+1)
2 = k2 ⊕ X`+1 /∈ DomF2. Furthermore, X`+1 does not collide with

any other tuples in Q∗E(F1,F6) since |EQ(X`+1)| = 1. Thus conditioned on E` ∧ . . . ∧ E1 ∧ F ` QF , F2(x
(`+1)
2 ) remains

random, and

Pr[k3 ⊕ Y`+1 ∈ DomF3 ∪ ExtF (`)
3 ∪ G2F3] ≤ (qf+e

(`)
3 +|G2F3|)
N

.

Similarly by symmetry,
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Pr[k4 ⊕ Z`+1 ∈ DomF4 ∪ ExtF (`)
4 ∪ G3F4] ≤ (qf+e

(`)
4 +|G3F4|)
N

.

Then, it can be seen the two equations F3(k3⊕Y`+1) = X`+1⊕Z`+1 and F4(k4⊕Z`+1) = Y`+1⊕A`+1 are fulfilled with
probability 1

N2 , and thus

Pr[E`+1 ∧Case 1 | E` ∧ . . . ∧ E1 ∧ F ` QF ]

≥

(
1− qf + e

(`)
3 + |G2F3|
N

)(
1− qf + e

(`)
4 + |G3F4|
N

)
1

N2
.

One may notice that if we only consider this Case 1, then we would end up with an undesired birthday-type bound
since |G4| = O(qe). However, this gap is filled in by the other two cases analyzed below.

E.2 Case 2

Recall that in this case,

k3 ⊕ Y`+1 = x3 ∈ DomF3 ∪ ExtF (`)
3 , while k4 ⊕ Z`+1 = x4 /∈ DomF4 ∪ ExtF (`)

4 ∪ G3F4.

Instead of lower bounding Pr[E`+1 ∧ Case 2 | E` ∧ . . . ∧ E1 ∧ F ` QF ], we upper bound the probability of the opposite
case. It can be seen that Y`+1 colliding with the involved (x3, x4) implies X`+1 ⊕ y3 = (k4 ⊕ x4), where y3 = F3(x3).
Therefore, we proceed to upper bound

pcoll = Pr[∃x3 ∈ DomF3 ∪ ExtF (`)
3 ,∃x4 ∈ DomF4 ∪ ExtF (`)

4 ∪ G3F4 :

Coll(x3, x4) | E` ∧ . . . ∧ E1 ∧ F ` QF ],

where Coll(x3, x4) stands for the event

X`+1 ⊕ y3 = (k4 ⊕ x4) ∧R`+1 ⊕ F2(x
(`+1)
2 ) = (k3 ⊕ x3) (14)

(where x
(`+1)
2 = k2 ⊕X`+1).

More detailedly, the to-be-bounded probability could be written as

pcoll =
∑

x3 ∈ DomF3 ∪ ExtF (`)
3 ,

x4 ∈ DomF4 ∪ ExtF (`)
4 ∪ G3F4

Pr[Coll(x3, x4) | E` ∧ . . . ∧ E1 ∧ F ` QF ].

Let x
(`+1)
2 = k2 ⊕X`+1. In the following, we distinguish five subcases, and derive bound for each in turn.

Subcase 2.1: x3 ∈ DomF3 ∪ ExtF(`)
3 , and x4 ∈ G3F4. Define Num

(`)
3 (y3) as the number of pre-images of y3

under the map defined by DomF3 ∪ ExtF (`)
3 , i.e.

Num
(`)
3 (y3) = |{x3 ∈ DomF3 ∪ ExtF (`)

3 : F3(x3) = y3}|. (15)

By this, and by the constraint that X`+1⊕ y3 = k4⊕x4, for each x4 ∈ G3F4, the number of x3 ∈ DomF3 ∪ExtF (`)
3 such

that X`+1⊕y3 = k4⊕x4 is Num
(`)
3 (X`+1⊕k4⊕x4). Therefore, the number of such “bad” pairs is

∑
x4∈G3F4

Num
(`)
3 (X`+1⊕

k4 ⊕ x4) in total. On the other hand, similarly to Case 1, F2(x
(`+1)
2 ) can still be deemed random, thus Pr[F2(x

(`+1)
2 ) =

R`+1 ⊕ k3 ⊕ x3] ≤ 1
N

, and thus ∑
x3∈DomF3∪ExtF

(`)
3 ,x4∈G3F4

Pr[Coll(x3, x4) | E` ∧ . . . ∧ E1 ∧ F ` QF ]

≤
∑
x4∈G3F4

Num
(`)
3 (X`+1 ⊕ k4 ⊕ x4)

N
.

Subcase 2.2: x3 ∈ DomF3, and x4 ∈ DomF4. For this, we introduce a new k-dependent quantity:

α+
3,4(k,X)

def
===

∣∣∣∣{((x3, y3), (x4, y4)) ∈ QF3 ×QF4 : k4 = X ⊕ y3 ⊕ x4}
∣∣∣∣.

Thus the number of such pairs (x3, x4) with X`+1 ⊕ y3 = k4 ⊕ x4 is α+
3,4(k,X`+1). We also have Pr[F2(x

(`+1)
2 ) =

R`+1 ⊕ k3 ⊕ x3] ≤ 1
N

. Therefore,∑
x3∈DomF3,x4∈DomF4

Pr[Coll(x3, x4) | E` ∧ . . . ∧ E1 ∧ F ` QF ] ≤
α+
3,4(k,X`+1)

N
.

