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Abstract

We generalize our earlier works on computing short discrete logarithms
with tradeoffs, and bridge them with Seifert’s work on computing orders
with tradeoffs, and with Shor’s groundbreaking works on computing orders
and general discrete logarithms. In particular, we enable tradeoffs when com-
puting general discrete logarithms.

Compared to Shor’s algorithm, this yields a reduction by up to a factor of
two in the number of group operations evaluated quantumly in each run, at
the expense of having to perform multiple runs. Unlike Shor’s algorithm, our
algorithm does not require the group order to be known. It simultaneously
computes both the order and the logarithm.

We analyze the probability distributions induced by our algorithm, and by
Shor’s and Seifert’s order finding algorithms, describe how these algorithms
may be simulated when the solution is known, and estimate the number of
runs required for a given minimum success probability when making different
tradeoffs.

1 Introduction

As in [4, 7, 6], let G under � be a finite cyclic group of order r generated by g, and

x = [ d ] g = g � g � · · · � g︸ ︷︷ ︸
d times

.

The discrete logarithm problem is to compute d = logg x given the group elements
g and x. In cryptographic applications, the group G is typically a subgroup of F∗p,
for some prime p, or an elliptic curve group.

In the general discrete logarithm problem 0 ≤ d < r, whereas d is smaller than r
by some order of magnitude in the short discrete logarithm problem.

1.1 Earlier works

In 1994, in a groundbreaking publication, Shor [22, 23] introduced polynomial
time quantum algorithms for factoring integers and for computing general discrete
logarithms in F∗p. Note that the latter algorithm may be trivially generalized to
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compute discrete logarithms in arbitrary finite cyclic groups, provided the group
operation can be implemented efficiently on the quantum computer.

Eker̊a [4] initiated a line of research in 2016 by introducing a modified version of
Shor’s algorithm for computing discrete logarithms that more efficiently solves the
short discrete logarithm problem. This work is of cryptographic significance as the
short discrete logarithm problem underpins many implementations of cryptographic
schemes instantiated with safe-prime groups. A notable example is Diffie-Hellman
key exchange [2] in TLS, IKE and NIST SP 800-56A [26, 25, 24].

In a follow-up work, Eker̊a and H̊astad [7] enabled tradeoffs in Eker̊a’s algo-
rithm using ideas that directly parallel those of Seifert [21] in his work on enabling
tradeoffs in Shor’s order finding algorithm; the quantum part of Shor’s factoring
algorithm. Eker̊a and H̊astad furthermore showed how the RSA integer factoring
problem, that underpins the widely deployed RSA cryptosystem [18], may be re-
duced via [9] to a short discrete logarithm problem and attacked quantumly. This
gives rise to a quantum algorithm that more efficiently solves the RSA integer
factoring problem than Shor’s original factoring algorithm when making tradeoffs.

Eker̊a [6] subsequently refined the classical post-processing in [7] to render it
more efficient. With this improved post-processing, the algorithm of Eker̊a and
H̊astad was shown in [6] to outperform Shor’s factoring algorithm when targeting
RSA integers, irrespective of whether tradeoffs are made.

A key component to this result was the development of a classical simulator
for the quantum algorithm for computing short discrete logarithms: For problem
instances for which the solution is classically known, this simulator allows outputs
to be generated that are representative of outputs that would be generated by the
quantum algorithm if executed on a quantum computer. This in turn allows the
efficiency of the classical post-processing to be experimentally assessed.

1.2 Our contributions

We generalize and bridge our earlier works on computing short discrete logarithms
with tradeoffs, Seifert’s work on computing orders with tradeoffs and Shor’s ground-
breaking works on computing orders and general discrete logarithms. In particular,
we enable tradeoffs when computing general discrete logarithms.

Compared to Shor’s algorithm for computing general discrete logarithms, this
yields a reduction by up to a factor of two in the number of group operations
evaluated quantumly in each run, at the expense of having to perform multiple
runs. Unlike Shor’s algorithm, our algorithm does not require the group order to
be known. It simultaneously computes both the order and the logarithm. This
allows it to outperform Shor’s original algorithms with respect to the number of
group operations that need to be evaluated quantumly in some cases even when
not making tradeoffs. One cryptographically relevant example of such a case is the
computation of discrete logarithms in Schnorr groups of unknown order.

We analyze the probability distributions induced by our algorithm, and by
Shor’s and Seifert’s order finding algorithms, describe how all of these algorithms
may be simulated when the solution is known, and estimate the number of runs
required for a given minimum success probability when making different tradeoffs.

1.2.1 On the cryptographic significance of this work

Virtually all currently widely deployed asymmetric cryptosystems are based on the
intractability of the discrete logarithm problem or the integer factoring problem.
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In this work, we further the understanding of how hard these two key problems
are to solve quantumly when not on special form. We hope that our results may
prove useful when developing cost estimates for quantum attacks, and that they
may inform decisions on when to mandate migration from the currently deployed
asymmetric cryptosystems to post-quantum secure cryptosystems.

1.2.2 Further details and overview

Our algorithm for computing discrete logarithms consists of two algorithms;

• a quantum algorithm, that upon input of a generator g of order r, and an
element x = [ d ] g where 0 ≤ d < r, outputs a pair (j, k), and

• a classical probabilistic post-processing algorithm, that upon input of a set
of n pairs (j, k), produced by n runs of the quantum algorithm, computes d.

In addition to the above post-processing algorithm, we furthermore specify

• a classical probabilistic post-processing algorithm, that upon input of a set
of n pairs (j, k), computes the order r. Note that the same set of pairs may
be used as input to both this and the above post-processing algorithm.

The quantum algorithm is identical to the algorithm in [7, 6] for computing
short discrete logarithms with tradeoffs. The key difference in this work is that
we admit general discrete logarithms and comprehensively analyze the probability
distribution that the algorithm induces for such logarithms. The post-processing
algorithm for d is a tweaked version of the lattice-based algorithm in [6], whereas
the algorithm for r is a natural generalization of the lattice-based algorithm in [6]
first sketched in a pre-print of [7]. It is similar to the post-processing in [21].

The quantum algorithm is parameterized under a tradeoff factor s. This factor
controls the tradeoff between the requirements that the algorithm imposes on the
quantum computer, and the number of runs, n, required to attain a given minimum
probability q of recovering d and r in the classical post-processing.

Following [6], we estimate n for a given problem instance, represented by d
and r, and fixed s and q, by simulating the quantum algorithm. We first use
the simulated output to heuristically estimate n, and then verify the estimate by
executing the two post-processing algorithms with respect to simulated output.

The simulator is based on a high-resolution two-dimensional histogram of the
probability distribution induced by the quantum algorithm. By sampling the histo-
gram, we generate pairs (j, k) that very closely approximate the output that would
be produced by the quantum algorithm if executed on a quantum computer.

To construct the histogram, we first derive a closed form expression that approx-
imates the probability of the quantum algorithm yielding (j, k) as output, and an
upper bound on the error in the approximation. We then integrate this expression
and the error bound numerically in different regions of the plane.

Our simulations show that when not making tradeoffs, a single run suffices to
compute d or r with ≥ 99% success probability. When making tradeoffs, slightly
more than s runs are typically required to achieve a similar success probability. In
appendix A we show that these results extend to order finding and factoring.

Note that the simulator requires d and r to be explicitly known: It cannot be
used for problem instances represented by group elements g and x = [ d ] g.
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1.2.3 Structure of this paper

The quantum algorithm is described in section 2. In section 3, we analyze the
probability distribution it induces, and derive a closed form expression that ap-
proximates the probability of it yielding (j, k) as output. In sections 4 and 5, we
describe how the high-resolution histogram is constructed by integrating the closed
form expression, and how it is sampled to simulate the quantum algorithm.

In section 6, we describe the two post-processing algorithms for recovering d
and r from a set of n pairs (j, k). In section 7, we use the simulator to estimate
the number of runs n required to solve a given problem instance for d and r, with
minimum success probability q, as a function of the tradeoff factor s.

We summarize past and new results, and discuss related applications, such as
order finding and integer factoring, in sections 8 and 9, and in the appendices.

1.3 Notation

The below notation is used throughout this paper:

• u mod n denotes u reduced modulo n constrained to 0 ≤ u mod n < n.

• {u}n denotes u reduced modulo n constrained to −n/2 ≤ {u}n < n/2.

• due, buc and bue denotes u rounded up, down and to the closest integer.

• | a+ ib | =
√
a2 + b2 where a, b ∈ R denotes the Euclidean norm of a+ ib.

• |u | denotes the Euclidean norm of the vector u = (u0, . . . , un−1) ∈ Rn.

1.4 Randomization

Given two group elements g and x′ = [ d′ ] g to be solved for d′, the general discrete
logarithm problem may be randomized as follows:

1. Select a random integer t. Let x = x′ � [ t ] g = [ d ] g.

2. Solve g and x for d ≡ d′ + t (mod r) and optionally for r.

3. Compute and return d′ ≡ d− t (mod r).

Hence, we may assume without loss of generality that d is selected uniformly at
random on 0 ≤ d < r in the analysis of the quantum algorithm.

If r is known, t should be selected uniformly at random on 0 ≤ t < r, otherwise
on 0 ≤ t < 2m+c for c a sufficiently large integer constant for the selection of x to
be indistinguishable from a uniform selection from G. Solving for r in step (2) is
only necessary if r is unknown and d′ must be on 0 ≤ d′ < r when returned.

2 The quantum algorithm

In this section we describe the quantum algorithm, that upon input of a generator g
and an element x = [ d ] g, where 0 ≤ d < r, outputs a pair (j, k) and element y.

As stated earlier, the algorithm is parameterized under a small integer constant
s ≥ 1, referred to as the tradeoff factor, that controls the tradeoff between the
number of runs required and the requirements imposed on the quantum computer.
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1. Let m be the integer such that 2m−1 ≤ r < 2m, let ` = dm/se, and let

Ψ =
1√

2m+2`

2m+`−1∑
a= 0

2`−1∑
b= 0

| a 〉 | b 〉 | 0 〉 .

2. Compute [a] g � [−b]x = [a− bd] g to the third register to obtain

Ψ =
1√

2m+2`

2m+`−1∑
a= 0

2`−1∑
b= 0

| a, b, [a − bd] g 〉 .

3. Compute QFTs of size 2m+` and 2` of the first two registers to obtain

Ψ =
1

2m+2`

2m+`−1∑
a= 0

2`−1∑
b= 0

2m+`−1∑
j= 0

2`−1∑
k= 0

e 2πi (aj+2mbk)/2m+`

| j, k, [a − bd] g 〉 .

4. Observe the system to obtain (j, k) and y = [e] g where e = (a− bd) mod r.

The above steps may be interleaved, rather than executed sequentially, so as to
allow the qubits in the first two registers to be recycled [8, 15, 16]. A single control
qubit then suffices to implement the first two control registers. This is possible
as the qubits in the control registers are not initially entangled; the registers are
initialized to uniform superpositions of 2m+` and 2` values, respectively.

In Shor’s algorithm for computing general discrete logarithms, the two control
registers are instead of length m qubits. Both registers are initialized to uniform
superpositions of r values. This makes the single control qubit optimization less
straightforward to apply, and the initial superpositions harder to induce. Apart
from this difference, Shor’s algorithm and our algorithm may be easily compared
in terms of the difference in the total exponent length.

In practice, the exponentiation of group elements would typically be performed
by computing a group operation controlled by each bit in the exponent. Hence,
a total of 2m group operations are performed in Shor’s algorithm, compared to
m+ 2m/s in our algorithm. As s increases, this tends to m operations, providing
an advantage over Shor’s original algorithm by up to a factor of two at the expense
of having to execute the algorithm multiple times. This reduction in the number of
group operations translates into a corresponding reduction in the coherence time
and circuit depth requirements of our quantum algorithm.

Note that our algorithm does not require r to be known. It suffices that the
size of r is known, and that group operations and inverses may be efficiently com-
puted. For comparison, Shor requires r to be known. This explains why Shor needs
to perform only 2m operations, whilst we need 3m operations when not making
tradeoffs. As we shall see, we do in fact compute both d and r simultaneously,
whilst Shor computes d given r.

3 The probability of observing (j, k) and y

In step (4) in section 2, we obtain (j, k) and y = [e] g with probability

1

22(m+2`)

∣∣∣∣∣∑
a

∑
b

exp

[
2πi

2m+`
(aj + 2mbk)

] ∣∣∣∣∣
2

(1)
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where the sum is over all pairs (a, b), such that 0 ≤ a < 2m+` and 0 ≤ b < 2`,
respecting the condition e ≡ a− bd (mod r). In this section, we seek a closed form
error-bounded approximation to (1) summed over all y = [e] g ∈ G.

To this end, we first perform a variable substitution to obtain contiguous sum-
mation intervals. As a = e + bd + nrr for nr an integer, the index a is a function
of b and nr, where 0 ≤ a = e+ bd+ nrr < 2m+`, so

d−(e+ bd)/re ≤ nr <
⌈
(2m+` − (e+ bd))/r

⌉
. (2)

Substituting a for e+ bd+ nrr in (1) and adjusting the phase therefore yields

1

22(m+2`)

∣∣∣∣∣∣∣
2`−1∑
b= 0

d(2m+`−(e+bd))/re−1∑
nr = d−(e+bd)/re

exp

[
2πi

2m+`
(nrrj + b(dj + 2mk))

] ∣∣∣∣∣∣∣
2

. (3)

By introducing arguments αd and αr, and corresponding angles θd and θr, where

αd = {dj + 2mk}2m+` αr = {rj}2m+` θd = θ(αd) =
2παd
2m+`

θr = θ(αr) =
2παr
2m+`

we may write (3) as a function of αd and αr, and e, as

1

22(m+2`)

∣∣∣∣∣∣∣
2`−1∑
b= 0

d(2m+`−(e+bd))/re−1∑
nr = d−(e+bd)/re

exp

[
2πi

2m+`
(nrαr + bαd)

] ∣∣∣∣∣∣∣
2

(4)

or of θd and θr, and e, as

ρ(θd, θr, e) =
1

22(m+2`)

∣∣∣∣∣∣∣
2`−1∑
b= 0

eiθdb
d(2m+`−(e+bd))/re−1∑
nr = d−(e+bd)/re

eiθrnr

∣∣∣∣∣∣∣
2

. (5)

This implies that the probability of observing the pair (j, k) and y = [e] g
depends only on (αd, αr) and e, or equivalently on (θd, θr) and e. The probability
is virtually independent of e in practice, as e can at most shift the endpoints of the
summation interval in the inner sums in (4) and (5) by one step.

As was stated above, we seek a closed form approximation to ρ(θd, θr, e) summed
over all r group elements y = [e] g ∈ G. Hereinafter, we denote this probability

P (θd, θr) =

r−1∑
e= 0

ρ(θd, θr, e)

=
1

22(m+2`)

r−1∑
e= 0

∣∣∣∣∣∣∣
2`−1∑
b= 0

eiθdb
d(2m+`−(e+bd))/re−1∑
nr = d−(e+bd)/re

eiθrnr

∣∣∣∣∣∣∣
2

, (6)

and we furthermore use angles and arguments interchangeably, depending on which
representation best lends itself to analysis in each step of the process.
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3.1 Preliminaries

To gain some intuition, we write ρ(θd, θr, e) as

1

22(m+2`)

∣∣∣∣∣∣∣
2`−1∑
b= 0

ei(θdb+θrd−(e+bd)/re)
d(2m+`−(e+bd))/re−d−(e+bd)/re−1∑

nr = 0

eiθrnr

∣∣∣∣∣∣∣
2

and note that there are two obstacles to placing this expression on closed form:
Firstly, the summation interval in the inner sum over nr depends on the sum-

mation variable b of the outer sum. Secondly, the exponent of the summand in the
outer sum over b contains a rounding operation that depends on b.

By using that
⌈
(2m+` − (e+ bd))/r

⌉
− d−(e+ bd)/re ≈

⌈
2m+`/r

⌉
we may re-

move the dependency between the inner and outer sums, and by using that d−(e+ bd)/re ≈
−(e+ bd)/r we may remove the rounding operation.

