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Abstract. We show how to implement the Montgomery reduction algorithm for isogeny based
cryptography such that it can utilize the unsigned multiply accumulate accumulate long instruc-
tion present on modern ARM architectures. This results in a practical speed-up of a factor 1.34
compared to the approach used by SIKE: the supersingular isogeny based submission to the
ongoing post-quantum standardization effort.
Moreover, motivated by the recent work of Costello and Hisil (ASIACRYPT 2017), which shows
that there is only a moderate degradation in performance when evaluating large odd degree isoge-
nies, we search for more general supersingular isogeny friendly moduli. Using graphics processing
units to accelerate this search we find many such moduli which allow for faster implementations
on embedded devices. By combining these two approaches we manage to make the modular
reduction 1.5 times as fast on a 32-bit ARM platform.

Introduction

Recent advances in quantum computing [10, 21, 27] resulted in a call for proposals for new
public-key cryptography standards by the National Institute of Standards and Technology
(NIST) [26, 6]. The selection procedure for this new cryptographic standard has started and
has further accelerated the research of post-quantum cryptography schemes. One of the can-
didates for new schemes is based on the hardness of constructing a smooth-degree isogeny,
between two supersingular elliptic curves defined over a finite field [16]. The original proposal
is called Supersingular Isogeny Diffie-Hellman (SIDH). It forms the basis of the Supersingu-
lar Isogeny Key Encapsulation protocol (SIKE) [1] submitted to NIST. SIKE additionally
includes optimizations from recent works such as [8, 13]. The exact details of this protocol are
outside the scope of this paper.

More research related to the security and practical performance of these schemes is needed
to make an informed decision in the selection process for future standards. This paper is
related to the latter: we are interested in enhancing the practical performance of SIKE on
embedded processors. This is especially important given the current trend, in the era of
Internet of Things (IoT), to interconnect more and more small devices.

Motivation. There are two main arithmetic operations in SIDH-based protocols. First,
one needs to compute elliptic curve scalar multiplications where the curve is defined over
a quadratic extension of a finite field Fq with q = 2xpy − 1 and prime. Hence, all the curve
arithmetic boils down to arithmetic in Fq. Second, evaluations of `-isogenies for ` ∈ {2, p} are
required. In the proposed SIKE protocol, and all previous implementations, p = 3 is used.

The community has looked into different techniques to optimize the arithmetic modulo q
[8, 20, 5]. In [5] the option to chose p > 3 is investigated and moduli are given which result in
modular reduction an implementation which is about 12 % faster than the one used in [8].
However, this has an impact on the p-isogeny evaluations and it was unclear how large one
could choose p. Recently, Costello and Hisil studied this in more detail [7] and introduced new



formulas for computing arbitrary odd-degree isogenies between elliptic curves in Montgomery
form. Their results show that there is only a moderate degradation in performance when
evaluating (2d + 1)-isogenies as d grows. Hence, larger values of d can now be considered
practical and ready to be used in SIDH implementations.

This work is motivated by this recent result and the following practical setting. We assume
the use of an SIDH prime modulus q̂ = 2xm−1, where m is the product of small primes. In the
SIKE protocol, one party computes a 2x-isogeny as a composition of 2- and 4-isogenies [16,
8] while the other party computes an m-isogeny as a composition of pi-isogenies where pi are
the small primes dividing m. If the modular arithmetic modulo q̂ is faster than arithmetic
modulo q = 2xpy−1 then the party computing the 2x isogeny, which can be an embedded IoT
device, gets the best of both worlds: fast modular arithmetic and fast isogeny evaluations.
The server can make use of the faster modular arithmetic but has to evaluate pi-isogenies
which is slightly more expensive than evaluating p-isogenies for small p. However, servers can
often afford a small performance price especially when this allows public-key cryptography
on massively deployed embedded devices.

Contributions. The main contributions of this paper are twofold. First, we investigate how
the modular arithmetic used in supersingular isogeny instantiated protocols can be acceler-
ated. The implementations of SIKE [1] implement the Montgomery reduction algorithm in
product scanning form.3 This approach allows for an efficient implementation and manages
to keep most values in registers. However, it seems non-trivial to make use of the unsigned
multiply accumulate accumulate long instruction, present on ARMv6 and above, which mul-
tiplies two 32-bit values and adds two 32-bit values to the result in a single instruction. In
Section 3.1 we show how to compute the Montgomery reduction differently which does allow
using this arithmetic instruction and accelerates the modular reduction in practice.

