
Cube-Attack-Like Cryptanalysis of
Round-Reduced Keccak Using MILP

Ling Song1,2 and Jian Guo2

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences, China

2 Nanyang Technological University, Singapore

songling@ntu.edu.sg,guojian@ntu.edu.sg

Abstract. Cube-attack-like cryptanalysis on round-reduced Keccak was proposed
by Dinur et al. at EUROCRYPT 2015. It recovers the key through two phases: the
preprocessing phase for precomputing a look-up table and online phase for querying
the output and getting the cube sum with which the right key can be retrieved
by looking up the precomputed table. It was shown that such attacks are efficient
specifically for Keccak-based constructions with small nonce or message block size.
In this paper, we provide a mixed integer linear programming (MILP) model for cube-
attack-like cryptanalysis on keyed Keccak, which does not impose any unnecessary
constraint on cube variables and finds almost optimal cubes by balancing the two
phases of cube-attack-like cryptanalysis. Our model is applied to Ketje Jr, Ketje
Sr, a Xoodoo-based authenticated encryption and Keccak-MAC-512, all of which
have a relatively small nonce or message block size. As a result, time complexities
of 5-round attacks on Ketje Jr and 7-round attacks on Ketje Sr can be improved
significantly. Meanwhile, 6-round attacks, one more round than the previous best
attack, are possible if the key size of Ketje V1 (V2) is reduced to 72 (80) bits.
For Xoodoo-based AE in Ketje style, the attack reaches 6 rounds. Additionally,
a 7-round attack of Keccak-MAC-512 is achieved. To verify the correctness of
our attacks, a 5-round attack on Ketje V1 is implemented and tested practically.
It is noted that this work does not threaten the security of any Keccak-based
construction.
Keywords: Ketje, Xoodoo, Keccak-MAC, cube attack, auxiliary variable, MILP

1 Introduction
The Keccak hash function [BDPV11] was designed by Bertoni et al. and selected as the
Secure Hash Algorithm-3 (SHA-3) of the National Institute of Standards and Technology
of the U.S. (NIST) in 2012. The formal standardization was made public in 2015 [The15].
As a new standard, it has attracted intensive cryptanalysis from the community regard-
ing collision, preimage, and second-preimage resistance [NRM11, MS13, DDS12, DDS13,
GLS16, QSLG17, SLG17]. Up to date, practical collision (preimage) attacks on Keccak
reduced up to 6 (4) out of 24 rounds were achieved.

Apart from the keyless hash function, Keccak can be used under keyed modes, such
as message authentication codes (MAC), stream ciphers, etc. What’s more, the Keccak
permutation or its variant has been employed in other designs, such as authenticated en-
cryptions (AE) Keyak [BDP+16b], Ketje [BDP+16a] and the pseudorandom function
Kravatte [BDH+17b]. Recently, a new permutation Xoodoo similar to the Keccak
permutation has been proposed [DHAK18] and one of its purposes is to construct AE in

Licensed under Creative Commons License CC-BY 4.0.
IACR Transactions on Symmetric Cryptology Vol. 0, No.0, pp.1—32, DOI:XXXXXXXX

mailto:songling@ntu.edu.sg, guojian@ntu.edu.sg
http://creativecommons.org/licenses/by/4.0/
https://doi.org/XXXXXXXX

Ketje style. In the literature, there is a line of cryptanalysis focusing on keyed Keccak-
based constructions. In [DMP+15], Dinur et al. analyzed keyed Keccak with cube at-
tacks [DS09]. Specifically, key recovery attacks and forgery attacks were mounted against
Keyak and Keccak used as MAC and stream ciphers with reduced rounds. Particularly,
a type of cube attacks (cube-attack-like cryptanalysis) which proceeds in preprocessing
and online phases was proposed. In the cube-attack-like cryptanalysis, auxiliary variables
which are supposed to be equal to certain key bits are used to balance the two phases
such that the time complexity of the whole attack is reduced. Following [DMP+15], Dong
et al. provided cube-attack-like cryptanalysis on round-reduced Ketje in [DLWQ17],
where dynamic variables inspired by dynamic cube attacks [DS11] are used. Auxiliary
variables help reduce the diffusion of key bits, whereas dynamic variables, which depend
on some of the cube variables and some key bits, help reduce the diffusion of both key
bits and cube variables. In [HWX+17], Huang et al. proposed conditional cube attacks
for Keccak where the propagation of cube variables is controlled under conditions in
the first two rounds, resulting in improved attacks on round-reduced Keyak and Kec-
cak used as MAC. In [HWX+17], conditional cubes were obtained through a program
that has not been optimized, which allows further improvements via a mixed integer
linear programming (MILP) model [LBDW17]. MILP-based methods have become pop-
ular in the search for differential/linear characteristics since Mouha et al.’s pioneering
work [MWGP11]. However, it is the first time that MILP has been applied to cube
attacks on keyed Keccak. Later, a new MILP model for searching conditional cubes
was proposed in [SGSL17], showing further improvements on attacks against most keyed
Keccak constructions, such as Keccak used as MAC, Keyak and Ketje except the
smallest instance of Ketje, Ketje Jr. Instead of analyzing a round-reduced target in
cube attacks, Fuhr et al. [FNR18] proposed a state-recovery attack against full Ketje Jr
with increased rate size. Against Kravatte, algebraic attacks which utilize its structural
properties were proposed in [CFG+18].

As can be seen from the previous works [DLWQ17, SGSL17], cube-attack-like crypt-
analysis has an advantage over conditional cube attacks in analyzing keyed Keccak-based
constructions with small degrees of freedom, i.e., small message block size or nonce size.
On the other hand, MILP-based methods have shown their efficiency in conditional cube
attacks with significantly improved results. In this paper, we take the advantage of this
efficiency and apply it to cube-attack-like cryptanalysis on keyed Keccak-based construc-
tions with small degrees of freedom.

Our contributions. We develop techniques for building an MILP model for cube-attack-
like cryptanalysis, which takes both auxiliary and dynamic variables into consideration
and aims to find almost optimal attacks by balancing the two phases of cube-attack-like
cryptanalysis. In many of previous works, cube variables are forced to be from the so-called
column-parity-like (CP-like) kernel, while our model does not impose any unnecessary
constraint on cube variables, and hence finds optimal cubes in terms of dimension. With
regard to attack complexities, cubes found by our model are almost optimal. We apply
our MILP model to keyed Keccak constructions with small nonce or message block
length, including two smaller versions of Ketje Jr, Ketje Sr, a Xoodoo-based AE and
Keccak-MAC-512. The results are as follows.

• Improved 5-round attacks on Ketje Jr V1 and V2, with time complexity signifi-
cantly reduced;

• 6-round attacks on Ketje V1 and V2, with key size reduced to 72 and 80 bits;
• Improved 7-round attack on Ketje Sr V2;
• 6-round attack on Xoodoo-based AE in Ketje style;
• 7-round attack on Keccak-MAC-512.

2

Table 1: Summary of our attacks on Ketje Jr, Ketje Sr, Xoodoo and Keccak-MAC-512
under the nonce respected setting and comparison with related works

Target b |K| DF† Rounds T M Source Type‡

Ketje Jr V1
200 96 86 5/13 236.86 218 Sect. 5.1

CAL1

200 72 110 6/13 268.04 234 Sect. 5.3

Ketje Jr V2
200 96 86 5/13 234.91 215 Sect. 5.2
200 80 102 6/13 259.17 225 Sect. 5.4

Ketje Sr V1 400 128 254 7/13 2114 248
Sect. 5.5

Ketje Sr V2 400 128 254 7/13 299 233

Xoodoo 384 128 238 6/- 289 255 Sect. 5.6
Keccak-MAC-512 1600 128 447 7/24 2111 246 Sect. 5.7

Ketje Jr V1 200 96 86 5/13 256 238

[DLWQ17] CAL2
Ketje Jr V2 200 96 86 5/13 250.32 232

Ketje Sr V1 400 128 254 7/13 2115.32 250

Ketje Sr V2 400 128 254 7/13 2113.58 248

Lake Keyak 1600 128 1200 8/12 271.01 -

[SGSL17] CC
Ketje Major 1600 128 1454 7/13 271.24 -
Ketje Minor 800 128 654 7/13 273.03 -
Ketje Sr V1 400 128 254 7/13 291 -
Keccak-MAC-512 1600 128 447 6/24 240 -
Lake Keyak 1600 128 1200 8/12 279.6 214

[BDL+18] CAL1
Ketje Major 1600 128 1454 7/13 294 229

Ketje Minor 800 128 654 7/13 2113 248

Keccak-MAC-512 1600 128 447 7/24 2112.6 247

DF Degrees of freedom
CC Conditional cube attacks
CAL1 Cube-attack-like cryptanalysis with the help of MILP
CAL2 Cube-attack-like cryptanalysis without the help of MILP

The results are summarized in Table 1. It is worth noticing that more rounds can
be attacked against Ketje Jr when the key size is reduced, i.e., the security is reduced.
Although 72 bits or 80 bits are not the recommended key size by the designers, it is good
to see how the security is affected by varying the key/nonce sizes. For Ketje Sr V1,
Ketje Major and Minor which have a relatively large nonce size, cube-attack-like crypt-
analysis does not outperform conditional cube attacks. In addition, our analysis shows
that Xoodoo-based AE bears good resistance against cube-attack-like cryptanalysis.

Comparison with Bi et al.’s model. Concurrently, another model for cube-attack-like
cryptanalysis on keyed Keccak was proposed by Bi et al. [BDL+18]. Bi et al.’s model
utilizes auxiliary variables and finds cubes in the CP-like kernel with low complexity for
the preprocessing phase. Balancing the two phases is processed independently from the
model. In contrast, our model utilizes both auxiliary and dynamic variables and imposes
no extra constraint on cube variables (thus covers the full set of solutions with respect
to dimension). Moreover, balancing is considered inside the model. Even though both
models are general to keyed Keccak constructions, our targets differentiate from those
of Bi et al.’s. Specifically, Bi et al. focus on Keccak-MAC, Keyak and two larger
versions of Ketje, which have relatively large degrees of freedom, while our targets are
the smaller versions of Ketje, namely Ketje Jr, Ketje Sr and a Xoodoo-based AE.We
also apply our model to Keccak-MAC-512 and a slightly better result is obtained than

3

that from [BDL+18].

Organization. The rest of the paper is organized as follows. In Section 2, a brief de-
scription of Ketje, Xoodoo and Keccak-MAC is given, followed by an introduction of
related works. The MILP model is sketched in Section 4, and its application to Ketje
Jr, Ketje Sr, a Xoodoo-based AE and Keccak-MAC-512 is provided in Section 5.
A comparison with related works is provided in Section 6. We conclude the paper in
Section 7.

2 Description of Ketje and Keccak-MAC
2.1 Notations

c Capacity of a sponge function
r Rate of a sponge function
b Width of a Keccak permutation in bits, b = r + c
n Number of rounds in Keccak-p
d Dimension of the cube
ni Number of involved key bits
na Number of auxiliary variables
nk Number of recovered key bits
⊕ XOR operation
· AND operation

2.2 Keccak-p
The Keccak-p permutations, denoted by Keccak-p[b, n], are specified with two param-
eters: the width of the permutation in bits b = 25 × 2l, l = 0, · · · , 6, and the number of
rounds n. The b-bit state a of the Keccak-p[b, n] can be seen as a three-dimensional
array of bit a[5][5][w] with w = 2l. The expression a[x][y][z] represents the bit at position
(x, y, z), where expressions in the x and y coordinates are always implicitly taken modulo
5 and expressions in the z coordinate modulo w.

The two-dimensional part a[x][∗][∗] is called a sheet. The one-dimensional part a[∗][y][z]
is called a row, a[x][∗][z] a column and a[x][y][∗] a lane. A lane of the state is also denoted
as a[x][y] by omitting the z index. At lane level, the state a[x][y] becomes a 5 × 5 array
with x for the column index and y for the row index. These notations are visualized in
Figure 1.

state sheet row column lane 0,4

0,3

0,2

0,1

0,0

1,4

1,3

1,2

1,1

1,0

2,4

2,3

2,2

2,1

2,0

3,4

3,3

3,2

3,1

3,0

4,4

4,3

4,2

4,1

4,0

Figure 1: Notations of Keccak-p

The round function of Keccak-p[b, n] consists of five steps R = ι ◦ χ ◦ π ◦ ρ ◦ θ, with
details as follows.

θ: a[x][y][z] = a[x][y][z]⊕
⊕4

y=0 a[x− 1][y][z]⊕
⊕4

y=0 a[x + 1][y][z − 1].

ρ: a[x][y][z] = a[x][y][(z − T (x, y))], where T (x, y)s are rotation constants.

4

π: a[y][2x + 3y][z] = a[x][y][z].

χ: a[x][y][z] = a[x][y][z]⊕ ((a[x + 1][y][z]⊕ 1) · a[x + 2][y][z]).

ι: a[0][0] = a[0][0]⊕RCir
, where RCir

is the ir-th round constant.

In the specification of Ketje V2, the twisted permutations Keccak-p⋆ are defined as

Keccak-p⋆[b, n] = π◦Keccak-p[b, n] ◦ π−1,

where π−1 is the inverse of the step mapping π which is expressed by

π−1 : a[x + 3y][x][z] = a[x][y][z].

The twist is to re-order the lanes in the state, as shown in Figure 2, so the twisted
permutation is considered to apply the original permutation to the state π−1(a).

0,4

0,3

0,2

0,1

0,0

1,4

1,3

1,2

1,1

1,0

2,4

2,3

2,2

2,1

2,0

3,4

3,3

3,2

3,1

3,0

4,4

4,3

4,2

4,1

4,0

π−1

0,0 0,10,2 0,30,4

1,0 1,11,21,3 1,4

2,02,1 2,22,3 2,4

3,03,1 3,23,33,4

4,04,14,2 4,34,4

Figure 2: π−1

2.3 Ketje
Ketje is a set of authenticated encryption functions built on Keccak-p. Ketje Jr and
Ketje Sr are proposed in Ketje V1, of state size 200 and 400 bits respectively. Later,
two larger instances, Ketje Minor and Ketje Major with 800-bit and 1600-bit state
respectively, are added to the set in Ketje V2. The major difference between Ketje
V1 and V2 is that Keccak-p is used in Ketje V1 while Keccak-p⋆ is used instead in
Ketje V2. In the following, we give a brief description of Ketje V2.