By making these two approximations, and by adjusting the phase, we may
derive an approximation to ρ(θd, θr, e) that is independent of e, enabling us to sum
ρ(θd, θr, e) over the r values of e, corresponding to the r group elements y = [e] g ∈
G, simply by multiplying by r. This yields

P (θd, θr) ≈
r

22(m+2`)

∣∣∣∣∣∣
2`−1∑
b= 0

ei(θd−θrd/r)b

∣∣∣∣∣∣
2
∣∣∣∣∣∣∣
d2m+`/re−1∑

nr = 0

eiθrnr

∣∣∣∣∣∣∣
2

=
r

22(m+2`)

∣∣∣∣∣ ei2
`(θd−θrd/r) − 1

ei(θd−θrd/r) − 1

∣∣∣∣∣
2 ∣∣∣∣∣ eid2

m+`/reθr − 1

eiθr − 1

∣∣∣∣∣
2

(7)

where we furthermore need to assume in (7) that θd − θrd/r 6= 0 and θr 6= 0.
This closed form approximation captures the general characteristics of the prob-

ability distribution induced by the quantum algorithm. However, it is seemingly
non-trivial to derive a good bound for the error in this approximation.

In what follows, we use techniques similar to those employed above to derive
an error-bounded closed form approximation to ρ(θd, θr, e) such that the error is
negligible in the regions of the plane where the probability mass is concentrated.

As was the case above, we will find that the error-bounded approximation of
ρ(θd, θr, e) is independent of e, enabling us to approximate P (θd, θr) simply by
multiplying the closed form approximation to ρ(θd, θr, e) by r.

3.1.1 Constructive interference

Before we proceed to develop the closed form approximation, we note that for a
fixed problem instance and fixed e, the sums in ρ(θd, θr, e) are over a constant
number of unit vectors in the complex plane. For such sums, constructive inter-
ference arises when all vectors point in approximately the same direction.

In regions of the plane where θr and θd−d/r θr are both small, we hence expect
constructive interference to arise. The probability mass is expected to concentrate
in regions where constructive interference arises, and where the concentration of
pairs (θd, θr) yielded by the integers pairs (j, k) is great.

In what follows, we therefore seek to derive a closed form approximation to
ρ(θd, θr, e), and an associated bound on the error in the approximation, such that
the error is small when θd and θd − d/r θr are small.
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a

b

2` − 1

2m+` − 1

0

A

Fig. 1: The lattice La,b for σ = 2. All red filled points are in R. The
region A and its translated replicas are drawn as dashed rectangles. All blue
outlined points are in A or in one of its replicas. The gray triangles outline
the points that are in A or one of its replicas, but not in R, and vice versa.

3.2 Closed form approximation with error bounds

To derive a closed form approximation to ρ(θd, θr, e), we first observe that the sums
in the expression for ρ(θd, θr, e) may be regarded as sums over the points in a region
R in a lattice La,b, as is illustrated in Fig. 1. Note that this figure also contains
other elements to which we shall return as the analysis progresses.

Definition 3.1. Let La,b be the lattice spanned by (d, 1) and (r, 0) so that the set
of points in La,b is given by (a, b) = b(d, 1) + nr(r, 0) for integers b and nr.

Definition 3.2. Let R be the region in La,b where 0 ≤ a < 2m+` and 0 ≤ b < 2`.

Definition 3.3. Let

SR =
| sR |2

22(m+2`)
where sR =

∑
(a,b)∈R

exp

[
2πi

2m+`
(aj + 2mbk)

]
.

Claim 3.1. The probability ρ(θd, θr, e) = SR.
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Proof. The points in R are given by (a, b) = b(d, 1) + nr(r, 0), for 0 ≤ b < 2` and
nr on (2) so that 0 ≤ a = e+ bd+ nrr < 2m+`, which implies that

SR =
1

22(m+2`)

∣∣∣∣∣∣∣
2`−1∑
b= 0

d(2m+`−(e+bd))/re−1∑
nr = d−(e+bd)/re

exp

[
2πi

2m+`
(nrrj + b(dj + 2mk))

] ∣∣∣∣∣∣∣
2

=
1

22(m+2`)

∣∣∣∣∣∣∣
2`−1∑
b= 0

eiθdb
d(2m+`−(e+bd))/re−1∑
nr = d−(e+bd)/re

eiθrnr

∣∣∣∣∣∣∣
2

= ρ(θd, θr, e)

by the preliminary analysis in section 3 and so the claim follows. �

In what follows, we derive a closed form approximation to ρ(θd, θr, e) = SR,
and an associated error bound, in three steps.

3.2.1 Preliminaries

Before proceeding as outlined above, we first introduce some preliminary claims.

Claim 3.2. For u, v ∈ C and ∆ = u− v it holds that∣∣ |u |2 − | v |2 ∣∣ ≤ 2 |u | |∆ |+ |∆ |2.

Proof. First verify that

|u |2 − | v |2 = |u |2 − |u−∆ |2 = uu− (u−∆)(u−∆)

= uu− (u−∆)(u−∆) = u∆ + u∆− |∆ |2

where the overlines denote complex conjugates. This implies that∣∣ |u |2 − | v |2 ∣∣ ≤ |u | |∆ |+ |u | |∆ | + |∆ |2 = 2 |u | |∆ |+ |∆ |2

and so the claim follows. �

Claim 3.3. | eiφ − 1 | ≤ |φ | for any φ ∈ R.

Proof. It suffices to show that | eiφ − 1 |2 = 2(1− cosφ) ≤ φ2 from which the claim
follows as cosφ ≥ 1− φ2/2 for any φ ∈ R. �

3.2.2 Bounding | sR |

Before proceeding to the first approximation step, we furthermore bound | sR | in
this section, as this bound is needed in the following analysis.

Lemma 3.1. The sum sR is bounded by | sR | ≤ 22`+1.

Proof. By Claim 3.1 the sum

sR =

2`−1∑
b= 0

eiθdb
d(2m+`−(e+bd))/re−1∑
nr = d−(e+bd)/re

eiθrnr

where the outer sum over b is over 2` values and the inner sum over nr is over at
most 2`+1 values by Claim 3.4 below. As sR is a sum of at most 22`+1 complex
unit vectors, it follows that | sR | ≤ 22`+1, and so the lemma follows. �
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Claim 3.4. For ∆ =
⌈
(2m+` − (e+ bd))/r

⌉
− d−(e+ bd)/re, it holds that

∆ =
⌈
2m+`/r

⌉
− td =

⌊
2m+`/r

⌋
+ tb ≤ 2`+1 for some td, tb ∈ {0, 1}.

Proof. For some f1, f2 ∈ [0, 1), it holds that

∆ =
⌈⌈

2m+`/r
⌉
− f1 + d−(e+ bd)/re − f2

⌉
− d−(e+ bd)/re

=
⌈
2m+`/r

⌉
+ d−(e+ bd)/re − d−(e+ bd)/re+ d−f1 − f2e

where td = d−f1 − f2e = −bf1 + f2c ∈ {0, 1} as f1 + f2 ∈ [0, 2). Analogously,

∆ =
⌈⌊

2m+`/r
⌋

+ f ′1 + d−(e+ bd)/re − f2

⌉
− d−(e+ bd)/re

=
⌊
2m+`/r

⌋
+ d−(e+ bd)/re − d−(e+ bd)/re+ df ′1 − f2e

again for some f ′1 ∈ [0, 1), where tb = df ′1 − f2e ∈ {0, 1} as f ′1 − f2 ∈ (−1, 1).

Finally, recall that r ≥ 2m−1. Hence, it follows that 2m+`/r ≤ 2`+1, so ∆ =⌈
2m+`/r

⌉
− td ≤ 2`+1, and so the claim follows. �

3.2.3 Approximating SR by SATA

In the first approximation step, we approximate SR by summing the points in a
small region A in R, and then replicating and translating the points in A, and the
associated sum over these points, so as to approximately cover R, see Fig. 1.

Definition 3.4. Let A be the region in La,b where 0 ≤ a < 2m+` and 0 ≤ b < 2σ

for σ an integer parameter selected on 0 < σ < `.

Definition 3.5. Let

SA =
| sA |2

22(m+2`)
where sA =

∑
(a,b)∈A

exp

[
2πi

2m+`
(aj + 2mbk)

]
.

Claim 3.5.

SA =
1

22(m+2`)

∣∣∣∣∣∣∣
2σ−1∑
b= 0

eiθdb
d(2m+`−(e+bd))/re−1∑
nr = d−(e+bd)/re

eiθrnr

∣∣∣∣∣∣∣
2

.

Proof. The points in A are given by (a, b) = b(d, 1) + nr(r, 0) for 0 ≤ b < 2σ and
nr on (2) so that 0 ≤ a = e+ bd+ nrr < 2m+` which implies that

SA =
1

22(m+2`)

∣∣∣∣∣∣∣
2σ−1∑
b= 0

d(2m+`−(e+bd))/re−1∑
nr = d−(e+bd)/re

exp

[
2πi

2m+`
(nrrj + b(dj + 2mk))

] ∣∣∣∣∣∣∣
2

=
1

22(m+2`)

∣∣∣∣∣∣∣
2σ−1∑
b= 0

eiθdb
d(2m+`−(e+bd))/re−1∑
nr = d−(e+bd)/re

eiθrnr

∣∣∣∣∣∣∣
2

in analogy with the analysis in section 3, but with b on 0 ≤ b < 2σ as opposed to
0 ≤ b < 2`, and so the claim follows. �
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To replicate and translate the points in A so as to approximately cover R, we
furthermore introduce tA and TA, as defined below:

Definition 3.6. Let

TA = | tA |2 where tA =

2`−σ−1∑
t= 0

ei(θd2σ+θrd−2σd/re) t.

The error when approximating SR by SATA may now be bounded as follows:

Lemma 3.2. The error when approximating sR by sAtA is bounded by

| sR − sAtA | ≤ 22`−σ+1.

Proof. The exponential sum tA replicates and translates the partial sum over A
so as to approximately cover R as is illustrated in Fig. 1. Every time the region
is replicated, it is translated by ei(θd2σ+θrd−2σd/re). This exponential function may
be easily seen to correspond to a vector in La,b. The error that arises when sR is
approximated by sAtA is hence due to points that are in R but excluded from the
sum, and conversely to points not in R that are erroneously included in the sum.
Hereinafter these points will be referred to as the erroneous points.

The erroneous points fall within the two gray triangles in Fig. 1. Both triangles
are of horizontal length 2` and vertical side length 2`−σ(2σd mod r), as the region
A is replicated and translated 2`−σ times in total, and as it is shifted horizontally
by 2σ and vertically by 2σd mod r every time it is translated.

To upper-bound the number of lattice points in each triangle, note that the
lattice points are on 2` vertical lines, evenly separated horizontally by a distance of
one. The points on each vertical line are evenly separated vertically by a distance of
r, with varying starting positions on each line. For h(b) = 2`−σ(2σd mod r)(b/2`)
the height of each triangle at b, we have that at most

N(b) = 1 + bh(b)/rc ≤ 1 +
h(b)

r
= 1 +

2σd mod r

r

b

2σ
≤ 1 +

b

2σ

lattice points are then on the vertical line that cuts through the triangle at b, as
may be seen by maximizing over all possible starting points. By summing N(b)
over all 2` lines, we thus obtain an upper bound of

2`−1∑
b= 0

N(b) ≤ 2` +
1

2σ

2`−1∑
b= 0

b = 2` +
1

2σ
2`(2` − 1)

2
≤ 22`−σ

on the number of points in each triangle, where we have used that 22`−σ−1 ≥ 2`

as σ is an integer on 0 < σ < `. As there are two triangles, the total number
of erroneous points is upper-bounded by 2 · 22`−σ = 22`−σ+1. Each erroneous
point corresponds to a unit vector in the complex sum sR − sAtA, which implies
| sR − sAtA | ≤ 22`−σ+1, and so the lemma follows. �

Lemma 3.3. The error when approximating SR by SATA is bounded by

|SR − SATA | ≤ 2−2m−σ+4.

11



Proof. By Claim 3.2, it holds that∣∣ | sR |2 − | sAtA |2 ∣∣ ≤ 2 | sR | | sR − sAtA |+ | sR − sAtA |2

≤ 2 · 22`+1 · 22`−σ+1 + 24`−2σ+2

≤ 3 · 24`−σ+2 ≤ 24(`+1)−σ

as | sR − sAtA | ≤ 22`−σ+1 by Lemma 3.2 and | sR | ≤ 22`+1 by Lemma 3.1.
From the above, and Definitions 3.3, 3.5 and 3.6, we have that

|SR − SATA | =
∣∣ | sR |2 − | sAtA |2 ∣∣

22(m+2`)
≤ 24(`+1)−σ

22(m+2`)
= 2−2m−σ+4

and so the lemma follows. �

As tA is a geometric series TA = | tA |2 may be placed on closed form. It remains
to derive a closed form approximation to SA in two more steps.

3.2.4 Approximating SA by S′A

In the second approximation step, we derive a closed form approximation to SA,
by first approximating SA by the product S′A of two sums, such that the leading
sum may be placed on closed form, and such that the trailing sum may be placed
on closed form by means of a third approximation step.

Definition 3.7. Let

S′A =
| s′A |

2

22(m+2`)
where s′A =

2σ−1∑
b= 0

ei(θdb+θrd−(e+bd)/re)
d2m+`/re−1∑

nr = 0

eiθrnr .

Lemma 3.4. The error when approximating sA by s′A is bounded by

| sA − s′A | ≤ 2σ.

Proof. As sA and s′A are sums of complex unit vectors, and as the sums differ by
at most 2σ vectors, as may be seen by comparing the summation intervals using
Claim 3.4, it follows that | sA − s′A | ≤ 2σ, and so the lemma follows. �

Lemma 3.5. The sum s′A is bounded by | s′A | ≤ 2`+σ+1.

Proof. In the expression for s′A in Definition 3.7, the sum over b assumes 2σ values
and the sum over nr assumes at most 2`+1 values as the order r ≥ 2m−1.

As s′A is a sum of at most 2`+σ+1 complex unit vectors, it follows that | s′A | ≤
2`+σ+1, and so the lemma follows. �

Lemma 3.6. The error when approximating SA by S′A is upper-bounded by

|SA − S′A | ≤ 2−2m−3`+2σ+3.

Proof. By Claim 3.2, it holds that∣∣ | sA |2 − | s′A |2 ∣∣ ≤ 2 | s′A | | sA − s′A |+ | sA − s′A |
2

≤ 2 · 2`+σ+1 · 2σ + 22σ

≤ 3 · 2`+2σ+1 ≤ 2`+2σ+3

12



as | sA − s′A | ≤ 2σ by Lemma 3.4 and | s′A | ≤ 2`+σ+1 by Lemma 3.5.
From the above, and Definitions 3.5 and 3.7, we have that

|SA − S′A | =
∣∣ | sA |2 − | s′A |2 ∣∣

22(m+2`)
≤ 2`+2σ+3

22(m+2`)
= 2−2m−3`+2σ+3

and so the lemma follows. �

The trailing sum in S′A is the square norm of a geometric series. Hence, it may
be trivially placed on closed form. Due to the rounding operation in the exponent,
this approach is not valid for the leading sum; we need a third approximation step.

3.2.5 Approximating S′A by S′′A

For θd and θr such that the angles θdb + θr d−(e+ bd)/re ≈ (θd − θrd/r) b in the
leading sum in S′A are small for all b on 0 ≤ b < 2σ, all 2σ terms in the sum are
approximately one. In the third and final step of the approximation, we bound the
error when simply approximating all terms in the leading sum by one.

Definition 3.8. Let

S′′A =
| s′′A |2

22(m+2`)
where s′′A = 2σ

d2m+`/re−1∑
nr = 0

eiθrnr .

Lemma 3.7. The difference between s′A and s′′A is upper-bounded by

| s′A − s′′A | ≤ 2σ−1 (| θd |+ | θr |) | s′′A |.

Proof. First observe that

| s′A − s′′A | =

∣∣∣∣∣
2σ−1∑
b= 0

(
ei(θdb+θrd−(e+bd)/re) − 1

) ∣∣∣∣∣︸ ︷︷ ︸
|∆ |

∣∣∣∣∣∣∣
d2m+`/re−1∑

nr = 0

eiθrnr

∣∣∣∣∣∣∣ .
By using Claim 3.3 and the triangle inequality, it follows that

|∆ | =

∣∣∣∣∣
2σ−1∑
b= 0

(
ei(θdb+θrd−(e+bd)/re) − 1

) ∣∣∣∣∣ ≤
2σ−1∑
b= 0

∣∣∣ ei(θdb+θrd−(e+bd)/re) − 1
∣∣∣

≤
2σ−1∑
b= 0

| θdb+ θr d−(e+ bd)/re | =
2σ−1∑
b= 0

| θdb− θr b(e+ bd)/rc |

≤ (| θd |+ | θr |)
2σ−1∑
b= 0

b ≤ (| θd |+ | θr |)
2σ(2σ − 1)

2
≤ 22σ−1 (| θd |+ | θr |)

where we use that d−xe = −bxc and b(e+ bd)/rc ≤ b. To verify the latter claim,
note that f1 = e/r ∈ [0, 1) and f2 = bd/r ∈ [0, b) as e, d ∈ [0, r). This implies that
b(e+ bd)/rc = bf1 + f2c ∈ [0, b] as f1 + f2 ∈ [0, b+ 1).

