
Universal Forgery and Multiple Forgeries of
MergeMAC and Generalized Constructions

Tetsu Iwata1, Virginie Lallemand2, Gregor Leander2, and Yu Sasaki3

1 Nagoya University, Nagoya, Japan, tetsu.iwata@nagoya-u.jp
2 Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany,

firstname.lastname@rub.de
3 NTT Secure Platform Laboratories, Tokyo, Japan, sasaki.yu@lab.ntt.co.jp

Abstract. This article presents universal forgery and multiple forg-
eries against MergeMAC that has been recently proposed to fit scenar-
ios where bandwidth is limited and where strict time constraints apply.
MergeMAC divides an input message into two parts, m‖m̃, and its tag
is computed by F(P1(m) ⊕ P2(m̃)), where P1 and P2 are PRFs and F
is a public function. The tag size is 64 bits. The designers claim 64-bit
security and imply a risk of accepting beyond-birthday-bound queries.

This paper first shows that it is inevitable to limit the number of queries
up to the birthday bound, because a generic universal forgery against
CBC-like MAC can be adopted to MergeMAC.

Afterwards another attack is presented that works with a very few num-
ber of queries, 3 queries and 258.6 computations of F , by applying a
preimage attack against weak F , which breaks the claimed security.

The analysis is then generalized to a MergeMAC variant where F is
replaced with a one-way function H.

Finally, multiple forgeries are discussed in which the attacker’s goal is to
improve the ratio of the number of queries to the number of forged tags.
It is shown that the attacker obtains tags of q2 messages only by making
2q − 1 queries in the sense of existential forgery, and this is tight when
q2 messages have a particular structure. For universal forgery, tags for
3q arbitrary chosen messages can be obtained by making 5q queries.

Keywords: MergeMAC, universal forgery, multiple forgeries, public fi-
nalization, preimage, splice-and-cut, Hellman’s time-memory tradeoff

1 Introduction

Fully aware of the rapid expansion of pervasive computing and of what is usu-
ally referred to as the Internet of Things (IoT), symmetric cryptographers pro-
posed solutions to ensure appropriate security for the new use cases. Lightweight
cryptography became a hot research topic as it was understood that finding
the correct compromise between security and efficiency was challenging. Many
cryptographers – whether from academic community, from government agencies
or from private companies – proposed new primitives, starting with a myriad

of lightweight block ciphers (like Present [9], Prince [10], SKINNY [5], CLE-
FIA [19] and Simon [4] just to name a few). While in comparison the design of
other primitives seems less popular, some lightweight stream ciphers and hash
functions were also proposed4. The design of Message Authentication Codes was
also addressed, with the publication of SipHash [3], Chaskey [16], of the MAC
mode LightMAC [15] and very recently of MergeMAC [1].

MergeMAC was proposed by Ankele, Böhl and Friedberger at ACNS18. As
for all the Message Authentication Codes, it is meant at providing integrity and
authenticity by producing a fixed-length tag from a message and a secret key.
MergeMAC was designed to fit extremely constrained environments with strict
time requirements and limited bandwidth, and in particular for the Controller
Area Network (CAN) bus5. The necessity to bring authentication for this later
scenario comes from the fact that some of the components at play are also con-
nected to the Internet, creating remote attack opportunities. The MAC construc-
tion proposed by Ankele et al. is based on 3 components: 2 variable input-length
Pseudo-Random Functions (parameterized by independent keys), and a so-called
Merge function. Each PRF modifies one part of the input message, and the two
outputs are recombined by the merge function.

Our Contributions. In this paper, we investigate the resistance of MergeMAC
against forgery attacks in different scenarios.

First, we show that an attacker can take advantage of its special structure
and forge messages by adapting the universal forgery attack proposed by Jia
et al. at CANS09 [14], and this regardless of the choice of the PRF or of the
Merge function. This first technique has a data complexity slightly higher than
the limit set by the designers, which shows its tightness.

Our second results is a universal forgery that breaks the security claim of
MergeMAC by only requiring 3 queries to forge a tag. This attack exploits the
details of the Merge function (in particular its low diffusion and its feed-forward
structure) to perform a perimage attack using the splice-and-cut Meet-in-the-
Middle technique [2].

We also discuss the possibility of forgery attacks in the situation where
the Merge function is an ideal one-way function. We call this construction
MergeMACOW. By using the fact that it is public and can be evaluated offline,
we deduce possible tradeoffs that can be more practical than the generic attack,
but still less efficient than the one using the specificities of the Merge function.

Our last contribution is the analysis of MergeMAC to forge multiple tags:
first in the case of existential forgeries, and next in the case of universal ones.
The problem is known as the MAC reforgeability [8], where one takes advantage
of the computational efforts for the first forgery to reduce the complexity for
the subsequent forgeries. In the case of existential forgery, we show that it is

4 We refer to [7] for a thorough review of lightweight constructions.
5 The CAN bus is the standard message system used in most modern cars to connect

together the different components (engine control unit, airbags, audio system, doors,
etc).

2

possible to forge (q − 1)2 tags by making 2q − 1 queries, i.e., we can obtain
more forgeries than the number of queries. We also discuss the tightness on the
number of queries. In the case of universal forgery, we show that we can forge
q tags by making 2q − 1 queries, and we also show that this can be improved
when q is divisible by 3. We remark that no security claim has been made by
the designers regarding multiple forgeries, and hence our analyses give the first
insight about the security of MergeMAC in this attack scenario.

Paper Outline. Section 2 introduces specification of MergeMAC. Section 3
presents universal forgery against MergeMAC. Section 4 generalizes the analysis
to MergeMACOW. Section 5 discusses multiple forgeries.

2 Specification of MergeMAC

MergeMAC is a new MAC construction that has been recently proposed by
Ankele, Böhl and Friedberger [1] to fit scenarios where bandwidth is limited and
where strict time constraints apply. More precisely, the designers aim for an ef-
ficient solution for authenticating messages on the CAN6 bus, a communication
system widely used in modern cars to manage the different electronic compo-
nents. In addition to the bandwidth constraint inherent to the CAN technology,
the fact that the components in questions are as critical as brakes or airbags
makes it plain that the MAC must have a low latency.

