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Abstract. FRIT is a cryptographic 384-bit permutation recently proposed by Simon
et al. and follows a novel design approach for built-in countermeasures against fault
attacks. We analyze the cryptanalytic security of FRIT in different use-cases and
propose attacks on the full-round primitive. We show that the inverse FRiT~! of
FRIT is significantly weaker than FRIT from an algebraic perspective, despite the
better diffusion of the inverse of the used mixing functions o: Its round function has
an effective algebraic degree of only about 1.325. We show how to craft structured
input spaces to linearize up to 4 (or, conditionally, 5) rounds and thus further reduce
the degree. As a result, we propose very low-dimensional start-in-the-middle zero-sum
partitioning distinguishers for unkeyed FRIT, as well as integral distinguishers for
round-reduced FRIT and full-round FriT™!. We also consider keyed FRIT variants
using Even-Mansour or arbitrary round keys. By using optimized interpolation
attacks and symbolically evaluating up to 5 rounds of FRIT™!, we obtain key-recovery
attacks with a complexity of either 2°° chosen plaintexts and 2°7 time, or 2'® chosen
ciphertexts and time (about 5 seconds in practice).
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1 Introduction

Attacks that target the implementation of a scheme, such as side-channel [Koc96, KJJ99]
and fault attacks [BDL97, BS97], are a threat to cryptographic security in practice,
especially in situations where an attacker has physical access to the device perform-
ing the cryptographic computations. In order to mitigate such attacks, a variety of
countermeasures has been proposed, such as masking [CJRR99, GP99] and threshold
implementations [NRR06, NRS08, NRS11] to protect against side-channel attacks, or the
integration of some form of error detection [SMG16] to protect against fault attacks. The
overhead cost of implementing these countermeasures typically depends on properties of
the cryptographic primitive, such as its multiplicative complexity in the case of masking.
This has motivated cryptographers to design primitives that minimize these costs. For
example, Noekeon [DPVR00], KEccAK [BDPV11], or AsconN [DEMS14] aim to reduce
the cost of masking countermeasures by using low degree S-boxes, while other designs like
Zorro [GGNPS13] even use incomplete S-box layers in order to be easier to mask, i.e., only
part of the state is updated by the S-box layer, the rest remains unchanged.

The recently proposed permutation FRIT [SBDT 18] takes this approach further and
does not only allow efficient masking, but has been designed to also provide low-cost
built-in fault detection. FRIT is a 384-bit cryptographic permutation designed by Simon,
Batina, Daemen, Grosso, Massolino, Papagiannopoulos, Regazzoni, and Samwel [SBDT18].
The round function uses 128 AND-gates per round as its only source of non-linearity.
Its operations are carefully chosen to minimize the cost of maintaining an additional
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128-bit checksum of the current state to provide redundancy and detect faults. As a
result, even protected implementations with both side-channel and fault countermeasures
are still relatively lightweight. With its 384-bit blocksize, it is well-suited as a building
block for the modes of permutation-based cryptography, such as sponge and duplex
modes [BDPV07, BDPV08, BDPV12], but it can also be transformed into a big-state
Even-Mansour block cipher [EM91].

Related Work. As a consequence of the design choices, FRIT shares some similarities with
constructions like Zorro and LowMC [ARS™15] that have incomplete S-box layers. Clearly,
such novel designs require third-party cryptanalysis in order to strengthen the trust in their
security, or to learn how to improve for future designs. Zorro paved the way for interesting
cryptanalytic results that exploit the existence of good differential or linear characteristics in
such incomplete S-box layers [RASA14, WWGY 14, LMR15], as well as invariant subspace
attacks [LMR15]. On the other hand, the analysis results [DEM15, DLMW15] for LowMC
exploit the low degree of its round function together with its partial S-box layer.

The increasing prominence of designs with low-degree round functions, such as KECCAK
[BDPV11], KETJE [BDPT16], KEYAK [BDPT14], Ascon [DEMS14], Xoodoo [DHVV18],
or GIMLI [BKL"17], as well as more experimental designs that aggressively minimize the
number of AND-gates, such as Flip [MJSC16], Kreyvium [CCF*16, CCF*18], LowMC
[ARST15], or Rasta [DEGT18], has led to many advances and insights in algebraic crypt-
analysis. Examples include extensions of cube attacks [DS09], such as cube-like at-
tacks [DMP*15, DLWQ17] and conditional cube attacks [LDW17, HWX ™17, LBDW17],
but also many variants that exploit the algebraic properties in other ways, like collision
attacks [SLG17] and preimage attacks [GLS16] on round-reduced KECCAK that linearize
parts of its underlying permutation. Moreover, new techniques like the division prop-
erty [Tod15b, Tod15a] as a generalization of the integral attack [KW02] have been recently
proposed to construct integral distinguishers further exploiting low-degree round functions.

Contributions. We analyze the security of FRIT and provide distinguishers for the
unkeyed primitive as well as key-recovery attacks for keyed FRIT. Our analysis takes
advantage of the relatively low algebraic degree of FRIT’s round function, but even more so
of the properties of its inverse FRIT ™', including its algebraic degree and certain diffusion
properties. As observed by the designers of FRIT, the algebraic degree of the FRIT round
function is 2, but an upper bound on the algebraic degree of multi-round FRIT is given
by the Fibonacci sequence. It can thus be argued that the effective degree of its round
function, i.e., the growth rate of the degree over multiple rounds, is the golden ratio
¢ ~ 1.618, and at least 11 (out of 16) rounds of FRIT are necessary to reach a degree
larger than 128, while 13 rounds are necessary to reach the maximum degree of 383. The
same upper bound can be shown for FRIT™'. However, we show that this bound is far
from tight, and prove an upper bound corresponding to an effective degree of oy ~ 1.325.
This observation implies that the algebraic degree of 16-round FRIT ! is only 114. We
show how to craft initial structures that linearize up to 4 rounds of FRIT ™' (or 5 rounds
under certain additional bit-conditions on the input).