By combining the above results, we now have that

| s′A − s′′A | ≤ 22σ−1 (| θd |+ | θr |)

∣∣∣∣∣∣∣
d2m+`/re−1∑

nr = 0

eiθrnr

∣∣∣∣∣∣∣
13



= 2σ−1 (| θd |+ | θr |) | s′′A |

and so the lemma follows. �

Lemma 3.8. The error when approximating S′A by S′′A is upper-bounded by

|S′A − S′′A | ≤ 2σ−1 (| θd |+ | θr |)
(
2 + 2σ−1 (| θd |+ | θr |)

)
S′′A.

Proof. By Claim 3.2, it holds that∣∣ | s′A |2 − | s′′A |2 ∣∣ ≤ 2 | s′′A | | s′A − s′′A |+ | s′A − s′′A |
2

≤ 2 · 2σ−1 (| θd |+ | θr |) | s′′A |
2

+ 22(σ−1) (| θd |+ | θr |)2 | s′′A |
2

= 2σ−1 (| θd |+ | θr |)
(
2 + 2σ−1 (| θd |+ | θr |)

)
| s′′A |

2

as | s′A − s′′A | ≤ 2σ−1(| θd |+ | θr |) | s′′A | by Lemma 3.7.
From the above, and Definitions 3.7 and 3.8, we have that

|S′A − S′′A | =
∣∣ | s′A |2 − | s′′A |2 ∣∣

22(m+2`)

≤ 2σ−1 (| θd |+ | θr |)
(
2 + 2σ−1 (| θd |+ | θr |)

)
S′′A

and so the lemma follows. �

This yields an approximation S′′A to S′A that may be placed on closed form.

3.2.6 Main approximability result

By combining the above results, the main approximability result follows:

Theorem 3.1. The probability P (θd, θr) of observing a specific pair (j, k) with
angle pair (θd, θr), summed over all y ∈ G, may be approximated by

P̃ (θd, θr) =
22σr

22(m+2`)

∣∣∣∣∣∣
2`−σ−1∑
t= 0

ei(θd2σ+θrd−2σd/re) t

∣∣∣∣∣∣
2
∣∣∣∣∣∣∣
d2m+`/re−1∑

nr = 0

eiθrnr

∣∣∣∣∣∣∣
2

=
22σr

22(m+2`)

∣∣∣∣∣ ei(θd2σ+θrd−2σd/re) 2`−σ − 1

ei(θd2σ+θrd−2σd/re) − 1

∣∣∣∣∣
2 ∣∣∣∣∣ eiθrd2

m+`/re − 1

eiθr − 1

∣∣∣∣∣
2

assuming θd2
σ+θr d−2σd/re 6= 0 and θr 6= 0 when placing the expression on closed

form. The approximation error |P (θd, θr)− P̃ (θd, θr) | ≤ ẽ(θd, θr) where

ẽ(θd, θr) ≤
24

2m+σ
+

23

2m+`
+

2σ

2
(| θd |+ | θr |)

(
2 +

2σ

2
(| θd |+ | θr |)

)
P̃ (θd, θr).

Proof. The probability ρ(θd, θr, e) of observing a specific pair (j, k), with angle pair
(θd, θr), and some group element y = [e] g ∈ G, is SR by Claim 3.1.

The error when approximating SR by SATA is bounded by

|SR − SATA | ≤ 2−2m−σ+4

by Lemma 3.3. The error when approximating SATA by S′ATA is bounded by

|SATA − S′ATA | ≤ 2−2m−3`+2σ+3 TA

14



by Lemma 3.6. The error when approximating S′ATA by S′′ATA is bounded by

|S′ATA − S′′ATA | ≤ 2σ−1(| θd |+ | θr |) (2 + 2σ−1(| θd |+ | θr |))S′′ATA

by Lemma 3.8. By the triangle inequality

|SR − S′′ATA | = | (SR − SATA) + (SATA − S′ATA) + (S′ATA − S′′ATA) |
≤ |SR − SATA |+ TA |SA − S′A |+ TA |S′A − S′′A |.

Neither of these three error terms, nor the expression for S′′ATA, depend on e.
Hence, we may sum over all r elements y = [e] g ∈ G by multiplying by r.

It therefore follows that P̃ (θd, θr) = rS′′ATA is an approximation to P (θd, θr),
and that the error that arises in this approximation is bounded by

ẽ(θd, θr) ≤ r |SR − SATA |+ rTA |SA − S′A |+ rTA |S′A − S′′A |
≤ 2−2m−σ+4 r + 2−2m−3`+2σ+3 rTA+

2σ−1(| θd |+ | θr |) (2 + 2σ−1(| θd |+ | θr |)) rS′′ATA

≤ 24

2m+σ
+

23

2m+`
+

2σ

2
(| θd |+ | θr |)

(
2 +

2σ

2
(| θd |+ | θr |)

)
P̃ (θd, θr)

where we use that r < 2m, and that TA ≤ 22(`−σ) as it is the square norm of a sum
of 2`−σ unit vectors by Definition 3.6, and so the theorem follows. �

In appendix C we demonstrate the soundness of this approximation.

4 The distribution of pairs (αd, αr)

In this section, we identify and count all pairs (j, k) that yield (αd, αr) and analyze
the distribution and density of pairs (αd, αr) in the plane.

Definition 4.1. An argument pair (αd, αr) is said to be admissible if there exists
an integer pair (j, k), for j on 0 ≤ j < 2m+` and k on 0 ≤ k < 2`, such that

αd = {dj + 2mk}2m+` and αr = {rj}2m+` .

Definition 4.2. Let κd denote the greatest integer such that 2κd divides d, and let
κr denote the greatest integer such that 2κr divides r.

Definition 4.3. Let Lα be the lattice generated by the rows in[
δr 2κr

2m−γ 0

]
where δr = d

( r

2κr

)−1

mod 2m−γ

and γ = max(0, κr − (`+ κd)).

Lemma 4.1. The admissible argument pairs (αd, αr) are vectors in the region
−2m+`−1 ≤ αd, αr < 2m+`−1 in Lα. There are 2m+2`−κr+γ distinct admissible
argument pairs. Each admissible argument pair occurs with multiplicity 2κr−γ .
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γ
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−
γ
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αd
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m
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κ
r
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γ
/
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Fig. 2: The distribution of admissible arguments (αd, αr) in the region where
−2m+`−1 ≤ αd, αr < 2m+`−1 for m = 4 and ` = 3, and example combinations
of d and r, as indicated. The lattice may be constructed by replicating
the fundamental parallelogram (blue) or a rectangle (gray) of size 2m−γ ×
2m+κr−γ .

Proof. As αr ≡ rj (mod 2m+`), the set of integers j that yield αr are given by

j ≡ αr
2κr

( r

2κr

)−1

+ 2m+`−κr tr (mod 2m+`)

for tr an integer on 0 ≤ tr < 2κr . As αd ≡ dj + 2mk (mod 2m+`), we need

αd ≡ d
(
αr
2κr

( r

2κr

)−1

+ 2m+`−κr tr

)
+ 2mk

≡ αr
2κr

d
( r

2κr

)−1

+ 2m+`−κr+κd
dtr
2κd︸ ︷︷ ︸

A

+ 2mk︸ ︷︷ ︸
B

(mod 2m+`) (8)

for k an integer on 0 ≤ k < 2`, to ensure compatibility. As 2m−γ is the largest power
of two to divide both 2m and 2m+`−κr+κd , by the definition of γ, the congruence
relation αd ≡ (αr/2

κr ) d (r/2κr )−1 (mod 2m−γ) must hold.
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As tr and k run through all pairwise combinations, the set of 2`+κr arguments
αd generated by (8) is equal to that generated by

αd ≡
αr
2κr

d
( r

2κr

)−1

+ 2m−γtγ (9)

≡ αr
2κr

(
d
( r

2κr

)−1

mod 2m−γ
)

+ 2m−γt′γ (mod 2m+`) (10)

as tγ , or equivalently t′γ , runs through all integers on 0 ≤ tγ , t′γ < 2`+κr .

To go from (8) to (9), first note that B runs through all values in [2m, 2m+`).
If γ = 0, term A introduces multiplicity by repeating the sequence generated by B
with various offsets. These offsets are of no significance to this analysis, as we only
account for which values occur in the set and with what multiplicity.

If γ > 0, term A runs through all values in [2m−γ , 2m−γ+κr ). As κr ≥ γ when
γ > 0, term A runs all values in the subrange [2m−γ , 2m). When A assumes values
greater than or equal to 2m, it introduces multiplicity by repeating the sequence of
all values on [2m−γ , 2m+`) generated by A and B with various offsets.

This implies that (A + B) mod 2m+` runs through all 2m+`/2m−γ = 2`+γ values
on [2m−γ , 2m+`) with multiplicity 2`+κr/2`+γ = 2κr−γ , and this is exactly what is
stated in (9). To go from (9) to (10) is trivial.

As there are 2m+2` admissible argument pairs, and as each pair occurs with
multiplicity 2κr−γ , there are 2m+2`−κr+γ distinct admissible argument pairs.

The lattice Lα is constructed from (10), as the admissible αr are multiples of
2κr , and as the admissible αd ≡ (αr / 2κr ) δr + 2m+γt′γ (mod 2m+`), in the region

of the plane where −2m+`−1 ≤ αd, αr < 2m+`−1, and so the lemma follows. �

In Fig. 2 the distribution of arguments in the region of the plane where−2m+`−1 ≤
αd, αr < 2m+`−1 is depicted for various combinations of parameters.

4.1 Pairs (j, k) yielding (αd, αr)

In this section we identify all pairs (j, k) that yield (αd, αr).

Lemma 4.2. The set of integer pairs (j, k), for j on 0 ≤ j < 2m+` and k on
0 ≤ k < 2`, that yield the admissible argument pair (αd, αr) is given by

j =

(
αr
2κr

( r

2κr

)−1

+ 2m+`−κr tr

)
mod 2m+` and k =

αd − dj
2m

mod 2`

as tr runs through all integer multiples of 2γ on 0 ≤ tr < 2κr .

Proof. As αr ≡ rj (mod 2m+`), solving for j yields

j =

(
αr
2κr

(
r

2κr

)−1

+ 2m+`−κr tr

)
mod 2m+`

for tr an integer 0 ≤ tr < 2κr .
As αd ≡ dj + 2mk (mod 2m+`), for compatibility 2m must divide 2m+`−κr dtr

for all tr 6= 0. As 2m+`+κd−κr is the greatest power of two to divide 2m+`−κrd, it
follows that tr must be a multiple of 2γ , and so the lemma follows. �
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4.2 The density of pairs (αd, αr)

In this section we analyze the density of pairs (αd, αr) in the argument plane.

Claim 4.1. The density of admissible argument pairs in the region of the plane
where −2m+`−1 ≤ αd, αr < 2m+`−1 is 2−m when accounting for multiplicity.

Proof. There are 2m+2` admissible (αd, αr), when accounting for multiplicity, in
the region where −2m+`−1 ≤ αd, αr < 2m+`−1. This region is of area 22(m+`). The
density is hence 2m+2`/22(m+`) = 2−m, and so the claim follows. �

To construct the histogram for the probability distribution, the argument plane
is divided into small rectangular subregions. The below lemma bounds the error
when approximating the density in such subregions by 2−m.

Lemma 4.3. Let D be the density of admissible argument pairs (αd, αr), when
accounting for multiplicity, in a rectangle R of area A and circumference C in the
region where −2m+`−1 ≤ αd, αr < 2m+`−1 of the plane. Then∣∣∣∣D − 1

2m

∣∣∣∣ ≤ 2κr−γ
2Cλ2 + 4 (2λ2)2

A detLα
=

2Cλ2 + 4 (2λ2)2

2mA

for λ1 the norm of the shortest non-zero vector w1 ∈ Lα, and λ2 the norm of the
shortest non-zero vector w2 ∈ Lα that is linearly independent to w1.

Proof. By Lemma 4.1, the admissible argument pairs (αd, αr) are vectors in Lα in
the region of the argument plane where −2m+`−1 ≤ αd, αr < 2m+`−1. Each admis-
sible argument pair occurs with multiplicity 2κr−γ .

The fundamental parallelogram in Lα contains a single lattice vector. It is
spanned by w1 and w2, and has area detLα = λ2 |w⊥ | = 2m+κr−γ , where w⊥ is
the component in w1 perpendicular to w2. This implies λ2 ≥ λ1 ≥ |w⊥ |.

To bound the number of argument pairs (αd, αr) ∈ R, we lower- and upper-
bound the number of fundamental parallelograms that can at most fit into R, as
described below, paying particular attention to the border areas:

To upper-bound the number of vectors in R, we extend each side of R by 2λ2

length units, to ensure that any parallelogram that is only partly in R is included
in the count, and divide the area of the resulting rectangle by the area of the
fundamental parallelogram. This yields (A+ 2Cλ2 + 4 (2λ2)2) / detLα.

Conversely, to lower-bound the number of vectors in R, we retract each side
of R by 2λ2 length units, to ensure that all parallelograms that are only partly
in the rectangle are excluded from the count, and divide the area of the resulting
rectangle by detLα. This yields (A− 2Cλ2 + 4 (2λ2)2) / detLα.

By combining the upper and lower bounds, dividing by the area A of R, and
multiplying by 2κr−γ to account for multiplicity, the lemma follows. �

For known d and r, Lemma 4.3 above provides a bound on the error when
approximating the density in a rectangle in Lα by 2−m as λ2 may then be computed.
To bound the error for general problem instances, and when d and r are unknown,
we introduce the following less tight lemma:

Lemma 4.4. Let D be the density of admissible argument pairs (αd, αr), when
accounting for multiplicity, in a rectangle of side lengths ld and lr in the αd and
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αr directions, respectively, in the region where −2m+`−1 ≤ αd, αr < 2m+`−1 of the
argument plane. Then ∣∣∣∣D − 1

2m

∣∣∣∣ ≤ 2κr

2mlr
+

1

2γ ld
+

1

ldlr
.

Proof. By Lemma 4.1, the admissible argument pairs are vectors in Lα.
The vectors in Lα are on horizontal lines (for fixed αr) evenly separated by

a vertical distance of 2κr . The number of such lines that intersect the rectangle
is upper-bounded by blr/2κrc + 1 ≤ lr/2

κr + 1 and lower-bounded by blr/2κrc ≥
lr/2

κr − 1 as may be seen by positioning the rectangle to maximize or minimize
the number of lines that intersect the rectangle.

On each line, the vectors in Lα are evenly spaced by a distance of 2m−γ with
varying starting positions. The number of vectors in Lα that fall within the rect-
angle on each line is upper-bounded by bld/2m−γc + 1 ≤ ld/2

m−γ + 1 and lower-
bounded by bld/2m−γc ≥ ld/2

m−γ − 1, when not accounting for multiplicity, as
may be seen by positioning the line to maximize or minimize the number of vectors
that fall within the rectangle.

Hence the number of lattice vectors in the rectangle is upper-bounded by

2κr−γ(lr/2
κr + 1)(ld/2

m−γ + 1) = ldlr/2
m + ld2

κr/2m + lr/2
γ + 1

and lower-bounded by

2κr−γ(lr/2
κr − 1)(ld/2

m−γ − 1) = ldlr/2
m − ld2κr/2m − lr/2γ + 1

as each vector corresponds to a pair that occurs with multiplicity 2κr−γ .
By combining the above bounds, and dividing by the area ldlr of the rectangle,

the lemma follows. �

For unknown d and r, the above lemma provides an error bound, assuming
only some bounds on the parameters κr and γ. Asymptotically, the error in the
approximation tends to zero as the side lengths of the rectangle tend to infinity.