Figure 3: Wrapping a header and a body with MonkeyWrap [BDP+16a]

The structure of Ketje follows the MonkeyWrap, as illustrated in Figure 3. Like other
authenticated encryption functions, Ketje proceeds in four phases.

• Initialization The state is initialized with the packed key, the nonce N and some
paddings. Then Keccak-p⋆[b, nstart] is applied.

5

• Processing associated data The associated data is split into δ-bit blocks (except the
last one). Each time an associated data block of length up to δ bits is padded to δ+4
bits and XORed to the state, followed by the application of Keccak-p⋆[b, nstep]. If
the associated data is empty, then a single block padded from the empty string will
be processed.

• Processing message The message is also processed in δ-bit blocks in a similar way,
where the ciphertext block is generated by XORing the message block and δ bits of
the internal state before the message block is absorbed.

• Finalization Keccak-p⋆[b, nstride] is used to generate δ bits. If δ is greater than the
required tag length, then the tag is extracted from the δ bits; otherwise, Keccak-
p⋆[b, nstep] is applied until enough bits are collected for generating the tag.

The parameters of the four instances of Ketje V2 are summarized in Table 2, and for all
four instances, nstart = 12, nstep = 1 and nstride = 6. As can be seen from the above
phases, the first ciphertext block is generated after at least nstart + nstep = 13 rounds.
Most attacks on Ketje in the literature, as well as this paper, consider versions of Ketje
with this number reduced.

Table 2: Four instances of Ketje V2
Name Key size Permutation δ Confidentiality
Ketje Jr 96 Keccak-p⋆[200] 16 min(96, |K|)
Ketje Sr 128 Keccak-p⋆[400] 32 min(128, |K|)
Ketje Minor 128 Keccak-p⋆[800] 128 min(128, |K|)
Ketje Major 128 Keccak-p⋆[1600] 256 min(128, |K|)

2.4 Xoodoo
Xoodoo [DHAK18] is a 384-bit permutation designed by Daemen et al.. The design is
very similar to Keccak-p, but also inspired by the permutation Gimli [BKL+17] which
also uses a 384-bit state and works efficiently on many platforms.

The 384-bit state of Xoodoo can be seen as a three-dimensional array of bit a[4][3][w],
where w = 32. The round function of Xoodoo has five steps as follows.

θ: a[x][y][z] = a[x][y][z]⊕
⊕2

y=0 a[x− 1][y][z − 5]⊕
⊕2

y=0 a[x− 1][y][z − 14].

ρwest: a[x][1][z] = a[x− 1][1][z], a[x][2][z] = a[x][2][z − 11].

ι: a[0][0] = a[0][0]⊕RCir , where RCir is the ir-th round constant.

χ: a[x][y][z] = a[x][y][z]⊕ ((a[x][y + 1][z]⊕ 1) · a[x][y + 2][z]).

ρeast: a[x][1][z] = a[x][1][z − 1], a[x][2][z] = a[x− 2][2][z − 8].

It is noted in [BDH+17a] that Xoodoo can be used as authenticated encryption in
Ketje style.

2.5 Keccak-MAC-512
Keccak follows the sponge construction [BDPVA11] and uses Keccak-p[1600, 24] as the
underlying permutation. The sponge construction has two parameters, the capacity c
and bit rate r. At first, the state is initialized to 0. Then Keccak takes in a message
M and outputs a digest. The message M is processed by splitting it into r-bit blocks
which are absorbed to the first r bits of the state iteratively followed by the application of

6

Keccak-p[1600, 24]. In [BDPA11], it is proposed that Keccak can be used as MAC by
taking K||M as input. Such a MAC was called Keccak-MAC in [HWX+17] for the first
time and its round-reduced versions were analyzed in papers such as [DMP+15,LBDW17],
where the key size is 128 bits no matter which instance of Keccak is used. KMAC [The16] is
the NIST recommendation for constructing MAC from Keccak where the key is processed
as an independent block before processing the message. In this paper, we only focus on
Keccak-MAC-512, i.e., the MAC based on Keccak-512.

3 Related Works
3.1 Cube Attacks
The cube attack, which can be seen as a variant of higher order differential attacks, was
introduced by Dinur and Shamir [DS09] in 2009. It treats the output bit of a cipher as
an unknown Boolean polynomial f(k0, ..., kn−1, v0, ..., vm−1) where k0, ..., kn−1 are secret
input variables and v0, ..., vm−1 are public input variables. Given any monomial tI which
is the product of variables in I = {i1, ..., id}, f can be represented as the sum of terms
which are supersets of I and terms which are not supersets of I:

f(k0, ..., kn−1, v0, ..., vm−1) = tI · pSI
+ q(k0, ..., kn−1, v0, ..., vm−1),

where pSI
is called the superpoly of I in f , and vi1 , ..., vid

are called cube variables.
The idea behind cube attacks is that the sum of the Boolean polynomial f(k0, ..., kn−1,

v0, ..., vm−1) over the cube which contains all possible values for the cube variables is
exactly pSI

, while this is a random function for a random polynomial. In cube at-
tacks, low-degree pSI

s in secret variables are exploited to recovery the key, while cube
testers [ADMS09] work by distinguishing pSI

from a random function (e.g., pSI
= 0).

Dynamic cube attacks [DS11] are an extension of cube testers where certain variables
(called dynamic variables) are assigned a function that depends on some of the cube
variables and some private variables (the key bits), so that the output polynomial can be
simplified and the cube attack can be improved.

3.2 Cube-Attack-Like Cryptanalysis on Round-Reduced Keccak
In [DMP+15], Dinur et al. proposed cube-attack-like cryptanalysis on round-reduced
Keccak-MAC and Keyak, where the key is recovered in a divide-and-conquer manner.
Specifically, the idea in the attack is to choose the cube variables in a way such that
the superpoly involves only a small number of key bits, whose value can be recovered
independently of the rest key using a cube attack separated into preprocessing and online
phases. Once the cube is selected, then

• in the preprocessing phase, one is to build a look-up table that stores cube sums
under all possible values of the involved key bits;

• in the online phase, one queries the cipher and obtains the cube sum, with which
the actual value of the involved key bits can be retrieved from the look-up table.

Suppose the dimension of the cube is d and the number of involved key bits is ni. Then
the time complexities of the above two phases are 2d+ni and 2d, respectively. As can be
seen, the preprocessing phase is much more expensive than the online phase. In order
to tradeoff the complexity of the preprocessing and online phases, auxiliary variables are
introduced. Auxiliary variables are selected from public variables and supposed to be
equal to certain key bits (the XOR of key bits in a column for Keccak), which help
reduce the diffusion of key bits, and thus reduce the number of key bits ni the cube

7

sum involves. Suppose there are na auxiliary variables. Then in the online phase, one
has to guess the key bits involved in the auxiliary variables and set the auxiliary variables
accordingly. Under each setting of the auxiliary variables, one queries the cipher to obtain
the cube sum. Consequently, the time complexity of the online phase is increased by a
factor of 2na . However, balanced attacks become more efficient.

Following this line, Dong et al. [DLWQ17] studied the cube-attack-like cryptanalysis
against round-reduced initialization of Ketje, where dynamic variables were used instead.
They showed that dynamic variables are more effective than auxiliary variables since
dynamic variables not only reduce the diffusion of key bits, but also reduce the diffusion
of cube variables, potentially leading to cubes with larger dimensions. As a demonstration,
attacks on 7-round Ketje Sr and 5-round Ketje Jr can be mounted successfully using
dynamic variables, while cube-attack-like cryptanalysis with auxiliary variables fails.

3.3 Conditional Cube Attacks on Round-Reduced Keccak
In [HWX+17], Huang et al. proposed conditional cube testers for keyed Keccak sponge
function, in which the propagation of certain cube variables are controlled in the first few
rounds if some conditions are satisfied. If the conditions involve the key information, such
cube tester could be used to recover the key. Using conditional cube testers, key recovery
attacks were obtained for various instances of Keccak-MAC and Keyak in [HWX+17].
Later, the attacks on Keccak-MAC and Ketje attacks were improved with better con-
ditional cubes found by an MILP model by Li et al. in [LBDW17]. Inspired by [LBDW17],
Song et al. [SGSL17] provided a new MILP model for searching conditional cubes of Kec-
cak that fully describes the first two rounds, and the application of the new model leads
to a series of better attacks against KMAC [The16], Keyak, Ketje and Keccak-MAC.

3.4 Motivations
As shown in Song et al.’s work, MILP widely improves conditional cube attacks on Kec-
cak based constructions. However, there is no MILP modeling in the literature for cube-
attack-like cryptanalysis on Keccak. Additionally, it is also noted from Song et al.’s
work, that for Keccak constructions with small rate (or nonce length), conditional cube
attacks become less powerful whereas cube-attack-like cryptanalysis still works as shown
by [DLWQ17]. So the major motivation of this work is to investigate the application of
MILP in cube-attack-like cryptanalysis and access its efficiency in Keccak constructions
with relatively small rate, like Ketje Jr, Ketje Sr and Keccak-MAC-512.

4 MILP Model for Cube-Attack-Like Cryptanalysis
Mixed integer linear programming (MILP) is a general mathematical tool for optimization,
which takes an objective function and a system of linear inequalities with respect to
real numbers as input, and find solutions that optimize the objective function under the
constraints of all inequalities. In [MWGP11], Mouha et al. firstly showed that searching
differential trails can be converted to an MILP problem.

In this section, ideas and techniques are introduced for searching cubes with auxil-
iary/dynamic variables for Keccak-p based constructions.

4.1 Basic Idea
In cube-attack-like cryptanalysis of Keccak-based constructions, cube variables are se-
lected such that they do not multiply with each other in the first round, i.e., the first
round is linearized. Due to the fact that the algebraic degree of the round function is 2,

8

the algebraic degree of the output after n rounds is 2n−1 if the first round is linearized.
Therefore, a 2n−1-dimensional cube can act as a cube tester for n-round Keccak and be
used to recover the key in cube-attack-like cryptanalysis. The time complexity of such
cube attacks not only depends on the dimension (d) of the cube, but also depends on
the number (ni) of key bits which the cube sum depends on, and the number (na) of
auxiliary/dynamic variables. As introduced in Section 3, the time complexities of cube-
attack-like cryptanalysis are

• Preprocessing phase: 2d+ni

• Online phase: 2d+na

Note that, in previous papers [DMP+15,DLWQ17] either auxiliary variables or dynamic
variables are used, where auxiliary variables only contain some key bits while dynamic
variables contain both cube variables and key bits. In this paper, we utilize both and call
them auxiliary variables for simplicity since their impacts on the time complexity are the
same.

With the basics of cube-attack-like cryptanalysis in mind, the main goals of the MILP
modeling are clear:

1. Find 2n−1-dimensional cubes where n is as large as possible;

2. Find balanced attacks where ni and na are close and as small as possible.

The model for searching cubes of Keccak using auxiliary variables contains two lines:
the propagation of cube variables through the linear layer and the propagation of key bits
through the linear layer. At the nonlinear layer χ in the first round, these two lines merge
and interact. In the following subsections, the model will be introduced accordingly. For
the sake of clarity, we take Ketje Jr V1 as an example.

4.2 Propagation of Cube Variables and the Dimension d

Cube variables have to traverse all possible values, so they should be placed where the
values are under control of the attacker, e.g., the nonce or message. For Ketje Jr V1,
as shown in Figure 4 (a), cube variables can be set only in white lanes under the nonce
respected setting.

(a) Ketje Jr V1

0,4

0,3

0,2

0,1

0,0

1,4

1,3

1,2

1,1

1,0

2,4

2,3

2,2

2,1

2,0

3,4

3,3

3,2

3,1

3,0

4,4

4,3

4,2

4,1

4,0

(b) Ketje Jr V2

0,4

0,3

0,2

0,1

0,0

1,4

1,3

1,2

1,1

1,0

2,4

2,3

2,2

2,1

2,0

3,4

3,3

3,2

3,1

3,0

4,4

4,3

4,2

4,1

4,0

(c) Ketje Sr V1

0,4

0,3

0,2

0,1

0,0

1,4

1,3

1,2

1,1

1,0

2,4

2,3

2,2

2,1

2,0

3,4

3,3

3,2

3,1

3,0

4,4

4,3

4,2

4,1

4,0

(d) Ketje Sr V2

0,4

0,3

0,2

0,1

0,0

1,4

1,3

1,2

1,1

1,0

2,4

2,3

2,2

2,1

2,0

3,4

3,3

3,2

3,1

3,0

4,4

4,3

4,2

4,1

4,0

Figure 4: Key pack of Ketje Jr and Ketje Sr, where gray lanes are the key, light gray lanes
denote padded or encoded bits and white lanes are the nonce.

Suppose a[x][y][z], b[x][y][z], 0 ≤ x, y < 5, 0 ≤ z < w, are the input and output of
θ. We introduce A[x][y][z], B[x][y][z], 0 ≤ x, y < 5, 0 ≤ z < w, where A[x][y][z] = 1
(B[x][y][z] = 1) if a[x][y][z] (b[x][y][z]) contains a cube variable; otherwise A[x][y][z] = 0
(B[x][y][z] = 0). Each column of a may have 0, 1 or multiple cube variables. Namely, each
column sum of A may be 0, 1, or more. For a column with multiple cube variables, the sum
of these cube variables can be constrained to certain constant (usually 0) so that the cube

9

variables in this column do not diffuse to other columns. If all column sums are constant,
then the state a is in the column-parity-like kernel (CP-like kernel). In previous cube-
attack-like cryptanalysis of Keccak-based constructions [DMP+15, DLWQ17], or even
conditional cube attacks [HWX+17, LBDW17], cube variables are set in CP-like kernel.
This is reasonable. If cube variables are set in CP-like kernel, A[x][y][z] = B[x][y][z] and
θ acts as the identity. In this way, the propagation of cube variables becomes simple.
However, setting cube variables in CP-like kernel limits the dimension of the cube that
can be obtained, and this drawback becomes non-negligible when the nonce or message
block length is short.