Furthermore, we analyze the use of FRIT as an Even-Mansour [EM91] block cipher. If
we allow chosen-ciphertext queries, we can take advantage of the properties of FRIT ! to
recover the key using 2'® chosen ciphertexts in about 5 seconds. However, since FRIT
is generally more costly to evaluate than FRIT, it seems more likely that FRIT would
in practice be used in a construction that allows only chosen-plaintext queries. For this
potential use case, we propose an optimized interpolation attack [DLMW15]. We take
advantage of the relatively low algebraic degree of FRIT to set up an integral distinguisher
for 11 rounds and combine this with a 5-round key recovery technique using interpolation.
The complexity of the interpolation profits not only from the very low degree of FRIT ™!, but
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also from its limited diffusion that leads to a rather low monomial count when expressing
intermediate state bits as a function of the ciphertext and key bits. With this approach,
we can recover the Even-Mansour key for full-round FRIT using 2°° chosen plaintexts and
about 267 time.

In Section 2, we briefly describe the FRIT design. In Section 3, we analyze the algebraic
degree of FRIT and FRIT™! and propose initial structures to linearize several rounds.
Based on these properties, we propose key-recovery attacks on keyed FRIT in Section 4.

2 Description of Frit

FRIT is a cryptographic permutation designed by Simon et al. [SBD'18]. Its 384-bit
state is divided into three 128-bit limbs a, b, ¢ which are updated in 16 rounds using
simple bitwise operations, as illustrated in Figure 1 (left). The only nonlinear operation is
one 128-bit bitwise AND (®) per round, used in a Toffoli gate. Diffusion is achieved by
two rotation-invariant linear mixing functions using 128-bit bitwise XOR (@) and bitwise
circular left shifts (<), which we refer to as o, and o.. Both functions o,, 0. compute
each output bit as the XOR of 3 input bits and have a bitwise branch number of 4 bits.
The 16 rounds are identical except for the value of the round constant RC,..

FRIT (for “Fault-Resistant Iterative Transformation”) was designed to support the
implementation of countermeasures against physical attacks. The design follows a more
general approach proposed by its designers to provide built-in protection against differential
fault attacks (DFA). The core idea of this approach is to extend the state by an extra limb
and to implement an extended round function that updates all limbs such that the XOR of
all limbs remains constant. The operations in the FRIT round function were selected such
that this extended round function is very efficient, and they are additionally well-suited
for side-channel countermeasures such as threshold implementations (TT). Our attack is
however independent of implementation details such as the extra limb, so we refer to the
original design paper for the detailed specification [SBDT18].

In Figure 1 (right), we also list FRIT’s inverse, FRIT'. Inverting corresponds to
executing the operations in reverse order, where the Feistel swap is reversed and the
mixing functions o, 0. are replaced with their inverses o, !, !. These inverses are again
rotation-invariant, but they require significantly more operations: while o,,0. XOR 3
rotated copies of the input, o, ! requires 65 rotations and o, ! requires 33 (since o, has
only even rotation constants and can thus be partitioned into the parallel application of
two 64-bit o functions). FRIT is thus more likely to be used in modes and constructions
that do not require the inverse. Its 384-bit size seems well-suited for sponge and duplex
modes [BDPV07, BDPV08, BDPV12], but it can also be transformed into a big-state
Even-Mansour block cipher [EM91].

FriT(a,b,c) Frir™ *(a, b, )

Input: a,b,c € {0,1}!?8 a b ¢ Input: a,b,ce {0,1}'*% a b c
for r=0,...,15 do : : . forr=15,...,0do :

a+ ad (a110) ® (a<87) (c,a,b) < (a,b,c) >§<
cc®(aOb) ®RC, b—adbdc P
cc® (e 118) @ (a << 88) c+ o c) c
b+—adbdec c+c®(a®b) DRC, ()
(a,b,c) + (c,a,b) a<+o,1(a) @

b7

return (a, b, c) : : - return (a,

9 zz'

Figure 1: The permutation FRIT(a,b,c) [SBD*18] and its inverse FRIT™*(a, b, c).
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3 Algebraic Degree of Frit and Frit™!

In this section, we analyze the algebraic degree of r-round FRIT and FRIT™'. We show
that the degree of FRIT ! grows significantly more slowly than that of FRIT. We introduce
the notion of the “effective degree” of the round function as the growth rate of the degree.
We show that the effective degree of FRIT is bounded by ¢ ~ 1.618 and of FRIT™! by
ag =~ 1.325, while the generic bound for degree-2 round functions is 2.

3.1 Designers’ Analysis of Frit

In an appendix of the FRIT paper [SBDT 18], the designers analyze the algebraic degree of
r-round FRIT, which we denote by FRIT,., and observe the following. Let

(aTa bT7 CT‘) = FRITl(aT—la br—l; c’r‘—l) = FRITT(a’07 b07 CO) .

Let Fy =0,F; =1, and F; = F;_1 + F;_5 for i > 2 denote the Fibonacci sequence. Then,
using the definition of FRIT; and the initial conditions degag = degby = degcy = 1, it is
easy to see by induction that dega, < F,.1o, degc, < F,.1o, and degb, < Fi41:

degb, = degog(ar—1) < Fry1,
deg ar = dech(Cr—l S2) br—l © Ua(ar—l)) S Fr + Fr+1 = FT+2 ) (FRIT)
deg Cr = deg(br—l 5> br 52 a/r) < Fr+2 .

A similar bound applies for FRIT, ! where we obtain with the same reasoning that
dege, < Fryo, degb, < Fr.1, dega, < F,, (FRIT_l)

except for the initial condition degay = 1. Thus, d, = F,42 is an upper bound for the
algebraic degree deg FRIT, < d,. and deg FRIT;1 <d,.