Since k4 is uniform in 2n−r values, it can be seen Ek[α+
3,4(k,X`+1)] ≤ 2r·q2f

N
. Therefore, the expectation of the probability

is at most
2r·q2f
N2 .
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Subcase 2.3: x3 ∈ DomF3, and x4 ∈ ExtF(`)
4 \DomF4. By definition, we have∑

x3∈DomF3,x4∈ExtF
(`)
4 \DomF4

Pr[Coll(x3, x4) | E` ∧ . . . ∧ E1 ∧ F ` QF ]

=
∑

x3∈DomF3,i=1,...,`

sgn(i) · Pr[Coll(x3, x
(i)
4 ) | E` ∧ . . . ∧ E1 ∧ F ` QF ],

where x
(i)
4 = k4 ⊕Zi and Zi = Si ⊕F5(k5 ⊕Ai) are derived from the i-th tuple (RiXi, AiSi) ∈ G4, and sgn(i) = 1 if and

only if i is the smallest index satisfying these conditions (i.e. x
(i)
4 ∈ ExtF

(i)
4 , while x

(i)
4 /∈ ExtF (i−1)

4 ) and x
(i)
4 /∈ DomF4.9

We focus on Pr[Coll(x3, x
(i)
4 ) | E` ∧ . . . ∧ E1 ∧ F ` QF ]. For convenience, we let y3 = ImgF3(x3), and write Yi =

Ri⊕F2(k2⊕Xi). We consider the conditional probabilities Pr[Coll(x3, x
(i)
4 ) | Ei fits into Case j∧E`∧ . . .∧E1∧F ` QF ]

for j = 1, 2, 3. It can be seen if Ei fits into Case 3 then x
(i)
4 ∈ DomF4, and this x

(i)
4 is out of the discussion of subcase

2.3. So we consider j = 1 or 2:

(i) When Ei fits into Case 1, according to the corresponding analysis, Zi was derived via Zi = Si ⊕ F5(k5 ⊕ Ai), and
F5(k5 ⊕Ai) was uniform. Thus (see (14))

Pr[X`+1 ⊕ y3 = (k4 ⊕ x(i)4 )] = Pr[X`+1 ⊕ y3 = Zi]

= Pr[F5(k5 ⊕Ai) = X`+1 ⊕ y3 ⊕ Si] ≤
1

N
.

Since we further have Pr[F2(k2 ⊕X`+1) = R`+1 ⊕ k3 ⊕ x3] ≤ 1
N

, it holds

Pr[Coll(x3, x
(i)
4 ) | Ei fits into Case 1 ∧ E` ∧ . . . ∧ E1 ∧ F ` QF ] ≤ 1

N2 .

(ii) When Ei fits into Case 2, let x
(i)
3 = k3 ⊕ Yi and y

(i)
3 = F3(x

(i)
3 ). Then X`+1 ⊕ y3 = Zi implies

X`+1 ⊕ y3 = Xi ⊕ y(i)3 ,

meaning that for each triple (X`+1, Xi, y3), the number of choices for such y
(i)
3 is Num

(`)
3 (X`+1 ⊕ y3 ⊕Xi). For each

such y
(i)
3 , the event Coll(x3, x

(i)
4 ) essentially implies two collisions, i.e.

Ri ⊕ F2(k2 ⊕Xi) = k3 ⊕ x(i)3 , and R`+1 ⊕ F2(k2 ⊕X`+1) = k3 ⊕ x3.

Therefore,

Pr[Coll(x3, x
(i)
4 ) | Ei fits into Case 2 ∧ E` ∧ . . . ∧ E1 ∧ F ` QF ] ≤ Num

(`)
3 (X`+1⊕y3⊕Xi)

N2 .

By the above, for any j we have

Pr[Coll(x3, x
(i)
4 ) | Ei fits into Case j ∧ E` ∧ . . . ∧ E1 ∧ F ` QF ] ≤ Num(X`+1 ⊕ y3 ⊕Xi)

N2︸ ︷︷ ︸
B

,

thus

Pr[Coll(x3, x
(i)
4 ) | E` ∧ . . . ∧ E1 ∧ F ` QF ]

=

∑3
j=1 Pr[Coll(x3, x

(i)
4 ) ∧ Ei ∧ Ei fits into Case j | E` ∧ . . . ∧ Ei−1 ∧ Ei+1 ∧ . . . ∧ E1 ∧ F ` QF ]

Pr[Ei]

≤
3∑
j=1

B · Pr[Ei ∧ Ei fits into Case j | E` ∧ . . . ∧ Ei−1 ∧ Ei+1 ∧ . . . ∧ E1 ∧ F ` QF ]

Pr[Ei]
= B.

This means ∑
x3∈DomF3,x4∈ExtF

(`)
4 \DomF4

Pr[Coll(x3, x4) | E` ∧ . . . ∧ E1 ∧ F ` QF ]

≤
∑

x3∈DomF3

∑
i=1,...,`

sgn(i) · Num
(`)
3 (X`+1 ⊕ y3 ⊕Xi)

N2

≤
∑

x3∈DomF3

qf + e
(`)
3

N2
≤ qf (qf + qe)

N2
.