For rectangular subregions of specific dimensions, it may furthermore be shown
that the error is zero, as is demonstrated in the following lemma:

Lemma 4.5. The density of admissible argument pairs in a rectangle of side lengths
positive integer multiples of 2m−γ and 2m−γ+κr in αd and αr, respectively, in the
region where −2m+`−1 ≤ αd, αr < 2m+`−1 of the argument plane, is 2−m when
accounting for multiplicity.

Proof. By Lemma 4.1, the admissible arguments are vectors in Lα in the region of
the argument plane where −2m+`−1 ≤ αd, αr < 2m+`−1.

From the definition of Lα in Lemma 4.1, it follows that the lattice is cyclic
with period 2m−γ in αd and 2m−γ+κr in αr. This is illustrated in Fig. 2 where
rectangular regions of these dimensions are highlighted in gray. The highlighted
regions all extend from the origin in Fig. 2 but the starting point may of course
be arbitrarily selected. This implies that the lattice Lα may be generated by
replicating and translating any rectangle of side lengths positive multiples of 2m−γ

and 2m−γ+κr in αd and αr, respectively, see Fig. 2, throughout the plane. The
same holds if the rectangle is replicated and translated cyclically throughout the
region of the plane where −2m+`−1 ≤ αd, αr < 2m+`−1.
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Fig. 3: The subdivision of the plane into regions and subregions. The gray
box illustrates Simpson’s rule applied to a subregion. The probability is
computed in the blue corner points, the four red border mid-points and the
red center-point.

The number of rectangles that fit in the region when replicated and translated
cyclically is 22(m+`)/22(m−γ)+κr = 22(`+γ)−κr as the area of the region is 22(m+`)

and the area of the rectangle is 22(m−γ)+κr . The total number of lattice vectors
in the region is 22m+`, so each rectangle contains 2m+2`/22(`+γ)−κr = 2m−2γ+κr

vectors when accounting for multiplicity.
By dividing by the rectangle area, we see that the density of points in each

rectangle is 2m−2γ+κr/22(m−γ)+κr = 2−m, and so the lemma follows. �

5 Simulating the quantum algorithm

In close analogy with [6], we now proceed to construct a high-resolution histogram
for the probability distribution induced by the quantum algorithm, for given d
and r, and to sample it to simulate the quantum algorithm.

5.1 Constructing the histogram

Except for the fact that the probability distribution is two-dimensional, and that
we need to account for the closed form expression being an approximation, we
exactly follow [6] to construct the high-resolution histogram: We subdivide the ar-
gument plane into regions and subregions, and integrate the closed form probability
approximation and the associated error bound numerically in each subregion.

First, we subdivide each quadrant of the argument plane into (30 + µ)2 rect-
angular regions where µ = min(` − 2, 11). Each region thus formed is uniquely
identified by (ηd, ηr) ∈ Z2 by requiring that for all (αd, αr) in the region

2|ηd| ≤ |αd | ≤ 2|ηd|+1 and 2|ηr| ≤ |αr | ≤ 2|ηr|+1,

and furthermore sgn(αd) = sgn(ηd) and sgn(αr) = sgn(ηr), where ηd and ηr are
such that m− 30 ≤ | ηd |, | ηr | ≤ m+ µ− 1, see the illustration in Fig. 3.
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Then, we subdivide each region into rectangular subregions identified by an
integer pair (ξd, ξr) by requiring that for all (αd, αr) in the subregion

2|ηd|+ξd/2
ν

≤ |αd | ≤ 2|ηd|+(ξd+1)/2ν and 2|ηr|+ξr/2
ν

≤ |αr | < 2|ηr|+(ξr+1)/2ν

where 0 ≤ ξd, ξr < 2ν for ν ∈ {6, 7, 8, 9} a resolution parameter adaptively selected
as a function of the probability mass and variance in each region.

For each subregion, we compute the approximate probability mass contained
within the subregion, and an associated error bound, by applying Simpson’s rule
in two dimensions, followed by Richardson extrapolation to cancel the linear error
term, and division by 2m to account for the density of pairs.

Simpson’s rule is hence applied 22ν(1+22) times in each region. Each application
requires the approximate probability and associated error bound to be computed
in up to nine points, for which purpose we use the closed form expressions in
Theorem 3.1, with σ adaptively selected to suppress the bounded error.

The optimal σ may be found by searching exhaustively. A computationally
more efficient method for selecting σ is to use the heuristic in appendix C.5.3. We
use the heuristic in all cases except when s is large in relation to m causing the
error in the close-form approximation to be large. For such m and s we accept an
extra computational burden to get slightly better σ and slightly smaller errors.

In order to save space when storing the histogram, we discard regions that
capture insignificant shares of the probability mass. Note furthermore that for
m and s such that the total error in the closed form approximation is large, the
error may often be reduced at the expense of capturing a smaller fraction of the
probability mass by simply discarding selected regions where the error is large. The
errors we report in this paper are without accounting for such additional filtering.

Note that this method of constructing the histogram assumes κd and κr to be
small in relation to m. Note also that it follows from section 4.2 that it is sound
to approximate the density by 2−m in the four regions of interest in the plane. For
the m and s that we consider, the error in the density approximation is negligible.

5.2 Understanding the probability distribution

To illustrate the distribution that arises, a histogram is plotted in the signed loga-
rithmic argument plane in Fig. 4 for m = 2048 and s = 30, and for d and r selected
as explained in section 7.3. It captures approximately 99.99% of the probability
mass. The total approximation error is less than 10−3.

The histogram plotted in Fig. 4 captures the general characteristics of the prob-
ability distribution. Varying d and r on the interval 2m−1 < d < r < 2m, for d and r
not divisible by large powers of two, in general only slightly affects the distribution.
Scaling m and s has virtually no effect on the distribution.

The probability mass is located in the regions where (|αd |, |αr |) ∼ (2m, 2m),
whereas for random outputs the arguments would be of size ∼ 2m+`. Hence, a
single run yields ∼ ` ∼ m/s bits of information on d and r, respectively.

The distribution is symmetric, in that the top right and lower left quadrants are
mirrored, as are the top left and lower right quadrants. It hence suffices to compute
only two quadrants to construct the histogram. To see why this is, note that flipping
the sign of both arguments in the expression for P̃ (θd, θr) in Theorem 3.1 has no
effect. Flipping the sign of only one argument, on the other hand, may lead to
cancellation or lack of cancellation in the angle θd2

σ + θr d−2σd/re. This explains
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Fig. 4: The probability distribution for general discrete logarithms computed
as in section 5.1 for m = 2048, s = 30, and d and r selected as in section 7.3.
To facilitate printing, the resolution has been reduced in this figure.
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the concentration of probability mass in the top right and lower left quadrants, and
in the tail along the diagonal in Fig. 4 where θd2

σ + θr d−2σd/re is small.
The marginal distribution along the αd axis is virtually identical to the prob-

ability distribution induced by d when regarded as a short discrete logarithm, see
[6] and Fig. 5 for comparison. Analogously, the marginal distribution along the αr
axis in Fig. 4 is virtually identical to the distribution induced by r when performing
order finding, see appendix A and Fig. 6 for comparison. In appendix D we show
this analytically by summing P̃ (θd, θr) over all admissible θd.

This implies that the lattice-based post-processing algorithm introduced in [6]
may be used to solve sets of pairs (j, k) for both short and general d, with mi-
nor modifications, see section 6.1. An analogous lattice-based algorithm may be
developed to solve sets of integers j for r, see section 6.2.

5.3 Sampling the probability distribution

Except for the fact that the probability distribution is two-dimensional, we exactly
follow [6] to sample the distribution: To sample an argument pair (αd, αr), we first
sample a subregion and then sample (αd, αr) from this subregion.

To sample the subregion, we first order all subregions in the histogram by prob-
ability, and compute the cumulative probability up to and including each subregion
in the resulting ordered sequence. Then, we sample a pivot uniformly at random
from [0, 1), and return the first subregion in the ordered sequence for which the cu-
mulative probability is greater than or equal to the pivot. Note that this procedure
may fail: This occurs if the pivot is greater than the total cumulative probability.

To sample an argument pair (αd, αr) from the subregion, we first sample a point
(α′d, α

′
r) ∈ Z2 uniformly at random from the subregion. Then, we map (α′d, α

′
r) to

the closest admissible argument pair (αd, αr) ∈ Lα by reducing the basis for Lα

given in Definition 4.3 and applying Babai’s algorithm [1].
To sample an integer pair (j, k) from the distribution, we first sample (αd, αr)

as described above, and then sample (j, k) uniformly at random from the set of all
integer pairs (j, k) yielding (αd, αr) using Lemma 4.2. More specifically, we first
sample an integer tr uniformly at random from the set of all admissible values for
tr and then compute (j, k) from (αd, αr) and tr as described in Lemma 4.2.

6 The classical post-processing algorithms

In this section, we describe how d and r are classically recovered from a set
{(j1, k1), . . . , (jn, kn)} of pairs produced by performing n independent runs.

6.1 Recovering d from a set of n pairs

To recover d, we exactly follow [6], and use the set of n pairs to form a vector

vkd = ( {−2mk1}2m+` , . . . , {−2mkn}2m+` , 0) ∈ ZD
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and a D-dimensional integer lattice Lj with basis matrix
j1 j2 · · · jn 1

2m+` 0 · · · 0 0
0 2m+` · · · 0 0
...

...
. . .

...
...

0 0 · · · 2m+` 0


where D = n+ 1. For some constants m1, . . . , mn ∈ Z, the vector

ujd = ({dj1}2m+` +m12m+`, . . . , {djn}2m+` +mn2m+`, d) ∈ Lj

is such that the distance

Rd = |ujd − vkd | =

√√√√ n∑
i=1

(
{dji}2m+` +mi2m+` − {−2mki}2m+`

)2
+ d2

=

√√√√√ n∑
i=1

{dji + 2mki}22m+`︸ ︷︷ ︸
α2
d,i

+ d2 =

√√√√ n∑
i=1

α2
d,i + d2 .

To recover d, it hence suffices to find ujd by enumerating all vectors in Lj within
a D-dimensional hypersphere of radius Rd centered on vkd . Its volume is

VD(Rd) =
πD/2

Γ
(
D
2 + 1

)RDd
where Γ is the Gamma function, whilst the fundamental parallelepiped in Lj , that
by definition contains a single lattice vector, is of volume detLj = 2(m+`)n.

Heuristically, the hypersphere is hence expected to contain approximately vd =
VD(Rd) / detLj lattice vectors. The exact number depends on the placement of
the hypersphere in ZD, and on the shape of the fundamental parallelepiped in Lj .

6.1.1 Estimating the minimum n required to solve for d

The radius Rd depends on (ji, ki) via αd,i for 1 ≤ i ≤ n. For fixed n and probability

qd, we exactly follow [6] and estimate the minimum radius R̃d such that

Pr

Rd =

√√√√ n∑
i= 1

α2
d,i + d2 ≤ R̃d

 ≥ qd (11)

by sampling αd,i from the probability distribution. For details on how the estimate
is computed, see section 6.3. Equation (11) implies that

Pr

[
vd =

VD(Rd)

detLj
≤ VD(R̃d)

2(m+`)n

]
≥ qd. (12)

This provides a heuristic bound on the number of lattice vectors vd that at most
have to be enumerated to solve for d, and that holds with probability at least qd.
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6.1.2 Selecting n and solving for d

A simple strategy when solving for d is to select n as described in section 6.1.1 such
that vd is below a bound equal to the maximum number of vectors that it is compu-
tationally feasible to enumerate with probability qd. This strategy minimizes n at
the expense of performing potentially computationally expensive post-processing.

Another strategy is to select n such that vd < 2 with probability qd, so that
there is only one vector in the hypersphere by the heuristic. In theory, this enables
us to find ujd with probability qd by mapping vkd to the closest vector in Lj with-
out enumerating vectors in Lj . In practice, however, the situation is a bit more
complicated as ujr = ({rj1}2m+` , . . . , {rjn}2m+` , r) ∈ Lj and this vector is short in
Lj by construction. To further complicate matters, ujr/z may be in Lj when r is
composite, for z some factor of r, see section 6.2.1. To recover ujd, we therefore first
map vkd to the closest vector in Lj , and then add or subtract small integer multi-

ples of the shortest vector in the reduced basis for Lj to find ujd. This is efficient,
except if r has very many small prime factors, and n is close to one, in which case
an additional classical post-processing step may be required, see section 6.2.5.

Note that this complication arises only for general discrete logarithms. It does
not arise in [6] when post-processing short discrete logarithms, as the order then
does not enter into the equation. Note furthermore that the fact that the order now
does play a part may be leveraged in the post-processing, see the next sections.

6.1.3 Selecting n and solving for d by exhausting subsets

The greatest argument αd,i essentially determines the bound on Rd and hence
on vd. A plausible strategy is therefore to make n runs, but to independently
post-process all subsets of n− t pairs from the resulting n pairs, for t a constant.

To select n when using this strategy, we specify a bound B on the number of
vectors vd that we accept to enumerate in each lattice of dimension n− t+ 1, and
follow section 6.1.1 to select the minimum n respecting this bound with probability
at least qd, including only the smallest n− t arguments αd,i when bounding Rd.

With probability qd, the post-processing then heuristically requires at most B
lattice vectors to be enumerated in at most

(
n
t

)
lattices of dimension n−t+1. Note

that t must be small as the binomial coefficient grows rapidly in t.

6.1.4 Optimizations when r is known

Note that when r is known, the argument αr,i = {rji}2m+` is known for 1 ≤ i ≤ n,
and αr,i provides information on αd,i as the arguments are pairwise correlated.

When constructing subsets of n − t pairs from the n pairs (ji, ki), the pairs
should be included in ascending order sorted by |αr,i |. In general, pairs such that
|αr,i | exceed some bound may be rejected as large |αr,i | identify erroneous runs.

6.2 Recovering r from a set of n pairs

To recover r, we instead use that ujr = ({rj1}2m+` , . . . , {rjn}2m+` , r) ∈ Lj is a short
vector by construction. More specifically, we use that ujr is within a D-dimensional
hypersphere in Lj of radius

Rr =
∣∣ujr ∣∣ =

√√√√√ n∑
i=1

{rji}22m+`︸ ︷︷ ︸
α2
r,i

+ r2 =

√√√√ n∑
i=1

α2
r,i + r2
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centered at the origin. In close analogy with [6] and the previous section, we may
recover ujr and hence r by enumerating all vectors in this hypersphere. Heuristically,
we expect the hypersphere to contain vr = VD(Rr) / detLj lattice vectors.

This generalization was hinted at in the pre-print of [7]. Furthermore, it is
similar to the method employed by Seifert in [21], where he uses what he refers
to as simultaneous Diophantine approximation techniques to generalize Shor’s [22]
continued fractions expansion-based post-processing to higher dimensions. In the
case of Shor’s original order finding algorithm, the fact that the problem of finding
a continued fraction may be perceived as a lattice problem is observed in [11].

We prefer to describe the post-processing in terms of a shortest vector problem,
as this gives us two lattice problems in the same lattice Lj , and as we may re-use
the above tools to estimate the number of runs n required to solve the problem.

6.2.1 Estimating the minimum n required to solve for r

The radius Rr depends on ji via αr,i for 1 ≤ i ≤ n. For fixed n and probability qr,

we proceed in analogy with [6] and estimate the minimum radius R̃r such that

Pr

Rr =

√√√√ n∑
i=1

α2
r,i + r2 ≤ R̃r

 ≥ qr (13)

by sampling αr,i from the probability distribution. For details on how the estimate
is computed, see section 6.3. Equation (13) implies that

Pr

[
vr =

VD(Rr)

detLj
≤ VD(R̃r)

2(m+`)n

]
≥ qr. (14)

This provides a heuristic bound on the number of lattice vectors vr that at most
have to enumerated to solve for r, and that holds with probability at least qr.

6.2.2 Selecting n and solving for r

One strategy when solving for r is to use the heuristic to select n such that vr is
below a bound equal to the maximum number of vectors that it is computationally
feasible to enumerate, with probability qr. This strategy minimizes n at the expense
of performing potentially computationally expensive post-processing.

Another strategy is to select n such that vr < 2 with probability qr, so that
there is only one lattice vector in the hypersphere by the heuristic. In theory, this
enables us to find ujr with probability qr by computing the shortest non-zero vector.

In practice, the heuristic is good when r is prime, as is typically the case when
computing discrete logarithms in cryptographic settings. If r is composite, the
heuristic is still good, but it may be necessary to perform a small search to find r
if r has one or more small prime factors, see section 6.2.3. If r has many small
prime factors, and n is close to one, an additional classical post-processing step
may be required to solve efficiently for r, as there may then exist an artificially
short non-zero vector in Lj . This additional step is described in section 6.2.4.