Since Fi5 = 610 > 383, at least 13-round (14-round) FRIT or 13-round (15-round)
1

FRIT™ " is necessary to achieve the maximum degree in some (all) limbs of the state.
Qr— @ ar ar—1 O’;ll QA
deg < Fry1 deg < Fryo deg < Frq deg < F.
f' ‘\
b7" -1 I by br br— 1 Y I br
deg < F. Y deg < Firyq deg < F. 4 deg < Frqq

c gj T @

r—1 Cr Cr—1 o, 0 Cr
deg < Fry1 deg < Firyo deg < Fryo
(a) Round r of FrIT (b) Round r of FriT™*

Figure 2: Fibonacci bound on the degree of FriT, [SBD*18] and FriT; '

3.2 Algebraic Degree of Frit™'

In the following, we have a closer look at FRIT ! to derive a tighter recursive bound on
the degree of FRIT™! that looks quite similar to the case of FRIT and shares the same
initial conditions, but grows significantly more slowly.

3.2.1 Recursive Bound for the Degree

To see that the previous bound is not tight for FRIT ™!, consider the first two rounds of
the inverse. Note that ¢ and its inverses do not change the degree, so we write x for any



Christoph Dobraunig, Maria Eichlseder, Florian Mendel and Markus Schofnegger )

o(x) or o~ (z). After one round, the algebraic degrees of limbs (a1, by,c1) are (1,1,2)
since ¢; = b1 ® a1 ® ag. Now consider ¢ after two rounds, which is essentially computed
asco=b; ©(c1®...)d... and thus has a degree of at most 1+ 2 = 3. However, ¢; is
itself the result of a multiplication by by, and since b3 = by, the actual degree of the result
is only 2, not 3.

More generally, using the bound d, defined by the recursion d, = d,_s 4+ d,_3 and the
initial conditions dy = d_1 = d_» = 1, the degree of FRIT ! is bounded by

dege, < d,, degb, < d,_1, dega, < d,_o.
We can prove this inductively by using the fact that by definition, ¢, = b, ® a, ® a,—_1:

dega, = degb,_1 < d,_2,
degb, = deg (¢r—1 Dby D ar—1) < dp_1,
degc, = deg (ar—1 D b1 © (Ar_1 B b1 B croq))
=deg (Gr_1 D b1 ®(ar_1 B1 B Cr_1 D Ar—2)) < dp_2+dr_3=d,.

(FriT 1)

In summary, we obtain the recursion
degFriT, ' <d, =d,_ o +d,_3, do=d_1=d_o=1.

Using the method of differences to rewrite d, = d,.—1 + (d, — d,—1), we can also derive a
different recursion for FRIT ! very similar to that of FRIT:

deg FriT, < d, =dy—1 +dr—2, dy =2, do=1,
deg FrIT, ' < d, =dp_y + dp_o — dy_y, di=2, do=d_1=d_y=1.

Despite the apparent similarity of the recursions, the tighter bound for FRIT ' grows
significantly more slowly, as we will discuss in the following (see Figure 3). We practically
verified the resulting degrees for up to 4 rounds of FRIT™! by symbolically evaluating the
cipher with Sage, and the bound of degree 4 is tight. We also verified up to 7 rounds
(degree 9) symbolically with a simplified model of the cipher, as well as up to 11 rounds
(degree 28) by testing the zero-sum property, and all results confirm these bounds.

3.2.2 Effective Degree

The recursive definition of the bound identified above can also be translated to a closed-
form expression, in analogy to the bound of d,, = 2" for the degree after r rounds of degree
d = 2. For the permutation FRIT, the designers’ Fibonacci argument that we recalled in
Subsection 3.1 yields the following explicit exponential form using Binet’s formula:

(PT+2 _ (1 _ L)0)7'-1-2 (PT+2-‘

b=t = V5 :Ms

where ¢ = 1+T‘/‘?’ is the golden ratio and |-] denotes rounding to the nearest integer. We

thus refer to ¢ ~ 1.618 as (an upper bound d for) the effective degree of FRIT.
We can obtain a similar exponential form for FRIT™! by considering the generating
function D(z) € C[z] of the recursive form d, = d,_3 + d,_3:

D(z)=2"—2—1.

The polynomial D(z) has three roots ag, a1, s over the complex plane. Two roots aq, as
are complex with absolute value less than 1, only one root oy =~ 1.325 is real. It is
well-known that d, can be written as a linear combination of powers of these roots, where



6 Algebraic Cryptanalysis of Frit

r=0 1 2 3 4 5 6 7 8 9
d=2 dy = 2d,_, =1 2 4 8 16 32 64 128 256 512
d=¢p~1618 dy=dr1+do=1 2 3 5 8 13 21 34 55 89
d=ap~1325 dy=dro+d3=1 2 2 3 4 5 7 9 12 16

384 [ [ d—2 -

gsg| |77 =@~ 1618 |

| —d=ap~1.325 |

128 | //’/ |

0 \ \ "“\mm:‘—-_-_\-—_ \ \ ! ! L

0 2 4 6 8 10 12 14 16

Figure 3: Upper bounds d, on deg FRIT, ! based on different effective degrees d.

the coefficients tg, t1, t2 depend on the initial conditions dy, di, ds. By solving the resulting
system of three linear equations, we obtain that |t;a] + taab| < 0.4 for all » > 0 and thus
the effective degree is (bounded by) d = ap:

d, = toag + tlotq + tgag = \_tOO‘S—l , to ~ 1.267, ag~ 1.325.

Figure 3 compares the resulting degrees after r rounds for effective degrees 2, ¢, and «y.