9 From this sentence, it seems that x
(i)
4 ∈ ExtF (i−1)

4 is possible in some cases (which are intended to be excluded in

our analysis). Why? Because although x
(i)
4 has a superscript of i and is indeed an intermediate value of (RiXi, AiSi),

it may at the same time be the intermediate value of some “earlier” query (Ri−jXi−j , Ai−jSi−j), in which case x
(i)
4

would be in ExtF (i−j)
4 .
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Subcase 2.4: x3 ∈ ExtF(`)
3 \DomF3, and x4 ∈ DomF4. By definition, we have∑

x3∈ExtF
(`)
3 \DomF3,x4∈DomF4

Pr[Coll(x3, x4) | E` ∧ . . . ∧ E1 ∧ F ` QF ]

=
∑

i=1,...,`,x4∈DomF4

sgn′(i) · Pr[Coll(x
(i)
3 , x4) | E` ∧ . . . ∧ E1 ∧ F ` QF ],

where x
(i)
3 = k3 ⊕ Yi and Yi = Ri ⊕ F2(k2 ⊕ Xi) are derived from the i-th tuple (RiXi, AiSi) ∈ G4, and sgn′(i) = 1

if and only if i is the smallest index satisfying these conditions and x
(i)
3 /∈ DomF3. We let y4 = ImgF4(x4) and write

Zi = Si ⊕ F5(k5 ⊕ Ai). Now it holds y
(i)
3 = Xi ⊕ Zi, thus the collision relation X`+1 ⊕ y(i)3 = (k4 ⊕ x4) translates into

X`+1 ⊕Xi = Zi ⊕ (k4 ⊕ x4). Similarly to subcase 2.3, we distinguish two case:

(i) When Ei fits into Case 1, we have Zi = Si ⊕ F5(k5 ⊕Ai) and F5(k5 ⊕Ai) was uniform. Thus

Pr[X`+1 ⊕Xi = Zi ⊕ k4 ⊕ x4]

= Pr[F5(k5 ⊕Ai) = Si ⊕X`+1 ⊕Xi ⊕ k4 ⊕ x4] ≤ 1

N
.

This along with Pr[F2(k2 ⊕X`+1) = R`+1 ⊕ k3 ⊕ x(i)3 ] ≤ 1
N

yields

Pr[Coll(x
(i)
3 , x4) | Ei fits into Case 1 ∧ E` ∧ . . . ∧ E1 ∧ F ` QF ] ≤ 1

N2 .

(ii) When Ei fits into Case 3, let x
(i)
4 = k4 ⊕ Zi. Then X`+1 ⊕ Xi = Zi ⊕ k4 ⊕ x4 implies X`+1 ⊕ Xi = x

(i)
4 ⊕ x4.

Note that for the fixed X`+1, Xi, and x4, the number of choice for x
(i)
4 is at most 1. And for Y`+1 to collide with

x
(i)
3 , two collisions Si ⊕ F5(k5 ⊕ Ai) = k4 ⊕ x(i)4 and R`+1 ⊕ F2(k2 ⊕ X`+1) = k3 ⊕ x(i)3 are required to happen.

Pr[Coll(x
(i)
3 , x4) | Ei fits into Case 3 ∧ E` ∧ . . . ∧ E1 ∧ F ` QF ] ≤ 1

N2 thus follows.

Using a counting similar to subcase 2.3, we obtain∑
x3∈ExtF

(`)
3 \DomF3,x4∈DomF4

Pr[Coll(x3, x4) | E` ∧ . . . ∧ E1 ∧ F ` QF ]

≤
∑

i=1,...,`;x4∈DomF4

sgn′(i) · 1

N2
≤ qfe

(`)
3

N2
≤ qfqe

N2
.

Subcase 2.5: x3 ∈ ExtF(`)
3 \DomF3, and x4 ∈ ExtF(`)

4 \DomF4. By definition, we have∑
x3∈ExtF

(`)
3 \DomF3,x4∈ExtF

(`)
4 \DomF4

Pr[Coll(x3, x4) | E` ∧ . . . ∧ E1 ∧ F ` QF ]

=
∑

i=1,...,`;j=1,...,`

sgn(i) · sgn′(j) · Pr[Coll(x
(i)
3 , x

(j)
4 ) | E` ∧ . . . ∧ E1 ∧ F ` QF ],

where:

– x
(i)
3 = k3 ⊕ Yi and Yi = Ri ⊕ F2(k2 ⊕Xi) are derived from the i-th tuple (RiXi, AiSi) ∈ G4, and sgn(i) = 1 if and

only if i is the smallest index satisfying these conditions and x
(i)
3 /∈ DomF3; and

– x
(j)
4 = k4⊕Zj and Zj = Sj ⊕F5(k5⊕Aj) are derived from the j-th tuple (RjXj , AjSj) ∈ G4, and sgn′(j) = 1 if and

only if j is the smallest index satisfying these conditions and x
(j)
4 /∈ DomF4.

Li Ri TiSiXi AiYi Zi

Lj Rj TjSjXj AjYj Zj

L`+1 R`+1 T`+1S`+1X`+1 A`+1

x
(i)
3

x
(j)
4

Fig. 5. The three chains of values involved in the analysis of subcase 2.5.

One could see Fig. 5 for an illustration. Now,
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(i) if j > i, then we utilize the constraint X`+1 ⊕ y(i)3 = Xj ⊕ y(j)3 , and follow the same line as the analysis of subcase

2.3. This shows the number of choices for y
(j)
3 is Num

(`)
3 (X`+1 ⊕ y(i)3 ⊕Xj) for each triple (X`+1, y

(i)
3 , Xj), thus the

upper bound
Num

(`)
3 (X`+1⊕y

(i)
3 ⊕Xj)

N2 for each (x
(i)
3 , x

(j)
4 );

(ii) if i > j, then we utilize the constraint X`+1 ⊕Xi = x
(i)
4 ⊕ x

(j)
4 , and follow the same line as the analysis of subcase

2.4. This establishes the bound 1
N2 for each (x

(i)
3 , x

(j)
4 ).