In our model, we do not add any additional constraint to cube variables and take
all possible cases into consideration. To do this, we introduce G[x][z], D[x][z], 0 ≤ x <
5, 0 ≤ z < w, where G[x][z] = 1 if the sum of column (x, z) contains cube variables
and 0 otherwise; D[x][z] = 1 if the column (x, z) contains cube variables and the sum of
these variables is a constant and 0 otherwise. For example, each column in the first four
sheet of Ketje Jr V1 has only two bit positions, say (x, y0, z) and (x, y1, z) that can be
chosen as cube variables, so G[x][z] and D[x][z] depend on A[x][y0][z] and A[x][y1][z]. The
patterns A[x][y0][z], A[x][y1][z], G[x][z], D[x][z] follows are listed in Table 3, as well as the
inequalities describing these patterns. The inequalities that confine the 0-1 patterns into
a finite set can be obtained through the inequality_generator() function in SageMath, as
suggested in [SHW+14]. After that, an additional algorithm from [ST17], is used to select
a minimal number of inequalities from the inequalities returned by inequality_generator().

Table 3: Patterns of cube variables through θ and inequalities.
A[x][y0][z] A[x][y1][z] G[x][z] D[x][z] Inequalities

0 0 0 0

A[x][y0][z] + A[x][y1][z] − G[x][z] − 2D[x][z] ≥ 0,

−A[x][y1][z] + G[x][z] + D[x][z] ≥ 0,

−A[x][y0][z] + G[x][z] + D[x][z] ≥ 0.

0 1 1 0
1 0 1 0
1 1 1 0
1 1 0 1

For columns with other numbers of bit positions that can be chosen as cube variables,
inequalities can be generated in a similar way. When the full column is available for cube
variables, inequalities in Table 9 in Appendix can be used.

According to the definition of θ, B[x][y][z] = 1 if any of A[x][y][z], G[x − 1][z] or
G[x + 1][z − 1] is 1. This can be described by the following inequalities.

B[x][y][z]−A[x][y][z] ≥ 0,

B[x][y][z]−G[x + 1][z − 1] ≥ 0,

B[x][y][z]−G[x− 1][z] ≥ 0,

A[x][y][z] + G[x− 1][z] + G[x + 1][z − 1]−B[x][y][z] ≥ 0.

(1)

Since ρ and π just change the bit positions of the state, we let c = π ◦ ρ(b) and
C = π ◦ ρ(B). Now the propagation of cube variables through the linear layer is modeled.
To linearize the first round, cube variables in c should not be adjacent, which can be
constrained by

C[x][y][z] + C[x + 1][y][z] ≤ 1.

The dimension of the cube is determined by A[x][y][z] and D[x][y], and

d =
∑

A[x][y][z]−
∑

D[x][z].

With these inequalities, the set of solutions is exactly the set of all possible cubes that
linearize the first round.

10

4.3 Propagation of Key Bits and na

This subsection presents the model for the propagation of key bits, and the number of
auxiliary variables na is also calculated alongside.

First, let W [x][y][z] = 1 (Y [x][y][z] = 1) if a[x][y][z] (b[x][y][z]) contains a key bit;
otherwise W [x][y][z] = 0 (Y [x][y][z] = 0). Additionally, Z = π ◦ ρ(Y). For Ketje Jr,
the key pack is loaded into the gray and light gray lanes as depicted in Figure 4, so
W [x][y][z] = 1 for bits in gray and W [x][y][z] = 0 for bits in light gray. Among the white
lanes, W [x][y][z] = 1 indicates an auxiliary variable at (x, y, z).

Second, let X[x][z] = 1 if the sum of column (x, z) contains key bits, otherwise
X[x][z] = 0, meaning that no key bit in this column could diffuse to column (x− 1, z + 1)
and (x + 1, z) through θ. From Figure 4, it is known that each column of Ketje Jr
contains key bits. Hence, X[x][z] = 0 if and only if there is an auxiliary variable in that
column. So X[x][z] depends on the bits that can be chosen as auxiliary variables and the
sum of them should be 1. Suppose there are two bit positions (x, y0, z) and (x, y1, z) in
column (x, z) that can be chosen as auxiliary variables, then

X[x][z] + W [x][y0][z] + W [x][y1][z] = 1.

The relation of Y [x][y][z] and W [x][y][z] can be described with X[x][z]. Each Y [x][y][z]
is calculated from W [x][y][z], X[x− 1][z] and X[x + 1][z− 1], and any one is 1 will lead to
Y [x][y][z] = 1; otherwise Y [x][y][z] = 0. The inequalities describing this relation are the
same as (1).

At last, the number of auxiliary variables is the sum of W [x][y][z] in the white lanes.
For Ketje Jr V1,

na =
∑

x,z,3≤y<5

W [x][y][z] +
∑

z

W [4][2][z].

4.4 Interaction of Key Bits and Cube Variables, and ni

Recall that Z = π ◦ ρ(Y) and Z[x][y][z] = 1 indicates that the input of χ in the first
round at (x, y, z) contains key information. If its neighbouring bits contain cube variables,
i.e., C[x − 1][y][z] = 1 or C[x + 1][y][z] = 1, then the key bit propagated to position
(x, y, z) affects the cube sum and thus it is an involved key bit. In order to calculate the
number of involved key bits ni, U [x][y][z] is introduced, where U [x][y][z] = 1 if the key
bit at (x, y, z) is an involved key bit and 0 otherwise. All possible patterns of (C[x −
1][y][z], C[x][y][z], C[x + 1][y][z], Z[x][y][z], U [x][y][z]) are listed in Table 4, which can be
described with 5 inequalities, three of which are new and shown in the last line of Table 4.

Table 4: Patterns of key bits and cube variables. Symbol ‘*’ denotes arbitrary value.
C[x − 1][y][z] C[x][y][z] C[x + 1][y][z] Z[x][y][z] U [x][y][z]

0 * 0 0 0
0 * 0 1 *
1 0 * 0 0
1 0 * 1 1
0 0 1 0 0
0 0 1 1 1

Z[x][y][z] − U [x][y][z] ≥ 0
C[x − 1][y][z] + Z[x][y][z] − U [x][y][z] ≤ 1
C[x + 1][y][z] + Z[x][y][z] − U [x][y][z] ≤ 1

To calculate the number of involved key bits ni, we sum U [x][y][z] together. Namely,
ni =

∑
U [x][y][z]. However, the same key bit may appear in multiple positions of U .

11

Recall that θ adds the XORs of bits in column (x − 1, z) and (x + 1, z − 1) to each bit
of column (x, z). If at least two bits in column (x, z) do not contain key bits, then after
θ these bits contain either the same key bits or none. So the same key bit appearing in
multiple positions may be counted more than once with ni =

∑
U [x][y][z], making ni

inaccurate.
To partially solve this, we introduce the key pattern V [x][y][z],0 ≤ x, y < 5, 0 ≤ z < w,

after θ, where V [x][y][z]s in each column are equal if these bits do not contain key bit
before θ. For Ketje Jr V1, V [x][0][z] = V [x][3][z] = V [x][4][z] for columns in the first
sheet (x = 0), V [x][3][z] = V [x][4][z] for the second and third sheet (x = 1, 2), and
V [x][2][z] = V [x][3][z] = V [x][4][z] for the fourth and fifth sheet (x = 4, 5). Then, we let
U = π ◦ ρ(V), and ni is set to be the sum of all distinct variables in U .

The problem remained unsolved is the impact of auxiliary variables on the key pattern
V [x][y][z] and the dependence of involved key bits. If W [0][3][z] = 1 for Ketje Jr V1,
i.e., a[0][3][z] is an auxiliary variable, then V [0][3][z] should not be equal to V [0][0][z] and
V [0][4][z] (but V [0][0][z] = V [0][4][z]). In addition, the ni involved key bits may be not
fully independent and calculating the number of independent involved key bits is beyond
the reach of MILP. Therefore, ni may be still inaccurate. We leave this problem to be
fixed with a postprocessing procedure.

Now, the whole model for searching cubes using auxiliary variables can be built using
techniques introduced in this section. We additionally set d = 2n−1 and the objective
function to be ‘Minimize ni, na’. An MILP solver like Gurobi [Gur18] can then be invoked
to find optimal solutions.

4.5 Postprocessing Procedure

Algorithm 1: Postprocessing procedure for recalculating ni.
Input: A, W of the solution, the cube dimension d and the key length |K|
Output: ni

rel = ∅;
BR = BooleanPolynomialRing(d + |K|, [k0, ..., k|K|−1, v0, ..., vd−1]);
a = zeroState();
loadKey(a, [k0, ..., k|K|−1]);
loadCubeVar(a,A, [v0, ..., vd−1]);
loadAux(a, W);
π ◦ ρ ◦ θ(a);
for All a[x][y][z] do

if a[x][y][z] contains v0, ..., vd−1 then
if a[x− 1][y][z] contains k0, ..., k|K|−1 then

rel← a[x− 1][y][z];
end
if a[x + 1][y][z] contains k0, ..., k|K|−1 then

rel← a[x + 1][y][z];
end

end
end
return rank(rel);

From the solution returned by MILP solvers, we recalculated the number of involved
key bits using symbolic computations. First, key bits are loaded to the state, and cube
variables and auxiliary variables are set according to the solution. Then pass the state

12

through the linear layer, and collect key bits (linear expressions of key bits) that are
adjacent to the cube variables. The denser the key bits are in the initial state, the more
complex the relation of involved key bits will be, but only the number of independent
involved key bits matters and is the actual ni. The detailed postprocessing procedure is
described in Algorithm 1. Since the number of involved key bits optimized by our model
may not be equal to the actual ni, our model does not guarantee optimal solutions with
respect to attack complexities, even though the dimension of cubes can be optimized. The
experiments show that in most cases the actual ni lies in [n⋆

i − 2, n⋆
i + 2], where n⋆

i is the
claimed number of involved key bits by the model. This means that our model still finds
almost optimal solutions.

5 Application to Ketje Jr, Ketje Sr, Xoodoo and Keccak-
MAC-512

In this section, we apply the model described in Section 4 to Ketje Jr, Ketje Sr,
Xoodoo-based AE in Ketje style and Keccak-MAC-512, all of which have relatively
small nonce or message block length. First, improved 5-round attacks of Ketje Jr are ob-
tained, where the time complexity of the attack is reduced significantly. Then, we consider
Ketje Jr with reduced key size. Namely, the key size is less than 96 bits, and the security
goal of confidentiality becomes |K| = min(96, |K|) according to the security claims of
Ketje [BDP+16a]. As a result, one more round of Ketje Jr V1 (V2) can be attacked
if the key size is reduced to 72 (80) bits. Also, we give an improved 7-round attack on
Ketje Sr V2. Finally, a 6-round attack on the Xoodoo-based AE and a 7-round attack
of Keccak-MAC-512 are also achieved.

5.1 5-Round Attack against Ketje Jr V1 with Recommended Key
Size

The attack on 5-round Ketje V1 sequentially utilizes three 16-dimensional cubes as shown
in Table 7 and 8. Each cube helps to recover part of the key and these three cubes work
together to make the whole time complexity low.

The first cube has ni = 18 involved key bits (linear combination of key bits) and
na = 17 auxiliary variables which are listed in Table 5. The two phases of the attack
proceed as follows.

Preprocessing phase:

1. Set the 18 bits in light gray according to the encoding rule, as illustrated in Figure 4
(a). Set all key bits to zero except k2, k75, k15, k63, k12, k60, k93, k61, k5, k78, k20, k23, k3,
k56, k57, k58, k59, k62

1. Set all other state bits to an arbitrary constant except the 16
cube variables, 9 out of the 17 auxiliary variables a[1][3][1], a[1][4][4], a[4][2][0], a[4][2][1],
a[4][3][2], a[4][2][5], a[4][2][7], a[3][4][0], a[3][4][3], and a[0][3][0], a[0][3][1].

2. For the 218 values of k2, k75, k15, k63, k12, k60, k93, k61, k5, k78, k20, k23, k3, k56, k57, k58,
k59, k62:

(a) For each of the 4 values of a[0][3][0], a[0][3][1], calculate the cube sum of the
16-bit output after 5 rounds.

(b) Store the four 16-bit cube sums in a sorted list L, next to the value of the
corresponding k2, k2 + k75, k15, k15 + k63, k12, k12 + k60, k93, k93 + k61, k5, k5 +
k78, k4 + k20 + k60, k23 + k63, k3, k56, k57, k58, k59, k62.

1This is not the only way to choose free key bits in the preprocessing phase.

13

Table 5: Auxiliary variables and involved key bits of the first cube for Ketje Jr V1 where the
gray key bits are set to be zero in the preprocessing phase.

Auxiliary variables Involved key bits
a[1][3][0] = k0 + k40 + k80 k2+k42 + k27 + k67 + k82

a[1][3][1] = k1 + k41 + k81+v0 k2+k42 + k27 + k67 + k82 + k75

a[1][4][4] = k4 + k44 + k84+v1 k15+k30 + k55 + k70 + k95

a[1][3][6] = k6 + k46 + k86 k15+k30 + k55 + k70 + k95 + k63

a[1][4][7] = k7 + k47 + k87 k12+k27 + k52 + k67 + k92

a[2][3][0] = k8 + k48 + k88 k12+k27 + k52 + k67 + k92 + k60

a[2][3][1] = k9 + k49 + k89 k13 + k28 + k53 + k68+k93

a[2][3][2] = k10 + k50 + k90 k13 + k28 + k53 + k68+k93 + k61

a[2][4][3] = k11 + k51 + k91 k5+k30 + k45 + k70 + k85

a[2][3][6] = k14 + k54 + k94 k5+k30 + k45 + k70 + k85 + k78

a[3][4][0] = k16+k56 k5+k13 + k45 + k85 + k20 + k60

a[3][4][3] = k19+k59 k8+k23 + k63

a[4][2][0] = k24 + k64+v2 k3+k28 + k43 + k68 + k83

a[4][2][1] = k25 + k65+v4 k56, k57, k58, k59, k62

a[4][3][2] = k26 + k66+v7

a[4][2][5] = k29 + k69+v12

a[4][2][7] = k31 + k71+v15

Online phase:

1. For all possible values of the 17 linear expressions of key bits in auxiliary variables:

(a) Set the auxiliary variables accordingly. For each of the 4 values of a[0][3][0],
a[0][3][1], request the 16-bit outputs for the cube and calculate the cube sums
(setting the same constant values in the state as in the preprocessing).