To meet these requirements, the solution proposed by Ankele et al. uses
different techniques7: for instance, it saves bandwidth by not transmitting some
low-entropy bits of the message, and it can be build from lightweight ciphers such
as Prince [10] to limit the latency. One of the design ideas that impacted the
most their construction was the wish to speed up MAC verifications by storing
frequently needed intermediate parts in the cache instead of computing them
again. This point leads them to a construction that combines the output of two
PRFs (each operating on a part of the input message) into a merging function
(see Figure 1). The authors propose to precompute and cache the PRF outputs,
and stress that this solution only requires simple computations, an advantage in
comparison to other cache-able construction.

In what follows, we use the same notation as in the specification. As shown
in Figure 1, the input of MergeMAC is first split in two parts, m and m̃, each
entering one of the PRFs P1, P2. These PRFs are of variable input length and
depend on two k-bit keys K1, K2. The n-bit outputs of P1, P2 are denoted by ρ
and ρ̃, respectively, and both enter the Merge function which returns the n-bit
tag.

The authors state that any MAC scheme that is a secure PRF (as for example
AES-CMAC or Chaskey) can be used to instantiate P1 and P2. To fit in with the
constrained environment use-case, they propose to use Present [9] or Prince [10]

6 Controller Area Network.
7 We refer to the specification [1] for details.

3

m m̃

P1 P2

ρ ρ̃

Merge

K1 K2

tag

ρ ρ̃

tag

π

Fig. 1. MergeMAC construction (left) and Merge function (right).

in CMAC mode. The Merge function follows a Davies-Meyer construction with
ρ ⊕ ρ̃ as input: tag = π(ρ ⊕ ρ̃) ⊕ (ρ ⊕ ρ̃), where π is a permutation on n bits.
The authors define π as a 3-round variant of Chaskey [16] operating on 64-bit
blocks (note that the reduced block size is required to achieve compatibility with
the block size of Present/Prince). The other changes made to the round function
can be read in Figure 2.

≪ 15

≪ 5

v1 v0

≪ 8

v3v2

≪ 15

≪ 5

≪ 8

v1 v0 v3v2

Fig. 2. One round of the π function used
in Merge. Each wire represents 16 bits.

𝜋

𝜌 𝜌

𝑡𝑎𝑔

ℎ𝑎𝑠ℎ

Fig. 3. Another view of Merge.

The instantiation of Merge can be viewed as an XOR-then-hash construc-
tion, i.e. two inputs are XORed then the result is processed by a public hash
function. We will use this view when it is convenient to understand our analysis.

4

Security Claim. The authors claim that their construction is a provably secure
MAC, and in particular that it reaches n-bit security against forgery attacks.
Their proof requires that P1 and P2 are secure PRFs and that the Merge
function satisfies Random Input Indistinguishability.

To prove this last point, they provide a security analysis of the Merge
function with respect to various types of attacks. An argument that they use
repeatedly in the discussion is that, since the input of the Merge function is
unknown and comes from a PRF, an attacker cannot force a specific property
on it, which removes the threat of many attacks such as the ones based on
differentials.

The authors also claim that finding a preimage of Merge is “as hard as ex-
haustively guessing the internal state after the initial PRFs” so that MergeMAC
is resistant to attacks based on Meet-in-the-Middle techniques. They justify the
resistance to more advanced MitM attacks by the fact that “MergeMAC does
not implement an inverse function for the merging function Merge”8.

The designers claim the security for each underlying primitive as in Table 1.
The designers also notice the risk of using a small block size against birthday
attacks demonstrated by the Sweet32 attack [6], and suggest that the amount
of data blocks that are processed by the initial PRFs of MergeMAC must be
limited appropriately. Although the designers do not specify the details of the
appropriate level, Table 1 may be interpreted as security claims under the condi-
tion that key is renewed after the number of queries reaches the birthday bound.

Table 1. Security claims according to the underlying primitives [1, Table 1].

Underlying BC Block size Key size Existential forgery resistance

Present 64 80 2−64

Present 64 128 2−64

Prince 64 128 2−64

3 Universal Forgery against MergeMAC

In Sect. 3.1, we show that limiting the number of queries up to the birthday
bound is almost tight because a generic universal forgery can be applied irrele-
vant to the choice of PRFs and the Merge function. In Sect. 3.2, we present an
attack only with 3 queries by exploiting the weak mixing effect of π.

8 As we will show later in the paper, this argument turns wrong.

5

3.1 Generic Attacks with High Data Complexity

Jia et al. proposed universal forgery with the birthday-bound complexity that
generally works against CBC-like MACs and PMAC-like MACs [14]. The attack
can be directly applied to MergeMAC. Let m‖m̃ be a challenged message. The
goal of the attacker is producing the tag t for this message without querying
m‖m̃. The attack works as follows.

1. For distinct xi, 1 ≤ i ≤ 2n/2, query xi‖m̃ to obtain a tag ti.
2. For distinct ỹj , 1 ≤ j ≤ 2n/2, query m‖ỹj to obtain a tag tj .
3. Find a collision of ti and tj . Let î, ĵ be the indices of the colliding pair.
4. Query xî‖ỹĵ to obtain the corresponding tag t′.
5. Output t′ as a valid tag for m‖m̃.

Analysis. We view Merge as Fig. 3. We first evaluate the attack by replacing
the hash function in Merge with a permutation. Then, a collision of the tag
implies a collision of the XOR of two PRF’s outputs, namely

P1(xî)⊕ P2(m̃) = P1(m)⊕ P2(ỹĵ). (1)

Therefore,

P1(xî)⊕ P2(ỹĵ) = P1(m)⊕ P2(m̃), (2)

which shows that the tag for m‖m̃ is equal to the tag for xî‖ỹĵ .
The attack requires 2 ·2n/2 +1 queries, which is roughly O(2n/2) queries (and

the computational cost of O(2n/2) memory accesses to operate on the data).

Consideration of Error Probability. We now evaluate the case with Merge
following the actual construction. Then, a collision of ti and tj does not imply
Eq. (1). Suppose that P1(xî) ⊕ P2(m̃) = α,P1(m) ⊕ P2(ỹĵ) = β, α 6= β and
Merge(α) = Merge(β). Then Eq. (2) becomes

P1(xî)⊕ P2(ỹĵ) = P1(m)⊕ P2(m̃)⊕ α⊕ β,
with unknown α and β. Hence, a tag for m‖m̃ cannot be computed.

This issue can be solved by iterating the attack (finding a collision between
ti and tj) several times until the attacker probabilistically hits the case with
α = β. For an n-bit to n-bit function, the number of multicollisions can be
upper bounded by n. Hence, by iterating the entire attack procedure n times,
the attacker can predict the correct tag with probability 1/n. The attack can
be improved slightly. When the attacker makes 2n/2 queries of xi‖m̃ and m‖ỹj ,
the attacker can make 2n/2 · n/2 queries. This generates n pairs of î, ĵ, which
is sufficient for the attack. In the end, the complexity of the application of the
generic attack is upper bounded by O(n2n/2).