In all, ∑
x3∈ExtF

(`)
3 \DomF3,x4∈ExtF

(`)
4 \DomF4

Pr[Coll(x3, x4) | E` ∧ . . . ∧ E1 ∧ F ` QF ]

≤
∑

j=1,...,`

∑
i=1,...,`

Num
(`)
3 (X`+1 ⊕ y(i)3 ⊕Xj)

N2
≤

∑
j=1,...,`

qf + e
(`)
3

N2
≤ qe(qf + qe)

N2
.

Summing over the five subcases yields

Ek[pcoll]

≤
∑
x4∈G3F4

Num
(`)
3 (X`+1 ⊕ k4 ⊕ x4)

N
+

2r · q2f
N2

+
qf (qf + qe)

N2
+
qfqe
N2

+
qe(qf + qe)

N2

≤
∑
x4∈G3F4

Num
(`)
3 (X`+1 ⊕ k4 ⊕ x4)

N
+

2r · q2f
N2

+
(2qf + qe)(qf + qe)

N2
.

The definition of Num
(`)
3 (y3) is recalled from (15).

Clearly, once such collisions do not happen, the mentioned requirements are met, and we have x4 /∈ DomF4 ∪
ExtF (`)

4 ∪ G3F4. Moreover, as (R`+1X`+1, A`+1S`+1) ∈ G1, we have: (a) x
(`+1)
5 /∈ DomF5, and (b) |EQ(A`+1)| = 1, i.e.

the position of x
(`+1)
5 cannot be “taken” by previous tuples. By these,

Ek[Pr[E`+1 ∧Case 2 | E` ∧ . . . ∧ E1 ∧ F ` QF ]]

≥

(
qf + e

(`)
3

N
−
∑
x4∈G3F4

Num
(`)
3 (X`+1 ⊕ k4 ⊕ x4)

N
−

2r · q2f
N2

− (2qf + qe)(qf + qe)

N2

)
1

N2
.

E.3 Case 3

In this case, since x
(`+1)
2 /∈ DomF2 and |EQ(X`+1)| = 1 and

x3 = k3 ⊕ Y`+1 /∈ DomF3 ∪ ExtF (`)
3 ∪ G2F3,

we have

Pr[KAF extends (R`+1X`+1, A`+1S`+1)]

= Pr[F2(x
(`+1)
2 ) = R`+1 ⊕ Y`+1 ∧ F3(x3) = X`+1 ⊕ Z`+1] =

1

N2
.

Thus by lowering bounding the probability of colliding with such “bad” (x3, x4) we would derive the result for this case.
Similarly to Case 2 by symmetry, we write

pcoll =
∑

x3 ∈ DomF3 ∪ ExtF (`)
3 ∪ G2F3,

x4 ∈ DomF4 ∪ ExtF (`)
4

Pr[Coll(x3, x4) | E` ∧ . . . ∧ E1 ∧ F ` QF ].

Let x
(`+1)
5 = k5 ⊕A`+1. Similarly to subsection E.2, we also distinguish five subcases, and the arguments are similar by

symmetry:

3.1: x3 ∈ G2F3, and x4 ∈ DomF4∪ExtF(`)
4 . In this case, utilizing the constraint A`+1⊕y4 = k3⊕x3, we have∑

x3∈G2F3,x4∈DomF4∪ExtF
(`)
4

Pr[Coll(x3, x4) | E` ∧ . . . ∧ E1 ∧ F ` QF ]

≤
∑
x3∈G2F3

Num
(`)
4 (A`+1 ⊕ k3 ⊕ x3)

N
,

where

Num
(`)
4 (y4) = |{x4 ∈ DomF4 ∪ ExtF (`)

4 : F4(x4) = y4}|. (16)
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3.2: x3 ∈ DomF3, and x4 ∈ DomF4. Define

α−3,4(k,A)
def

===|{((x3, y3), (x4, y4)) ∈ QF3 ×QF4 : k3 = x3 ⊕ y4 ⊕A}|.

Since k3 is uniform in 2n values, we have

Ek
[ ∑
x3∈DomF3,x4∈DomF4

Pr[Coll(x3, x4) | E` ∧ . . . ∧ E1 ∧ F ` QF ]

]

≤
Ek[α−3,4(k,A`+1)]

N
≤

q2f
N2

.

3.3: x3 ∈ ExtF(`)
3 \DomF3, and x4 ∈ DomF4. By definition, we have∑

x3∈ExtF
(`)
3 \DomF3,x4∈DomF4

Pr[Coll(x3, x4) | E` ∧ . . . ∧ E1 ∧ F ` QF ]

=
∑

i=1,...,`;x4∈DomF4

sgn′(i) · Pr[Coll(x
(i)
3 , x4) | E` ∧ . . . ∧ E1 ∧ F ` QF ],

where x
(i)
3 = k3 ⊕ Yi and Yi = Ri ⊕ F2(k2 ⊕ Xi) are derived from the i-th tuple (RiXi, AiSi) ∈ G4, and sgn′(i) = 1 if

and only if i is the smallest index satisfying these conditions and x
(i)
3 /∈ DomF3.

Then, similarly to the analysis for the subcase 2.3 in subsection E.2,

– when Ei fits into Case 1, it can be shown
Pr[Coll(x

(i)
3 , x4) | Ei fits into Case 1 ∧ E` ∧ . . . ∧ E1 ∧ F ` QF ] ≤ 1

N2 ;

– when Ei fits into Case 3, it can be shown A`+1 ⊕ y4 = Ai ⊕ y(i)4 . By this,

Pr[Coll(x
(i)
3 , x4) | Ei fits into Case 2 ∧ E` ∧ . . . ∧ E1 ∧ F ` QF ]

=
Num

(`)
4 (A`+1 ⊕ y4 ⊕Ai)

N2
.