A third strategy is to independently post-process subsets of the pairs output by
the quantum computer, in analogy with the procedure described in section 6.1.4.
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6.2.3 Handling composite r

Assume that r is composite. Let gcd(αr,1, . . . , αr,n, r) = 2κro for o odd. Let t be
the greatest integer on [0, 2κr ] for which

αr,i/(2
to) = {rji}2m+`/(2to) = {rji/(2to)}2m+`

for all i ∈ [1, n]. Then |ujr |/(2to) ∈ Lj and |ujr |/(2to) ≤ |ujr |, so ujr/(2
to) and

r/(2to) will likely be recovered in the post-processing instead of ujr and r.
For q an odd prime divisor of r, the probability of q also dividing αr,i for all

i ∈ [1, n] is approximately q−n. This implies that r may in general be recovered
from r/(2to) by exhausting t and o, as the search space is expected to be small: It
is only if r has very many small odd prime divisors, and if n is close to one, that
problems may potentially arise. Such problematic cases may be handled efficiently
by introducing an additional classical post-processing step, see the next section.

6.2.4 Handling partially smooth r

Let P be the set of all prime factors ≤ cm, for c ≥ 1 some small constant, and
let υq be the greatest integer such that qυq < 2m. Furthermore, let

g̃ =

 ∏
q∈P

qυq

 g and g̃f =

 ∏
q∈P \ {f}

qυq

 g for f ∈ P,

where bracket notation is used to denote generalized exponentiations.
Computing g̃ requires at most 2m ·#P ≤ 2cm2 group operations1 to be evalu-

ated classically, for #P the cardinality of P. It may hence be done efficiently.
As previously explained, when r is partially very smooth, the classical post-

processing algorithm is likely to return r′ = r/(2to), where o may be large, but
where all prime factors of o are small. Assume that all prime factors of 2to are
≤ cm. It must then be that [ r′ ] g̃ ≡ 1, enabling us to quickly test if r′ is on said
form. Once r′ = r/2to is found, it is easy to find r: For all f ∈ P, compute g̃f and
find the smallest non-negative integer ef such that [ fef ] g̃f ≡ 1. Then

2to =
∏
f∈P

fef

allowing r = 2to · r′ to be recovered. Computing g̃f requires at most 2cm2 group
operations for each f ∈ P, for a total of at most 2cm2 · #P = 2c2m3 group
operations. The recovery procedure is hence efficient.

6.2.5 Computing discrete logarithms when r is partially smooth

If r is partially very smooth, it may be hard to determine d, as there may exist an
artificially short vector |ujr |/2to ∈ Lj , where o is smooth. Note however that it is
still possible to determine d mod r′, by reducing the last component of the vector
ujd sought for in the classical post-processing algorithm modulo r′ = r/2to.

Provided we classically solve the discrete logarithm problem in the residual sub-
groups of small prime power orders fef dividing 2to, which can be done efficiently,
the full logarithm d may then be found via the Chinese remainder theorem. This
was originally observed by Pohlig and Hellman [17].

1when using the square-and-multiply or double-and-add approach to exponentiation

27



6.3 Estimating R̃d and R̃r

To estimate R̃d and R̃r for m, s and n, known d and r, and a given target success
probability qd or qr, we exactly follow [6] and sample N sets of n argument pairs
{(αd,1, αr,1), . . . , (αd,n, αr,n)} from the probability distribution.

For each set, we compute Rd, sort the resulting list of values in increasing
order, and select the value at index b(N − 1) qde to arrive at our estimate for R̃d.

The estimate of R̃r is then computed analogously. The constant N controls the
accuracy. If N to be sufficiently large in relation to qd and qr, and to the variance
in the arguments, we expect this approach to yield sufficiently good estimates.

If we fail to sample one or more argument pairs in a set, we closely follow [6]

and over-estimate R̃d and R̃r by letting Rd = Rr =∞ for the set. The entries for
the failed sets will then all be sorted to the end of the lists. If the value of R̃d or
R̃r selected from the sorted lists is ∞, no estimate is produced.

Let p be the total probability mass covered by the histogram. The probability
of all n pairs in a set being in regions covered by the histogram is then pn. When
sampling N sets, the expected number of sets with finite Rd and Rr is Npn. As
Nqd and Nqr entries, respectively, in the two lists must be finite for the algorithm
to produce an estimate, it follows that it is required that qd, qr > pn, with some
margin to account for the sampling variance, for estimates to be produced.

7 Estimating the number of runs required

We are now ready to estimate the number of runs n required to attain a given
minimum success probability q when recovering both d and r for tradeoff factor s.

7.1 Estimating n

To estimate n for a problem instance given by d, r and s, we proceed as follows:
For n = s + 1, s + 2, . . . we first estimate R̃d and R̃r by sampling N = 106

sets of n argument pairs (αd, αr), as explained in section 6.3. We stop and record
the smallest n for which the volume quotients vd < 2 and vr < 2 with probability
q = qd = qr = 99%. As the volume quotients each decrease by approximately a
constant factor for every increment in n, the minimum n may in practice be found
efficiently by interpolation once a few quotients have been computed.

For selected problem instances, we verify the above initial estimate of n by
simulating the quantum algorithm and post-processing the simulated output.

More specifically, with the initial estimate of n as our starting point, we sample
M = 103 sets of n pairs (j, k), as explained in section 5.3, and test whether recovery
of both d and r is successful for at least dMqe sets when executing the post-
processing algorithms in sections 6.1 and 6.2 without enumerating Lj .

Depending on the outcome of the test, we either increment or decrement n, and
repeat the process, recursively, until the smallest n such that the test passes has
been identified. We record this n alongside the initial estimate of n.

In practice, we compute the closest vector in Lj by reducing the lattice basis
and applying Babai’s [1] nearest plane algorithm. The shortest non-zero vector in
Lj is the shortest non-zero vector in the reduced basis. Enumeration is performed
using Kannan’s [10] original approach, as this is sufficient for our purposes. Note
however that there are more efficient approaches in the literature.

28



To reduce the basis, we closely follow [6] and employ LLL and BKZ [12, 13,
19, 20], as implemented in fpLLL v5.0, with default parameters and a block size
of min(n + 1, 10) for all combinations of m, s and n. We first compute a LLL
reduction. If it proves insufficient, we proceed to compute a BKZ reduction.

7.2 Selecting m and s

As the cost of estimating n for a given problem instance is non-negligible, we
seek to minimize the number of problem instances considered, whilst capturing the
problems that underpin most currently deployed asymmetric cryptologic schemes.

To this end, for m ∈ {128, 256, 384, 512, 1024, . . . , 8192}, we pick a single
combination of d and r using the method described in section 7.3, and estimate n
for a subset of tradeoff factors s ∈ {1, 2, . . . , 8, 10, 20, . . . , 50, 80}, such that the
bounded error in the regions included in the histogram is negligible.

In terms of group size, the above choices of m capture most currently widely
deployed elliptic curve groups, Schnorr groups and safe-prime groups.

7.3 Selecting d and r given m

For each value of m, we need to select d and r such that 2m−1 ≤ d < r < 2m.
For as long as d and r do not have very special properties, such as being divisible

by large powers of two or being otherwise smooth, the exact values of d and r are
of no great significance, however. To avoid having to tabulate d and r for the m
we consider, we read d and r from the decimal expansion of Catalan’s constant

G =

∞∑
i= 0

(−1)i

(2i+ 1)2
=

1

12
− 1

32
+

1

52
− 1

72
+ · · · .

Specifically, we let cm,i =
∑m−2
j= 0 2m−2−jg8191i+j for gi the ith bit in the decimal

expansion of G, and select r = 2m−1 + cm,0 and d = 2m−1 + (cm,1 mod cm,0).

7.4 Experiments and results

The estimates of n in Tab. 1 were produced by executing the above experiments.
As may be seen in the table, n asymptotically tends to s+ 1 as m tends to infinity
for fixed s. For fixed m, it holds that n = s+ 1 up to some cutoff point in s.

The estimates are for not enumerating the lattice Lj . By enumerating a bounded
number of vectors in the lattice, nmay potentially be further reduced. In particular,
our experiments show that a single run suffices to solve with probability q ≥ 99%
for s = 1, provided we accept to enumerate up to ∼ 1.3 · 103 vectors.

As may furthermore be seen in the table, the initial estimates of n are in general
verified by the simulations. In general vd > vr. Hence vd determines the initial
estimate for n. Note however that when the heuristic estimate of vd is close to two,
minor discrepancies between the initial estimates and the simulations may arise.

This phenomenon is discussed in [6]: For large tradeoff factors s in relation
to m, increasing or decreasing n typically has a small effect on vd and vr. This may
lead to slight instabilities in the estimates, as vd may be close to two for several
values of n. Discrepancies may also arise, especially for large n, if we fail to find the
closest and shortest non-zero vectors in Lj , or if sampling fails. Such discrepancies
may be amplified by the difference in the sample sizes N and M .
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group and logarithm size m

128 256 384 512 1024 2048 4096 8192

tr
a
d

e
o
ff

fa
c
to

r
s

1 2 2 2 2 2 2 2 2

2 * 3 3 3 3 3 3 3 3

3 – 4 4 4 4 4 4 4

4 – * 5 5 5 5 5 5 5

5 – – 6 6 6 6 6 6

6 – – * 7 7 7 7 7 7

7 – – – 8 8 8 8 8

8 – – – * 10 9 9 9 9

10 – – – – 11 11 11 11

20 – – – – – 22 21 21

30 – – – – – * 35 33 / 32 31

40 – – – – – – 44 42

50 – – – – – – 57 54 / 53

80 – – – – – – – – / 88

Tab. 1: The estimated number of runs n required to solve for both a general
discrete logarithm d and group order r, selected as described in section 7.3,
with ≥ 99% success probability and without enumerating the lattice. For
details, see section 7.4. For A the initial and B the simulated estimate, we
print B / A, unless B = A; we then only print A. Dash indicates no estimate.
For ε the total error in the region, an asterisk indicates that 10−4 ≤ ε < 10−3.
For all other estimates ε < 10−4.

7.4.1 Generalizing the results

Recall that the marginal distributions along the axes in Fig. 4 on p. 22 agree with
the distributions induced by the quantum algorithm for computing short discrete
logarithms, see Fig. 5 on p. 22, and orders with tradeoffs, see Fig. 6 on p. 37.

As vd > vr in general, we therefore expect the estimates of n for computing
general discrete logarithms to agree with the estimates of n for computing short
discrete logarithms. This is indeed the case, see Tab. 4 on p. 41 where n is estimated
for short discrete logarithms selected as in section 7.3. It is reasonable to presume
that this pattern would continue if s was to be permitted to grow a bit past the
point where the approximation error becomes non-negligible.

To produce Tab. 1 we had to fix some d and r such that d < r < 2m. We did
this by selecting d and r from Catalan’s constant. However, the variation in each
estimate of n as a function of d and r is fairly small, for as long as d and r are both
of size ∼ 2m, and not divisible by large powers of two or otherwise smooth.

Experiments imply that for d and r that fulfill these basic requirements, the
larger d and r are permitted to grow in relation to 2m, the harder it becomes to
solve in the classical post-processing. For maximal d = 2m− 1 we may hence claim
to obtain “worst case” estimates of n, see Tab. 5 on p. 41 restricted to m and s
such that the bound on the approximation error is negligible.
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8 Order finding with tradeoffs

The algorithm for computing general discrete logarithms in this paper does not
require the group order to be known, as neither the quantum algorithm nor the
classical post-processing algorithm makes explicit use of the order. If the order of
the group is unknown, it may be computed from the same set of pairs (j, k) output
by the quantum computer as is used to compute the logarithm.

This implies that the algorithm may be used as an order finding algorithm.
When only the order is of interest, only j need to be computed, as k is not used
by the post-processing algorithm that recovers the order. The second stage of the
quantum algorithm where k is computed need therefore not be executed when the
goal is to perform order finding. If the second stage is removed, the quantum algo-
rithm reduces to the algorithm proposed by Seifert [21]. For s = 1 this algorithm
in turn reduces to Shor’s order finding algorithm.

This provides a link between our works on computing discrete logarithms,
Seifert’s work on order finding, and Shor’s original work. As for post-processing,
Seifert generalizes Shor’s continued fractions-based post-processing algorithm to
higher dimensions. We instead use lattice-based post-processing.

In appendix A, we provide a description of Shor’s and Seifert’s quantum algo-
rithms for order finding, a complete analysis of the probability distributions that
they induce, and estimates for the number of runs n required to solve various
problem instances for r when using our lattice-based post-processing algorithms.

9 Summary and conclusion

We generalize and bridge our earlier works on computing short discrete logarithms
with tradeoffs, Seifert’s work on computing orders with tradeoffs and Shor’s ground-
breaking works on computing orders and general discrete logarithms. In particular,
we enable tradeoffs when computing general discrete logarithms.

Compared to Shor’s algorithm for computing general discrete logarithms, this
yields a reduction by up to a factor of two in the number of group operations
evaluated quantumly in each run, at the expense of having to perform multiple
runs. The runs are independent, and may hence be executed in parallel.

Unlike Shor’s algorithm, our algorithm does not require the group order to
be known. It simultaneously computes both the order and the logarithm. This
allows it to outperform Shor’s original algorithms with respect to the number of
group operations that need to be evaluated quantumly in some cases even when
not making tradeoffs. One cryptographically relevant example of such a case is the
computation of discrete logarithms in Schnorr groups of unknown order.

We analyze the probability distributions induced by our algorithm, and by
Shor’s and Seifert’s order finding algorithms, describe how all of these algorithms
may be simulated when the solution is known, and estimate the number of runs
required for a given minimum success probability when making different tradeoffs.

When solving using lattice-based post-processing without enumerating Lj , the
number of runs n required for a fixed tradeoff factor s tends to s+1 asymptotically
as m tends to infinity. By enumerating, n may be further reduced. Notably,
when not making tradeoffs, a single run suffices to solve with at least 99% success
probability, provided a small number of lattice vectors are enumerated.
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A Order finding with tradeoffs
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and estimate the number of runs n required to solve for r.
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A.1 The quantum algorithm

Given a generator g of a finite cyclic group of order r of length ∼ m bits, Shor’s
order finding algorithm [22] outputs an integer j that yields ∼ m bits on r.

Seifert [21] enabled tradeoffs in Shor’s algorithm by modifying it to yield ∼ m/s
bits on r in each run, for s a tradeoff factor. For s = 1 Seifert’s algorithm reverts to
Shor’s algorithm. This allows us to conveniently describe both algorithms below:

1. Let m be the integer such that 2m−1 < r < 2m, let ` = dm/se, and let

Ψ =
1√

2m+`

2m+`−1∑
a= 0

| a 〉 | 0 〉 .

2. Compute [a] g and store the result in the second register to obtain

Ψ =
1√

2m+`

2m+`−1∑
a= 0

| a, [a] g 〉 .

3. Compute a QFT of size 2m+` of the first register to obtain

Ψ =
1

2m+`

2m+`−1∑
a= 0

2m+`−1∑
j= 0

e 2πi aj/2m+`

| j, [a] g 〉 .

4. Observe the system to obtain j and y = [e] g where e = a mod r.

Note that Seifert’s interpretation of the advantage of his algorithms is that he
saves control qubits. This is not the case when recycling control qubits; see the
discussion in section 2 for a more modern interpretation of the advantage.