3.3 (Conditional) Initial Structures and Integral Distinguishers

So far, we analyzed the algebraic degree of FRIT, and FRrIT, ' with respect to the 384
input variables representing the permutation input (or output). While the bound for the
degree of any of the limbs is below the generic bound of 383 that holds for any bijective
operation, we can use this property to distinguish the permutation. More specifically, we
can use the methods of higher-order differential cryptanalysis [Lai94] to obtain an integral
distinguisher: Say we have an upper bound d on the degree of the r-round permutation
FRIT, or FRIT, * (or on at least one limb of the state). If we apply the r-round permutation
to all elements of some (d + 1)-dimensional (affine) subspace of F3°* and compute the XOR
of the resulting outputs, we will obtain 0 in all bit positions of the state (or limb).

In the following, we will extend these simple integral distinguishers by several rounds.
We will craft structured (d + 1)-dimensional affine input subspaces such that applying s
rounds of the permutation will again produce a (d + 1)-dimensional affine subspace as an
intermediate result, thus extending the integral distinguisher to s + r rounds. In other
words, if we write the structured input space V' as a linear combination V = {} v; - b;} =
{B-v|veF$T} of some basis vectors b;, 0 < i < d + 1, then the s-round permutation is
a linear function with respect to the coordinates v;. We thus consider the ANF after s
rounds when substituting the appropriate linear combination of v; plus a symbolic constant
for each input variable, and show that the resulting degree with respect to the variables v;
is 1. We also consider conditional initial structures where we require b bit conditions on the
constants (the key) to ensure that the s-round permutation is linear. Finally, we propose
low-dimensional inside-out zero-sum partitioning distinguishers for the permutation.

In the remainder of the section, we use the following notation. For simplicity, we
will liberally refer to tuples of elements as “vectors” and to modules, affine vectorspaces,
etc. as “spaces”. We denote bitwise XOR by @, bitwise AND by ©®, and the number of
non-zero coordinates of a vector by wt(-). We consider the 384-bit state and each 128-bit
limb as a vector of polynomials in the variables v;, 0 < i < d+ 1, i.e., as an element of
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the 384-dimensional or 128-dimensional space over Favp,...,v4]. However, as we will
later consider keyed FRIT variants in an Even-Mansour construction, the coefficients may
depend on a constant 384-bit key K = (ko,. .., ksgs) and thus be unknown to the attacker,
so we sometimes variably use the base ring (Fa[ko, - . ., k3s3])[vo, - - ., v4]. We refer to the
graded part of degree j (0 < j < d+ 1) of a polynomial with respect to the variables v; as
d;(+); for example, di (ko + k1v1 + v2 + v1v2) = k1v1 + vo. We want to find s-round initial
structures such that d;(as, bs, cs) = 0 for j > 2. We will identify the polynomial vector
with d;(z) = 0,j > 2 with the affine vector space do(z) +V spanned by d+ 1 basis vectors,
where the i-th basis vector is obtained by substituting v; = 1, vy = 0 for ¢/ # ¢ in d; ().

3.3.1 Initial Structures for Frit

First consider s-round FRIT and assume we target some relatively small dimension d+1 <
128, i.e., r < 10. By keeping the two limbs ag, by constant and limiting the variables v; to
limb ¢y, we can easily linearize s = 2 rounds of FRIT: After one round, b; = o, (ag) will be
constant, while a; and ¢; will depend linearly on the variables v; in ¢y. Consequently, in
the second round, again no variables are multiplied by the AND-gate, so as, bs, co all depend
linearly on the v;. The structure is illustrated in Figure 4a, where 1 denotes a constant
limb and v,9,v’,... denotes different linear limbs (d>2(-) = 0). Two limbs z,y denoted
by the same symbol share the same linear part (di(xz) = di(y)), and dy(z) = o(d;(x)).
In other words, if we apply FRIT; to all elements of some (d + 1)-dimensional affine
subspace of F38* whose basis vectors b; are all 0 in the first 256 bits, we will obtain another
(d + 1)-dimensional affine subspace as a result after 2 rounds. Note that the basis of this
output space depends on the initial constants in ag and is thus not necessarily known;
in particular, for keyed FRIT, the space depends on the key, so the sum over a space of
dimension d is no longer a key-independent constant.

1 g o 1 g Lo v {9} 1
4 — Y
1 —4y D B U g 1 (+4a)  o* ;Cj -0 v (+4b)
v —@{(0) 0" 1 —&{(o0) v 1* —&{o}) 1
(a) 2 rounds (b) 3 rounds, b = wt(v) (c) 4 rounds, b = 2 wt(v)

Figure 4: Initial structures to (conditionally) linearize the first s < 4 rounds of FRIT.

There are several ways to extend this structure by one or more rounds at the expense of
imposing some bit conditions on the constant part of the input. One of them is illustrated
in Figures 4b and 4c. To linearize 3 rounds, we prepend one round to the 2-round structure
of Figure 4a and start with variables only in by, see Figure 4b. Additionally, we require
that the constant in ag, denoted by 1*, is such that o,(ag) is zero in all b bit positions
where by is non-constant, o,(ag) © d1(bg) = 0. Then, the output of the AND-gate of the
first round is constant, producing exactly the input structure of Figure 4a at the input to
the second round. The number of conditions is b = wt(d;(v)) > d + 1. An attacker can
either satisfy these conditions directly in an unkeyed setting, or can guess the relevant
linear function of the key and repeat the distinguisher 2° times with suitable plaintexts in
a keyed setting.

For a 4-round structure, we can prepend one more round by satisfying a total of
b = 2wt(d;(v)) conditions, as illustrated in Figure 4c: Let a9 = o4(ap). First, we require
that d; (ap®bg) = 0 to ensure that a; is constant. Since d;(ag) = d1(bo), this can be satisfied
with wt(d;(v)) bit conditions on do(bg) using the fact that (x40)-(z+1) = x4z = 0: we
simply require dg(bg) = 1 + dg(aop) in all relevant bit positions of by. Additionally, each of
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the previous wt(d;(v)) conditions from Figure 4b translate to a bit condition that depends
nonlinearly on ag, by, but can be satisfied like a linear condition by varying cg.