(b) For each match in L, retrieve the 18-bit value for the involved key bits and
record it and the current value of the 17 key bits in auxiliary variables as a
candidate.

In the online phase, only one candidate for the 35-bit partial key will survive, since
218+17 · 2−64 < 1. The time complexity of the preprocessing phase is 218+16+2 = 236, and
the memory complexity is 218. The time complexity of the online phase is 217+16+2 = 235.
In the end, nk = 35 bits information of the key are obtained. However, 96− 35 = 51 bits
of the key are still unknown. Next, we use the second and the third cube to recover more
key bits. Since the two phases of the attack using other cubes work similarly to those
of the first cube for Ketje Jr V1, details of the attacks are omitted afterward, and only
complexities are given.

The second cube has ni = 22 involved key bits and na = 21 auxiliary variables, see
Table 7 in the appendix. With 35 bits of the key known from the first cube, the number
of unknown involved key bits is n′

i = 14, and the number of unknown key bits in the
auxiliary variables is n′

a = 9. So the complexities are as follows.

• Preprocessing phase: the time complexity is 214+16+2 = 232 and the memory com-
plexity is 214;

• Online phase: the time complexity is 29+16+2 = 227.

The accumulated number of key bits recovered from the first two cubes is nk = 57.
The third cube has ni = 27 involved key bits and na = 26 auxiliary variables, see

Table 8. With 57 bits of the key known, the number of unknown involved key bits
becomes n′

i = 16, and the number of unknown key bits in the auxiliary variables is n′
a = 4.

So the complexities are as follows.

14

• Preprocessing phase: the time complexity is 216+16+2 = 234 and the memory com-
plexity is 216;

• Online phase: the time complexity is 24+16+2 = 222.

The number of key bits recovered from the three cubes is nk = 74.
In all, all key bits can be recovered with time complexity 236 + 235 + 232 + 227 + 234 +

222 + 296−74 = 236.86 and the memory complexity 218.

5.2 5-Round Attack against Ketje Jr V2 with Recommended Key
Size

The attack on 5-round Ketje Jr V2 also uses three 16-dimensional cubes, shown in
Table 10,11. The attack on Ketje Jr V2 proceeds the same as the attack on V1. Here,
we just calculate the complexities.

The first cube has ni = 14 involved key bits and na = 15 auxiliary variables (see
Table 10). The complexities using the first cube are as follows.

• Preprocessing phase: the time complexity is 214+16+2 = 232 and the memory com-
plexity is 214;

• Online phase: the time complexity is 215+16+2 = 233.

The number of key bits recovered from the first cube is nk = 29.
The second cube has ni = 18 involved key bits and na = 15 auxiliary variables (see

Table 10). With 29 bits of the key known from the first cube, the number of unknown
involved key bits is n′

i = 13, and the number of unknown key bits in the auxiliary variables
is n′

a = 9. So the complexities are as follows.

• Preprocessing phase: the time complexity is 213+16+2 = 231 and the memory com-
plexity is 213;

• Online phase: the time complexity is 29+16+2 = 227.

The accumulated number of key bits recovered from the first two cubes is nk = 47.
The third cube has ni = 32 involved key bits and na = 26 auxiliary variables (see

Table 11). With 47 bits of the key known, the number of unknown involved key bits
becomes n′

i = 15, and the number of unknown key bits in the auxiliary variables is n′
a = 1.

So the complexities are as follows.

• Preprocessing phase: the time complexity is 215+16+2 = 233 and the memory com-
plexity is 215;

• Online phase: the time complexity is 21+16+2 = 219.

The number of key bits recovered from the three cubes is nk = 63.
In all, the full key can be recovered with time complexity 232 + 233 + 231 + 227 + 233 +

219 + 296−63 = 234.91 and the memory complexity 215.

5.3 6-Round Attack against Ketje Jr V1 with Reduced Key Size
To extend our attack on Ketje Jr V1 by one round, we need 32-dimensional cubes. How-
ever, cubes that linearize the first round have dimension of 25 at most, as demonstrated
by the experiment where we only focus on cube variables and set no constraint on the
number of auxiliary variables or involved key bits. Recall that our model covers all pos-
sible cubes that linearize the first round. Therefore, 32-dimensional cubes that linearize
the first round of Ketje Jr V1 do not exist.

15

When the key size of Ketje Jr V1 is reduced to 72 bits, i.e., the nonce size increases,
32-dimensional cubes can be found. Consequently, one more round can be attacked. The
32-dimensional cube used in our attack is presented in Table 12, and has 29 auxiliary
variables and 34 involved key bits. The time complexities of the 6-round attack on Ketje
Jr V1 with a 72-bit key are calculated as follows.

• Preprocessing phase: the time complexity is 234+32+2 = 268 and the memory com-
plexity is 234;

• Online phase: the time complexity is 229+32+2 = 263.

With this cube, 57 bits information of the key can be recovered. The remaining 72 −
57 = 15 key bits can be recovered by brute force. In total, the time complexity is
268 + 263 + 215 = 268.04, and the memory complexity is 234.

5.4 6-Round Attack against Ketje Jr V2 with Reduced Key Size
The experiment shows that 32-dimensional cubes of Ketje Jr V2 that linearize the first
round do not exist and the maximal dimension of such cubes is 24. When the key size of
Ketje Jr V2 is reduced to 80 bits, 32-dimensional cubes can be found using our model,
and the number of rounds attacked can be increased to 6. The 32-dimensional cube used
in our attack is presented in Table 13 which has 22 auxiliary variables and 25 involved
key bits. The time complexities of the 6-round attack on Ketje Jr V2 with an 80-bit key
are calculated as follows.

• Preprocessing phase: the time complexity is 225+32+2 = 259 and the memory com-
plexity is 225;

• Online phase: the time complexity is 222+32+2 = 256.

With this cube, 40 bits information of the key can be recovered. The remaining 80−40 =
40 key bits can be recovered by brute force. In total, the time complexity is 259+256+240 =
259.17, and the memory complexity is 225.

5.5 7-Round Attack against Ketje Sr
For Ketje Sr V1, the best 64-dimensional cube found by our model has 48 auxiliary
variables and 48 involved key bits, leading to an attack on 7 rounds of Ketje Sr V1 with
time complexity 2114, which is slightly better than the attack in [DLWQ17], but worse
than the conditional attack in [SGSL17].

For Ketje Sr V2, the 64-dimensional cube used in our attack is presented in Table 14
which has 33 auxiliary variables and 33 involved key bits. The time complexities of the
7-round attack on Ketje Sr V2 are calculated as follows.

• Preprocessing phase: the time complexity is 233+64+1 = 298 and the memory com-
plexity is 233;

• Online: the time complexity is 233+64+1 = 298.

With this cube, 60 bits information of the key can be recovered. The remaining 128 −
60 = 68 key bits can be recovered by brute force. In total, the time complexity is
298 + 298 + 268 ≈ 299, and the memory complexity is 233.

16

(a) Xoodoo-based AE

0,2

0,1

0,0

1,2

1,1

1,0

2,2

2,1

2,0

3,2

3,1

3,0

(b) Keccak-MAC-512

0,4

0,3

0,2

0,1

0,0

1,4

1,3

1,2

1,1

1,0

2,4

2,3

2,2

2,1

2,0

3,4

3,3

3,2

3,1

3,0

4,4

4,3

4,2

4,1

4,0

Figure 5: Key pack of Xoodoo in Ketje style and Keccak-MAC-512, where gray lanes are
the key, light gray lanes denote constants and white lanes are the nonce or message.

5.6 6-Round Attack against Xoodoo-based AE
Assume that the key of the Xoodoo-based AE has 128 bits and follows the Ketje’s
packing, as shown in Figure 5 (a). Since the operations θ and χ of Xoodoo are very
similar to those of Keccak-p and ρwest just reorders the state bits, the model described
in Section 4 can be adapted to Xoodoo easily.

When we only focus on cube variables, the experiment shows that 64-dimensional
cubes linearizing the first round do not exist and the maximal dimension of such cubes is
62. Therefore, we mount an attack on 6-round Xoodoo-based AE using a 32-dimensional
cube.

The 32-dimensional cube used in our attack is presented in Table 15 which has 55
auxiliary variables and 55 involved key bits. The time complexities of the 6-round attack
on the Xoodoo-based AE are calculated as follows under the assumption that the rate
is 32.

• Preprocessing phase: the time complexity is 255+32+1 = 288 and the memory com-
plexity is 255;

• Online: the time complexity is 255+32+1 = 288.

With this cube, 106 bits information of the key can be recovered. The remaining 128 −
106 = 22 key bits can be recovered by brute force. In total, the time complexity is
288 + 288 + 222 ≈ 289, and the memory complexity is 255.

Note that such cubes with dimension 64 exist for Ketje Sr but it is not the case
for Xoodoo-based AE. One reason is that Ketje Sr has a slightly larger state which
provides 16 more degrees of freedom. Another important reason lies in the differences of
the underlying permutation as follows

• Columns in Xoodoo are shorter than those in Keccak-p. Note long columns
(specifically, columns of more free bits) are advantageous to save degrees of freedom.

• The non-linear operation (S-box) is applied to every 3-bit column in Xoodoo but
to every 5-bit row in Keccak-p. More specifically, at most one bit in each column
of Xoodoo contains cube variables while at most two bits in each row of Keccak-p
contain cube variables.

Interestingly, if the non-linear operation is applied to every 4-bit row in Xoodoo (even
though such nonlinear operations on 4-bit rows are not invertible), the dimension of cubes
that linearize the first round can reach 99, allowing 64-dimensional cubes that cover one
more round. Therefore, short columns and narrow S-boxes which heavily limit the dimen-
sion of the cube are helpful for Xoodoo-based AE in resisting cube-attack-like analysis.

17

5.7 7-Round Attack against Keccak-MAC-512
The key pack of Keccak-MAC-512 is shown in Figure 5 (b). One of 64-dimensional
cubes for Keccak-MAC-512 is shown in Table 16, which has 46 auxiliary variables and
46 involved key bits. The time complexities of the 7-round attack on Keccak-MAC-512
are calculated as follows.

• Preprocessing phase: the time complexity is 246+64 = 2110 and the memory com-
plexity is 246;

• Online: the time complexity is 246+64 = 2110.

With this cube, 92 bits information of the key can be recovered. The remaining 128 −
92 = 36 key bits can be recovered by brute force. In total, the time complexity is
2110 + 2110 + 236 ≈ 2111, and the memory complexity is 246.

5.8 Experiment and Verification
In this paper, cubes are searched by feeding the generated inequalities to Gurobi Opti-
mizer [Gur18]. The running time for searching cubes varies from seconds to hours. Specif-
ically, it takes seconds on a PC to search cubes for Ketje Jr and Ketje Sr, minutes for
Xoodoo and hours for Keccak-MAC-512.

To verify the correctness of the attacks in this section, we implemented the attack on
5-round Ketje Jr V1 using the first cube whose details are displayed in Table 7. The
18 involved key bits and 17 auxiliary variables are also presented in Table 5 for better
understanding. The experiments show that the right value of the involved key bits and
the key bits in auxiliary variables can be recovered successfully2.

6 Discussion and Comparison
Our results of Section 5 are summarized in Table 1, along with a comparison with related
works. Below, the comparison will be explained in more detail.

Cube-attack-like cryptanalysis with and without MILP. In [DLWQ17], Dong et al.
studied cube-attack-like cryptanalysis of Ketje, where cubes were constructed manu-
ally. Compared with Dong et al.’s work, our automated method using MILP helps to
find better cubes and thus obtains better attacks. Moreover, using our model, it becomes
easier to carry out cube-attack-like cryptanalysis of keyed Keccak constructions or prove
that cubes of certain dimensions do not exist.

Cube-attack-like cryptanalysis and conditional cube attacks. In general, the most im-
portant factor in both types of attack is the number of degrees of freedom, i.e., message
block size or nonce size. Table 6 summarizes the numbers of degrees of freedom for keyed
Keccak construction discussed in this paper. Recall that the first round of the Keccak
permutation is linearized in both attacks, but in conditional cube attacks the propaga-
tion of some cube variables is controlled in the second round by consuming additional
degrees of freedom. If there are sufficient degrees of freedom in a keyed Keccak con-
struction, only a few conditions are required to construct conditional cubes, resulting
in a lower time complexity than cube-attack-like cryptanalysis. But on keyed Keccak
constructions with small degrees of freedom, i.e., small message block size or nonce size,
conditional cube attacks do not perform as well as cube-attack-like cryptanalysis. For
example, 16-dimensional conditional cubes do not exist for Ketje Jr [SGSL17], and thus

2The source code is available via http://team.crypto.sg/auxCube.zip.

18

http://team.crypto.sg/auxCube.zip

Table 6: Keccak-p-based constructions and their available degrees of freedom and dimensions
of cubes used in attacks. ‘Type’ refers to the attack which is more advantageous.

Ketje
Lake Keyak Major Minor Sr Jr Keccak-MAC-512

b 1600 1600 800 400 200 1600
DF 1200 1454 654 254 86 447
d 64 64 64 64 16 64
Type CC CC CC CC/CAL CAL CAL

CC Conditional cube attacks
CAL Cube-attack-like cryptanalysis

5-round attacks are impossible using conditional cube attacks, but both [DLWQ17] and
our work show that it is not the case for cube-attack-like cryptanalysis.