By the above and a similar calculation, we have∑
x3∈ExtF

(`)
3 \DomF3,x4∈DomF4

Pr[Coll(x3, x4) | E` ∧ . . . ∧ E1 ∧ F ` QF ]

≤
∑

x4∈DomF4

∑
i=1,...,`

sgn′(i) · Num
(`)
4 (A`+1 ⊕ y4 ⊕Ai)

N2
≤ qf (qf + qe)

N2
.

3.4: x3 ∈ DomF3, and x4 ∈ ExtF(`)
4 \DomF4. By definition, we have∑

x3∈DomF3,x4∈ExtF
(`)
4 \DomF4

Pr[Coll(x3, x4) | E` ∧ . . . ∧ E1 ∧ F ` QF ]

=
∑

x3∈DomF3,i=1,...,`

sgn(i) · Pr[Coll(x3, x
(i)
4 ) | E` ∧ . . . ∧ E1 ∧ F ` QF ].

It also holds Pr[Coll(x3, x
(i)
4 ) | Ei fits into Case 1 ∧ E` ∧ . . . ∧ E1 ∧ F ` QF ] ≤ 1

N2 . On the other hand, when Ei fits into

Case 2, it can be shown A`+1⊕Ai = x
(i)
3 ⊕x3, which helps cinch Pr[Coll(x3, x

(i)
4 ) | Ei fits into Case 2∧E`∧ . . .∧E1∧F `

QF ] = 1
N2 . Therefore,

∑
x3 ∈ DomF3,

x4 ∈ ExtF (`)
4 \DomF4

Pr[Coll(x3, x4) | E` ∧ . . . ∧ E1 ∧ F ` QF ] ≤ qfe
(`)
4

N2
≤ qfqe

N2
.

3.5: x3 ∈ ExtF(`)
3 \DomF3, and x4 ∈ ExtF(`)

4 \DomF4. Similarly to the last subcase in subsection E.2, it
can be shown ∑

x3∈ExtF
(`)
3 \DomF3,x4∈ExtF

(`)
4 \DomF4

Pr[Coll(x3, x4) | E` ∧ . . . ∧ E1 ∧ F ` QF ]

≤
∑

j=1,...,`

∑
i=1,...,`

Num
(`)
4 (A`+1 ⊕ y4 ⊕Ai)

N2
≤

∑
j=1,...,`

qf + e
(`)
4

N2
≤ qe(qf + qe)

N2
.
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The above give rise to the following bound

Ek[Pr[E`+1 ∧Case 3 | E` ∧ . . . ∧ E1 ∧ F ` QF ]]

≥

(
qf + e

(`)
4

N
−
∑
x3∈G2F3

Num
(`)
4 (A`+1 ⊕ k3 ⊕ x3)

N
− (2qf + qe)(qf + qe)

N2

)
1

N2
,

where Num
(`)
4 (y4) is in (16).

E.4 Summary for EG1

Summing over the three cases results in

Ek
[

Pr[E`+1 | E` ∧ . . . ∧ E1 ∧ F ` QF ]

]
≥

((
1− qf + e

(`)
3 + |G2F3|
N

)(
1− qf + e

(`)
4 + |G3F4|
N

)

+
2qf + e

(`)
3 + e

(`)
4

N
−

2r · q2f
N2

− 2(2qf + qe)(qf + qe)

N2

−
∑
x4∈G3F4

Num
(`)
3 (X`+1 ⊕ k4 ⊕ x4) +

∑
x3∈G2F3

Num
(`)
4 (A`+1 ⊕ k3 ⊕ x4)

N︸ ︷︷ ︸
B`

)
1

N2

≥

(
1−

2r · q2f
N2

− 2(2qf + qe)(qf + qe)

N2
− |G2F3|+ |G3F4|

N
−B`

)
1

N2
.

Note that: (a) |G2F3| ≤ |G2| = β1, |G3F4| ≤ |G3| = β2, and (b) |G1| ≤ qe. Therefore,

Ek
[

Pr[EG1 | F ` QF ]

]

≥
|G1|−1∏
`=0

(
1−

2r · q2f
N2

− 2(2qf + qe)(qf + qe)

N2
− |G2F3|+ |G3F4|

N
−B`

)
· 1

N2|G1|

≥

(
1−

2r · qeq2f
N2

− 2qe(2qf + qe)(qf + qe)

N2
− qe(β1 + β2)

N
−
qe−1∑
`=0

B`

)
· 1

N2|G1|
.

We finally consider
∑qe−1
`=0 B`. To this end, we note that by definition, we have

–
∑
y3∈{0,1}n Num

(`)
3 (y3) = qf + e

(`)
3 ≤ qf + qe, and

–
∑
y4∈{0,1}n Num

(`)
4 (y4) = qf + e

(`)
4 ≤ qf + qe.

Therefore,

qe−1∑
`=0

∑
x4∈G3F4

Num
(`)
3 (X`+1 ⊕ k4 ⊕ x4) ≤

∑
x4∈G3F4

(qf + qe) ≤ (qf + qe)β2,

and similarly,

qe−1∑
`=0

∑
x3∈G2F3

Num
(`)
4 (A`+1 ⊕ k3 ⊕ x4) ≤ (qf + qe)|G2F3| ≤ (qf + qe)β1.