The average complexity is smaller than the upper bound. The range size of
an n-bit to n-bit function is e−1 times smaller than the domain size. Hence,
an output value should have e distinct preimages on average. In the end, the
average complexity of the generic attack is O(e2n/2), which is O(2n/2).

6

Complexity for MergeMAC. In MergeMAC, n is 64. Hence, the attack com-
plexity is about e · 232 ≤ 234. Given that the authors imply to limit the number
of queries up to an appropriate level in the context of the Sweet32 attack, the
generic universal forgery may not break the claimed security but show the tight-
ness of their bounding data complexity.

3.2 Universal Forgery with Very Low Data Complexity

In this section we present a universal forgery with a very low data complexity
but with a higher offline computational cost than that of the generic attack.

Attack Overview. The idea is to exploit the fact that the Merge function
mixes the data very lightly. To be more precise, we present a preimage attack
against the 3-round variant of Chaskey with the feed-forward operation used in
MergeMAC.

Recall that the core idea of the generic attack is to obtain some information
on the input to the Merge function by finding collisions of the tag. To reduce the
data complexity, we avoid searching for a collision (with many queries), instead
invert the Merge function by spending offline computational cost. Note that
this strategy can only be applied when the finalization function is public, hence
the following attack shows another feature particular to MergeMAC.

Suppose that m‖m̃ is a target. If the attacker recovers P1(m)‖P2(m̃), the tag
can be forged by processing Merge function offline. We notice that P1(m)‖P2(m̃)
can be recovered by 3 queries and 3 executions of the preimage attack. Let x and
ỹ be the former half and the latter half of an arbitrary chosen message. Then, the
attacker queries three messages x‖m̃, m‖ỹ and x‖ỹ to obtain the corresponding
tags t1, t2, and t3 that are expressed as follows.

t1 ← π(P1(x)⊕ P2(m̃))⊕ P1(x)⊕ P2(m̃)

t2 ← π(P1(m)⊕ P2(ỹ))⊕ P1(m)⊕ P2(ỹ)

t3 ← π(P1(x)⊕ P2(ỹ))⊕ P1(x)⊕ P2(ỹ)

Suppose that for a given o, the attacker can execute a preimage attack to find i
such that o← π(i)⊕ i. Then, by finding preimages of t1, t2, and t3, the attacker
obtains P1(x)⊕ P2(m̃), P1(m)⊕ P2(ỹ) and P1(x)⊕ P2(ỹ). The sum of those 3
values equals to P1(m)⊕P2(m̃), then the attacker can compute the tag offline.

Preimage attacks on cryptographic functions have been discussed deeply. We
follow the framework of meet-in-the-middle preimage attacks [2,18]. Due to the
construction, the attack framework is closer to the preimage attack against the
block-cipher based compression functions first demonstrated against AES in the
Davies-Meyer mode [17].

Meet-in-the-Middle Preimage Attacks. Meet-in-the-Middle (MitM) attack
[11] was originally proposed to recover a key of a block cipher. When a ciphertext
c is computed with two encryption algorithms E1 and E2 with independent keys

7

k1 and k2, i.e. c = E2,k2
◦E1,k1

(p), k1 and k2 can be recovered with a complexity
min{|k1|, |k2|} instead of |k1|+ |k2|.

Sasaki [17] presented a framework to apply the MitM attack to t = P (x)⊕x
for recovering unknown x for a given t, where P consists of an iteration of a
round function R with imperfect diffusion. Suppose that R consists of r rounds,
namely t is computed from x as

V0 ← x, Vi ← R(Vi−1) for i = 1, 2, · · · , r, t← Vr ⊕ V0.

The splice-and-cut technique [2] allows the attacker to regard the first and the
last rounds as consecutive rounds. Indeed, t is computed by Vr ⊕ V0. For any
fixed t, computing V0 (resp. Vr) immediately fixes Vr (resp. V0).

The overview of the attack framework is illustrated in Figure 4. The attacker
first determines a starting round p and matching round q, such that the compu-
tation from Vp−1 to Vq (forward computation) and the computation from Vp−1

to V0, Vr = t ⊕ V0, and from Vr to Vq (backward computation) can be inde-
pendently performed. The results of the two computations are matched on Vq.

𝑥 𝑡

𝑉0 𝑉𝑝−1 𝑉𝑞 𝑉𝑟

𝐵for

𝐵back

splice-and-cut

𝐵fix

match

Fig. 4. Overview of meet-in-the-middle preimage attacks for t = H(x)⊕ x.

More precisely, each bit of the state Vp−1 is classified into three groups:

Bfor : all possible values are examined during the forward computation.
Bback : all possible values are examined during the backward computation.
Bfix : the value is fixed during the independent computations.

Suppose that the value of Bfix is fixed. The attacker, for each possible value
of Bfor, proceeds the forward computation without using the value of Bback.
Because Bback is unknown, the forward computation cannot compute all bits of
the state. However, when the diffusion of R is imperfect, the partial computation
can be performed for a few rounds (until round q). Independently, the attacker
computes the backward computation by examining all possible values of Bback

without using the value of Bfor (up to Vq). For a correct combination of Bfix,
Bfor, Bback, the partially computed values always match at Vq, and the correct
value of Vp−1 can be recovered efficiently. Finally, the MitM attack is iterated
for the exhaustive guesses of Bfix. The algorithmic description is given in Alg. 3.

8

Algorithm 1 Meet-in-the-middle preimage attack for t = P (x)⊕ x
Require: t, p, q, Bfix, Bfor, Bback

Ensure: x
1: for all candidates of Bfix do
2: for all candidates of Bfor do
3: Partially compute Vi ← R(Vi−1) for i = p, p + 1, · · · , q, and store the result

in a list L.
4: end for
5: for all candidates of Bback do
6: Partially compute Vi−1 ← R−1(Vi) for i = p− 1, p− 2, · · · , 1.
7: Partially compute Vr ← V0 ⊕ t.
8: Partially compute Vi−1 ← R−1(Vi) for i = r, r − 1, · · · , q + 1.
9: if the computed value exists in L then

10: Set vp−1 ← (Bfix, Bfor, Bback), and compute corresponding V0 and Vr.
11: if V0 ⊕ Vr = T then
12: return V0.
13: end if
14: end if
15: end for
16: end for

Attacks on 3-Round Chaskey with Feed-Forward. As shown in Fig-
ure 2, one round of π consists of two iterations of the half-round transformation.
Hence, 3-round transformation of π is regarded as 6-round half-transformation
of π. Let (vi1, v

i
0, v

i
2, v

i
3) denote a 64-bit internal state which is an input to the

ith half-transformation (or an output from the i − 1th transformation, where
i = 0, 1, · · · , 6. We divide this transformation into two independent computa-
tions. Readers may refer to Figure 5 for the illustration of the independent
computations.