Apart from the number of degrees of freedom, another important factor in both attacks
is the layout of the state, especially the layout of free bits. This can be seen from the
analysis of Ketje Sr and Keccak-MAC-512. Keccak-MAC-512 has 447 degrees of
freedom which is much larger than that of Ketje Sr, but the dimension of conditional
cubes of Keccak-MAC-512 hardly reaches 64 while 64-dimensional conditional cubes of
Ketje Sr can be found easily [SGSL17]. One reason is that each column in the initial
state of Keccak-MAC-512 has only one or two free bits while in that of Ketje Sr almost
every column has at least three free bits. As discussed in Section 5.6, columns of more
free bits are beneficial to save degrees of freedom.

Very recently, Bi et al. [BDL+18] also provided an MILP model for cube-attack-like
cryptanalysis of keyed Keccak and applied it to Lake Keyak, Ketje Major, Ketje
Minor and Keccak-MAC which were also analyzed in [SGSL17]. The comparison be-
tween the results from [SGSL17] and [BDL+18] shows that for Keyak, Ketje Major and
Ketje Minor which have relatively large degrees of freedom, conditional cube attacks
outperform cube-attack-like cryptanalysis. Further, our work shows that for Ketje Sr
V2, Ketje Jr, and Keccak-MAC-512 with relatively small degrees of freedom, cube-
attack-like cryptanalysis is more efficient. To make sure we can stop at Ketje Sr safely,
we add an experiment on Ketje Minor and obtain a 7-round attack with complexity 292

by finding the cube in Table 17. This attack is better than the attack of Ketje Minor
in [BDL+18] which has a time complexity of 2113, but worse than the conditional cube
attack in [SGSL17] whose time complexity is 273.03. Therefore, we do not apply our model
to other targets with degrees of freedom larger than that of Ketje Sr, such as Ketje
Major, and Keyak.

7 Conclusion
Cube-attack-like cryptanalysis using auxiliary/dynamic variables are of special interest
since they are efficient for Keccak-p based constructions with a small message block size
or nonce size. In this paper, we proposed a new MILP model for cube-attack-like crypt-
analysis against Keccak-p based constructions, which particularly takes both auxiliary
and dynamic variables into consideration and aims to find almost optimal attacks by bal-
ancing the two phases of the cube-attack-like cryptanalysis. Under the new model, the
best 5-round attacks on Ketje Jr and 7-round attacks on Ketje Sr V2 were improved
and 6-round attacks on Ketje Jr were achieved when the key size is reduced. The ap-
plication of our model to the Xoodoo-based AE in Ketje style brought out a 6-round
attack and showed that the differences between the Keccak permutation and Xoodoo
do affect the resistance against cube-attack-like cryptanalysis. Finally, a 7-round attack
on Keccak-MAC-512 was also proposed.

19

Acknowledgements
The first author is partially supported by the Fundamental Theory and Cutting Edge
Technology Research Program of Institute of Information Engineering, CAS (Grant No.
Y7Z0341103), Youth Innovation Promotion Association CAS, the National Natural Sci-
ence Foundation of China (Grants No. 61802399, 61802400, 61732021, 61772519 and
61472415) and Chinese Major Program of National Cryptography Development Founda-
tion (Grant No. MMJJ20180102).

References
[ADMS09] Jean-Philippe Aumasson, Itai Dinur, Willi Meier, and Adi Shamir. Cube

Testers and Key Recovery Attacks On Reduced-Round MD6 and Trivium. In
Helena Handschuh, Stefan Lucks, Bart Preneel, and Phillip Rogaway, editors,
Symmetric Cryptography 2009, volume 09031 of Dagstuhl Seminar Proceed-
ings. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2009.

[BDH+17a] Guido Bertoni, Joan Daemen, Seth Hoffert, Johan De Meulder, Michaël
Peeters, Gilles Van Assche, and Ronny Van Keer. Innovations in permutation-
based crypto. 21st Workshop on Elliptic Curve Cryptography, 2017. https:
//ecc2017.cs.ru.nl/slides/ecc2017-daemen.pdf.

[BDH+17b] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Ass-
che, and Ronny Van Keer. Farfalle: parallel permutation-based cryptography.
IACR Trans. Symmetric Cryptol., 2017(4):1–38, 2017.

[BDL+18] Wenquan Bi, Xiaoyang Dong, Zheng Li, Rui Zong, and Xiaoyun Wang. Milp-
aided cube-attack-like cryptanalysis on keccak keyed modes. Designs, Codes
and Cryptography, Aug 2018.

[BDP+16a] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny
Van Keer. CAESAR submission: Ketje v2. Candidate of CAESAR Compe-
tition, September 2016.

[BDP+16b] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny
Van Keer. CAESAR submission: Keyak v2. Candidate of CAESAR Compe-
tition, September 2016.

[BDPA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Du-
plexing the Sponge: Single-Pass Authenticated Encryption and Other Appli-
cations. In Ali Miri and Serge Vaudenay, editors, SAC 2011, volume 7118 of
LNCS, pages 320–337. Springer, 2011.

[BDPV11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The
Keccak Reference. http://keccak.noekeon.org, January 2011. Version 3.0.

[BDPVA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Cryp-
tographic Sponge functions. Submission to NIST (Round 3), 2011.

[BKL+17] Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Massolino,
Florian Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe, François-
Xavier Standaert, Yosuke Todo, and Benoît Viguier. Gimli : A cross-platform
permutation. In Wieland Fischer and Naofumi Homma, editors, CHES 2017,
volume 10529 of LNCS, pages 299–320. Springer, 2017.

20

https://ecc2017.cs.ru.nl/slides/ecc2017-daemen.pdf
https://ecc2017.cs.ru.nl/slides/ecc2017-daemen.pdf
http://keccak.noekeon.org

[CFG+18] Colin Chaigneau, Thomas Fuhr, Henri Gilbert, Jian Guo, Jérémy Jean, Jean-
René Reinhard, and Ling Song. Key-recovery attacks on full kravatte. IACR
Trans. Symmetric Cryptol., 2018(1):5–28, 2018.

[DDS12] Itai Dinur, Orr Dunkelman, and Adi Shamir. New Attacks on Keccak-224
and Keccak-256. In Anne Canteaut, editor, FSE 2012, volume 7549 of LNCS,
pages 442–461. Springer, 2012.

[DDS13] Itai Dinur, Orr Dunkelman, and Adi Shamir. Collision Attacks on Up to 5
Rounds of SHA-3 Using Generalized Internal Differentials. In Shiho Moriai,
editor, FSE 2013, volume 8424 of LNCS, pages 219–240. Springer, 2013.

[DHAK18] Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer. Xoodoo
cookbook. Cryptology ePrint Archive: Report 2018/767, 2018. https://
eprint.iacr.org/2018/767.

[DLWQ17] Xiaoyang Dong, Zheng Li, Xiaoyun Wang, and Ling Qin. Cube-like Attack on
Round-Reduced Initialization of Ketje Sr. IACR Trans. Symmetric Cryptol.,
2017(1):259–280, 2017.

[DMP+15] Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal
Straus. Cube Attacks and Cube-Attack-Like Cryptanalysis on the Round-
Reduced Keccak Sponge Function. In Elisabeth Oswald and Marc Fischlin,
editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 733–761.
Springer, 2015.

[DS09] Itai Dinur and Adi Shamir. Cube Attacks on Tweakable Black Box Polyno-
mials. In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS,
pages 278–299. Springer, 2009.

[DS11] Itai Dinur and Adi Shamir. Breaking Grain-128 with Dynamic Cube Attacks.
In Antoine Joux, editor, FSE 2011, volume 6733 of LNCS, pages 167–187.
Springer, 2011.

[FNR18] Thomas Fuhr, María Naya-Plasencia, and Yann Rotella. State-recovery at-
tacks on modified ketje jr. IACR Trans. Symmetric Cryptol., 2018(1):29–56,
2018.

[GLS16] Jian Guo, Meicheng Liu, and Ling Song. Linear Structures: Applications to
Cryptanalysis of Round-Reduced Keccak. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages
249–274, 2016.

[Gur18] Gurobi. Gurobi. http://www.gurobi.com/, 2018.

[HWX+17] Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan
Zhao. Conditional Cube Attack on Reduced-Round Keccak Sponge Function.
In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT
2017, Part II, volume 10211 of LNCS, pages 259–288, 2017.

[LBDW17] Zheng Li, Wenquan Bi, Xiaoyang Dong, and Xiaoyun Wang. Improved Con-
ditional Cube Attacks on Keccak Keyed Modes with MILP Method. In
Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I,
volume 10624 of LNCS, pages 99–127. Springer, 2017.

[MS13] Pawel Morawiecki and Marian Srebrny. A SAT-based preimage analysis of
reduced Keccak hash functions. Inf. Process. Lett., 113(10-11):392–397, 2013.

21

https://eprint.iacr.org/2018/767
https://eprint.iacr.org/2018/767
http://www.gurobi.com/

[MWGP11] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential
and Linear Cryptanalysis Using Mixed-Integer Linear Programming. In
Chuankun Wu, Moti Yung, and Dongdai Lin, editors, Inscrypt 2011, volume
7537 of LNCS, pages 57–76. Springer, 2011.

[NRM11] María Naya-Plasencia, Andrea Röck, and Willi Meier. Practical Analysis
of Reduced-Round Keccak. In Daniel J. Bernstein and Sanjit Chatterjee,
editors, INDOCRYPT 2011, volume 7107 of LNCS, pages 236–254. Springer,
2011.

[QSLG17] Kexin Qiao, Ling Song, Meicheng Liu, and Jian Guo. New Collision At-
tacks on Round-Reduced Keccak. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, EUROCRYPT 2017 Part III, volume 10212 of LNCS, pages
216–243, 2017.

[SGSL17] Ling Song, Jian Guo, Danping Shi, and San Ling. New MILP Modeling: Im-
proved Conditional Cube Attacks on Keccak-based Constructions. to appear
in ASIACRYPT 2018, Cryptology ePrint Archive, Report 2017/1030, 2017.
https://eprint.iacr.org/2017/1030.

[SHW+14] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song.
Automatic Security Evaluation and (Related-key) Differential Characteris-
tic Search: Application to SIMON, PRESENT, LBlock, DES(L) and Other
Bit-Oriented Block Ciphers. In Palash Sarkar and Tetsu Iwata, editors, ASI-
ACRYPT 2014, Part I, volume 8873 of LNCS, pages 158–178. Springer, 2014.

[SLG17] Ling Song, Guohong Liao, and Jian Guo. Non-full Sbox Linearization: Ap-
plications to Collision Attacks on Round-Reduced Keccak. In Jonathan Katz
and Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS,
pages 428–451. Springer, 2017.

[ST17] Yu Sasaki and Yosuke Todo. New Algorithm for Modeling S-box in MILP
Based Differential and Division Trail Search. In Pooya Farshim and Emil
Simion, editors, SecITC 2017, volume 10543 of LNCS, pages 150–165.
Springer, 2017.

[The15] The U.S. National Institute of Standards and Technology. SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions . Federal Infor-
mation Processing Standard, FIPS 202, 5th August 2015.

[The16] The U.S. National Institute of Standards and Technology. SHA-3 Derived
Functions: cSHAKE, KMAC, TupleHash and ParallelHash. NIST Special
Publication 800-185, 21st December 2016.

A Appendix

22

https://eprint.iacr.org/2017/1030

Table 7: The first two 16-dimensional cubes for Ketje Jr V1, where the corresponding (na, ni)
are (17, 18) and (21, 22), and (n′

a, n′
i) are (17, 18) and (9, 14), respectively. The accumulated

numbers of key bits recovered are 35 and 57.
Cube variables

a[1][3][1] = a[1][4][1] = v0, a[1][3][4] = a[1][4][4] = v1a[4][2][0] = v2, a[4][3][0] = v3,

a[4][4][0] = v2 + v3, a[4][2][1] = v4, a[4][3][1] = v5, a[4][4][1] = v4 + v5, a[4][2][2] = v6,

a[4][3][2] = v7, a[4][4][2] = v6 + v7, a[4][2][3] = v8, a[4][3][3] = v9, a[4][4][3] = v8 + v9,

a[4][2][4] = v10, a[4][3][4] = v11, a[4][4][4] = v10 + v11, a[4][2][5] = v12, a[4][3][5] = v13,

a[4][4][5] = v12 + v13, a[4][2][6] = a[4][3][6] = v14, a[4][2][7] = a[4][3][7] = v15.

Auxiliary variables

a[1][3][0] = k0 + k40 + k80, a[1][3][1] = k1 + k41 + k81 + v1, a[1][4][7] = k7 + k47 + k87,

a[2][3][1] = k9 + k49 + k89, a[2][3][2] = k10 + k50 + k90, a[2][4][3] = k11 + k51 + k91,

a[4][2][0] = k24 + k64 + v2, a[4][2][1] = k25 + k65 + v4, a[4][3][2] = k26 + k66 + v7,

a[1][4][4] = k4 + k44 + k84 + v0, a[1][3][6] = k6 + k46 + k86, a[2][3][0] = k8 + k48 + k88,

a[2][3][6] = k14 + k54 + k94, a[3][4][0] = k16 + k56, a[3][4][3] = k19 + k59,

a[4][2][5] = k29 + k69 + v12, a[4][2][7] = k31 + k71 + v15.

Involved key bits

k57, k58, k59, k56, k62, k8 + k23 + k63, k2 + k27 + k42 + k67 + k82, k2 + k27 + k42 + k67 + k82

+ k75, k15 + k30 + k55 + k70 + k95, k15 + k30 + k55 + k70 + k95 + k63, k12 + k27 + k52 + k67

+ k92, k12 + k27 + k52 + k67 + k92 + k60, k13 + k28 + k53 + k68 + k93, k13 + k28 + k53 + k68

+ k93 + k61, k5 + k30 + k45 + k70 + k85, k5 + k30 + k45 + k70 + k85 + k78, k3 + k28 + k43

+ k68 + k83, k5 + k13 + k20 + k45 + k60 + k85.

Cube variables

a[0][3][5] = a[0][4][5] = v0, a[2][3][4] = a[2][4][4] = v1, a[2][3][5] = a[2][4][5] = v2,

a[4][2][0] = v3, a[4][3][0] = v4, a[4][4][0] = v3 + v4, a[4][2][1] = v5, a[4][3][1] = v6,

a[4][4][1] = v5 + v6, a[4][2][2] = v7, a[4][3][2] = v8, a[4][4][2] = v7 + v8, a[4][2][3] = v9,

a[4][3][3] = v10, a[4][4][3] = v9 + v10, a[4][2][4] = v11, a[4][3][4] = v12, a[4][4][4] = v11 + v12,

a[4][2][5] = v13, a[4][3][5] = v14, a[4][4][5] = v13 + v14, a[4][2][6] = a[4][3][6] = v15.