So we eventually obtain (9).

E.5 Analyzes for G2, G3, and G4

Lower Bounding Pr[EG2 ∧ EG3 | EG1 ∧ F ` QF ]. Consider EG2 first: we lower bound the probability that it is equivalent
to F4 and F5 satisfying 2|G2| new and distinct equations. To this end, again we define a predicate Bad1(F3), which holds
if there exists (RX,AS) ∈ G2 that fulfills one of the following conditions:

(i) The x4 value derived using F3 is in DomF4, i.e. k4 ⊕X ⊕F3(x3) ∈ DomF4, where x3 = k3 ⊕R⊕ ImgF2(k2 ⊕X);
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(ii) The Z value derived using F3 collides with the Z′ value of another tuple in G2, i.e. there exists (R′X ′, A′S′) ∈ G2
such that X ⊕ F3(x3) = X ′ ⊕ F3(x′3), where x′3 = k3 ⊕R′ ⊕ ImgF2(k2 ⊕X ′);

(iii) The Z value derived using F3 collides with the Z∗ value of a tuple in G1 or G3, i.e. there exists (R∗X∗, A∗S∗) ∈ G1∪G3
such that X ⊕ F3(x3) = S∗ ⊕ F5(k5 ⊕A∗).

We note that for each (RX,AS) ∈ G2, let x3 = k3 ⊕R⊕ ImgF2(k2 ⊕X), then it holds x3 /∈ DomF3 (otherwise fulfilling

(C-2)) and x3 /∈ ExtF (|G1|)
3 (according to the analysis of EG1). Thus conditioned on EG1 ∧ F3 ` QF3 , the value F3(x3)

remains uniform. Therefore, for this (RX,AS):

(i) the probability that Condition (i) is fulfilled is at most
qf
N

;
(ii) for each (R′X ′, A′S′) ∈ G2, if the corresponding x′3 does not equal x3 then the probability of X⊕F3(x3) = X ′⊕F3(x′3)

is at most 1
N

; otherwise, since the two tuples are distinct, it has to be X 6= X ′ and thus X ⊕F3(x3) 6= X ′ ⊕F3(x′3);
(iii) for each (R∗X∗, A∗S∗) ∈ G1 ∪ G3, the probability of X ⊕ F3(x3) = S∗ ⊕ F5(k5 ⊕A∗) is at most 1

N
.

Summing over the above yields

Pr[Bad1(F3) | EG1 ∧ F ` QF ] ≤ |G2| · (qf + |G1|+ |G2|+ |G3|)
N

≤ β1(qf + qe)

N
.

It’s not hard to see that conditioned on ¬Bad1(F3), the |G2| tuples in G2 indeed give rise to |G2| distinct values Z1, . . . , Z|G2|
(otherwise Condition (ii) is fulfilled), for which F4(k4 ⊕ Z1), . . . ,F4(k4 ⊕ Z|G2|) all remain undetermined (otherwise
Condition (i) or (iii) fulfilled). Furthermore, at the “right side”, they also give rise to |G2| distinct values A1, . . . , A|G2|
with F5(k5 ⊕A1), . . . ,F5(k5 ⊕A|G2|) all undetermined:

(i) A1, . . . , A|G2| are also distinct, otherwise fulfilling (C-5);
(ii) none of k5 ⊕A1, . . . , k5 ⊕A|G2| is in DomF5, otherwise fulfilling (C-1);

(iii) conditioned on EG1 , F5(k5 ⊕ A1), . . . ,F5(k5 ⊕ A|G2|) remain undetermined, otherwise some Ai is shared between
tuples in G1 and G2 and (C-5) is fulfilled.

Thus in this case, the event EG2 is equivalent to F4 and F5 satisfying 2|G2| new equations, the probability of which does
not exceed 1

N2|G2|
.

We then consider EG3 . The analysis is similar to EG2 by symmetry: we define a predicate Bad1(F4) on F4, which
holds if there exists (RX,AS) ∈ G3 such that one of the following conditions is fulfilled:

(i) The induced value x3 is in DomF3, i.e. k3 ⊕ A ⊕ F4(x4) ∈ DomF3, where x4 = k4 ⊕ S ⊕ ImgF5(k5 ⊕ A). The
probability is at most

qf
N

in total;
(ii) The induced Y collides with the Y ′ value of another tuple in G3, i.e. there exists a tuple (R′X ′, A′S′) ∈ G3 such that

A⊕ F4(x4) = A′ ⊕ F4(x′4), where x′4 = k4 ⊕ S′ ⊕ ImgF5(k5 ⊕A′). The probability is at most |G3|
N

in total;
(iii) The induced Y collides with the Y ∗ value of a tuple in G1 or G2, i.e. there exists (R∗X∗, A∗S∗) ∈ G1 ∪ G2 such that

A⊕ F4(x4) = R∗ ⊕ F2(k2 ⊕X∗). The probability is at most |G1|+|G2|
N

in total.

Similarly to Bad1(F3),

Pr[Bad2(F4) | EG1 ∧ F ` QF ] ≤ |G3| · (qf + |G1|+ |G2|+ |G3|)
N

≤ β2(qf + qe)

N
;

and conditioned on ¬Bad1(F4), tuples in G3 give rise to |G3| distinct values Y1, . . . , Y|G3|, while the assumption ¬Bad(F1,F6)
ensures that they give rise to |G3| distinct values X1, . . . , X|G3|. Thus the event EG3 is equivalent to F2 and F3 satisfying
2|G3| new equations. Therefore, conditioned on EG1 ∧ F ` QF , we have

Pr[EG2 ∧ EG3 | EG1 ∧ F ` QF ]

≥(1− Pr[Bad1(F2)]− Pr[Bad1(F3)]) · Pr[EG2 ∧ EG3 | ¬Bad1(F2) ∧ ¬Bad1(F3)]

≥
(

1− (β1 + β2)(qf + qe)

N

)
1

N2(|G2|+|G3|)
.