Choices of Bfor, Bback, Bfix. In Figure 4, the starting round is defined as an
input state to some round. However, we can choose 64 bits of the state in different
rounds as the starting position, as long as they fix the entire transformation. In
our attack, we choose (v3

1 , v
3
2 , v

2
2 , v

2
3) as a starting position. It is easy to see that

all the possible internal state values can be simulated by exhaustively examining
264 values of (v3

1 , v
3
2 , v

2
2 , v

2
3). We then choose Bfor, Bback, and Bfix as follows.

Bfor : bit positions 0 to 4 and 13 to 15 of v2
3 (total 8 bits)

Bback : bit positions 8 to 15 of v3
2 (total 8 bits)

Bfix : v3
1 , v

2
2 and bit positions 5 to 12 of v2

3 and bit positions 0 to 7 of v3
2

The forward computation partially computes (v6
1 , v

6
2 , v

6
2 , v

6
3)⊕t and the backward

computation partially computes (v0
1 , v

0
2 , v

0
2 , v

0
3). We match the results of two

independent computations in 8 bits.

Forward computation. All bits of v3
1 , v

2
2 and v2

3 are known, while bit positions 8
to 15 of v3

2 are unknown. When we compute v4
0 ← v3

2 � v3
3 , we only can compute

9

<<< 15 <<< 8

<<< 5

𝑣1
2 𝑣0

2 𝑣2
2 𝑣3

2

<<< 15 <<< 8

<<< 5

𝑣1
1 𝑣0

1 𝑣2
1 𝑣3

1

<<< 15 <<< 8

<<< 5

𝑣1
0 𝑣0

0 𝑣2
0 𝑣3

0

<<< 15 <<< 8

<<< 5

𝑣1
5 𝑣0

5 𝑣2
5 𝑣3

5

<<< 15 <<< 8

<<< 5

𝑣1
4 𝑣0

4 𝑣2
4 𝑣3

4

<<< 15 <<< 8

<<< 5

𝑣1
3 𝑣0

3 𝑣2
3 𝑣3

3

𝑣1
6 𝑣0

6 𝑣2
6 𝑣3

6

fix

fix

15 0
fix

fix

15 0

7-0

all all all

all 7-0 7-0 all

7-0 7-0

−

12-5

6-0 12-5

31,6-0 7-0

7-0 7-0 15-8

all all all

all all 15-13, 4-0

12-5

−

12-5 12-5
carry
guess

8-bit
match

Fig. 5. Details of two independent computations for π(x)⊕ x.

the 8 LSBs of v4
0 . Similarly, v4

3 ← v4
0 ⊕ (v3

3 ≪ 8) can be computed only in 8
LSBs. With the same analysis, as shown in Figure 5, the forward computation
can compute 8 bits of v6

2 in bit positions 5 to 12, and thus the corresponding 8
bits after xoring the tag value. Note that all partial computations of the modular
addition in the forward computation are done from the LSBs, thus we do not
need to consider the unknown carry effect.

10

Backward computation. All bits of v3
1 , v

2
2 and v3

2 are known, while bit positions 0
to 4 and 13 to 15 of v2

3 are unknown. All bits of v1
0 can be computed while we can

compute only 8 bits (bit positions 0 to 4 and 13 to 15) of v1
3 ← (v2

3 ⊕ v2
0)≫ 8.

This allows us to compute only 8 bits (bit positions 5 to 12) of v0
3 ← (v1

0⊕v1
3)≫

8. Finally, we compute v0
2 ← v1

0�v0
3 in bit positions 5 to 12, where � is a modular

subtraction. We do not know the carry from bit position 4 to 5. Hence, we guess
the carry and compute v0

2 in both cases. Thus, we have 29 results of the backward
computation.

Complexity Evaluation. For each fixed choice of Bfix, we obtain 28 and 29 results
from two computations. They can match in 8 bits. Correct Bfor, Bback, Bfix

always match, thus we obtain (28 · 29)/28 = 29 candidates, which needs to be
tested further. The procedure is iterated for exhaustive guesses of Bfix. Hence,
the complexity to find a preimage is 248 ·29 = 257 computations of π. The attack
requires 28 amount of memory to store the results of the forward computation.

Summary of Attacks and Error Probability. The attack requires 3 queries
and 3 executions of the preimage attack. Hence, the data, time and memory
complexities are 3, 258.6(≈ 3× 257) and 28, respectively.

Let us finally discuss the error probability. As discussed before, each target
has e preimages on average. The MitM preimage attack exhaustively examines
all internal state values (in an efficient way), hence it collects all of e preimages
with 1 execution. When we sum up preimages of t1, t2 and t3, we have e3

combinations on average. This can be regarded that the success probability of
our attack is e−3 ≈ 0.0498. We can also store those e3 values as candidates, and
iterate the attack for another choice of x and ỹ to obtain another e3 candidates.
The correct internal state is included in both e3 pools of candidates. In this case,
the data and time complexities become 6 and 259.6, respectively.

Discussion of the attack. MergeMAC is a provably secure MAC under the
assumption that P1 and P2 are secure PRFs and the Merge function satis-
fies Random Input Indistinguishability (RII). The preimage attack on 3-round
Chaskey with feed-forward presented in this section shows that, using the termi-
nology of [1], there exists a (t, q, ε)-RII-adversary, where t = 3×257, q = 2, and ε
is close to 1. As a consequence, as far as we see, our attack contradicts the overall
security claim on MergeMAC by the designers, but it does not contradict the
provable security claim. More precisely, the provable security claim excludes the
possibility of forgery attacks whose success probability is larger than about ε,
i.e., the attack with a high success probability itself is not excluded once ε turns
out to be large.

11

4 Analysis on MergeMACOW

In this section, the attack against MergeMAC is extended to MergeMACOW, in
which the Merge function of MergeMAC (3-round-Chaskey with feed-forward)
is replaced with an ideal one-way function H.