Auxiliary variables

a[0][4][4] = k36 + k76, a[0][3][5] = k37 + k77 + v0, a[1][4][0] = k0 + k40 + k80,

a[1][3][1] = k1 + k41 + k81, a[1][3][2] = k2 + k42 + k82, a[1][4][5] = k5 + k45 + k85,

a[1][4][6] = k6 + k46 + k86, a[1][3][7] = k7 + k47 + k87, a[2][4][1] = k9 + k49 + k89,

a[2][4][2] = k10 + k50 + k90, a[2][4][3] = k11 + k51 + k91, a[2][4][4] = k12 + k52 + k92 + v1,

a[4][2][0] = k24 + k64 + v3, a[4][3][1] = k25 + k65 + v6, a[4][4][2] = k26 + k66 + v7 + v8,

a[4][4][3] = k27 + k67 + v9 + v10, a[4][2][6] = k30 + k70 + v15, a[4][3][7] = k31 + k71.

Involved key bits

k60, k59, k57, k58, k23 + k38 + k63 + k78, k23 + k38 + k63 + k78 + k31 + k71, k15 + k55 + k95

k3 + k28 + k68 + k43 + k83, k3 + k28 + k68 + k43 + k83 + k36 + k76, k8 + k48 + k88,

k8 + k48 + k88 + k56, k8 + k48 + k88 + k33 + k73 + k81, k13 + k53 + k93 + k28 + k68,

k13 + k53 + k93 + k28 + k68 + k21, k13 + k53 + k93 + k28 + k68 + k61,

k14 + k54 + k94 + k29 + k69, k14 + k54 + k94 + k29 + k69 + k22,

k14 + k54 + k94 + k29 + k69 + k62, k34 + k74 + k82, k6 + k13 + k38 + k53 + k78 + k93.

23

Table 8: The third 16-dimensional cubes for Ketje Jr V1, where the corresponding (na, ni) is
(26, 27) and (n′

a, n′
i) is (4, 16). The accumulated number of key bits recovered is 74.

Cube variables

a[0][3][0] = a[0][4][0] = v0, a[0][3][3] = a[0][4][3] = v1, a[0][3][4] = a[0][4][4] = v2,

a[0][3][5] = a[0][4][5] = v3, a[0][3][6] = a[0][4][6] = v4, a[0][3][7] = a[0][4][7] = v5,

a[1][3][0] = a[1][4][0] = v6, a[1][3][1] = a[1][4][1] = v7, a[2][3][3] = a[2][4][3] = v8,

a[2][3][4] = a[2][4][4] = v9, a[2][3][5] = a[2][4][5] = v10, a[2][3][6] = a[2][4][6] = v11,

a[2][3][7] = a[2][4][7] = v12, a[3][3][0] = a[3][4][0] = v13, a[3][3][1] = a[3][4][1] = v14.

a[3][3][7] = a[3][4][7] = v15.

Auxiliary variables

a[0][3][0] = k32 + k72 + v0, a[0][4][1] = k33 + k73, a[0][3][3] = k35 + k75 + v1,

a[0][3][4] = k36 + k76 + v2, a[0][3][5] = k37 + k77 + v3, a[0][4][6] = k38 + k78 + v4,

a[0][3][7] = k39 + k79 + v5, a[1][3][0] = k0 + k40 + k80 + v6, a[1][3][1] = k1 + k41 + k81 + v7,

a[1][3][2] = k2 + k42 + k82, a[2][4][2] = k10 + k50 + k90, a[2][4][3] = k11 + k51 + k91 + v8,

a[2][4][4] = k12 + k52 + k92 + v9, a[2][4][5] = k13 + k53 + k93 + v10, a[4][4][5] = k29 + k69

a[2][4][6] = k14 + k54 + k94 + v11, a[3][3][0] = k16 + k56 + v13, a[3][3][1] = k17 + k57 + v14,

a[3][3][2] = k18 + k58, a[3][3][5] = k21 + k61, a[3][3][6] = k22 + k62, a[3][3][7] = k23 + k63 + v15,

a[4][4][1] = k25 + k65, a[4][4][2] = k26 + k66, a[4][2][3] = k27 + k67, a[4][3][4] = k28 + k68.

Involved key bits

k30, k29, k22, k21, k7, k4, k6, k5, k74, k75, k20, k89, k90, k84, k83,

k3 + k43 + k83 + k91, k15 + k55 + k95 + k0, k15 + k55 + k95 + k80,

k15 + k55 + k95 + k23 + k30 + k70, k4 + k12 + k19 + k44 + k59 + k84,

k9 + k49 + k89 + k34 + k74, k9 + k49 + k89 + k34 + k74 + k82, k20 + k28 + k60,

k5 + k13 + k20 + k45 + k60 + k85, k8 + k48 + k88 + k1, k8 + k48 + k88 + k81,

k8 + k48 + k88 + k71 + k16 + k31.

Table 9: Inequalities describing the column parity if the whole column can be placed with cube
variables.

−D[x][z] − G[x][z] ≥ −1,

−A[x][0][z] + D[x][z] + G[x][z] ≥ 0,

−A[x][1][z] + D[x][z] + G[x][z] ≥ 0,

−A[x][2][z] + D[x][z] + G[x][z] ≥ 0,

−A[x][3][z] + D[x][z] + G[x][z] ≥ 0,

−A[x][4][z] + D[x][z] + G[x][z] ≥ 0,

A[x][0][z] + A[x][1][z] + A[x][2][z] + A[x][3][z] + A[x][4][z] − 2D[x][z] − G[x][z] ≥ 0.

24

Table 10: The first two 16-dimensional cubes for Ketje Jr V2, where the corresponding (na, ni)
are (15, 14) and (15, 18), and (n′

a, n′
i) are (15, 14) and (9, 13), respectively. The accumulated

numbers of key bits recovered are 29 and 47.
Cube variables

a[0][1][0] = v0, a[0][3][0] = v1, a[0][4][0] = v0 + v1, a[0][1][1] = v2, a[0][3][1] = v3,

a[0][4][1] = v2 + v3, a[0][1][2] = v4, a[0][3][2] = v5, a[0][4][2] = v4 + v5, a[0][1][3] = v6,

a[0][3][3] = v7, a[0][4][3] = v6 + v7, a[0][1][4] = v8, a[0][3][4] = v9, a[0][4][4] = v8 + v9,

a[0][1][5] = v10, a[0][3][5] = v11, a[0][4][5] = v10 + v11, a[0][1][6] = v12, a[0][3][6] = v13,

a[0][4][6] = v12 + v13, a[0][1][7] = v14, a[0][3][7] = v15, a[0][4][7] = v14 + v15.

Auxiliary variables

a[0][4][3] = k51 + v6 + v7, a[0][4][4] = k52 + v8 + v9, a[0][4][5] = k53 + v10 + v11,

a[0][4][6] = k54 + v12 + v13, a[0][4][7] = k55 + v14 + v15, a[2][3][2] = k10 + k66 + k82,

a[2][3][3] = k11 + k67 + k83, a[2][3][4] = k12 + k68 + k84, a[2][3][5] = k13 + k69 + k85,

a[2][3][6] = k14 + k70 + k86, a[3][4][0] = k16 + k32 + k88, a[3][4][4] = k20 + k36 + k92,

a[3][4][5] = k21 + k37 + k93, a[3][4][6] = k22 + k38 + k94, a[3][4][7] = k23 + k39 + k95.

Involved key bits

k75, k76, k77, k78, k79, k8 + k49 + k64 + k80, k8 + k49 + k64 + k73 + k80, k9 + k50 + k65 + k81,

k9 + k50 + k65 + k74 + k81, k15 + k48 + k71 + k87, k15 + k48 + k71 + k72 + k87,

k17 + k33 + k48 + k89, k18 + k34 + k49 + k90, k19 + k35 + k50 + k91.

Cube variables

a[2][0][0] = a[2][3][0] = v0, a[2][0][1] = a[2][3][1] = v1, a[2][0][2] = a[2][3][2] = v2,

a[2][0][3] = a[2][3][3] = v3, a[2][0][4] = a[2][3][4] = v4, a[2][0][5] = a[2][3][5] = v5,

a[2][0][6] = a[2][3][6] = v6, a[2][0][7] = a[2][3][7] = v7, a[4][0][0] = a[4][2][0] = v8,

a[4][0][1] = a[4][2][1] = v9, a[4][0][2] = a[4][2][2] = v10, a[4][0][3] = a[4][2][3] = v11,

a[4][0][4] = a[4][2][4] = v12, a[4][0][5] = a[4][2][5] = v13, a[4][0][6] = a[4][2][6] = v14,

a[4][0][7] = a[4][2][7] = v15.

Auxiliary variables

a[0][1][2] = k50, a[0][4][6] = k54, a[0][4][7] = k55, a[1][2][5] = k5 + k61 + k77,

a[1][4][0] = k0 + k56 + k72, a[1][4][3] = k3 + k59 + k75, a[2][3][1] = k9 + k65 + k81 + v1,

a[2][3][2] = k10 + k66 + k82 + v2, a[2][3][5] = k13 + k69 + k85 + v5,

a[2][3][6] = k14 + k70 + k86 + v6, a[4][2][0] = k24 + k40 + v8, a[4][2][1] = k25 + k41 + v9,

a[4][2][4] = k28 + k44 + v12, a[4][2][5] = k29 + k45 + v13, a[4][2][6] = k30 + k46 + v14.

Involved key bits

k51, k0 + k15 + k48 + k56 + k71 + k72 + k87, k1 + k26 + k42 + k57 + k73,

k1 + k26 + k42 + k57 + k73 + k50, k2 + k27 + k43 + k58 + k74, k3 + k51 + k59 + k75,

k4 + k60 + k76, k5 + k12 + k53 + k61 + k68 + k77 + k84, k6 + k31 + k47 + k62 + k78,

k7 + k63 + k79, k8 + k64 + k80 + k49, k8 + k64 + k80 + k31 + k47,

k11 + k67 + k83 + k52, k11 + k67 + k83 + k26 + k42, k12 + k68 + k84 + k53,

k12 + k68 + k84 + k27 + k43, k15 + k71 + k87, k15 + k71 + k87 + k48.

25

Table 11: The third 16-dimensional cubes for Ketje Jr V2, where the corresponding (na, ni) is
(26, 32) and (n′

a, n′
i) is (1, 15). The accumulated number of key bits recovered is 63.

Cube variables

a[0][1][0] = v0, a[0][3][0] = v1, a[0][4][0] = v0 + v1, a[0][1][1] = v2, a[0][3][1] = v3,

a[0][4][1] = v2 + v3, a[0][1][2] = v4, a[0][3][2] = v5, a[0][4][2] = v4 + v5, a[0][1][3] = v6,

a[0][3][3] = v7, a[0][4][3] = v6 + v7, a[0][1][4] = v8, a[0][3][4] = v9, a[0][4][4] = v8 + v9,

a[0][1][5] = v10, a[0][3][5] = v11, a[0][4][5] = v10 + v11, a[0][3][6] = a[0][4][6] = v12,

a[0][3][7] = a[0][4][7] = v13, a[1][2][0] = v14, a[4][0][7] = v15.

Auxiliary variables

a[0][3][0] = k48 + v1, a[0][3][2] = k50 + v5, a[0][3][5] = k53 + v11, a[0][4][1] = k49 + v2 + v3,

a[0][4][3] = k51 + v6 + v7, a[0][4][4] = k52 + v8 + v9, a[0][4][6] = k54 + v12,

a[0][4][7] = k55 + v13, a[1][2][0] = k0 + k56 + k72 + v14, a[2][0][2] = k10 + k66 + k82,

a[2][0][3] = k11 + k67 + k83, a[2][0][4] = k12 + k68 + k84, a[2][0][5] = k13 + k69 + k85,

a[2][3][0] = k8 + k64 + k80, a[2][3][1] = k9 + k65 + k81, a[2][3][6] = k14 + k70 + k86,

a[2][3][7] = k15 + k71 + k87, a[3][1][2] = k18 + k34 + k90, a[3][1][3] = k19 + k35 + k91,

a[3][1][6] = k22 + k38 + k94, a[3][1][7] = k23 + k39 + k95, a[3][4][0] = k16 + k32 + k88,

a[3][4][4] = k20 + k36 + k92, a[3][4][5] = k21 + k37 + k93, a[4][0][7] = k31 + k47 + v15,

a[4][2][1] = k25 + k41.

Involved key bits

k3, k5, k7, k27, k31, k40, k46, k56, k61, k63, k72, k73, k74, k75, k76, k77, k78, k79,

k1 + k57 + k73, k1 + k57 + k73 + k9 + k65 + k81, k2 + k10 + k17 + k33 + k58 + k74 + k89,

k3 + k59 + k75, k3 + k59 + k75 + k83, k5 + k30 + k46 + k61 + k77, k7 + k63 + k71 + k79,

k17 + k33 + k89, k17 + k33 + k89 + k25, k17 + k33 + k89 + k25 + k41, k22 + k29 + k45,

k23 + k30 + k39 + k46 + k95, k24 + k33 + k40, k28 + k44 + k93, k30 + k46.

26

Table 12: A 32-dimensional cube for Ketje Jr V1 with 72-bit keys, where (na, ni) = (29, 34).
In total, there are 57 bits key information involved in both auxiliary variables and involved key
bits.