Lower Bounding Pr[EG4 | EG1 ∧ EG2 ∧ EG3 ∧ F ` QF ]. By definition, for any tuple (RX,AS) ∈ G4, let x2 = k2 ⊕ X
and x5 = k5 ⊕ A, then we have both x2 /∈ DomF2 and x5 /∈ DomF5. Moreover, conditioned on EG1 ∧ EG2 ∧ EG3 , the
two values F2(x2) and F5(x5) remain “undetermined” and uniform (otherwise, if EG1 , EG2 , or EG3 implies F2(x2) being
fixed, then a tuple in G1, G2, or G3 would share the same X value with a tuple in G4, contradicting the definition of G1,
or fulfilling (C-4) or (C-5) respectively).

For these tuples, we would lower bound the probability that they induce 2|G4| new and distinct equations on F3 and
F4. To this end, we define a predicate Bad3(F2,F5) on F2 and F5, which holds if there exists a tuple (RX,AS) ∈ G4
such that if we let x2 = k2 ⊕X and x5 = k5 ⊕A, then one of the following conditions is fulfilled:

– At the “left side”, concerning F2(x2):
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(i) The induced x3 value falls in DomF3, i.e. k3 ⊕ R ⊕ F2(x2) ∈ DomF3. As discussed, F2(x2) remains random,
thus the probability is clearly at most

qf
N

for each (RX,AS) ∈ G4;
(ii) The induced Y value collides with some “previously-determined” Y ′, i.e. there exists another tuple (R′X ′, A′S′) ∈
G1 ∪ G2 ∪ G3 such that R ⊕ F2(x2) = R′ ⊕ F2(k2 ⊕X ′). It necessarily be X 6= X ′; again using the randomness

of F2(x2) we obtain the upper bound |G1|+|G2|+|G3|
N

≤ qe
N

for each (RX,AS) ∈ G4;

– At the “right side”, concerning F5(x5), similar to the above by symmetry:

(i) k4 ⊕ S ⊕ F5(x5) ∈ DomF4. For each (RX,AS) ∈ G4 the probability is at most
qf
N

;
(ii) There exists another tuple (R′X ′, A′S′) ∈ G1 ∪ G2 ∪ G3 such that S ⊕ F5(x5) = S′ ⊕ F5(k5 ⊕ A′). The upper

bound is |G1|+|G2|+|G3|
N

≤ qe
N

for each (RX,AS) in G4.

Thus using |G4| = β3, we obtain

Pr[Bad3(F2,F5) | EG1 ∧ EG2 ∧ EG3 ∧ F ` QF ] ≤ 2

(
|G4| · (qf + qe)

N

)
≤ 2β3(qf + qe)

N
.

Similarly to the analysis for EG2 and EG3 , conditioned on ¬Bad3(F2,F5), the event EG4 is equivalent to F3 and F4

satisfying 2|G4| new and distinct equations. Therefore,

Pr[EG4 | EG1 ∧ EG2 ∧ EG3 ∧ F ` QF ]

≥
(

1− Pr[Bad1(F2,F5)]

)
· 1

N2|G4|
≥
(

1− 2β3(qf + qe)

N

)
· 1

N2|G4|
.

F More About Our Key-Schedule Proposal

Proof for PWI. We first show the proposal indeed produces PWI round-keys. Recall that the i-th round-key is defined
by

ki = ai ⊗K1 + ai+1 ⊗K2.

Following [36], consider any two round-keys ki and kj , and wlog assume j > i. We can write:(
ki
kj

)
=

(
ai ai+1

aj aj+1

)(
K1

K2

)
.

Clearly, (
ai ai+1

aj aj+1

)
⇒

(
aiaj+1 − ajai+1 0

ajai+1 ai+1aj+1

)
. (17)

Now assume that

aiaj+1 = ajai+1.

By our definition, ai+1 > ai, aj+1 > aj , and gcd(ai, aj) = 1. So there exists an integer d such that

ai+1 = dai, and aj+1 = daj .

Yet, ai+1 and aj+1 are primes, and aj > ai ≥ 1. So for aj+1 = daj it has to be d = 1. This implies aj+1 = aj , a
contradiction. By these, the matrix given in (17) is non-singular, which means ki‖kj is uniform in {0, 1}2n as long as K
is uniform in {0, 1}2n. The round-keys are thus pair-wise independent.

About Distinctness. We first remark that PWI round-keys could prevent the KAF cipher from collapsing to 1-round
IEM. For example, in the 6-round KAF, if k1 and k3 are independent, then they would not cancel.

Yet, a key-schedule that ensures uniformness and complete pair-wise independence may not be good enough. For
example, consider the following one:10

k1 =K1 +K2,

k2 =2⊗K1 +K2,

. . . ,

kt =t⊗K1 +K2.

10 In fact, this used to be our proposal in an earlier version. But we soon noticed the weakness discussed here, and
improved the proposal.
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While such round-keys appear good in theory, here comes a problem of weak keys: when K1 = 0, all the round-keys
are equal—and equal to K2. As mentioned in Preliminary, in this case KAF collapses to a 1-round IEM with an n-bit
main-key.