Second, we search for more generic SIDH-friendly moduli of the form 2xm− 1 which have
additional properties which allow for more efficient implementations on 32-bit embedded
devices. This approach is described in Section 4. Using the computational power of graphics
processing units we manage to find over half a million SIDH moduli, for a range of security
levels, where at least one of the 32-bit digits of m is zero. Since a multiplication by m is the
main arithmetic cost of a Montgomery reduction this accelerates embedded implementations.
The performance impact of both optimizations is presented in Section 5.

1 Preliminaries

Throughout this paper we typically assume that a b-bit non-negative multi-precision integer
X is represented by an array of n = db/re computer words as X =

∑n−1
i=0 xir

i (the so-called
radix-r representation), where r = 2w for the word size w of the target computer architecture
and 0 ≤ xi < r. Unless stated otherwise we target the 32-bit ARM architecture (i.e. w = 32).
Here xi is the i-th computer word (or digit) of the integer X.

1.1 Montgomery reduction

Montgomery presented a way to compute modular reduction without computing any expensive
division operations [25]. The main idea is to adjust the representation of the integers used and

3 In previous work this approach is often credited to an unpublished 1995 work by Scott [30]. However, this
work does not seem to be available online anymore. As far as we are aware this is also (independently)
presented in the 1993 work by Kaliski Jr. [18].



change the modular multiplication accordingly. This allows replacing the typically required
division with a multiplication. In practice this is often faster by a constant factor. Since a
change of representation of the input and the output is required Montgomery reduction is
best used when a long series of modular arithmetic is needed; a setting which is common in
public-key cryptography.

Given a modulus q co-prime to r, the idea is to select the Montgomery radix rn such
that rn−1 < q < rn. Typically one chooses r to be 2w. Montgomery reduction requires a
pre-computed constant µ = −q−1 mod rn which depends on the modulus q used. Given an
integer c (such that 0 ≤ c < q2) Montgomery reduction computes

c+ (µ · c mod rn) · q
rn

≡ c · r−n (mod q). (1)

It should be noted that the division by rn is an exact division and in practice can be computed
by a simple right shift when r is a power-of-two. Similarly, µ · c mod rn in Eq. (1) can be
computed efficiently by computing only the n least significant computer words.

In order to use Eq. (1) one needs to change the representation of a, b ∈ Zq to ã =
a · rn mod q and b̃ = b · rn mod q. Then the Montgomery reduction of ã · b̃ ≡ a · b · r2n (mod q)
becomes a·b·r2n ·r−n ≡ a·b·rn (mod q) which is the Montgomery representation of a·b mod q.

Avoiding the conditional subtraction. Whenever 0 ≤ c < q2 then

0 ≤ c+ (µ · c mod rn) · q
rn

< 2q

and a single conditional subtraction of q is needed to reduce the result to [0, 1, . . . , q − 1].
This conditional subtraction can be omitted when the Montgomery radix is selected such
that 4q < rn and a redundant representation is used for the input and output values of
the algorithm. More specifically, whenever a, b ∈ Z2q (the redundant representation) where
0 ≤ a, b < 2q, then the output a · b · r−n is also upper-bounded by 2q and can be reused as
input to the Montgomery multiplication without the need for a conditional subtraction [31,
33]. Only at the end of a long series of computation a single conditional subtraction may be
necessary, to move from the redundant to a regular representation.

Radix-r Montgomery reduction. The Montgomery reduction as presented in Eq. (1)
works directly with multi-precision integers. This has the advantage that asymptotically fast
approaches for the multiplication with the modulus q can be used. However, the downside is
the size of the intermediate results which are stored in 2n+ 1 computer words which can be
a significant burden on the available registers and memory on constrained devices.

This can be remedied by using the so-called radix-r Montgomery reduction [12]. It com-
putes the reduction step-by-step, each time reducing with r. This means the precomputed
Montgomery constant needs to be adjusted to µ = −q−1 mod r. The algorithms iterates n
times to reduce c from 2n to n computer words as follows (we use r = 232)

c← c+ (µ · c mod r) · q
r

=

∑m−1
i=0 ci2

32i + (µ · c0 mod 232) · q
232

for m = 2n to m = n + 1. In every of the n iterations we perform a 32-bit times 32n-bit
multiplication. The intermediate results now fit in at most n+ 1 computer words. Hence, the
computational cost for this interleaved variant requires n2 + n multiplication instructions.