Table 1 summarizes the resulting degree after s +r < 16 rounds of FRIT with different
initial structures. With unconditional structures, we can distinguish up to 12 rounds
(Figure 4a, degree 89) or 13 rounds (degree 377) of FrRIT. With conditional structures and
degree 89, we can distinguish 13 rounds (90 conditions) or 14 rounds (179 conditions).

Table 1: Degree after 7 < 16 rounds of FRIT using the initial structures of Figure 4.

~Jo1 23 4 5 6 7 8 9 10 11 12 13 14 15 16
Jldal2 3456 7 8 90 10 11 12 13 14 15 16
g 4|3 4 5 6 7 8 9 10 11 12 13 14 15 16
E 4c|4 5 6 7 8 9 10 11 12 13 14 15 16

a 1 2 3 5 8 13 21 34 55 89 144 233 377 * * x
b|IS|1 1 2 3 5 8 13 21 34 55 89 144 233 377 * * %
cr 1 2 3 5 8 13 21 34 55 89 144 233 377 * * *x *

3.3.2 Initial Structures for Frit™"

For FRIT ™!, we can use similar techniques and some additional observations to linearize up
to 5 rounds. Figure 5a illustrates an unconditional 2-round structure for FRIT ™! starting
from the same structure as Figure 4a, but with different effects: In the first round, the
AND-gate multiplies a linear and a constant limb; the latter acts as a mask such that
the non-zero elements of d; (v’) are a subset of those in d;(v). In the second round, the
first XOR just inverts this selected subset. Then, in each bit position, the AND-gate either
multiplies two linear terms with identical linear parts dq(b1) = di(bs), or at least one
of the inputs is constant. In either case, the result is at most linear, and the non-zero
linear part di(v"”’) is another subset of d;(v). We can trivially prepend another round as
illustrated in Figure 5b.

Under certain conditions, we can also append a fourth round, as indicated in Figure 5c:
Say we are interested in a low dimension of d + 1 < 36. We start the construction
by restricting the linear part d;(v) in limb a3 (corresponds to as in Figure 5a), and
require that it is zero except for the 36 positions 0,...,17,64,...,81. Now consider
di(co) = di(v) = 04(d1(0)): o4 rotates by 0,110, 87 bits to the left, or 0, 18,41 bits to the
right. Thus, all non-zero elements in v are diffused to disjoint bit positions, namely 0...17
to00...17,18...35,41...59 in the first half of the limb, and 64 ... 81 similarly in the second
half. This implies that the linear parts d;(v),d;(v"”),d; (v"") after 3 rounds are all masked
selections from d;(v), and the XOR of all three limbs preserves this property. Now, by a
similar argument as in Figure 5a, the output of the AND-gate is another selection from d; (v)
and thus linear. In summary, if we select the linear part at the input as d;(by) = 0 and
di(ag) = di(co) = 0c(04(d1(v))) with di(v) zero except in positions 0,...,17,64,...,81,
then we have an initial structure that linearizes 4 rounds of FRIT*.

Alternatively, we can obtain a simpler 4-round structure by imposing bit conditions
on the constant part, as illustrated in Figure 5d: For the wt(d;(v)) non-zero positions,
we require that do(ag ® bo ® ¢p) = 1. Then, we get dy(b2) = di(c2) and thus d;(b3) = 0.
We can also prepend another round, at the cost of significantly more new conditions: In
addition to the wt(d; (v)) conditions on do(bs) (b1 in Figure 5d), which we can satisfy by
varying ao (and compensating in ¢y to keep by constant), we need to fix the behaviour of
the AND in the first round. For this purpose, we want to set b; to zero in all positions
where d;(bg) = d;(?) is non-zero, which imposes up to 9wt(d;(v)) additional conditions
that can be controlled via ¢y. As an example, for s +r = 16 we could target d+ 1 = 17
and would need up to 17 + 92 = 109 bit conditions for v with 17 consecutive linear bits.
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1 1+ v v <(c} v
1 (+5a) 1 <4 (:) 1 V"~ (:) v” (+5a or 5b)
(b) 3 rounds (c) 3 or 4 rounds, d+1=wt(v) <36
z R Gl o

1 (+5d) 1* /" 5

Y A

v ’l_) 0

(e) 5 rounds, b < 10 wt(v)

Figure 5: Initial structures to (conditionally) linearize the first s < 5 rounds of FRIT .

1

Table 2: Degree after » < 16 rounds of FRIT™~ using the initial structures of Figure 5.

-0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5a |12 3 4 5 6 7 8 9 10 11 12 13 14 15 16
-~ | 7T |53 4 5 6 7 8§ 9 10 11 12 13 14 15 16
E 5c |4 5 6 7 8 9 10 11 12 13 14 15 16
5 5e |5 6 7 8 9 10 11 12 13 14 15 16
ar 111 2 2 3 4 5 7 9 12 16 21 28 37 49 65
b |IS|1 1 2 2 3 4 5 7 9 12 16 21 28 37 49 65 86
cr 12 2 3 4 5 7 9 12 16 21 28 37 49 65 86 114

3.3.3 Combined Inside-Out Structure

So far, we considered distinguishing properties of the (possibly keyed) permutation FRIT
or FRIT™!. When considering the permutation as an unkeyed primitive, we can also
obtain distinguishing properties that are even less costly to test, but that will usually
be less useful to exploit for key-recovery or other attack goals. In particular, we can use
inside-out computations and concatenate compatible initial structures to obtain a zero-sum
partitioning of very low dimension as follows. The 2-round forward and backward structures
of Figure 4a, 5a obviously start from compatible structures (1,1, v). Furthermore, if we
consider a low dimension, we can add a backward round for free as in Figure 5c. As
illustrated in Table 3, if we start from (1,1,v), the degree after 6 forward rounds is at
most 8, and after 10 backward rounds at most 9 (for suitable v). Thus, if we fix a suitable
v for dimension d + 1 = 10, and consider any affine space of this vector space, applying
FRITl_O1 produces 2'° = 1024 inputs to the permutation that sum to 0 while their outputs
after FRIT16 also sum to 0. Since we did not require any bit conditions, we can partition
the entire input space of size 23%* into 237 such zero-sum partitions of size 2'°.