Such weak keys were ignored by the theory, since the probability of such weak keys is only 2−n. However, this cannot
be just ignored from the viewpoint of cryptanalysis—for example, when 2n = 128, this indicates a weak key set of size
264. These motivated the requirement of “distinctness”. And it can be seen that our proposal in Section 6 does not suffer
from such obvious weakness any more (on the other hand, there may be some other less obvious weakness, which should
be explored in future works).

These also clarify why the description of “distinctness” was quite informal: because it stems from cryptanalytic point
of view, rather than from formal arguments.

G Modes Involved in Section 7

G.1 Truncated CBC

The cipher block-chaining mode CBC calls a 2n-bit blockcipher Ek (with a secret key k) to generate a key-dependent
digest for a message M of arbitrary length. Its truncated variant only outputs d < 2n bits of the ciphertext of the last
blockcipher-call. The motivation for truncation is to exclude length extension attacks [23]. For clearness we eschew a
formal definition, and only provide Fig. 6 for illustration. For more details please see [23]. For the security, Ek only needs
to be a secure pseudorandom permutation. So any efficient pseudorandom permutation can be used here.

Ek0n

M [1] M [2]

Ek ...

M [`]

Ek
d

T

Fig. 6. Truncated CBC. Here M [1], . . . ,M [`] are n-bit blocks resulting from applying the associated padding scheme to
the input message M ∈ {0, 1}∗.

When d ≥ 7n/6 (as mentioned in Section 7), we have

22n−d · `2 ≤ 22n− 7n
6 · 2

n
2 = 22n− 2n

3 = 2
4n
3 ,

which means
(q`)3

22n
≤ (q`)2

24n/3
≤ q2

22n−d ,

i.e. the additional term due to the insecurity of 6-round KAF is not larger than the original terms (and thus no security
loss).

G.2 Inner- and Outer-Keyed Sponges

π

M [1] M [2]

...

M [`]

π π
r

c K

0
π π

trunc z

π

K[1]

...

K[w]

r

c 0 L π

M [1] M [2]

...

M [`]

π π π π

trunc z

0

Fig. 7. The inner-keyed (top) and outer-keyed sponge (bottom) constructions. The padding schemes on the message are
omitted. In both constructions, the output z is derived by concatenating a sufficient number of r bit blocks and then
truncating to the right size. For the outer keyed sponge the key K is assumed to contain w blocks of r bits.

For sponges, the size of the internal state is usually denoted by b; and a b-bit cryptographic permutation π used to
update the internal state. Since we are considering instantiating π with LR6, for us b = 2n.
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Sponges usually divide the (padded) message M into r-bit blocks M [1], . . . ,M [`], with r < b stands for a parameter
“rate”. Then, they “absorb” these blocks in turn (as in Fig. 7), in order to generate a internal state that depends on the
entire message. This parameter r has the “same” meaning as the parameter r appeared in the PKEM cipher (1), and
also as the parameter r appeared in Theorem 2.

So c = b−r bits of the internal state are not directly affected by the message blocks. This parameter is called capacity.
The security of sponges heavily rely on c: the larger c is, the higher the security. On the other hand, lightweight sponges
prefer keeping b small to reduce the implementation cost. So in lightweight sponges choosing r < b/4 = n/2 is something
inevitable.

The “inner-keyed” sponges can be seen as sponge variants using 0r‖K as the initial state, where K is the c-bit
key. Please see Fig. 7 (top) for illustration. The subsequent processing can be viewed as successive applications of the
PKEMπ

0r‖K cipher: consecutive calls to PKEMπ
0r‖K have their keys cancel out, leaving the “bare” permutations π in the

construction. This relation was not only used for modular security proof [1,23], but also utilized by Soni and Tessaro in
establishing the transition from public-seed PRP to UCE secure functions [52].

The “outer-keyed” sponges just take the key K as the first part of the sponge input. Essentially, they can be seen as
sponge variants taking a subkey L ∈ {0, 1}b (b = r + c) as the initial state, where L is derived from K using the sponge
function. Please see Fig. 7 (bottom) for illustration.

As mentioned in subsection 7.1, by our results, instantiating the permutation by the 6-round keyless Feistel LR6 built
upon 6 random functions retains security, and the security is beyond-birthday with respect to the size of the random
functions when r < n/2.

In fact, for inner-keyed sponge, the bounds of Andreeva et al. are of a more sophisticated form [1], and allow them
to utilize some more specific features (termed multiplicity) of the cascade of PKEMπ

0r‖K to derive bounds better than
ours (that given in subsection 7.1). Here we focus on giving a simpler discussion, and whether similar features could be
utilized for PKEMLR6

0r‖K-based sponges is left for future. On the other hand, for “outer-keyed” sponges, since the key L
for the PKEM is not uniformly picked but given by the key derivation function mentioned before, we could not directly
plug our bounds into Andreeva et al.’s result. This application thus eludes a concrete bound. Yet, it’s not hard to see
that the permutation π in the outer-keyed sponges can also be securely instantiated by LR6.

For more details about the constructions and Andreeva et al.’s results, please see [1].

G.3 Chaskey

See Fig. 8 for illustration. For more details please see [42].

πK

M [1] M [2]

...

M [`]

d
Tπ π

K1 K1

πK

M [1] M [2]

...

M [`]′

d
Tπ π

K2 K2

Fig. 8. The Chaskey mode when |M [`]| = n (top), and when 0 ≤ |M [`]| < n (bottom). In the latter case, M [`] is padded
to M [`]′ = M [`]‖10∗. Two different subkeys K1 and K2 are used to achieve a separation.
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