A.2 The probability of observing j and y

Above, the integer j and element y = [e] g are obtained with probability

1

22(m+`)

∣∣∣∣∣∑
a

exp

[
2πi

2m+`
aj

] ∣∣∣∣∣
2

(15)

where the sum is over all a on 0 ≤ a < 2m+` such that a ≡ e (mod r).
In this section, we seek to place (15) on closed form. To this end, we first

perform a variable substitution to obtain a contiguous summation interval. As all
a that fulfill the condition that a ≡ e (mod r) are on the form a = e+ nrr where
0 ≤ nr ≤ (2m+` − 1 − e)/r, substituting a for e + nrr in (15) and adjusting the
phase yields

1

22(m+`)

∣∣∣∣∣∣∣
b(2m+`−1−e)/rc∑

nr = 0

exp

[
2πi

2m+`
αrnr

] ∣∣∣∣∣∣∣
2

=
1

22(m+`)

∣∣∣∣∣∣∣
b(2m+`−1−e)/rc∑

nr = 0

eiθrnr

∣∣∣∣∣∣∣
2
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where αr = {rj}2m+` and θr = θ(αr) = 2παr/2
m+`. Summing over all e yields

1

22(m+`)

r−1∑
e= 0

∣∣∣∣∣∣∣
b(2m+`−1−e)/rc∑

nr = 0

eiθr nr

∣∣∣∣∣∣∣
2

= (16)

β

22(m+`)

∣∣∣∣∣∣∣
b(2m+`−1)/rc∑

nr = 0

eiθr nr

∣∣∣∣∣∣∣
2

+
r − β

22(m+`)

∣∣∣∣∣∣∣
b(2m+`−1)/rc−1∑

nr = 0

eiθr nr

∣∣∣∣∣∣∣
2

(17)

for β such that β ≡ 2m+` (mod r), as for all e on 0 ≤ e < β it then holds that⌊
(2m+` − 1− e)/r

⌋
=
⌊
(2m+` − 1)/r

⌋
whereas for all e on β ≤ e < r, it holds that⌊

(2m+` − 1− e)/r
⌋

=
⌊
(2m+` − 1)/r

⌋
− 1.

Note that β 6≡ 0 (mod r) since we require r to be on 2m−1 < r < 2m.

A.2.1 Closed form expressions

Assuming θr 6= 0, we may write (17) on closed form as

β

22(m+`)

∣∣∣∣∣∣ eiθr
(
b(2m+`−1)/rc+1

)
− 1

eiθr − 1

∣∣∣∣∣∣
2

+
r − β

22(m+`)

∣∣∣∣∣ eiθr b(2
m+`−1)/rc − 1

eiθr − 1

∣∣∣∣∣
2

.

Otherwise, if θr = 0, we may write (17) on closed form as

β

22(m+`)

(⌊
(2m+` − 1)/r

⌋
+ 1
)2

+
r − β

22(m+`)

(⌊
(2m+` − 1)/r

⌋)2
.

This step of the analysis is similar to a step in the analysis of Einarsson [3].

A.3 Distribution of integers j

In this section we analyze the distribution of integers j that yield αr.

Definition A.1. Let κr denote the greatest integer such that 2κr divides r.

Definition A.2. An argument αr is said to be admissible if there exists an integer
j on 0 ≤ j < 2m+` such that αr = {rj}2m+` .

Claim A.1. All admissible arguments αr = {rj}2m+` are multiples of 2κr .

Proof. As 2κr | r and the modulus is a power of two the claim follows. �

Lemma A.1. The set of integers j on 0 ≤ j < 2m+` that yield the admissible
argument αr is given by

j =

(
αr
2κr

( r

2κr

)−1

+ 2m+`−κr tr

)
mod 2m+`

as tr runs trough all integers on 0 ≤ tr < 2κr . Each admissible argument αr hence
occurs with multiplicity 2κr .

Proof. As αr ≡ rj (mod 2m+`), the lemma follows by solving for j. �

35



A.4 Simulating the quantum algorithm

In this section, we first construct a high-resolution histogram for the probability
distribution induced by the quantum algorithm for known r. We then proceed to
sample the histogram it to simulate the quantum algorithm.

A.4.1 Constructing the histogram

To construct the histogram, we exactly follow [6]: We divide the argument axis
into regions and subregions and integrate the closed form probability expression
numerically in each subregion.

First, we subdivide the negative and positive sides of the argument axis into
30 +µ regions where µ = min(`− 2, 11). Each region thus formed may be uniquely
identified by an integer ηr by requiring that for all αr in the region

2|ηr| ≤ |αr | ≤ 2|ηr|+1 and sgn(αr) = sgn(ηr)

where m− 30 ≤ | ηr | < m+µ− 1. Then, we subdivide each region into subregions
identified by an integer ξr by requiring that for all αr in the subregion

2|ηr|+ξr/2
ν

≤ |αr | ≤ 2|ηr|+(ξr+1)/2ν

for ξr an integer on 0 ≤ ξr < 2ν and ν a resolution parameter.
For each subregion, we compute the approximate probability mass contained

within the subregion by applying Simpson’s rule, followed by Richardson extra-
polation to cancel the linear error term. Simpson’s rule is hence applied 2ν(1 + 2)
times in each region. Each application requires the probability to be computed in
up to three points (the two endpoints and the midpoint), for which purpose we use
the closed form expression developed in section A.2.1.

Note that we should furthermore multiply by the multiplicity of arguments 2κr ,
see Lemma A.1 in section A.3, and divide by 2κr to account for the density of
distinct pairs in the region. However, these operations cancel. Note also that this
method of constructing the histogram assumes κr to be small in relation to m.

To obtain a high degree of accuracy in the tail, we fix to ν = 11 for all regions.
This enables us use this histogram as a reference when adaptively selecting the
resolution for the two-dimensional histogram in section 5.1, see Lemma D.1.

A.4.2 Understanding the probability distribution

The probability distribution is plotted on the signed logarithmic argument axis in
Fig. 4 for m = 2048 and s = 30, and for r selected as explained in section 7.3. The
regions form two contiguous symmetric areas on the argument axis, as is illustrated
in Fig. 6. As expected, the distribution plotted is virtually identical to the marginal
distribution along the vertical αr axis in Fig. 4.

The probability mass is located in the regions where |αr | ∼ 2m, whereas for
random outputs the argument would be of size ∼ 2m+`. Hence, a single run of the
quantum algorithm yields ∼ ` ∼ m/s bits of information on r.

A.4.3 Sampling the probability distribution

To sample an argument αr from the distribution, we exactly follow [6]: We first
sample a subregion from the histogram and then sample αr uniformly at random
this subregion, with the restriction that 2κr must divide αr so that αr is admissible.
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Fig. 6: The probability distribution induced by the order finding algorithm,
computed as in section A.4.1, for m = 2048 and s = 30, and for r selected as
in section 7.3. To facilitate printing, the resolution has been reduced in this
figure.

To sample a subregion from the histogram, we order all subregions in the his-
togram by probability, and compute the cumulative probability up to and including
each subregion in the resulting ordered sequence, in analogy with section 5.3.

Then, we sample a pivot uniformly at random from [0, 1), and return the first
subregion in the ordered sequence for which the cumulative probability is greater
than or equal to the pivot. The sampling operation fails if the pivot is greater than
the cumulative probability of the last subregion in the sequence.

To sample an integer j from the distribution, we first sample an argument αr
and then select an integer j yielding αr uniformly at random from the set of all
such integers using Lemma A.1. More specifically, we first sample an integer tr
uniformly at random on the admissible interval for tr and then compute j from αr
and tr as described in Lemma A.1.

A.5 Classical post-processing

The probability distribution induced by the quantum algorithm in section A.1 is
virtually identical to the marginal distribution along the αr axis in section 5.1.
Hence, the classical post-processing algorithm in section 6.2 may be used to solve
sets of n integers j output by the quantum algorithm in section A.1 for r.

A.6 Estimating the number of runs required

To estimate n for problem instance given by r, we exactly follow [6]:

For n = s + 1, s + 2, . . . we first estimate R̃r by sampling N = 106 sets of n
arguments αr, as explained in sections A.4.3 and 6.3, and record the smallest n for
which the volume quotient vr < 2 with probability q = 99%.

With this estimate of n as our starting point, we then sample M = 103 sets
of n integers j, as explained in section A.4.3, and test whether recovery of r is
successful for at least dMqe sets when executing the post-processing algorithm in
section 6.2 without enumerating Lj . Depending on the outcome of the test, we
either increment or decrement n, and repeat the process, recursively, until the
smallest n such that the test passes has been identified.
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group size m
128 256 512 1024 2048 4096 8192

tr
a
d

e
o
ff

fa
c
to

r
s

1 2 2 2 2 2 2 2
2 3 3 3 3 3 3 3
3 4 4 4 4 4 4 4
4 6 5 5 5 5 5 5
5 7 6 6 6 6 6 6
6 9 8 7 7 7 7 7
7 12 / 11 9 8 8 8 8 8
8 16 / 15 11 10 9 9 9 9

10 – / 25 14 12 11 11 11 11
20 – – / 54 28 / 29 24 22 21 21
30 – – – / 53 39 / 38 34 32 31
40 – – – – / 58 48 / 47 44 42
50 – – – – – / 63 56 53
80 – – – – – – / 95 – / 87

Tab. 2: The estimated number of runs n required to solve for an order r, se-
lected as in section 7.3, with ≥ 99% success probability, without enumerating
the lattice.

group size m
128 256 512 1024 2048 4096 8192

tr
a
d

e
o
ff

fa
c
to

r
s

1 2 2 2 2 2 2 2
2 3 3 3 3 3 3 3
3 4 4 4 4 4 4 4
4 6 5 5 5 5 5 5
5 8 / 7 6 6 6 6 6 6
6 9 8 7 7 7 7 7
7 11 / 12 9 8 8 8 8 8
8 17 / 16 11 10 9 9 9 9

10 – / 25 14 12 11 11 11 11
20 – – / 55 30 / 29 23 / 24 22 21 21
30 – – – / 53 37 / 39 34 32 31
40 – – – – / 59 48 / 47 44 42
50 – – – – – / 63 57 / 56 53
80 – – – – – – / 95 – / 87

Tab. 3: The estimated number of runs n required to solve for a maximal
order r = 2m − 1 with ≥ 99% success probability, without enumerating the
lattice.
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Executing this procedure, for m and s selected as described in section 7.2, both
for r selected as explained in section 7.3, and for maximal r = 2m − 1, produced
the estimates in Tab. 2 and Tab. 3, respectively. Note that for A the initial and B
the simulated estimate, we print B / A, unless B = A, we then only print A. Note
furthermore that we have excluded m = 384 to avoid breaking the page layout.

The tabulated estimates are for not enumerating the lattice Lj . By enumerating
a bounded number of vectors in the lattice, n may potentially be further reduced. In
particular, our experiments show that a single run suffices to solve with probability
q ≥ 99% for s = 1, provided we accept to enumerate up to ∼ 3.5 · 102 vectors.

A.7 Applications of order finding to integer factoring

Quantum algorithms for order finding may be used to factor integers, as was first
proposed by Shor [22] using a reduction due to Miller [14]. To factor a composite
integer N , that is odd and not a pure prime power, Shor proceeds as follows:

Pick an integer g ∈ (1, N) and compute D = gcd(g,N). If D 6= 1, then D
is a non-trivial factor of N . In practice, small and moderate size factors of N
would typically be removed before attempting to factor N via order finding, so it
is unlikely that factors would be found in this manner. If D = 1, then g may be
perceived as a generator of a cyclic subgroup 〈g〉 ⊂ Z∗N , and its order r computed
using a quantum algorithm for order finding.

As gr ≡ 1 (mod N), it must be that gr − 1 ≡ 0 (mod N). If r is even and
gr/2 6≡ −1 (mod N), Miller [14] observed that as gr/2 ± 1 6≡ 0 (mod N), whilst

gr − 1 ≡ (gr/2 − 1)(gr/2 + 1) ≡ 0 (mod N),

non-trivial factors of N may be found by computing gcd((gr/2 mod N) ± 1, N).
This reduces the integer factoring problem to an order finding problem.

Shor originally proposed to use this reduction, and to simply re-run the whole
algorithm if any of the above requirements are not fulfilled, or if the order finding
algorithm fails to yield r. In [22], Shor lower-bounds the probability of his order
finding algorithm yielding r in a single run, and of non-trivial factors of N being
found given r, so as to obtain a lower bound on the overall success probability.

A number of improvements have since been proposed. In this appendix, we have
for instance shown that the probability of Shor’s original order finding algorithm
yielding r in a single run is very close to one. Furthermore, we have estimated the
number of runs required to obtain a similarly high success probability when making
tradeoffs in Seifert’s order finding algorithm. In [5], it is shown that any integer N
may be completely factored classically into all of its constituent prime factors with
very high probability after a single call to an order finding algorithm. Hence, the
estimates we provide of the number of runs required for Shor’s and Seifert’s order
finding algorithms to yield r are also estimates of the number of runs required to
completely factor N via these order finding algorithms.

A.7.1 Factoring RSA integers

Note that if N is an RSA [18] integer, as is typically the case in cryptographic
applications, a more efficient approach to factoring N is to use the algorithm of
Eker̊a and H̊astad [7]. This algorithm reduces the RSA integer factoring problem
to a short discrete logarithm problem via [9] and solves this problem quantumly.

As is explained in [6] and this appendix, the quantum part of Eker̊a-H̊astad’s
algorithm imposes less requirements on the quantum computer than Shor’s or
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Seifert’s order-finding algorithms, in each run and overall, both when making and
not making tradeoffs. The probability of recovering the logarithm d is very close
to one. The two prime factors of N are recovered deterministically from d.

B Short discrete logarithms with tradeoffs

The experiments in appendix A for order finding are analogous with those for short
discrete logarithms in [6]. For completeness, and so as to enable comparisons, we
have run experiments for short discrete logarithms, both for maximal d = 2m − 1,
and for d selected as described in section 7.2. These experiments produced the
estimates in Tab. 4 and Tab. 5, respectively. Note that for A the initial and B the
simulated estimate, we print B / A, unless B = A, we then only print A.

C Soundness of the closed form approximation

In this appendix, we demonstrate the fundamental soundness of the closed form
approximation to P (θd, θr) that we derived in section 3. This appendix is rather
technical and may be considered to constitute supplementary material.

C.1 Introduction and recapitulation

Recall that by Theorem 3.1 in section 3, the probability P (θd, θr) of the quantum
algorithm in section 2 yielding (j, k), with associated angle pair (θd, θr), summed
over all r group elements y = [e] g ∈ G, may be approximated by

P̃ (θd, θr) =
22σr

22(m+2`)
f(θr) g(θd, θr)

where we have introduced some new notation in the form of the two functions

f(θr) =

∣∣∣∣∣∣∣
d2m+`/re−1∑

nr = 0

eiθrnr

∣∣∣∣∣∣∣
2

g(θd, θr) =

∣∣∣∣∣∣
2`−σ−1∑
t= 0

ei(2
σθd+d−2σd/reθr)t

∣∣∣∣∣∣
2

that we shall use throughout this section, and that may both be placed on closed
form. The error when approximating P (θd, θr) by P̃ (θd, θr) is bounded by∣∣∣ P̃ (θd, θr)− P (θd, θr)

∣∣∣ ≤ ẽ(θd, θr),
again by Theorem 3.1, where the function ẽ(θd, θr) is specified.

C.1.1 Overview of the soundness argument

In what follows, we demonstrate the fundamental soundness of the above closed
form approximation, by summing P̃ (θd, θr) analytically to show that virtually all
probability mass is within a specific region of the plane, and by summing ẽ(θd, θr)
analytically to show that the total approximation error in this region is negligible.

Asymptotically, in the limit as m tends to infinity for fixed s, we furthermore
show that the fraction of the probability mass captured tends to one whilst the error
tends to zero. This implies that P̃ (θd, θr) asymptotically captures the probability
distribution completely and exactly.
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logarithm size m
128 256 512 1024 2048 4096 8192

tr
a
d

e
o
ff

fa
c
to

r
s

1 2 2 2 2 2 2 2
2 3 3 3 3 3 3 3
3 4 4 4 4 4 4 4
4 6 5 5 5 5 5 5
5 8 6 6 6 6 6 6
6 10 8 7 7 7 7 7
7 13 10 / 9 8 8 8 8 8
8 18 11 10 9 9 9 9

10 – / 32 15 12 11 11 11 11
20 – – / 71 32 / 30 24 22 21 21
30 – – – / 60 40 35 33 / 32 31
40 – – – – / 62 50 / 48 44 42
50 – – – – – / 65 57 54 / 53
80 – – – – – – / 97 – / 88

Tab. 4: The estimated number of runs n required to solve for a short loga-
rithm d, selected as in section 7.3, with ≥ 99% success probability, without
enumerating.

logarithm size m
128 256 512 1024 2048 4096 8192

tr
a
d

e
o
ff

fa
c
to

r
s

1 2 2 2 2 2 2 2
2 3 3 3 3 3 3 3
3 4 4 4 4 4 4 4
4 6 5 5 5 5 5 5
5 8 6 6 6 6 6 6
6 10 8 7 7 7 7 7
7 13 9 8 8 8 8 8
8 18 11 10 9 9 9 9

10 – / 32 16 / 15 12 11 11 11 11
20 – – / 71 31 25 / 24 22 21 21
30 – – – / 60 40 35 32 32 / 31
40 – – – – / 62 49 / 48 45 / 44 42
50 – – – – – / 65 57 54 / 53
80 – – – – – – / 97 – / 88

Tab. 5: The estimated number of runs n required to solve for a maximal short
logarithm d = 2m − 1 with ≥ 99% success probability, without enumerating.
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C.2 Preliminaries

Before we proceed as outlined above, we first introduce some preliminaries.