Table 3: Inside-out degrees for 10-dimensional zero-sum partitioning of FRIT.

_lrJ1723 45 6 7 8 9 10 11 12 13 14 15 16
Sla- [5 4 3 2 2 1 1 2 3 5 8
Slb. |7 5 4 3 2 2 1 5cpa 4a 1 2 3 5
e |9 7 5 43 2 2 2 3 5 8
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4 Key-Recovery Attacks on Keyed Frit

In this section, we analyze the security of FRIT-based block ciphers. In the following attack
descriptions, we consider FRIT in a single-key Even-Mansour construction to encrypt a
384-bit plaintext P under a 384-bit key K to C = FrRIT(P ® K) @ K. The attacks apply
with identical complexities for a two-key construction, since the second key can be obtained
trivially once the first key has been recovered. For a FRrIT-like construction with a key
schedule and round keys, the attack complexities would also only increase by a negligible
amount.

We first propose a simple chosen-ciphertext attack that recovers the key with a very
low complexity by exploiting the low effective degree of FRIT™* with a 15-round integral
distinguisher. However, since the implementation cost of FRIT™! is higher than that of
FRrIT, we do not expect that FRIT would be used in a way that requires an implementation
of the decryption algorithm and thus allows chosen-ciphertext attacks. For this reason,
we also propose a chosen-plaintext attack with a higher complexity. While the 11-round
integral distinguisher in this case is shorter and weaker due to the higher effective degree
of FRIT, the key-recovery part can cover more rounds efficiently by applying optimized
interpolation attacks that again profit from the low degree of FRIT ™.

4.1 Simple Key-Recovery Attack using Chosen Ciphertexts

Assume we can query chosen ciphertexts C to receive the corresponding plaintexts P =
FRIT_l(C @ K) ® K. Here and in the following, we always “peel off” the final linear
operation o, ! by applying o, to limb a for all obtained plaintexts, and considering the
corresponding equivalent key. If we query 2'7 ciphertexts in an affine space constructed
with the initial structure of Figure 5c, we know that their values of limb a;5 after decrypting
15 rounds must sum to 0. The relevant degrees after r rounds are summarized in Table 4.
Moreover, if we continue decrypting another half-round, the same holds for the value of
limb ¢ between the mixing step o, ! and the Toffoli gate, which we denote by c*.

To verify this integral distinguishing property in one bit of ¢*, we need to guess 3 bits
of (equivalent) key information. Of all 23 key guesses, half (including the correct key)
will satisfy the 1-bit distinguishing property. After repeating the test 3 or more times
for different choices of the initial structure, we expect that only the correct key guess for
the 3 bits will survive. The test can be applied in parallel on all 128 bit positions, thus
recovering the complete 384-bit key. In order to collect enough data for 3 or more different
initial structures, we can query 2'® chosen plaintexts and select different 17-dimensional
subspaces. For each subspace and bit position, it is sufficient to count how often each of
the 23 possible values of the 3 relevant plaintext bits occurs; or more specifically, whether
it occurs an odd number of times. For each 3-bit key candidate, we can then test whether
these < 23 ciphertext values with odd counters sum to the target constant. Overall,
the time and data complexity is dominated by cost of querying 2'® chosen ciphertexts.
An alternative trade-off with a slightly lower data complexity of 2'4 chosen ciphertexts
and a higher, but still practical time complexity can be obtained by using a 14-round
distinguisher and guessing 27 key bits.

We practically implemented and verified the attack in C. It takes about 5 seconds to
recover the full 384-bit key for the full-round primitive. However, the experiment showed
that a minor tweak to the attack is necessary.

Let K = (K., Kp, K.) denote the key we want to recover. Since bit ¢* depends linearly
on the guessed key bits of K., the contribution of these key bits cancels when evaluating
the sum, and the distinguishing property is independent of K.. We can however correctly
recover the bits of K, and K}, one by one with 2 or more repetitions per bit position. To
also recover K., we tweak the attack as follows. We first recover the full keys K, Kp as
described above using 2 or more repetitions. Then, we peel off the first round, which is now
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linear in the remaining unknown key K., and repeat the attack for the partially encrypted
plaintexts using dimension 12 + 1 for 15-round FrRIT'. This way, we will recover the
“equivalent” keys K|, = 0,(0.(K.)) and K; = 0 (though, again, not the part K/ = o.(K.))

and thus learn K. to complete the key K.

Table 4: Key-recovery attacks on keyed FRIT (chosen-ciphertext or chosen-plaintext).
r 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16
S llo | K 16 12 9 7 5 4 3 2 2 1 1
= |9 b * 16 12 9 7 5 4 3 2 2 1 5c
?i Cr % 16 12 9 7 5 4 3 2 2
» | Or 2 3 5 8 13 21 34 55 *
&b | 4a 1 2 3 5 8 13 21 34 55 fr(C)
Cr 2 3 5 8 13 21 34 55 *

4.2 Optimized Interpolation Attack using Chosen Plaintexts

When trying to develop similar key-recovery attacks using chosen plaintexts, we run into
several limitations that prevent a full-round attack: First, the degree of FRIT grows
much faster, so the core distinguisher can only cover fewer rounds. Second, the initial
structures we identified in Figure 4 are shorter and only cover two rounds (without
additional conditions). Third, the diffusion of 0~! is much better than that of o, which
may impact the size of the necessary key guess. However, we can use a different approach
for key-guessing to take advantage of the properties of the weaker inverse FRIT™*: Jakobsen
and Knudsen’s interpolation attack [JK97] with Dinur et al’s variable transformations
[DLMW15].