The generic universal forgery discussed in Sect. 3.1 still works even if H is
invertible. Our approach here is to exploit the feature that H is public, and
thus can be evaluated offline. We preprocess H for various inputs and make a
look-up table so that the attacker can look-up the input x efficiently from the
observed H(x). Namely, a precomputation phase is introduced to trade the data
complexity in the online phase by the offline computational cost.

4.1 Definition of MergeMACOW

Let P1,P2 be two PRFs andH be a public one-way function. For a given message
m‖m̃, MergeMACOWcomputes a tag t as follows.

ρ← P1(m), ρ̃← P2(m̃), t← H(ρ⊕ ρ̃).

4.2 Tradeoff between Time and Data

As in Sect. 3, we first explain the attack by assuming that H is injective.

Offline Phase
1. For 2` distinct z, compute H(z) and store (z,H(z)) in a list Lp.

Online Phase
2. For distinct xi, 1 ≤ i ≤ 23(n−`)/2, query xi‖m̃ to obtain the tag tx. If tx is

included in Lp, store xi and the corresponding P1(xi)⊕P2(m̃) in a list Lx.
3. For distinct ỹj , 1 ≤ j ≤ 23(n−`)/2, query m‖ỹj to obtain the tag ty. If ty is

included in Lp, store ỹj and the corresponding P1(m)⊕ P2(ỹj) in a list Ly.
4. For all combinations of xi and ỹj in Lx and Ly, query xi‖ỹj to obtain the

corresponding tag t′ until t′ is included in Lp and thus the attacker obtains
the value of P1(xi)⊕ P2(ỹj).

5. Compute P1(m)⊕ P2(m̃) by(
P1(xi)⊕ P2(m̃)

)
⊕
(
P1(m1)⊕ P2(ỹj)

)
⊕
(
P1(xi)⊕ P2(ỹj)

)
.

Compute t = H
(
P1(m)⊕ P2(m̃)

)
, and output t as a tag for m‖m̃.

Evaluation and Tradeoff.

– In the offline phase (Step 1), time and memory complexities are 2`.
– In Step 2, 23(n−`)/2 queries are made. Each tag is included in Lp with prob-

ability 2n−`, thus 2(n−`)/2 xi are stored in Lx.
– In Step 3, 23(n−`)/2 queries are made and 2(n−`)/2 ỹj are stored in Ly.

12

– In Step 4, 2(n−`) queries are made and there exists one pair of (xi, ỹj) such
that t′ is included in Lp.

Let Toff , D, and N be offline computational cost (2`), data complexity
(23(n−`)/2), and a cardinality of the tag space (2n), respectively. The tradeoff
curve is represented as

T
3/2
off ·D = N3/2. (3)

Setting Toff > 22n/3 leads to D < 2n/2, i.e. the number of online queries can be
reduced compared to the generic attack in Sect. 3.1.

The attack requires to store 2`, 2n−`, 2n−` values for Lp, Lx and Ly, respec-
tively. When Toff > 22n/3, M = Toff . The online computational complexity, Ton,
is only for processing queried data, thus equals to D. As long as Toff > 22n/3,
Ton is negligible.

Example. MergeMAC supposes that N = 264. By spending Toff = 248

computational cost and memory amount, the number of online queries
is reduced to D = 224 with online computational cost Ton = 224, which
is more practical than the general attack with D = 232 queries.

Remarks. The dedicated low data complexity attack against MergeMAC in
Sect. 3.2 succeeds with Toff = 258.6 and D = 3. This is more efficient than
the generic attack against MergeMACOW. As long as it is available, using the
preimage attack against H is more efficient.

4.3 Reducing Memory Requirement

In this section, we reduce the memory requirement of the above attack by in-
troducing Hellman’s time-memory tradeoff [13]. The overall idea is depicted in
Figure 6. Namely, during the offline phase in order to generate the look-up table
Lp, we process many inputs to make chains of values.

𝑧1
0

𝑧2
0

𝑧3
0

𝑧𝑀
0

𝑧1
𝑊

𝑧2
𝑊

𝑧3
𝑊

𝑧𝑀
𝑊

𝑀

𝑊

(𝑧1
0, 𝑧1

𝑊)

(𝑧2
0, 𝑧2

𝑊)

(𝑧3
0, 𝑧3

𝑊)

(𝑧𝑀
0 , 𝑧𝑀

𝑊)

Fig. 6. Introducing Hellman’s tradeoff to reduce memory requirement.

13

Firstly, we choose an input value denoted by z0
1 from the tag space {0, 1}n,

and compute zi1 ← H(zi−1
1) for i = 1, 2, · · · , w. We then only store the first

and last values z0
1 and zw1 in the look-up table Lp. This procedure is iterated

M times by starting from M distinct starting value z0
1 , z

0
2 , . . . , z

0
M . During the

online phase, whenever we look-up the preimage of the obtained tag t, we set
z0 ← t and process zi ← H(zi−1) for i = 1, 2, 3, · · · until zi matches one of the
end points in the look-up table. This increases the online computational cost w
times.

Figure 6 indicates that the tradeoff Eq. 3 is a special case of Figure 6 with
M = T (or W = 1). Remember that with the setting of Eq. 3, the online
computational cost is negligible compared to the offline computational cost. The
idea in Figure 6 can be interpreted that we increase the online computational
cost (as high as the offline computational cost) in order to reduce the memory
requirement.

We begin with the previous example, N = 264, Toff = 248, Ton = 224 and
D = 224. When we process Toff = 248 values to make a look-up table, we generate
224 chains in which the length of each chain is 224. Namely, we set M = 224 and
W = 224 and stay with Toff = 248. Then for each of D = 224 queries in Steps 2
and 3 of the online phase, we need to compute the chain at most W times, which
makes the entire online computational complexity Ton = 224 ×W = 248. In the
end, Toff and Ton are now balanced at 248, and the memory amount is reduced
to 224, which is a square root of the straightforward construction of the look-up
table.

We now start the general analysis. By applying the same attack procedure
as in Sect. 4.2, the attack complexity becomes as follows.

Toff = MW, (4)

D = (N/MW)3/2, (5)

Ton = W · (N/MW)3/2. (6)

By setting Toff = Ton, we have

W = N/M5/3. (7)

Hence, the computational cost T (= Toff = Ton) becomes

T = N/M2/3. (8)

From Eq. (5) and Eq. (7), we have

D = M. (9)

From Eq. (9) and Eq. (8), we have

T 3/2 ·D = N3/2. (10)

This equation is only different from the tradeoff in the previous section Eq. (3) in
terms of Toff and T , but the tradeoff now ensures D = M . Namely, by increasing
Ton as high as Toff , the memory requirement is reduced to the same level as D.