Lemma C.1. Let ϕ ∈ R and θ(u) = 2πu/2ω for ω > 0 an integer. Then

2ω+c−ς−1∑
u= 0

∣∣∣∣∣
N−1∑
t= 0

ei(2
ςθ(u)+ϕ)t

∣∣∣∣∣
2

= 2ω+c−ςN

for integers c, ς and N such that c ≥ 0, 0 ≤ ς < ω and 0 < N ≤ 2ω−ς .

Proof. For any φ ∈ R it holds that∣∣∣∣∣
N−1∑
t= 0

ei(2
ςφ+ϕ)t

∣∣∣∣∣
2

=

(
N−1∑
t= 0

ei(2
ςφ+ϕ)t

)(
N−1∑
t= 0

e−i(2
ςφ+ϕ)t

)

=

N−1∑
t=−N+1

(N − | t |) ei(2
ςφ+ϕ)t

= N +

N−1∑
t= 1

(N − t) (ei(2
ςφ+ϕ)t + e−i(2

ςφ+ϕ)t).

Hence

2ω+c−ς−1∑
u= 0

∣∣∣∣∣
N−1∑
t= 0

ei(2
ςθ(u)+ϕ)t

∣∣∣∣∣
2

=

2ω+c−ς − 1∑
u= 0

(
N +

N−1∑
t= 1

(N − t)
(

ei(2
ςθ(u)+ϕ)t + e−i(2

ςθ(u)+ϕ)t
))

= 2ω+c−ςN +

N−1∑
t= 1

(N − t)
2ω+c−ς − 1∑

u= 0

(
ei(2

ςθ(u)+ϕ)t + e−i(2
ςθ(u)+ϕ)t

)
︸ ︷︷ ︸

= 0

as for any integer t on 0 < | t | < N ≤ 2ω−ς and ς < ω, the series

2ω+c−ς − 1∑
u= 0

ei(2
ςθ(u)+ϕ)t = eiϕt

ei2
ς(2π/2ω) 2ω+c−ςt − 1

ei2ς(2π/2ω)t − 1
= eiϕt

e2πi 2ct − 1

e2πi 2ς−ωt − 1
= 0

as the denominator is non-zero, and so the lemma follows. �

C.2.1 Bounding tail regions

Claim C.1. For ∆ and N integers such that 1 < ∆ < N it holds that∫ N

∆

du

u2
<

N−1∑
z= ∆

1

z2
<

∫ N−1

∆−1

du

u2
<

1

∆− 1
≤ 2

∆
.

Proof. As ∫ z+1

z

du

u2
=

1

z + z2
<

1

z2
<

1

z2 − z
=

∫ z

z−1

du

u2
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for z any integer such that z > 1, it follows that∫ N

∆

du

u2
=

N−1∑
z= ∆

(∫ z+1

z

du

u2

)
<

N−1∑
z= ∆

1

z2
<

N−1∑
z= ∆

(∫ z

z−1

du

u2

)
=

∫ N−1

∆−1

du

u2

where, for ∆ and N integers on 1 < ∆ < N , it holds that∫ N−1

∆−1

du

u2
=

1

∆− 1
− 1

N − 1
≤ 1

∆− 1
≤ 2

∆

and so the claim follows. �

Claim C.2. For any φ ∈ R such that 0 < |φ | ≤ π it holds that∣∣∣∣∣
N−1∑
t= 0

eiφt

∣∣∣∣∣
2

≤ 24

φ2
.

Proof. As φ 6= 0, we have by Claim C.3 below that∣∣∣∣∣
N−1∑
t= 0

eiφ

∣∣∣∣∣
2

=

∣∣∣∣ eiNφ − 1

eiφ − 1

∣∣∣∣2 ≤ 22

| eiφ − 1 |2
≤ 24

φ2

and so the claim follows. �

Claim C.3. | eiφ − 1 | ≥ |φ |/2 for any φ ∈ R such that |φ | ≤ π.

Proof. It suffices to show that | eiφ − 1 |2 = 2(1 − cosφ) ≥ φ2/4 from which the
claim follows as cosφ ≤ 1− φ2/8 for any φ ∈ R such that |φ | ≤ π. �

C.2.2 Intervals of admissible arguments and angles

To facilitate the analysis, we need notation to handle intervals of admissible angles:

Definition C.1. Let Θr(I) be the set of distinct admissible θr on the interval I.

Definition C.2. For a fixed admissible θr, let Θd(I, θr) be the set of distinct ad-
missible θd on the interval I.

C.2.3 Parameterizing the admissible arguments and angles

Furthermore, we need a convenient method for parameterizing the distinct admis-
sible argument pairs (αd, αr), or angle pairs (θd, θr).

Claim C.4. The admissible argument αd and αr may be parameterized by

αd(ud, ur) = (δrur mod 2m−γ) + 2m−γud αr(ur) = 2κrur

and the corresponding admissible angles θd and θr may be parameterized by

θd(ud, ur) =
2π

2m+`
αd(ud, ur) θr(ur) =

2π

2m+`
αr(ur)

for integers ud ∈ [−2`+γ−1, 2`+γ−1) and ur ∈ [−2m+`−κr−1, 2m+`−κr−1) when not
accounting for multiplicity.

Proof. By Lemma 4.1 the admissible arguments (αd, αr) are in the region of the
lattice Lα introduced in Definition 4.3 where αd, αr ∈ [−2m+`−1, 2m+`−1).

The parameterization takes ur times the first row and ud times second row of
the basis matrix for Lα. It furthermore uses the second row to reduce the starting
point δrur modulo 2m−γ . The claim follows from this analysis. �
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g(θd, 0)

θd
−π − π

2σ
π
2σ

π

22(`−σ)

Fig. 7: The function g(θd, 0) plotted continuously in θd on the interval
| θd | ≤ π for σ = 3 and sample parameters selected to make the figure
readable.

C.3 Establishing a baseline

We begin by proving that the sum of P̃ (θd, θr) over all admissible (θd, θr), with
multiplicity, in the region where θr ∈ [−π, π) and θd ∈ [−π/2σ, π/2σ), tends to one
asymptotically in the limit as m tends to infinity for fixed s.

C.3.1 The inner sum over g(θd, θr)

Lemma C.2. For θd ∈ Θd([−π/2σ, π/2σ), θr), the inner sum∑
θd ∈Θd([−π/2σ, π/2σ), θr)

g(θd, θr) = 22(`−σ)+γ .

Proof. The function g(θd, θr) is non-negative and periodic in θd for fixed θr. It
cycles exactly 2σ times on the interval θd ∈ [−π, π), as may be seen in Fig. 7 where
g(θd, θr) is plotted continuously in θd for θr fixed to zero. Fixing a different value
of θr shifts the graph cyclically along the θd axis.

This implies that we may parameterize θd in ud and ur using Claim C.4 and
sum θd(ud, ur) over any consecutive sequence of 2`+γ−σ values of ud for the fixed
ur given by θr to sum over all θd ∈ Θd([−π/2σ, π/2σ), θr).

By using this approach and Lemma C.1 we obtain

∑
θd ∈Θd([−π/2σ, π/2σ), θr)

g(θd, θr) =
∑

θd ∈Θd([−π/2σ, π/2σ), θr)

∣∣∣∣∣∣
2`−σ−1∑
t= 0

ei(2
σθd+d−2σd/reθr)t

∣∣∣∣∣∣
2

=

2`+γ−σ−1−1∑
ud =−2`+γ−σ−1

∣∣∣∣∣∣
2`−σ−1∑
t= 0

ei(2
σθd(ud,ur)+d−2σd/reθr(ur))t

∣∣∣∣∣∣
2

=

2`+γ−σ−1−1∑
ud =−2`+γ−σ−1

∣∣∣∣∣∣
2`−σ−1∑
t= 0

ei(2
σ(2π 2m−γ ud/2

m+`)+ϕ)t

∣∣∣∣∣∣
2

=

2`+γ−σ−1∑
ud = 0

∣∣∣∣∣∣
2`−σ−1∑
t= 0

ei(2πud/2
`+γ−σ+ϕ)t

∣∣∣∣∣∣
2

= 2`+γ−σ · 2`−σ
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where we have used that we may shift the interval in ud, and introduced the constant
phase ϕ = 2σ(2π(δrur mod 2m−γ)/2m+`) + d−2σd/re θr(ur), and so the lemma
follows. �

C.3.2 The outer sum over f(θr)

Lemma C.3. For θr ∈ Θr([−π, π)), the outer sum

∑
θr ∈Θr([−π, π))

f(θr) = 2m+`−κr
⌈

2m+`

r

⌉
.

Proof. The function f(θr) is non-negative and periodic in θr. It cycles exactly once
on the interval θr ∈ [−π, π). This implies that we may parameterize θr in ur using
Claim C.4, and sum over all 2m+`−κr values of ur to sum over all θr ∈ Θr([−π, π)).
By using this approach and Lemma C.1, we thus obtain

∑
θr ∈Θr([−π, π))

f(θr) =
2m+`−κr−1−1∑

ur =−2m+`−κr−1

∣∣∣∣∣∣∣
d2m+`/re−1∑

nr = 0

eiθr(ur)nr

∣∣∣∣∣∣∣
2

=

2m+`−κr−1∑
ur = 0

∣∣∣∣∣∣∣
d2m+`/re−1∑

nr = 0

ei(2πur/2
m+`−κr )nr

∣∣∣∣∣∣∣
2

= 2m+`−κr
⌈

2m+`

r

⌉
by using that we may shift the interval in ur, and so the lemma follows. �

C.3.3 Combined result

Lemma C.4. The combined sum over all distinct admissible (θd, θr), in the region
where θd ∈ [−π/2σ, π/2σ) and θr ∈ [−π, π), is

∑
θr ∈Θr([−π, π))

θd ∈Θd([−π/2σ, π/2σ), θr)

P̃ (θd, θr) = 2γ−κr
r

2m+`

⌈
2m+`

r

⌉
.

Proof. By combining Lemmas C.2 and C.3, we obtain∑
θr ∈Θr([−π, π))

θd ∈Θd([−π/2σ, π/2σ), θr)

P̃ (θd, θr) =
22σr

22(m+2`)

∑
θr ∈Θr([−π, π))

f(θr)
∑

θd ∈Θd([−π/2σ, π/2σ), θr)

g(θd, θr)

=
22σr

22(m+2`)
· 22(`−σ)+γ · 2m+`−κr

⌈
2m+`

r

⌉
= 2γ−κr · r

2m+`

⌈
2m+`

r

⌉
as the inner sum reduces to a constant, and so the lemma follows. �
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It follows from the above lemma that the sum of P̃ (θd, θr) over all admissible
pairs (θd, θr) in the region where θd ∈ [−π/2σ, π/2σ) and θr ∈ [−π, π) tends to one
as m tends to infinity for fixed s, when accounting for the fact that each distinct
admissible pair (θd, θr) occurs with multiplicity 2κr−γ by Lemma 4.1.

The total approximation error, as upper-bounded by summing ẽ(θd, θr) over all
admissible (θd, θr), with multiplicity, in the region, is non-negligible however. In
the next section we address this problem by reducing the size of the region.

C.4 Adapting the limited region to reduce the error

In this section, we show that the sum of P̃ (θd, θr) over all admissible (θd, θr), with
multiplicity, in the central part of the limited region as defined below, captures a
fraction of the probability mass in τ .

Definition C.3. The central region is the part of the limited region in the angle
plane where | θd | ≤ Bd and | θr | ≤ Br, for Bd = 2τ−`+1π and Br = Bd/2, and for
τ an integer constant such that 1 < τ < `− σ − 1.

In the next section, we describe how the approximation error, as upper-bounded
by summing ẽ(θd, θr) over all admissible (θd, θr), with multiplicity, in the central
region, depends on τ . For appropriate σ and τ , virtually all probability mass is in
the central region, and the total approximation error is negligible in the region.

Note that by the above definition of Bd and Br, all argument pairs (αd, αr) such
that |αd | ≤ 2m+τ and |αr | ≤ 2m+τ−1 are in the central region. Note furthermore
that Br < Bd = 2τ−`+1π ≤ 2−σ−1π, so the central region is a subregion of the
limited region we considered in the previous section.

C.4.1 The inner sum over g(θd, θr)

Lemma C.5. For θr ∈ Θr([−Br, Br]), the inner sum∑
θd∈Θd([−Bd, Bd], θr)

g(θd, θr) ≥ 22(`−σ)+γ

(
1− 25

π2

1

2τ

)
.

Proof. First observe that for Id = [−π/2σ, −Bd] ∪ [Bd, π/2
σ] we have∑

θd∈Θd([−Bd, Bd], θr)

g(θd, θr) ≥ 22(`−σ)+γ −
∑

θd∈Θd(Id, θr)

g(θd, θr)

as g(θd, θr) is non-negative, and as by dividing the interval∑
θd∈Θd([−π/2σ, π/2σ), θr)

g(θd, θr) =
∑

θd∈Θd([−π/2σ,−Bd), θr)

g(θd, θr) +

∑
θd∈Θd([−Bd, Bd], θr)

g(θd, θr) +

∑
θd∈Θd((Bd, π/2σ), θr)

g(θd, θr) = 22(`−σ)+γ

where we also used Lemma C.2. We hence seek an upper bound to∑
θd∈Θd(Id, θr)

g(θd, θr) =
∑

θd∈Θd(Id, θr)

g(θd + d−2σd/re θr/2σ, 0)
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Fig. 8: The functions g(θd, 0) and h(θd) = 24/(2σθd)
2 plotted for σ = 3,

` = 9 and τ = 3. The maximum cyclic shift is bounded by Br = Bd/2.

≤
∑

θd∈Θd(Id, θr)

h(θd + d−2σd/re θr/2σ) (18)

that is independent of θr, where we have used Claim C.2 to obtain (18), and where
we have introduced h(θd) = 24/(2σθd)

2 that is strictly decreasing in | θd |. The
situation is depicted in Fig. 8, where g(θd, θr) for θr = 0 is plotted continuously in
θd, for | θd | ≤ π in the top graph, and | θd | ≤ π/2σ in the middle graph.

Fixing a non-zero θr ∈ Θr([−Br, Br)) shifts the top and middle graphs in Fig. 8
cyclically by d−2σd/re θr/2σ. As | d−2σd/re θr/2σ | ≤ | θr | ≤ Br, the maximum
cyclic shift in θd is upper bounded by Br, see the bottom graph in Fig. 8 where
g(θd +Br, 0) is plotted in yellow and g(θd −Br, 0) in green.

To upper-bound (18) it therefore suffices to sum over all distinct admissible θd
on Ir = [−π/2σ,−Br]∪ [Br, π/2

σ], as this captures all distinct admissible θd in the
left and right tail regions under any cyclic shift. We have that

(18) =
∑

θd∈Θd(Id, θr)

h(θd + d−2σd/re θr/2σ)

≤ max
θr ∈Θr([−Br, Br])

∑
θd ∈Θd(Ir, θr)

h(θd) (19)
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=
∑

θd∈Θd(Ir, 0)

h(θd) =
∑

θd∈Θd([Br, π/2σ ], 0)

2h(θd) (20)

due to symmetry, where we have maximized the set of admissible θd over θr.
Recall that by Lemma 4.1 there is one distinct admissible αd on the interval

[0, 2m−γ) for a given fixed αr. Hence there is one distinct admissible θd on the
interval [0, 2−`−γ+1π) for a given fixed θr. All other distinct admissible θd spread
out from the starting point, equidistantly separated by a distance of 2−`−γ+1π. The
distinct admissible θd may occur with multiplicity; however all distinct admissible
θd occur with the same multiplicity, again see Lemma 4.1.

This implies that the sum in (19) is maximized for θr equal to zero, as both
endpoints of the interval Br ≤ | θd | ≤ π/2σ are then admissible, maximizing both
the number of distinct admissible θd on the interval, and the contribution from
each distinct admissible θd as h(θd) is strictly decreasing in | θd |.