Cube varaibles

a[1][2][0] = v0, a[1][3][0] = v1, a[1][4][0] = v0 + v1, a[1][2][1] = v2, a[1][3][1] = v3,

a[1][4][1] = v2 + v3, a[1][2][2] = v4, a[1][3][2] = v5, a[1][4][2] = v4 + v5, a[1][2][3] = v6,

a[1][3][3] = v7, a[1][4][3] = v6 + v7, a[1][2][4] = v8, a[1][3][4] = v9, a[1][4][4] = v8 + v9,

a[1][2][5] = v10, a[1][3][5] = v11, a[1][4][5] = v10 + v11, a[1][2][6] = v12, a[1][3][6] = v13,

a[1][4][6] = v12 + v13, a[1][2][7] = v14, a[1][3][7] = v15, a[1][4][7] = v14 + v15,

a[3][3][0] = a[3][4][0] = v16, a[3][2][7] = v17, a[3][3][7] = v18, a[3][4][7] = v17 + v18,

a[4][2][0] = a[4][4][0] = v19, a[4][2][1] = v20, a[4][3][1] = v21, a[4][4][1] = v20 + v21,

a[4][2][2] = v22, a[4][3][2] = v23, a[4][4][2] = v22 + v23, a[4][2][3] = v24, a[4][3][3] = v25,

a[4][4][3] = v24 + v25, a[4][2][4] = v26, a[4][3][4] = v27, a[4][4][4] = v26 + v27, a[4][2][5] = v28,

a[4][3][5] = v29, a[4][4][5] = v28 + v29, a[4][2][6] = a[4][3][6] = v30, a[4][2][7] = a[4][3][7] = v31.

Auxiliary variables

a[0][3][3] = k35, a[3][4][5] = k21 + k61, a[2][2][0] = k8 + k48, a[2][2][2] = k10 + k50,

a[2][4][4] = k12 + k52, a[0][4][5] = k37, a[2][4][1] = k9 + k49, a[2][2][3] = k11 + k51,

a[2][2][5] = k13 + k53, a[2][2][6] = k14 + k54, a[3][4][1] = k17 + k57, a[3][4][2] = k18 + k58,

a[3][4][3] = k19 + k59, a[3][2][4] = k20 + k60, a[3][4][6] = k22 + k62, a[1][2][1] = k1 + k41 + v2,

a[1][4][0] = k0 + k40 + v0 + v1, a[1][2][3] = k3 + k43 + v6, a[1][4][5] = k5 + k45 + v10 + v11,

a[1][3][6] = k6 + k46 + v13, a[1][4][7] = k7 + k47 + v14 + v15, a[4][2][0] = k24 + k64 + v19,

a[3][4][7] = k23 + k63 + v17 + v18, a[4][3][1] = k25 + k65 + v21, a[4][3][5] = k29 + k69 + v29,

a[4][4][2] = k26 + k66 + v22 + v23, a[4][4][4] = k28 + k68 + v26 + v27,

a[4][2][6] = k30 + k70 + v30, a[4][3][7] = k31 + k71 + v31.

Involved key bits

k8, k11, k13, k14, k15, k28, k32, k33, k34, k36, k38, k39, k56, k57, k58, k59, k61,

k62, k16 + k56, k16 + k56 + k39, k16 + k56 + k9, k16 + k56 + k9 + k49, k4 + k37 + k44,

k2 + k42, k2 + k42 + k10, k2 + k42 + k50, k2 + k42 + k10 + k50, k2 + k42 + k27 + k67,

k2 + k42 + k27 + k67 + k35, k27 + k67, k27 + k67 + k60, k27 + k67 + k60 + k20,

k4 + k44, k4 + k44 + k12, k4 + k44 + k12 + k52, k29 + k36, k15 + k55 + k63.

27

Table 13: A 32-dimensional cube for Ketje Jr V2 with 80-bit keys, where (na, ni) = (22, 25).
In total, there are 40 bits key information involved in both auxiliary variables and involved key
bits.

Cube varaibles

a[0][1][0] = v0, a[0][1][1] = v2, a[0][1][2] = v4, a[0][1][3] = v6,

a[0][3][0] = v1, a[0][3][1] = v3, a[0][3][2] = v5, a[0][3][3] = v7,

a[0][4][0] = v0 + v1, a[0][4][1] = v2 + v3, a[0][4][2] = v4 + v5, a[0][4][3] = v6 + v7,

a[0][1][4] = v8, a[0][1][5] = v10, a[0][1][6] = v12, a[0][1][7] = v14,

a[0][3][4] = v9, a[0][3][5] = v11, a[0][3][6] = v13, a[0][3][7] = v15,

a[0][4][4] = v8 + v9, a[0][4][5] = v10 + v11, a[0][4][6] = v12 + v13, a[0][4][7] = v14 + v15,

a[3][1][0] = v16, a[3][1][1] = v18, a[3][1][2] = v20, a[3][1][3] = v22,

a[3][2][0] = v17, a[3][2][1] = v19, a[3][2][2] = v21, a[3][2][3] = v23,

a[3][4][0] = v16 + v17, a[3][4][1] = v18 + v19, a[3][4][2] = v20 + v21, a[3][4][3] = v22 + v23,

a[3][1][4] = v24, a[3][1][5] = v26, a[3][1][6] = v28, a[3][1][7] = v30,

a[3][2][4] = v25, a[3][2][5] = v27, a[3][2][6] = v29, a[3][2][7] = v31,

a[3][4][4] = v24 + v25, a[3][4][5] = v26 + v27, a[3][4][6] = v28 + v29, a[3][4][7] = v30 + v31.

Auxiliary variables

a[0][1][1] = k49 + v2, a[0][3][7] = k55 + v15, a[0][4][4] = k52 + v8 + v9,

a[0][1][3] = k51 + v6, a[0][3][2] = k50 + v5, a[0][4][0] = k48 + v0 + v1, a[0][1][6] = k54 + v12,

a[1][2][0] = k0 + k56 + k72, a[1][2][1] = k1 + k57 + k73, a[1][2][2] = k2 + k58 + k74,

a[1][2][6] = k6 + k62 + k78, a[1][2][7] = k7 + k63 + k79, a[1][4][4] = k4 + k60 + k76,

a[3][1][0] = k16 + k32 + v16, a[3][1][4] = k20 + k36 + v24, a[3][1][7] = k23 + k39 + v30,

a[3][2][1] = k17 + k33 + v19, a[3][2][2] = k18 + k34 + v21, a[3][2][5] = k21 + k37 + v27,

a[3][4][3] = k19 + k35 + v22 + v23, a[0][4][5] = k53 + v10 + v11, a[2][3][5] = k13 + k69.

Involved key bits

k78, k10 + k66, k10 + k66 + k75, k3 + k59 + k75, k9 + k65, k9 + k65 + k74,

k9 + k65 + k74 + k2 + k58, k15 + k71, k15 + k71 + k72, k15 + k71 + k72 + k0 + k56,

k14 + k70, k14 + k70 + k79, k14 + k70 + k79 + k7 + k63, k11 + k67, k11 + k67 + k76,

k11 + k67 + k76 + k60 + k4, k12 + k68, k12 + k68 + k77, k8 + k64, k8 + k64 + k73,

k8 + k64 + k73 + k57 + k1, k5 + k61 + k77, k5 + k61 + k77 + k13 + k69, k22 + k38,

k6 + k54 + k62 + k78.

28

Table 14: A 64-dimensional cube for Ketje Sr V2, where (na, ni) = (33, 33). In total, there
are 60 bits key information involved in both auxiliary variables and involved key bits.

Cube varaibles

a[0][1][0] = v0, a[0][1][8] = v16, a[3][1][0] = v32, a[3][1][8] = v48,

a[0][3][0] = v1, a[0][3][8] = v17, a[3][2][0] = v33, a[3][2][8] = v49,

a[0][4][0] = v0 + v1, a[0][4][8] = v16 + v17, a[3][4][0] = v32 + v33, a[3][4][8] = v48 + v49,

a[0][1][1] = v2, a[0][1][9] = v18, a[3][1][1] = v34, a[3][1][9] = v50,

a[0][3][1] = v3, a[0][3][9] = v19, a[3][2][1] = v35, a[3][2][9] = v51,

a[0][4][1] = v2 + v3, a[0][4][9] = v18 + v19, a[3][4][1] = v34 + v35, a[3][4][9] = v50 + v51,

a[0][1][2] = v4, a[0][1][10] = v20, a[3][1][2] = v36, a[3][1][10] = v52,

a[0][3][2] = v5, a[0][3][10] = v21, a[3][2][2] = v37, a[3][2][10] = v53,

a[0][4][2] = v4 + v5, a[0][4][10] = v20 + v21, a[3][4][2] = v36 + v37, a[3][4][10] = v52 + v53,

a[0][1][3] = v6, a[0][1][11] = v22, a[3][1][3] = v38, a[3][1][11] = v54,

a[0][3][3] = v7, a[0][3][11] = v23, a[3][2][3] = v39, a[3][2][11] = v55,

a[0][4][3] = v6 + v7, a[0][4][11] = v22 + v23, a[3][4][3] = v38 + v39, a[3][4][11] = v54 + v55,

a[0][1][4] = v8, a[0][1][12] = v24, a[3][1][4] = v40, a[3][1][12] = v56,

a[0][3][4] = v9, a[0][3][12] = v25, a[3][2][4] = v41, a[3][2][12] = v57,

a[0][4][4] = v8 + v9, a[0][4][12] = v24 + v25, a[3][4][4] = v40 + v41, a[3][4][12] = v56 + v57,

a[0][1][5] = v10, a[0][1][13] = v26, a[3][1][5] = v42, a[3][1][13] = v58,

a[0][3][5] = v11, a[0][3][13] = v27, a[3][2][5] = v43, a[3][2][13] = v59,

a[0][4][5] = v10 + v11, a[0][4][13] = v26 + v27, a[3][4][5] = v42 + v43, a[3][4][13] = v58 + v59,

a[0][1][6] = v12, a[0][1][14] = v28, a[3][1][6] = v44, a[3][1][14] = v60,

a[0][3][6] = v13, a[0][3][14] = v29, a[3][2][6] = v45, a[3][2][14] = v61,

a[0][4][6] = v12 + v13, a[0][4][14] = v28 + v29, a[3][4][6] = v44 + v45, a[3][4][14] = v60 + v61,

a[0][1][7] = v14, a[0][1][15] = v30, a[3][1][7] = v46, a[3][1][15] = v62,

a[0][3][7] = v15, a[0][3][15] = v31, a[3][2][7] = v47, a[3][2][15] = v63,

a[0][4][7] = v14 + v15, a[0][4][15] = v30 + v31, a[3][4][7] = v46 + v47, a[3][4][15] = v62 + v63.

Auxiliary variables

a[0][1][2] = k106 + v4, a[0][1][5] = k109 + v10, a[0][1][8] = k0 + k112 + v16, a[0][1][12] = k4+
k116 + v24, a[0][1][14] = k6 + k118 + v28, a[0][1][15] = k7 + k119 + v30, a[0][3][3] = k107+
v7, a[0][3][7] = k111 + v15, a[0][3][9] = k1 + k113 + v19, a[0][3][10] = k2 + k114 + v21,

a[0][4][4] = k108 + v8 + v9, a[0][4][11] = k3 + k115 + v22 + v23, a[1][0][0] = k8 + k120,

a[1][0][1] = k9 + k121, a[1][0][5] = k13 + k125, a[1][0][6] = k14 + k126, a[1][2][7] = k15 + k127,

a[1][4][4] = k12 + k124, a[2][4][1] = k25, a[2][4][7] = k31, a[2][4][13] = k37, a[3][1][4] = k44 + k76

+ v40, a[3][1][5] = k45 + k77 + v42, a[3][1][6] = k46 + k78 + v44, a[3][1][15] = k55 + k87+
v62, a[3][2][8] = k48 + k80 + v49, a[3][2][9] = k49 + k81 + v51, a[3][2][11] = k51 + k83+
v55, a[3][2][12] = k52 + k84 + v57, a[3][4][0] = k40 + k72 + v32 + v33, a[3][4][3] = k43+
k75 + v38 + v39, a[3][4][10] = k50 + k82 + v52 + v53, a[3][4][13] = k53 + k85 + v58 + v59.

Involved key bits

k17, k18, k19, k20, k21, k22, k26, k27, k28, k30, k32, k33, k34, k35, k38,

k5 + k36 + k117, k5 + k54 + k86 + k117, k8 + k39 + k104 + k120, k9 + k24 + k105 + k121,

k10 + k41 + k73 + k122, k11 + k42 + k74 + k123, k12 + k27 + k124, k13 + k28 + k125,

k14 + k29 + k110 + k126, k15 + k30 + k127, k16 + k47 + k79, k24 + k105, k29 + k110,

k39 + k104, k41 + k73 + k104, k42 + k74 + k105, k47 + k79 + k110, k23 + k54 + k86.

29

Table 15: A 32-dimensional cube for the Xoodoo AE, where (na, ni) = (55, 55). In total, there
are 106 bits key information involved in both auxiliary variables and involved key bits.

Cube varaibles

a[0][1][24] = a[0][2][24] = v0, a[1][1][1] = a[1][2][1] = v1, a[1][1][2] = a[1][2][2] = v2,

a[1][1][3] = a[1][2][3] = v3, a[1][1][5] = a[1][2][5] = v4, a[1][1][10] = a[1][2][10] = v5,

a[1][1][14] = a[1][2][14] = v6, a[1][1][15] = a[1][2][15] = v7, a[1][1][16] = a[1][2][16] = v8,

a[1][1][17] = a[1][2][17] = v9, a[2][1][0] = v10, a[2][2][0] = v11, a[2][1][9] = v12, a[2][2][9] = v13,

a[3][1][0] = a[3][2][0] = v14, a[3][1][2] = a[3][2][2] = v15, a[3][1][4] = a[3][2][4] = v16,

a[3][1][5] = a[3][2][5] = v17, a[3][1][6] = a[3][2][6] = v18, a[3][1][7] = a[3][2][7] = v19,

a[3][1][9] = a[3][2][9] = v20, a[3][1][11] = a[3][2][11] = v21, a[3][1][13] = a[3][2][13] = v22,

a[3][1][14] = a[3][2][14] = v23, a[3][1][15] = a[3][2][15] = v24, a[3][1][16] = a[3][2][16] = v25,

a[3][1][17] = a[3][2][17] = v26, a[3][1][18] = a[3][2][18] = v27, a[3][1][23] = a[3][2][23] = v28,

a[3][1][24] = a[3][2][24] = v29, a[3][1][25] = a[3][2][25] = v30, a[3][1][27] = a[3][2][27] = v31.