14

5 Multiple Forgeries

In this section, we consider a problem of producing multiple forgeries by making
as small number of queries as possible. This is known as the security notion called
MAC reforgeability [8], where the adversary utilizes the computational complex-
ity for the first forgery to reduce the complexity for the subsequent forgeries.
This notion was also studied in the context of authenticated encryption [12].

5.1 Existential Forgery

We first consider the existential forgery, where we focus on producing as many
forgeries as possible, but we do not care about the content of forged messages.
From the results of Sect. 3.2, we see that given the tags of (m1, m̃1), (m1, m̃2),
and (m2, m̃1), we obtain the tag of (m2, m̃2). In other words, we make 3 queries
to output one forgery, and we need 3 preimage attacks. If we define the rate r
as the number of queries needed to produce one forgery, i.e.,

r =
queries

forgeries
,

then we have r = 3. We note that for an ideally secure MAC, if the rate to
produce one forgery is r, then the rate remains the same for multiple forgeries.

Now we call it the basic attack, which can be represented by using the fol-
lowing matrix:

j
1 2

i
1 Q Q
2 Q X

The matrix shows that we make queries (mi, m̃j) for (i, j) = (1, 1), (1, 2), (2, 1)
that are shown with Q, and we obtain the forgery for (i, j) = (2, 2) that is shown
with X.

We show that, for q ≥ 2, it is possible to output (q− 1)2 forgeries by making
2q − 1 queries. We first present a small example with q = 3. Consider the case
where we make 5 queries represented by the following matrix:

j
1 2 3

i
1 Q Q Q
2 Q
3 Q

Observe that we obtain the tag for (i, j) = (2, 2) from the submatrix with i ∈
{1, 2} and j ∈ {1, 2}, and once this is obtained, we obtain the tag for (i, j) =
(2, 3) from the submatrix with i ∈ {1, 2} and j ∈ {2, 3}. At this point, we have

15

the following matrix:

j
1 2 3

i
1 Q Q Q
2 Q X X
3 Q

It is easy to see that we also obtain the tags for (i, j) = (3, 2) and (3, 3) from
the submatrix with i ∈ {2, 3} and j ∈ {1, 2}, and then from that with i ∈ {2, 3}
and j ∈ {2, 3}. In this case, we need to make 5 queries and 5 executions of the
preimage attack to produce 4 forgeries. This gives the rate r = 5/4 = 1.25, which
is lower than the case of the basic attack.

We now generalize this to arbitrarily q ≥ 2. We start with the following
matrix:

j
1 2 · · · q

i

1 Q Q · · · Q
2 Q
...

...
q Q

For each i = 2, 3, . . . , q, we see that we can successively obtain the tag for (i, j)
with j = 2, 3, . . . , q. We present the algorithmic description to show the details
of this attack.

Algorithm 2 Producing (q − 1)2 forgeries with 2q − 1 queries

Require: q, the oracle O that computes the tag
1: fix m1, . . . ,mq and m̃1, . . . , m̃q, where mi’s are distinct and m̃j ’s are distinct.
2: for i = 1, . . . , q, obtain the tag of (mi, m̃1) by making queries to O.
3: for j = 2, . . . , q, obtain the tag of (m1, m̃j) by making queries to O.
4: for i = 2, . . . , q do
5: for j = 2, . . . , q do
6: compute the tag for (mi, m̃j) from the tags of (mi−1, m̃j−1), (mi−1, m̃j), and

(mi, m̃j−1).
7: end for
8: end for

Observe that we make 2q− 1 queries and execute 2q− 1 preimage attacks to
obtain (q − 1)2 forgeries, and this gives the rate r = (2q − 1)/(q − 1)2.

It is interesting to note that for q ≥ 4, the rate becomes smaller than 1, and
thus we obtain more forgeries than the number of queries. However, we remark
that when q is large, the time complexity exceeds 264 as the time complexity of
one preimage attack is 257.

16

5.2 Tightness of Existential Forgery

In this section, we consider a problem of the tightness on the rate in the exis-
tential forgery. More precisely, we consider the following problem setting:

– Suppose we are given q half messages m1,m2, . . . ,mq and q half messages
m̃1, m̃2, . . . , m̃q.

– To obtain tags of all q2 messages of the form (mi, m̃j), where i, j ∈ {1, 2, . . . , q},
how many queries are necessary?

We show that 2q − 1 queries are necessary, showing the tightness of the attack
presented in the previous section.

For i, j ∈ {1, . . . , q}, let ti,j be the tag of (mi, m̃j), and si,j be the preimage
of ti,j , i.e., we let {

si,j ← ρi ⊕ ρ̃j ,
ti,j ← π(si,j)⊕ si,j ,

where ρi ← P1(mi) and ρ̃j ← P2(m̃j).
Now we observe that the relationship, si,j ← ρi⊕ ρ̃j for i, j ∈ {1, . . . , q}, can

be represented by using a binary q2 × 2q matrix M as follows:

M · ρ = s, (11)

where ρ is a column vector of length 2q and s is a column vector of length q2,
and they are defined as{

ρ = [ρ1, . . . , ρq, ρ̃1, . . . , ρ̃q]T ,

s = [s1,1, . . . , s1,q, . . . , sq,1, . . . , sq,q]T .

For instance when q = 3, Eq. (11) is

1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
0 1 0 1 0 0
0 1 0 0 1 0
0 1 0 0 0 1
0 0 1 1 0 0
0 0 1 0 1 0
0 0 1 0 0 1

·

ρ1

ρ2

ρ3

ρ̃1

ρ̃2

ρ̃3

 =

s1,1

s1,2

s1,3

s2,1

s2,2

s2,3

s3,1

s3,2

s3,3

.

Now the tightness problem is equivalent to prove the minimum number of
si,j that fully determines the linear system of Eq. (11) having q2 equations and
2q variables. From its form, it is easy to see that the rank of the matrix M is
2q− 1. As a consequence, we need at least 2q− 1 values of si,j to determine the
system, and hence we need to make at least 2q − 1 queries.

We remark that the tightness is obtained with respect to the problem setting
mentioned as above, and there are cases that are not covered. We leave the
tightness of a general case as an open question.