In the following, we propose a chosen-plaintext attack that combines an 11-round
integral distinguisher with a 5-round key recovery by interpolation, as illustrated in Table 4.
We target the limb b* = by; after 11 rounds, for which we can construct an integral
distinguisher of dimension 55 + 1 using an initial structure of s = 2 rounds and a core
distinguisher for » = 9 rounds: the bits of b* have degree 55 in the selected variables from
the plaintext side.

On the other hand, the bits of b* can also be written as a polynomial of the ciphertext
bits with key-dependent coefficients. For 5 rounds, this polynomial can be obtained by
considering the ANF of FRITgl, substituting the keyed ciphertext bits (K; & C;) for the
FRIT output bits, and grouping the terms by the ciphertext monomials in C;. According
to the effective degree of FRIT !, this polynomial has degree at most 4 with respect to
the variables C; (see Table 2). We want to recover the key-dependent coefficients of the
ciphertext monomials to recover the key. To estimate the complexity of the resulting
attack, we first need to analyze the structure and properties of this polynomial for FRIT.

4.2.1 Interpolation and Monomial Count

We write one bit of b* as a polynomial f(K,C) of degree 4 in the key K = (Ko, ..., Kas3) €
F3% and ciphertext C = (Cy, ..., Css3) € F384. This polynomial can be re-written as a
key-dependent polynomial in the ciphertext,

fr(C) =" o C" € Fo[ K][C),

with ciphertext monomials C* = [[ C}* for u = (uo, ..., usr3) € F3>* and key-dependent
coefficients «,, € Fo[K]. We are interested in the number of monomials with non-zero

coefficients. This number is generally upper-bounded by (%)) & 227, but is significantly
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lower for FRIT™'. The polynomial is not exactly identical (modulo variable indexing) for
different bit positions due to the round constant addition, but the monomial count and
structure with respect to the monomials C* is the same for all bit positions. Also note
that due to the Even-Mansour construction, the definition of the polynomial is entirely
symmetric with respect to C and K, i.e., fx(C) = fo(K).

For the monomial count, we can derive simple bounds by hand, but to obtain a
more precise, tight result, we used Sage to symbolically evaluate the polynomial. More
specifically, we derived the ANF of Frit, ' for r < 5, substituted (K; @ C;) to obtain
f(K,C), and counted the number of distinct ciphertext monomials C* with (potentially)
non-zero coefficients. We list the corresponding Sage code in Listing 1 in the appendix.
For 5 rounds, this takes about 45 minutes, and an upper bound for 6 rounds can be
obtained in comparable time. Table 5 lists the resulting exact monomial count n for
r € {2,3,4,5}, grouped by the monomial degree. The polynomial is quite sparse; for
FriT; ', only = 60320 ~ 2'5%8 out of the total ~ 22°7 monomials C* have non-zero
coefficients «,.

We want to interpolate this polynomial and then recover the key bits from its key-
dependent coeflicients. We could do this with an interpolation attack by collecting n
equations in the n unknown coefficients using n different zero-sum distinguishers for our
target bit. To improve the complexity, we use the dual approach and variable transformation
proposed by Dinur et al. [DLMW15] for the analysis of LowMC. The exact number of
monomials of degrees (0,1,...,4) is (1,337, 30768, 25054, 4160). Since the overall degree
of f(K,C) is also 4, monomials C'* of high degree in C' must have coefficients «,, of low
degree in K. We can rewrite the polynomial using fewer unknowns «,, and K" as

FIK,.C)= > aC"+ > BK"

wt(u) small wt(v) small

For FRITgl, we can use this approach to reduce the number of unknowns «,, K" by a
factor of about 2:
o We keep the coeflicients of n, = 1 + 337 4+ 30768 monomials of degree < 2 in Cj.
e We transform the coefficients of the remaining 25054 + 4160 monomials of degree 3,4
in C;. These coeflicients must be polynomials in the key bits of degree at most 1 or 0,
respectively. Since the ANF is entirely symmetric in C' and K, only 1 or 1+ 337 key
monomials, respectively, can be involved in these coefficients. If we consider FRIT
with round keys and model them as independent new variables, the count would be
higher, but still much smaller than n,. By linearizing the key monomials, we can
replace the 25054 + 4160 coefficients with ng = 1 + 337 new unknowns.
The reduced number of unknowns is then n = n,+ny = 1+2-337+30768 = 31444 ~ 21494,

Table 5: Number of monomials 7 and unknowns n of fx (C) per bit for FriT, ' (Listing 1).

Round | Degree > 0 1 2 3 4
9 n 69 1 67 1
n 69 1 68
3 n 230 1 163 66
n 165 1 164
4 n 7921 1 274 7519 127
n 550 1 274 275
ﬁ 60320 1 337 30768 25054 4160
5 log,(n) | 15.88 | 0.00  8.40 14.91 14.61 12.02
n 31444 1 337 30768 338
log,(n) | 14.94 | 0.00 8.40 14.91 8.40
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Conveniently, the value of 337 of the new unknowns corresponds exactly to different
key bits that can thus be trivially recovered from the interpolated polynomial. To recover
the full key, it will be necessary to repeat the attack one more time with a different target
bit position, which can be done with the same data.

4.3 Key Recovery and Attack Complexity

We state the memory complexity M in bits (bit), data complexity D in the number
of queries, and time complexity T in bit operations (op) or encryptions (enc), where
lenc=16-128-(2-2+3.5-1) +2-3840p ~ 2 op (assuming 128-bit round constants).