By Claim C.4, the distinct admissible θd may be parameterized in ud and ur
where θd(ud, ur) = 2π ((δrur mod 2m−γ) + 2m−γud)/2m+`. Now θr = 0 implies
ur = 0, which in turn implies 2τ−`π = Bd/2 = Br ≤ 2π ud/2

`+γ ≤ π/2σ, or more
succinctly 2τ+γ−1 ≤ ud ≤ 2`+γ−σ−1, which yields

(20) =

2`+γ−σ−1∑
ud = 2τ+γ−1

2h(θd(ud, ur)) =

2`+γ−σ−1∑
ud = 2τ+γ−1

25

(2σ · 2π ud/2`+γ)2

= 22(`−σ+γ) 23

π2

2`+γ−σ−1∑
ud = 2τ+γ−1

1

u2
d

≤ 22(`−σ+γ) 23

π2

2

2τ+γ−1
= 22(`−σ)+γ 25

π2

1

2τ

where we have used Claim C.1 and that γ ≥ 0 and τ > 1. This implies∑
θd∈Θd([−Bd,Bd], θr)

g(θd, θr) ≥ 22(`−σ)+γ − 22(`−σ)+γ 25

π2

1

2τ
= 22(`−σ)+γ

(
1− 25

π2

1

2τ

)
and so the lemma follows. �

C.4.2 The outer sum over f(θr)

Lemma C.6. For θr ∈ Θr([−Br, Br], the outer sum∑
θr ∈Θr([−Br, Br])

f(θr) ≥ 2m+`−κr
⌈

2m+`

r

⌉(
1− 25

π2

1

2τ

)
.

Proof. First observe that for Ir = [−π,−Br] ∪ [Br, π] it holds that∑
θr ∈Θr([−Br, Br])

f(θr) ≥ 2m+`−κr
⌈

2m+`

r

⌉
−

∑
θr ∈Θr(Ir)

f(θr)

as f(θr) is non-negative and∑
θr ∈Θr([−π, π))

f(θr) =
∑

θr ∈Θr([−π,−Br))

f(θr) +
∑

θr ∈Θr([−Br, Br])

f(θr) +
∑

θr ∈Θr((Br, π))

f(θr)

where, by Lemma C.3, the left hand sum∑
θr ∈Θr([−π, π))

f(θr) = 2m+`−κr
⌈

2m+`

r

⌉
.
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To prove the lemma, we seek an upper bound to∑
θr∈Θr(Ir)

f(θr) ≤
∑

θr∈Θr(Ir)

24

θ2
r

≤
∑

θr∈Θr(Br≤θr≤π)

25

θ2
r

(21)

where we have used Claim C.2, that f(θr) is symmetric around the origin, and that
the distinct admissible θr are equidistantly separated by a distance of 2κr around
the origin by Lemma 4.1. The distinct admissible θr may occur with multiplicity;
however all distinct admissible θr occur with the same multiplicity.

By Claim C.4, the distinct admissible θr may be parameterized in ur where
θr(ur) = 2π (2κrur)/2

m+`, which implies 2τ−`π = Br ≤ 2π (2κrur)/2
m+` ≤ π, or

more succinctly 2m+τ−κr−1 ≤ ur ≤ 2m+`−κr−1, which yields

(21) =

2m+`−κr−1∑
ur = 2m+τ−κr−1

25

(2π 2κrur/2m+`)2
= 22(m+`−κr) 23

π2

2m+`−κr−1∑
ur = 2m+τ−κr−1

1

u2
r

≤ 22(m+`−κr) 23

π2

2

2m+τ−κr−1
= 2m+2`−κr 25

π2

1

2τ
≤ 2m+`−κr

⌈
2m+`

r

⌉
25

π2

1

2τ

where we have used Claim C.1 and that γ ≥ 0 and τ > 1. This implies∑
θr∈Θr([−Br, Br])

f(θr) ≥ 2m+`−κr
⌈

2m+`

r

⌉
− 2m+`−κr

⌈
2m+`

r

⌉
25

π2

1

2τ

= 2m+`−κr
⌈

2m+`

r

⌉(
1− 25

π2

1

2τ

)
and so the lemma follows. �

C.4.3 Combined result

Lemma C.7. The combined sum over all distinct admissible (θd, θr), in the central
region where | θd | ≤ Bd and | θr | ≤ Br, is∑

θr ∈Θr([−Br, Br])
θd ∈Θd([−Bd, Bd], θr)

P̃ (θd, θr) ≥ 2γ−κr
r

2m+`

⌈
2m+`

r

⌉(
1− 25

π2

1

2τ

)2

.

Proof. From Lemmas C.5 and C.6 it follows that∑
θr ∈Θr([−Br, Br])

θd ∈Θd([−Bd, Bd], θr)

P̃ (θd, θr) =
22σr

22(m+2`)

∑
θr ∈Θr([−Br, Br])

f(θr)
∑

θd ∈Θd([−Bd, Bd], θr)

g(θd, θr)

≥ 22σr

22(m+2`)
2m+`−κr · 22(`−σ)+γ

⌈
2m+`

r

⌉(
1− 25

π2

1

2τ

)2

= 2γ−κr
r

2m+`

⌈
2m+`

r

⌉(
1− 25

π2

1

2τ

)2

and so the lemma follows. �

C.5 Main soundness result

In this section, we combine the above results into our main soundness result.
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C.5.1 Bounding the probability mass in the central region

Theorem C.1. The sum of P̃ (θd, θr) over all admissible (θd, θr), with multiplicity,
in the central region where | θd | ≤ Bd and | θr | ≤ Br, is bounded by

r

2m+`

⌈
2m+`

r

⌉(
1− 25

π2

1

2τ

)2

≤
∑

θr ∈Θr([−Br, Br])
θd ∈Θd([−Bd, Bd], θr)

2κr−γ P̃ (θd, θr) ≤
r

2m+`

⌈
2m+`

r

⌉
.

Proof. The theorem follows by combining Lemmas C.4 and C.7. �

The above theorem states that a constant fraction of the probability mass is located
within the central region for fixed τ . The fraction of the probability mass that falls
outside the central region decreases exponentially in τ .

C.5.2 Bounding the total error in the central region

Theorem C.2. The total error when approximating P (θd, θr) by P̃ (θd, θr), as
upper-bounded by summing ẽ(θd, θr) over all admissible (θd, θr), with multiplicity,
in the central region where | θd | ≤ Bd and | θr | ≤ Br, is bounded by

∑
θr ∈Θr([−Br, Br])

θd ∈Θd([−Bd, Bd], θr)

2κr−γ ẽ(θd, θr) ≤ 2m+2τD

(
26

2σ
+

25

2`

)
+

2τ+σ+2

2`
π

(
1 +

2τ+σ

2`
π

)
r

2m+`

⌈
2m+`

r

⌉
where D is the density of admissible pairs (θd, θr) in the region.

Proof. The error when approximating P (θd, θr) by P̃ (θd, θr) is bounded by

ẽ(θd, θr) ≤
24

2m+σ
+

23

2m+`
+

2σ

2
(| θd |+ | θr |)

(
2 +

2σ

2
(| θd |+ | θr |)

)
P̃ (θd, θr)

by Theorem 3.1. We sum ẽ(θd, θr) over all admissible (θd, θr) with multiplicity in
the region where | θd | ≤ Bd and | θr | ≤ Br, where Bd = 2τ−`+1 π and Br = Bd/2
by Definition C.3. This is equivalent to summing over all admissible (αd, αr) with
multiplicity in the region where |αd | ≤ 2m+τ and |αr | ≤ 2m+τ−1.

As m > 0 and τ > 1 by Definition C.3, the area of this region is

(2 · 2m+τ + 1)(2 · 2m+τ−1 + 1) = 22(m+τ)+1 + 2m+τ+1 + 2m+τ + 1

≤ 22(m+τ+1)

from which it follows that the region contains at most 22(m+τ+1)D admissible pairs
(θd, θr), where D is the density of admissible pairs with multiplicity.

If we furthermore use that | θd |+ | θr | ≤ 2τ−`+2π, this implies that∑
θr ∈Θr([−Br, Br))

θd ∈Θd([−Bd, Bd), θr)

2κr−γ ẽ(θd, θr)

≤ 22(m+τ+1)D

(
24

2m+σ
+

23

2m+`

)
+ 2τ−`+σ+2π (1 + 2τ−`+σπ)

r

2m+`

⌈
2m+`

r

⌉
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≤ 2m+2τD

(
26

2σ
+

25

2`

)
+

2τ+σ+2

2`
π

(
1 +

2τ+σ

2`
π

)
r

2m+`

⌈
2m+`

r

⌉
where we have used that ∑

θr ∈Θr([−Br, Br])
θd ∈Θd([−Bd, Bd], θr)

2κr−γ P̃ (θd, θr) ≤
r

2m+`

⌈
2m+`

r

⌉

by Theorem C.1, and so the theorem follows. �

By Lemmas 4.3 and 4.4, the density D of admissible argument pairs in the
region is approximately 2−m for random problem instances. Asymptotically, the
density tends to 2−m as m tends to infinity for fixed s by Lemma 4.4.

Furthermore, the density is exactly 2m in rectangular regions of the plane of side
length multiples of 2m−γ and 2m−γ+κr by Lemma 4.5. The region in Theorem C.2
above may be adapted to meet these requirements.

To understand the implications of the above theorem for the bound on the total
error in the central region, it remains to select σ to minimize the bound.

C.5.3 Selecting σ to minimize the total error in the central region

To select the integer parameter σ on 0 < σ < ` so as to minimize the bound on the
total error given in Theorem C.2, we first approximate the error bound by

22τ+6

2σ︸ ︷︷ ︸
ε1

+
22τ+5

2`︸ ︷︷ ︸
ε2

+
2τ+σ+2

2`
π︸ ︷︷ ︸

ε3

+

(
1

2

2τ+σ+2

2`
π

)2

︸ ︷︷ ︸
ε4

where we have used that D ≈ 2−m and
(
r/2m+`

) ⌈
2m+`/r

⌉
≈ 1, with equality in

the limit as m tends to infinity for fixed s.
The approximation is only good when all error terms are smaller than one, so

the term ε3 is greater than ε4 = (ε3/2)2. As ε2 does not depend on σ, we hence
seek to select σ to equate ε1 and ε3. This yields

22τ+6

2σ
=

2τ+σ+2

2`
π ⇒ σ =

⌊
1

2
(`+ τ + 4− log2 π)

⌉
.

If σ is fixed accordingly, the error bound obtained by summing ẽ(θd, θr) analyt-
ically over all admissible (θd, θr) with multiplicity in the region where | θd | ≤ Bd
and | θr | ≤ Br, is heuristically minimized. For this σ, the two main error terms

ε1 ≈ ε3 ≈
23τ/2+4

2`/2
√
π. (22)

For as long as 23τ/2+4
√
π is much smaller than 2`/2, we heuristically expect the

upper bound on the total error given in Theorem C.2 to be negligible.

C.5.4 Asymptotic soundness results

Theorem C.3. For fixed s and τ , and σ = b(`+ τ + 4− log2 π)/2e, the sum of

P̃ (θd, θr) over all admissible (θd, θr), with multiplicity, in the central region where
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| θd | ≤ Bd and | θr | ≤ Br, is bounded by(
1− 25

π2

1

2τ

)2

≤ lim
m→∞

∑
θr ∈Θr([−Br, Br])

θd ∈Θd([−Bd, Bd], θr)

2κr−γ P̃ (θd, θr) ≤ 1 (23)

in the limit as m tends to infinity. The error |P (θd, θr) − P̃ (θd, θr) | ≤ ẽ(θd, θr)
and the sum of ẽ(θd, θr) over the admissible (θd, θr) with multiplicity tends to

lim
m→∞

∑
θr ∈Θr([−Br, Br))

θd ∈Θd([−Bd, Bd), θr)

2κr−γ ẽ(θd, θr) = 0. (24)

Proof. The bound in (23) follows immediately by taking the limit as m tends to
infinity for fixed s and τ of the bound given in Theorem C.1.

Analogously (24) follows by taking the limit, as m tends to infinity for fixed s
and τ , and for σ as in the formulation of this theorem, of Theorem C.2, where D
tends to 2−m in the limit by Lemma 4.4, and so the theorem follows. �

The above theorem states that an arbitrarily great constant fraction of the
probability mass may be captured asymptotically by expanding the region in τ .

As the bound on the error when approximating P (θd, θr) by P̃ (θd, θr) in the

region tends to zero asymptotically, P̃ (θd, θr) equals P (θd, θr) asymptotically in the
region. Furthermore, all probability mass is in the region asymptotically when τ
tends to infinity with m at a moderated rate. This implies that P̃ (θd, θr) asympto-
tically captures the probability distribution completely and exactly. The below
corollary formalizes these observations:

Corollary C.1. For fixed s, for τ = b`/6e and σ = b(`+ τ + 4− log2 π)/2e, the

sum of P̃ (θd, θr) over all admissible (θd, θr), with multiplicity, in the central region
where | θd | ≤ Bd and | θr | ≤ Br, tends to

lim
m→∞

∑
θr ∈Θr([−Br, Br])

θd ∈Θd([−Bd, Bd], θr)

2κr−γ P̃ (θd, θr) = 1 (25)

in the limit as m tends to infinity. The error |P (θd, θr) − P̃ (θd, θr) | ≤ ẽ(θd, θr)
and the sum of ẽ(θd, θr) over the admissible (θd, θr) with multiplicity tends to

lim
m→∞

∑
θr ∈Θr([−Br, Br))

θd ∈Θd([−Bd, Bd), θr)

2κr−γ ẽ(θd, θr) = 0. (26)

Proof. The bound in (25) follows immediately by taking the limit as m tends to
infinity for fixed s, and for τ as in the formulation of this corollary, of the bound
given in Theorem C.1. Analogously (26) follows by taking the limit, as m tends
to infinity for fixed s, and for σ and τ as in the formulation of this corollary, of
Theorem C.2, where D tends to 2−m in the limit by Lemma 4.4. This is easy to
see, as the two main error terms ε1 and ε3 in (22) tend to

lim
m→∞

23b`/6e/2+4

2`/2
√
π = lim

m→∞
2`/4+4

2`/2
√
π = lim

m→∞
24

2`/4
√
π = 0,

where we may remove the rounding operation in the limit, and as the requirement
that 1 < τ < ` − σ − 1 in Definition C.3 is respected in the limit. Furthermore
ε4 < ε3 in the limit, and it is easy to see that ε2 tends to zero in the limit. The
corollary follows from this analysis. �
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D Marginal distributions

By using results and notation from the soundness analysis in appendix C, we may
immediately derive a closed form expression for the marginal distribution that arises
when summing P̃ (θd, θr) over all admissible θd with multiplicity.

Lemma D.1. For θr ∈ Θr([−π, π]), the marginal probability distribution that

arises when summing P̃ (θd, θr) over all θd ∈ Θd([−π/2σ, π/2σ), θr) is

∑
θd ∈Θd([−π/2σ, π/2σ), θr)

2κr−γ

2κr
P̃ (θd, θr) =

r

22(m+`)

∣∣∣∣∣∣∣
d2m+`/re−1∑

nr = 0

eiθrnr

∣∣∣∣∣∣∣
2

when accounting for multiplicity.

Proof. By Lemma C.2 we have that∑
θd ∈Θd([−π/2σ, π/2σ), θr)

P̃ (θd, θr) =
22σr

22(m+2`)
f(θr)

∑
θd ∈Θd([−π/2σ, π/2σ), θr)

g(θd, θr)

=
2γr

22(m+`)
f(θr) =

2γr

22(m+`)

∣∣∣∣∣∣∣
d2m+`/re−1∑

nr = 0

eiθrnr

∣∣∣∣∣∣∣
2

from which the lemma follows, as the pairs (θd, θr) occur with multiplicity 2κr−γ

by Lemma 4.1, and the angles θr with multiplicity 2κr by Lemma A.1. �

The above expression for the marginal probability distribution is derived from
the approximation P̃ (θd, θr). It corresponds to the exact expression derived in
appendix A for the order finding algorithm with tradeoffs. Note that there are
minor differences between the two expressions. These are explained by P̃ (θd, θr)
being an approximation to P (θd, θr), whilst the expression in appendix A is exact.

A closed form analytical expression for the marginal distribution that arises
when summing over all admissible θr is seemingly less straightforward to derive.
Numerically, the marginal distribution may however be seen to correspond to that
for short logarithms when 2m−1 < d < r < 2m as stated in section 5.2.
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