1.2 Graphics Processing Units

Originally, Graphics Processing Units (GPUs) have mainly been used as a device for gam-
ing and video processing. Due to the increasing computational requirements of graphics-
processing applications, GPUs have become very powerful parallel processors and this incited
research interest in computing outside the graphics-community. We focus on the general-
purpose GPU computing approach by Nvidia called Compute Unified Device Architecture
(CUDA) which facilitates the development of massively-parallel general purpose applications
for GPUs (cf. [24]).

We briefly recall some of the basic components of NVIDIA GPUs. Each GPU contains a
number of streaming multiprocessors (SMs) and each SM consists of multiple scalar processor
cores (SP); their numbers vary by graphics card. The C for CUDA is an extension to the C
programming language that employs the massively parallel programming model called single-
instruction multiple-thread. The programmer defines kernel functions, which are compiled for
and executed on the SPs of each SM in parallel: each light-weight thread executes the same
code, operating on different data. A number of threads are grouped into a thread block which
is scheduled on a single SM, the threads of which time-share the SPs.

The GPU has a large but relatively slow amount of global memory. Global memory is
shared among all threads running on all SMs. On a lower level, threads inside each thread
block are executed in groups of 32 called warps. By switching between the different warps,
trying to fill the pipeline as much as possible, a high throughput rate can be sustained. When
the code executed on the SP contains a conditional data-dependent branch all possibilities,
taken by the threads inside this warp, are serially executed (threads which do not follow a
certain branch are disabled). After executing these possibilities the threads within this warp
continue with the same code execution. For optimal performance it is recommended to avoid
multiple execution paths within a single warp.

There has been a significant amount of research how to use this computing power offered
by GPUs in cryptology. This includes both cryptography (e.g. [28, 32]) as well as cryptanalysis
(cf. [4, 14, 23, 17]).

2 Fast Finite Field Arithmetic in SIDH

The first implementation of SIDH [2] uses Barrett reduction [3] to compute arithmetic modulo
2x3y − 1. The special shape of the modulus is not used in this implementation. However, the
authors of [8, 22, 15] do use this special shape of the modulus in their high-performance SIDH
implementation.

Recall that in SIDH arithmetic is performed in a field Fq2 = F(i) for i2 = −1 which
in turn translates to arithmetic in Fq. The standard approach is to write a = a0 + a1i and
b = b0 + b1i, for a, b ∈ Fq2 , then c = ab = c0 + c1i where c0 = a0b0 − a1b1 and c1 =
a0b1 + a1b0. The naive approach computes four interleaved modular multiplications (where
the computation of the multiplication and reduction are combined) or four multiplications
and two modular reductions. When using Karatsuba multiplication [19] this can be reduced
to three multiplications and two modular reductions or three modular multiplications in
the interleaved setting. Hence, when computing modular arithmetic in Fq2 computing the
multiplications and modular reductions separately is to be preferred from a performance
perspective.



Algorithm 1 Radix-232 subtraction-less Montgomery reduction algorithm in product scan-
ning form. The temporary variable c can at all times be represented by at most three 32-bit
computer words.

Input:


q =

∑n−1
i=0 qi2

32i, odd modulus such that 232(n−1) < q < 232n and 4q < 232n

x =
∑2n−1

i=0 xi2
32i, integer to be reduced such that 0 ≤ x ≤ (2q − 1)2

µ, Montgomery constant µ = −q−1 mod 232.

Output: z =
∑n−1

i=0 zi2
32i = x · 2−32n mod q such that 0 ≤ z < 2q.

1: c← 0
2: for i from 0 to n− 1 do
3: for j from 0 to i− 1 do
4: c← c+ zj · qi−j

5: c← c+ xi
6: zi ← c · µ mod 232

7: c← c+ zi · q0
8: c← bc/232c
9: for i from n to 2n− 2 do

10: for j from i− n+ 1 to n− 1 do
11: c← c+ zj · qi−j

12: c← c+ xi
13: zi−n ← c mod 232

14: c← bc/232c
15: zn−1 ← c+ x2n−1 mod 232

All recent SIDH implementations use a modified version of Montgomery reduction to
compute the modular reduction. As summarized in [5], when using a multiplication instruction
which multiplies wn×wn to 2wn-bit integers, Montgomery reduction can compute µ · c mod
rn using n multiplication instructions and the multiplication with the modulus q using n2

multiplication instructions when using a modulus q = 2x3y − 1 < 2wn. This can be optimized
as follows. Since q ≡ −1 mod 2w it follows that µ = −q−1 ≡ 1 mod 2w and the multiplication
by µ becomes negligible. The multiplication by q can be optimized by only using multiplication
instructions to compute the product with the 3y part, the multiplication with 2x is done
using shifts or by reordering computer words in memory. Hence, the n2 + n multiplication
instructions for the computation of the Montgomery reduction can be reduced to n2/2 in the
setting of SIDH. For example, reduction modulo q = 23723239 − 1, as used in SIKEp761 can
be computed as

c+ (µ · c mod r)q

r
=
c+ (c mod 264)(23723239 − 1)

264
=

c0 · (23083239) +

23−j∑
i=1

ci2
64(i−1) = 22562523239 · c0 +

23−j∑
i=1

ci2
64(i−1).