For our attack, we use dimension d + 1 = 55 + 1, n = 31444 = 2'*%% unknowns,
n = 60320 = 2'5-% monomials. Then we select ¢ such that (djﬂ't) >n, e, t =3
(gg) ~ 21499 5 91494 The attack recovers 337 key bits, so a single repetition is sufficient
and the remaining key bits can be recovered by brute force using about 23847337 = 247
trial encryptions (or the attack can be repeated once with the same data for a different bit
position of b*). The attack procedure and complexity is then as follows:

1. Query the decryption oracle with a set C of 29+1** chosen ciphertexts: C is defined
by the initial structure in Figure 4a, i.e., d+ 141 bits of limb ¢ enumerate all possible
values, the rest is set to an arbitrary constant. Denote by C; < C, 0 < i < 2¢+1+t
the subspace of dimension wt (i), where the 1-bits of ¢ select the basis vectors of C.
Fix a selection {C;} of n subspaces with wt(7) = d + 1. (D = 24+1+1)

2. Set up equation system: Initialize n x n array; For each of the 7 monomials:

(a) Evaluate the monomial for each ciphertext. (M = Dbit, T =n-Dop)
(b) Apply the Moebius transform to this bit vector. Extract the n < (d+é+t)
bits that correspond to the n subspaces {C;} of dimension wt(i) = d.
(M =nbit, T =n- Dlog, Dop)
(¢c) Update equation system: For the first n, monomials, copy n-bit vector to
an array column. For the others, update up to nj; columns.
(M =n?bit, T =n,-n+ (0 —ny) - ng - nop)

3. Solve system to recover the unknowns and derive key bits. (T = n3/logn [Bar07])

The total complexity is D = 2971%* and T may be dominated by step 1, 2b, 2¢c, or 3.
For our parameters, this is D = 291+t = 259 N[ = 2d+14t — 9239 hit T ~n - Dlog, D =
980.76 1y 26676 oy,

5 Conclusion

Our analysis of FRIT shows that the inverse permutation FRIT™! has less efficient diffusion
between its 128-bit limbs than FRIT, although the diffusion within each limb is much
stronger. This leads to several properties that we can exploit in attacks on FRIT ™! and,
to a much lesser extent, also on FRIT: First, the algebraic degree grows much more slowly
over multiple rounds, with an effective degree of only ag ~ 1.325. Second, by carefully
selecting the variables, we can linearize up to 4 rounds of FRIT ! and thus obtain efficient
initial structures for an integral attack. Third, we can express intermediate state bits
as a polynomial in the output bits (and key bits) with a relatively limited monomial
count. As a consequence, we can provide efficient attacks on the full 16-round FRIT
permutation if it is used as a block cipher, e.g., in an Even-Mansour mode with complexity
267 when targeting the encryption, or 2'® when targeting the decryption. Furthermore, we
provide very low-dimensional start-in-the-middle zero-sum partitioning distinguishers for
the permutation.
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If we consider the use of round-reduced FRIT in a sponge or duplex mode of operation,
the provided observations provide a good starting point for cube-like or conditional cube
attacks. However, so far, we cannot exploit our observations if the full FRIT permutation
is used in a sponge or duplex mode of operation. Hence, we consider the analysis of these
use-cases as an interesting future research topic.
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A Symbolic Evaluation with Sage

1

Listing 1: Sage code to count the monomials in limb b after 1,...,5 rounds of FrRIT™ .
varnames = sum([[v+str(i) for i in range(384)] for v in ’CK’], [I)
R = BooleanPolynomialRing(len(varnames), varnames, order=’deglex’)

Cvar, Kvar = list(R.gens())[:384], list(R.gens())[384:]

AND = lambda x, y: [xi*yi for xi, yi in zip(x, y)]

XOR = lambda x, y: [xi+yi for xi, yi in zip(x, y)I

XOR3 = lambda x, y, z: [xi+yi+zi for xi, yi, zi in zip(x, y, 2z)]
ROTL = lambda x, r: x[-r:] + x[:-r]

invlist = lambda 1: [r for r, xr in enumerate(matrix.circulant(
[GF(2)(1) if i in 1 else GF(2)(0) for i in range (128)]
).inverse () [0]) if =xr]
SIGMA = lambda x, 1l: reduce(lambda x, y: XOR(x, y), [ROTL(x, 1i) for 1li im 1])
SIGMA_a = lambda x: XOR3(x, ROTL(x, 110), ROTL(x, 87))
SIGMA_c = lambda x: XOR3(x, ROTL(x, 118), ROTL(x, 88))
SIGMA_a_inv = lambda x: SIGMA(x, invlist ([0,87,110]))
SIGMA_c_inv = lambda x: SIGMA(x, invlist([0,88,118]))
RC = [GF(2)(rc) for rc in reversed (0xF9A42BB1.binary().zfill(128))]
RCs = [i*[GF(2)(0)] + RC[i:] for i in range (16)]

texnum = lambda x: str(x) + "y =427{" + str(log(x,2).n(digits=5)) + "}"
def STATS(rnd, x):
print "ROUND", rnd
print "F[K,C]:",[len(x.graded_part(d)) for 4 in [0..8]],"=",texnum(len(x))
subsdict = {ki:R.one() for ki in Kvar}
x = sum(set ([mon.subs(subsdict) for mon in x.monomials()]))
print "F_K[C]:",[len(x.graded_part(d)) for d in [0..8]],"=",texnum(len(x))

nrounds = 5

X0OR(Cvar [0:128], Kvar [0:128])
X0R(Cvar [128:256], Kvar [128:256])
X0OR (Cvar [256:384], Kvar [256:384])

b
c

c = XOR3(c, AND(a, b), RCs[0])
a = SIGMA_a_inv(a)
STATS("1b", b[0])

for r in [2..(nrounds-2)]:
c, a, b =a, b, ¢
X0R3 (b, a, c)
XOR3(SIGMA_c_inv(c), AND(a, b), RCs[r-11)
SIGMA_a_inv(a)
TATS (str(r)+"b", b[0])

me oo

c, a, b = a, b, c

b = XOR3(b[:1], al:1]1, cl[:1])

STATS (str (nrounds-1)+"b", b[0])

b0 = (SIGMA_a_inv(a)[0] + b[0] + SIGMA_c_inv(c)[0]) + b[0] * al[0]
STATS (str (nrounds)+"b", b0)
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