17

j
1 2 3 4 5 6

i

1 X
2 X
3 X
4 X
5 X
6 X

j
1 2 3 4 5 6

i

1 X Q
2 Q X Q
3 Q X Q
4 Q X Q
5 Q X Q
6 Q X

j
1 2 3 4 5 6

i

1 X2 Q Q
2 Q X1 Q
3 Q X3 Q
4 Q X4 Q
5 Q X5 Q
6 Q X6

Fig. 7. Left: Messages to be forged given as a challenge. Middle: 2q−1 queries we make
for the attack. Right: One more query is sufficient to compute q tags for the challenge.

5.3 Universal Forgery

We next consider the universal forgery, where a list of messages to be forged
is given as a challenge. Suppose that (m1, m̃1), . . . , (mq, m̃q) are the challenge
messages. For simplicity, we assume that mi’s are all distinct, and m̃i’s are all
distinct.

We illustrate the case q = 6. Our goal is to output the tags shown with X in
the left matrix given in Figure 7. For this, we make queries represented by the
middle matrix given in Figure 7. At this point, we cannot obtain any of the tags
of the targets. However, observe that one more appropriate query allows us to
obtain the entire q tags of the targets. For instance if we make a query (m1, m̃3),
then we obtain the right matrix in Figure 7, and we see that it is possible to
compute 6 tags with the order of X1, . . . , X6.

This can be generalized to arbitrary q in an obvious way, and for complete-
ness, we present the algorithmic description of the attack.

Algorithm 3 Producing q universal forgeries with 2q − 1 queries

Require: (m1, m̃1), . . . , (mq, m̃q), the oracle O that computes the tag
1: for i = 1, . . . , q−1, obtain the tags of (mi, m̃i+1) and (mi+1, m̃i) by making queries

to O.
2: obtain the tag of (m1, m̃3) by making a query to O.
3: compute the tag for (m2, m̃2) from the tags of (m1, m̃2), (m1, m̃3), and (m2, m̃3).
4: compute the tag for (m1, m̃1) from the tags of (m1, m̃2), (m2, m̃1), and (m2, m̃2).
5: for i = 3, . . . , q do
6: compute the tag for (mi, m̃i) from the tags of (mi−1, m̃i−1), (mi−1, m̃i), and

(mi, m̃i−1).
7: end for

With this attack, we make 2q − 1 queries and it uses executions of 2q − 1
preimage attack to obtain q forgeries, which gives the rate r = (2q − 1)/q ≈ 2.

18

5.4 Universal Forgery with Better Rate

We show below that it is possible to arrange the queries differently in order to
improve the previous rate and obtain one that is close to 5/3. First, we remark
that 3 tags can be forged by making 5 queries (and 5 preimage attacks), as can
be seen from the following matrix:

j
1 2 3

i
1 X Q Q
2 Q X Q
3 Q X

Now, assume that the number of tags we want to forge is a multiple of 3,
so that we are given a list of challenge messages (m1, m̃1), . . . , (mq, m̃q), where
q = 3`. We start by dividing the list into ` lists, each consisting of 3 messages as

{(mi, m̃i), (mi+1, m̃i+1), (mi+2, m̃i+2)}i=1,4,7,...,q−2

and we then treat the lists {(mi, m̃i), (mi+1, m̃i+1), (mi+2, m̃i+2)} individually.
Each requires 5 queries and 5 preimage attacks, so to produce 3` tags, we make
5` queries and execute 5` times the preimage attack, which gives a rate of r =
5`/3` ≈ 1.67.

In case the number of challenges is not a multiple of 3 and is equal to q = 3`+r
with 0 < r < 3, we proceed as before and forge each of the ` lists of 3 challenges
with 5 queries and 5 preimage attacks. The remaining r tags can be forged by
making 2 additional queries for each of them, as depicted on the following matrix:

j
· · · 3`− 2 3`− 1 3` 3`+ 1 3`+ 2

· · · · · ·
3`− 2 X Q Q

i
3`− 1 Q X Q

3` Q X Q
3`+ 1 Q X Q
3`+ 2 Q X

We formalize this as follows. Assume we forged the first 3` challenges with the
previous technique. If r = 1, we query the tags corresponding to (m3`+1, m̃3`) to-
gether with (m3`, m̃3`+1). We combine them with the previously-forged (m3`, m̃3`)
and we are able to forge (m3`+1, m̃3`+1). If r = 2 we also query the tags cor-
responding to (m3`+2, m̃3`+1) and to (m3`+1, m̃3`+2), and combine them with
(m3`+1, m̃3`+1) to forge (m3`+2, m̃3`+2).

To sum up, q = 3`+ r tags (with 0 ≤ r < 3) can be forged by making 5`+ 2r
queries and the same number of preimage attacks, leading to a rate equal to
r = (5`+ 2r)/(3`+ r).

Note that we do not know the tightness of the rate, which is left as an open
question.

19

6 Concluding Remarks

In this paper we presented several attacks and observations on MergeMAC. They
are build around pre-image attacks on the merge functions that are possible
as the merge function is public (generically) and not-one way (in the specific
instance given).

We also studied the reforgeability of MergeMAC, with the result that the
number of forgeries we can produce increases quadratically with the number
of queries. For example, it is possible to produce roughly 264 forgeries using
233 forgeries and 264 computation, so the cost per forgery becomes as small as
legitimately computing one tag.

Finally, we like to mention interesting topics for future work. First, as stated
above, we are not able to prove the tightness of the rate in the case of universal
forgeries. We preformed a limited computer search for the optimal solution and
were able to confirm that no solution with a better rate exist for up to 6 chal-
lenges. In our opinion, proving the optimality, or finding better strategies, is an
interesting (but challenging) open question. As a second topic, generalizations of
MergeMAC could be investigated, where instead of splitting the initial message
into two parts, the message is split into t parts that are processed by t PRFs.
The input to the merge function than becomes the xor of the t outputs of the
PRFs. It would be interesting to see how our analysis could be adopted to this
case.