Auxiliary variables

a[0][1][31] = k23, a[0][2][6] = k126, a[0][2][8] = k0, a[0][2][15] = k7, a[0][2][29] = k21,

a[1][1][1] = k25 + v1, a[1][1][2] = k26 + v2, a[1][1][6] = k30, a[1][1][9] = k33, a[1][1][12] = k36,

a[1][1][14] = k38 + v6, a[1][1][15] = k39 + v7, a[1][1][18] = k42, a[1][1][19] = k43,

a[1][1][21] = k45, a[1][1][22] = k46, a[1][1][24] = k48, a[1][1][26] = k50, a[1][1][29] = k53,

a[1][2][0] = k24, a[1][2][3] = k27 + v3, a[1][2][4] = k28, a[1][2][8] = k32, a[1][2][10] = k34 + v5,

a[1][2][11] = k35, a[1][2][17] = k41 + v9, a[1][2][20] = k44, a[1][2][23] = k47, a[1][2][30] = k54,

a[1][2][31] = k55, a[2][1][7] = k63, a[2][2][12] = k68, a[2][2][21] = k77, a[2][2][25] = k81,

a[2][2][30] = k86, a[3][1][0] = k88 + v14, a[3][1][2] = k90 + v15, a[3][1][7] = k95 + v19,

a[3][1][8] = k96, a[3][1][11] = k99 + v21, a[3][1][12] = k100, a[3][1][14] = k102 + v23,

a[3][1][16] = k104 + v25, a[3][1][21] = k109, a[3][1][22] = k110, a[3][1][23] = k111 + v28,

a[3][1][25] = k113 + v30, a[3][1][27] = k115 + v31, a[3][1][30] = k118, a[3][1][31] = k119,

a[3][2][9] = k97 + v20, a[3][2][13] = k101 + v22, a[3][2][18] = k106 + v27, a[3][2][20] = k108,

a[3][2][29] = k117.

Involved key bits

k64 + k73 + k110, k52 + k57, k6 + k15 + k52, k71 + k80 + k117, k1 + k92, k8 + k45 + k127, k8,

k89 + k112, k67 + k76 + k113, k1 + k38 + k120, k76 + k85 + k90, k71, k73, k62 + k85 + k99,

k60 + k69 + k106, k29 + k52 + k66, k3 + k40 + k122, k58, k70, k66 + k75 + k112, k59 + k105,

k89 + k112 + k126, k10 + k92, k91, k5, k64 + k87 + k101, k17, k5 + k14 + k51, k15, k9 + k91,

k19, k114, k58 + k67 + k104, k22 + k36 + k127, k37, k3 + k12 + k49, k3 + k94, k72, k76,

k69 + k78 + k115, k60 + k83 + k97, k59, k61, k4 + k13 + k50, k7 + k89 + k98, k67,

k70 + k79 + k116, k78 + k87 + k92, k74 + k83 + k88, k57 + k66 + k103, k6, k62 + k71 + k108,

k2 + k11 + k48, k57 + k80 + k94, k16 + k98 + k107.

30

Table 16: A 64-dimensional cube for Keccak-MAC-512, where (na, ni) = (46, 46). In total,
there are 92 bits key information involved in both auxiliary variables and involved key bits.

Cube varaibles

a[1][1][29] = v0, a[1][1][35] = v1, a[1][1][42] = v2, a[1][1][45] = v3, a[1][1][58] = v4,

a[2][0][0] = a[2][1][0] = v5, a[2][0][2] = a[2][1][2] = v6, a[2][0][3] = a[2][1][3] = v7,

a[2][0][5] = a[2][1][5] = v8, a[2][0][6] = a[2][1][6] = v9, a[2][0][7] = a[2][1][7] = v10,

a[2][0][9] = a[2][1][9] = v11, a[2][0][12] = a[2][1][12] = v12, a[2][0][13] = a[2][1][13] = v13,

a[2][0][15] = a[2][1][15] = v14, a[2][0][16] = a[2][1][16] = v15, a[2][0][18] = v16, a[2][1][18] = v17,

a[2][0][19] = a[2][1][19] = v18, a[2][0][21] = a[2][1][21] = v19, a[2][0][22] = a[2][1][22] = v20,

a[2][0][25] = a[2][1][25] = v21, a[2][0][26] = a[2][1][26] = v22, a[2][0][28] = a[2][1][28] = v23,

a[2][0][29] = a[2][1][29] = v24, a[2][0][32] = a[2][1][32] = v25, a[2][0][34] = a[2][1][34] = v26,

a[2][0][35] = a[2][1][35] = v27, a[2][0][38] = a[2][1][38] = v28, a[2][0][41] = a[2][1][41] = v29,

a[2][0][42] = a[2][1][42] = v30, a[2][0][44] = a[2][1][44] = v31, a[2][0][45] = a[2][1][45] = v32,

a[2][0][48] = a[2][1][48] = v33, a[2][0][50] = a[2][1][50] = v34, a[2][0][51] = a[2][1][51] = v35,

a[2][0][54] = a[2][1][54] = v36, a[2][0][55] = a[2][1][55] = v37, a[2][0][56] = a[2][1][56] = v38,

a[2][0][57] = a[2][1][57] = v39, a[2][0][58] = a[2][1][58] = v40, a[2][0][60] = a[2][1][60] = v41,

a[2][0][61] = a[2][1][61] = v42, a[2][0][62] = a[2][1][62] = v43, a[2][0][63] = a[2][1][63] = v44,

a[3][0][2] = a[3][1][2] = v45, a[3][0][8] = a[3][1][8] = v46, a[3][0][15] = a[3][1][15] = v47,

a[3][0][18] = a[3][1][18] = v48, a[3][0][24] = a[3][1][24] = v49, a[3][0][30] = a[3][1][30] = v50,

a[3][0][31] = a[3][1][31] = v51, a[3][0][34] = a[3][1][34] = v52, a[3][0][37] = a[3][1][37] = v53,

a[3][0][38] = a[3][1][38] = v54, a[3][0][40] = a[3][1][40] = v55, a[3][0][43] = a[3][1][43] = v56,

a[3][0][44] = a[3][1][44] = v57, a[3][0][47] = a[3][1][47] = v58, a[3][0][50] = a[3][1][50] = v59,

a[3][0][53] = a[3][1][53] = v60, a[3][0][54] = a[3][1][54] = v61, a[3][0][56] = a[3][1][56] = v62,

a[3][0][60] = a[3][1][60] = v63.

Auxiliary variables

a[0][1][1) = k1, a[0][1][2] = k2, a[0][1][3] = k3, a[0][1][4] = k4, a[0][1][5] = k5, a[0][1][7] = k7,

a[0][1][8] = k8, a[0][1][10] = k10, a[0][1][11] = k11, a[0][1][12] = k12, a[0][1][14] = k14,

a[0][1][17] = k17, a[0][1][18] = k18, a[0][1][20] = k20, a[0][1][21] = k21, a[0][1][23] = k23,

a[0][1][24] = k24, a[0][1][28] = k28, a[0][1][30] = k30, a[0][1][31] = k31, a[0][1][33] = k33,

a[0][1][34] = k34, a[0][1][37] = k37, a[0][1][39] = k39, a[0][1][40] = k40, a[0][1][41] = k41,

a[0][1][43] = k43, a[0][1][44] = k44, a[0][1][45] = k45, a[0][1][46] = k46, a[0][1][47] = k47,

a[0][1][49] = k49, a[0][1][50] = k50, a[0][1][51] = k51, a[0][1][52] = k52, a[0][1][53] = k53,

a[0][1][54] = k54, a[0][1][55] = k55, a[0][1][56] = k56, a[0][1][58] = k58, a[0][1][59] = k59,

a[0][1][60] = k60, a[0][1][61] = k61, a[0][1][62] = k62, a[1][1][27] = k91, a[1][1][36] = k100.

Involved key bits

k81, k98, k85, k71, k27 + k91, k75, k101, k97, k95, k68, k87, k9 + k72, k123, k125, k119, k26 + k90,

k103, k63 + k126, k107, k113, k111, k117, k82, k84, k72, k74, k76, k57 + k120, k78, k114, k94, k88, k69,

k124, k126, k38 + k101, k120, k25 + k88, k66, k104, k63 + k127, k110, k22 + k85, k15 + k78, k67, k65.

31

Table 17: A 64-dimensional cube for Ketje Minor, where (na, ni) = (27, 27). In total, there
are 52 bits key information involved in both auxiliary variables and involved key bits.

Cube varaibles

a[2][1][1] = a[2][3][1] = v0, a[2][0][2] = v1, a[2][1][2] = v2, a[2][3][2] = v3,

a[2][4][2] = v1 + v2 + v3, a[2][0][4] = v4, a[2][1][4] = v5, a[2][3][4] = v4 + v5,

a[2][1][7] = a[2][3][7] = v6, a[2][0][8] = a[2][4][8] = v7, a[2][0][10] = a[2][1][10] = v8,

a[2][0][11] = a[2][4][11] = v9, a[2][0][13] = v10, a[2][1][13] = v11, a[2][3][13] = v10 + v11,

a[2][0][16] = a[2][4][16] = v12, a[2][0][19] = v13, a[2][1][19] = v14, a[2][3][19] = v13 + v14,

a[2][0][22] = v15, a[2][1][22] = v16, a[2][3][22] = v17, a[2][4][22] = v15 + v16 + v17,

a[2][1][25] = v18, a[2][3][25] = v19, a[2][4][25] = v18 + v19, a[2][0][28] = v20,

a[2][1][28] = v21, a[2][4][28] = v20 + v21, a[2][0][31] = v22, a[2][1][31] = v23,

a[2][3][31] = v24, a[2][4][31] = v22 + v23 + v24, a[4][0][0] = v25, a[4][1][0] = v26,

a[4][2][0] = v25 + v26, a[4][0][1] = v27, a[4][1][1] = v28, a[4][2][1] = v29,

a[4][3][1] = v27 + v28 + v29, a[4][2][2] = a[4][3][2] = v30, a[4][0][6] = v31, a[4][1][6] = v32,

a[4][2][6] = v31 + v32, a[4][0][7] = v33, a[4][1][7] = v34, a[4][2][7] = v35,

a[4][3][7] = v33 + v34 + v35, a[4][0][8] = v36, a[4][2][8] = v37, a[4][3][8] = v36 + v37,

a[4][0][9] = v38, a[4][2][9] = v39, a[4][3][9] = v38 + v39, a[4][2][10] = a[4][3][10] = v40,

a[4][1][12] = a[4][3][12] = v41, a[4][0][13] = a[4][2][13] = v42, a[4][0][14] = v43, a[4][1][14] = v44,

a[4][3][14] = v43 + v44, a[4][0][15] = v45, a[4][2][15] = v46, a[4][3][15] = v45 + v46,

a[4][0][17] = v47, a[4][1][17] = v48, a[4][3][17] = v47 + v48, a[4][0][19] = v49, a[4][1][19] = v50,

a[4][2][19] = v49 + v50, a[4][0][20] = v51, a[4][1][20] = v52, a[4][2][20] = v53,

a[4][3][20] = v51 + v52 + v53, a[4][1][21] = a[4][3][21] = v54, a[4][0][22] = a[4][1][22] = v55,

a[4][1][23] = a[4][3][23] = v56, a[4][1][25] = a[4][2][25] = v57, a[4][0][26] = v58, a[4][1][26] = v59,

a[4][2][26] = v60, a[4][3][26] = v58 + v59 + v60, a[4][0][27] = a[4][3][27] = v61,

a[4][1][28] = a[4][3][28] = v62, a[4][1][31] = a[4][2][31] = v63.

Auxiliary variables

a[0][1][15] = k7, a[1][0][17] = k41, a[1][0][28] = k52, a[1][2][16] = k40, a[1][3][1] = k25,

a[1][3][7] = k31, a[1][3][30] = k54, a[1][4][9] = k33, a[1][4][12] = k36, a[2][0][0] = k56,

a[2][0][3] = k59, a[2][0][22] = k78 + v15, a[2][0][24] = k80, a[2][1][10] = k66 + v8,

a[2][1][14] = k70, a[2][1][20] = k76, a[2][1][25] = k81 + v18, a[2][1][27] = k83, a[2][3][6] = k62,

a[2][3][9] = k65, a[2][3][13] = k69 + v10 + v11, a[2][4][11] = k67 + v9, a[2][4][15] = k71,

a[2][4][18] = k74, a[2][4][23] = k79, a[2][4][31] = k87 + v22 + v23 + v24, a[4][0][2] = k122.

Involved key bits

k1 + k33 + k64, k4 + k36, k4, k73, k19 + k82, k34, k1 + k64, k16, k55 + k120, k72, k68, k125,

k22 + k85, k30 + k127, k82, k61, k86, k85, k28 + k125, k29 + k126, k47, k60 + k123, k10 + k73,

k53, k39, k27 + k124, k46.

32

	Introduction
	Description of Ketje and Keccak-MAC
	Notations
	Keccak-p
	Ketje
	Xoodoo
	Keccak-MAC-512

	Related Works
	Cube Attacks
	Cube-Attack-Like Cryptanalysis on Round-Reduced Keccak
	Conditional Cube Attacks on Round-Reduced Keccak
	Motivations

	MILP Model for Cube-Attack-Like Cryptanalysis
	Basic Idea
	Propagation of Cube Variables and the Dimension d
	Propagation of Key Bits and na
	Interaction of Key Bits and Cube Variables, and ni
	Postprocessing Procedure

	Application to Ketje Jr, Ketje Sr, Xoodoo and Keccak-MAC-512
	5-Round Attack against Ketje Jr V1 with Recommended Key Size
	5-Round Attack against Ketje Jr V2 with Recommended Key Size
	6-Round Attack against Ketje Jr V1 with Reduced Key Size
	6-Round Attack against Ketje Jr V2 with Reduced Key Size
	7-Round Attack against Ketje Sr
	6-Round Attack against Xoodoo-based AE
	7-Round Attack against Keccak-MAC-512
	Experiment and Verification

	Discussion and Comparison
	Conclusion
	Appendix