References

1. Ankele, R., Böhl, F., Friedberger, S.: MergeMAC: A MAC for Authentication with
Strict Time Constraints and Limited Bandwidth. In: Preneel, B., Vercauteren, F.
(eds.) Applied Cryptography and Network Security - 16th International Confer-
ence, ACNS 2018, Leuven, Belgium, July 2-4, 2018, Proceedings. Lecture Notes in
Computer Science, vol. 10892, pp. 381–399. Springer (2018)

2. Aoki, K., Sasaki, Y.: Preimage Attacks on One-Block MD4, 63-Step MD5 and
More. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) Selected Areas in Cryptogra-
phy, 15th International Workshop, SAC 2008, Sackville, New Brunswick, Canada,
August 14-15, Revised Selected Papers. Lecture Notes in Computer Science, vol.
5381, pp. 103–119. Springer (2008)

3. Aumasson, J., Bernstein, D.J.: SipHash: A Fast Short-Input PRF. In: Galbraith,
S.D., Nandi, M. (eds.) Progress in Cryptology - INDOCRYPT 2012, 13th Inter-
national Conference on Cryptology in India, Kolkata, India, December 9-12, 2012.
Proceedings. Lecture Notes in Computer Science, vol. 7668, pp. 489–508. Springer
(2012), https://doi.org/10.1007/978-3-642-34931-7_28

4. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK Families of Lightweight Block Ciphers. IACR Cryptology
ePrint Archive 2013, 404 (2013), http://eprint.iacr.org/2013/404

5. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sas-
drich, P., Sim, S.M.: The SKINNY Family of Block Ciphers and Its Low-Latency
Variant MANTIS. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology -

20

https://doi.org/10.1007/978-3-642-34931-7_28
http://eprint.iacr.org/2013/404

CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 14-18, 2016, Proceedings, Part II. Lecture Notes in Com-
puter Science, vol. 9815, pp. 123–153. Springer (2016), https://doi.org/10.1007/
978-3-662-53008-5_5

6. Bhargavan, K., Leurent, G.: On the Practical (In-)Security of 64-bit Block Ciphers:
Collision Attacks on HTTP over TLS and OpenVPN. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, October 24-28, 2016. pp. 456–467 (2016)

7. Biryukov, A., Perrin, L.: State of the Art in Lightweight Symmetric Cryptogra-
phy. IACR Cryptology ePrint Archive 2017, 511 (2017), http://eprint.iacr.

org/2017/511

8. Black, J., Cochran, M.: MAC Reforgeability. In: Dunkelman, O. (ed.) Fast Soft-
ware Encryption, 16th International Workshop, FSE 2009, Leuven, Belgium,
February 22-25, 2009, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 5665, pp. 345–362. Springer (2009), https://doi.org/10.1007/

978-3-642-03317-9_21

9. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) Cryptographic Hardware and Embedded
Systems - CHES 2007, 9th International Workshop, Vienna, Austria, September
10-13, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4727, pp. 450–
466. Springer (2007), https://doi.org/10.1007/978-3-540-74735-2_31

10. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçin, T.: PRINCE - A Low-Latency Block Cipher for Pervasive Comput-
ing Applications - Extended Abstract. In: Wang, X., Sako, K. (eds.) Advances
in Cryptology - ASIACRYPT 2012 - 18th International Conference on the Theory
and Application of Cryptology and Information Security, Beijing, China, December
2-6, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7658, pp. 208–225.
Springer (2012), https://doi.org/10.1007/978-3-642-34961-4_14

11. Diffie, W., Hellman, M.E.: Special Feature Exhaustive Cryptanalysis of the NBS
Data Encryption Standard. IEEE Computer 10(6), 74–84 (1977)

12. Forler, C., List, E., Lucks, S., Wenzel, J.: Reforgeability of Authenticated Encryp-
tion Schemes. In: Pieprzyk, J., Suriadi, S. (eds.) Information Security and Privacy
- 22nd Australasian Conference, ACISP 2017, Auckland, New Zealand, July 3-5,
2017, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10343, pp.
19–37. Springer (2017), https://doi.org/10.1007/978-3-319-59870-3_2

13. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. Information
Theory 26(4), 401–406 (1980), https://doi.org/10.1109/TIT.1980.1056220

14. Jia, K., Wang, X., Yuan, Z., Xu, G.: Distinguishing and Second-Preimage Attacks
on CBC-Like MACs. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) Cryptology and
Network Security, 8th International Conference, CANS 2009, Kanazawa, Japan,
December 12-14, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5888,
pp. 349–361. Springer (2009)

15. Luykx, A., Preneel, B., Tischhauser, E., Yasuda, K.: A MAC Mode for Lightweight
Block Ciphers. In: Peyrin, T. (ed.) Fast Software Encryption - 23rd International
Conference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 9783, pp. 43–59. Springer (2016),
https://doi.org/10.1007/978-3-662-52993-5_3

21

https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
http://eprint.iacr.org/2017/511
http://eprint.iacr.org/2017/511
https://doi.org/10.1007/978-3-642-03317-9_21
https://doi.org/10.1007/978-3-642-03317-9_21
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-319-59870-3_2
https://doi.org/10.1109/TIT.1980.1056220
https://doi.org/10.1007/978-3-662-52993-5_3

16. Mouha, N., Mennink, B., Herrewege, A.V., Watanabe, D., Preneel, B., Ver-
bauwhede, I.: Chaskey: An Efficient MAC Algorithm for 32-bit Microcontrollers.
In: Joux, A., Youssef, A.M. (eds.) Selected Areas in Cryptography - SAC 2014
- 21st International Conference, Montreal, QC, Canada, August 14-15, 2014, Re-
vised Selected Papers. Lecture Notes in Computer Science, vol. 8781, pp. 306–323.
Springer (2014), https://doi.org/10.1007/978-3-319-13051-4_19

17. Sasaki, Y.: Meet-in-the-Middle Preimage Attacks on AES Hashing Modes and
an Application to Whirlpool. In: Fast Software Encryption - 18th International
Workshop, FSE 2011, Lyngby, Denmark, February 13-16, 2011, Revised Selected
Papers. pp. 378–396 (2011)

18. Sasaki, Y., Aoki, K.: Finding Preimages in Full MD5 Faster Than Exhaustive
Search. In: Advances in Cryptology - EUROCRYPT 2009, 28th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Cologne, Germany, April 26-30, 2009. Proceedings. pp. 134–152 (2009)

19. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-Bit
Blockcipher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) Fast Soft-
ware Encryption, 14th International Workshop, FSE 2007, Luxembourg, Lux-
embourg, March 26-28, 2007, Revised Selected Papers. Lecture Notes in Com-
puter Science, vol. 4593, pp. 181–195. Springer (2007), https://doi.org/10.1007/
978-3-540-74619-5_12

22

https://doi.org/10.1007/978-3-319-13051-4_19
https://doi.org/10.1007/978-3-540-74619-5_12
https://doi.org/10.1007/978-3-540-74619-5_12

	Universal Forgery and Multiple Forgeries of MergeMAC and Generalized Constructions