This process is repeated 12 times (for j = 0 to 11) and the input c is overwritten as the output
for the next iteration. Hence, since 25·64 < 3239 < 26·64 (but 2523239 > 26·64) this approach
requires either 12 · 6 = 72 multiplication instructions together with a shift by 52 bits every
iteration or 12 · 7 = 84 multiplication instructions. The latter approach is being used by the
assembly implementation in SIKE.

This was the motivation of Bos and Friedberger in [5] to look for SIDH moduli which
allow faster implementation by lifting the restriction of p = 3 in the definition of the SIDH
modulus. Computing Montgomery reduction modulo their suggested prime: 23911988 − 1 can



Algorithm 2 Montgomery reduction for moduli of the form 2384 ·m− 1 using a radix-212·32

approach.

Input:

{
q =

∑23
i=0 qi2

32i, odd modulus such that 232·23 < q < 232·24 and 4q < 232·24

c =
∑47

i=0 ci2
32i, integer to be reduced such that 0 ≤ x ≤ (2q − 1)2

Output: z =
∑23

i=0 zi2
32i = c · 2−32·24 mod q such that 0 ≤ z < 2q.

1: C ← 0
2: mul(C1, C0, c0, q0)
3: for i from 1 to 11 do
4: muladd(Ci+1, Ci, c0, qi)

5: for i from 1 to 11 do
6: t← 0
7: muladd(t, Ci, ci, q0)
8: for j from 1 to 11 do
9: muladdadd(t, Ci+j , ci, qj)

10: Ci+12 ← t

11: adds(d0, c12, C0)
12: for i from 1 to 23 do
13: adcs(di, c12+i, Ci)

14: for i from 24 to 35 do

15: adcs(di, c12+i, 0)

16: C ← 0
17: mul(C1, C0, d0, q0)
18: for i from 1 to 11 do
19: muladd(Ci+1, Ci, d0, qi)

20: for i from 1 to 11 do
21: t← 0
22: muladd(t, Ci, di, q0)
23: for j from 1 to 11 do
24: muladdadd(t, Ci+j , di, qj)

25: Ci+12 ← t

26: adds(z0, d12, C0)
27: for i from 1 to 23 do
28: adcs(zi, d12+i, Ci)

be done more efficiently. It avoids these additional multiplications or shifts since

c+ (µ · c mod r)q

r
=
c+ (c mod 264)(23911988 − 1)

264
=

c0(2
3271988) +

23−j∑
i=1

ci2
64(i−1) = 2320c0(2

71988) +

23−j∑
i=1

ci2
64(i−1).

(again for for j = 0 to 11). Now both quantities 1988 and 271988 are between 25·64 and 26·64.
A comparison of run-times shows that this results in almost a 12% speed-up in the modular
reduction routine [5].

The implementations of SIKE [1] implement the Montgomery reduction algorithm in prod-
uct scanning form. It is given, without SIDH specific optimizations in Algorithm 1.

3 Faster Finite Field Arithmetic in SIDH

In this section we study two approaches in order to achieve faster arithmetic in Fq2 . First,
in Section 3.1, we investigate if Montgomery reduction can be computed more efficiently on
modern embedded ARM architectures. Second, we study if we can generate moduli which
have a more favorable shape for practical implementations in Section 3.2.

3.1 Using the Multiply Accumulate Accumulate Long Instruction

Assume the Montgomery reduction approach is used with SIDH optimizations as described
in Section 2. One approach is to make use of the product scanning technique to get a fast
implementation which attempts to minimize register usage as done in the various platform
specific implementations from [1]. However, on the popular ARM platforms, the multiply-
and-accumulate instruction UMLAL RdLo, RdHi, Rn, Rm can be used which computes RdHi ·



232 + RdLo ← Rn · Rm + RdHi · 232 + RdLo where the operands are 32-bit computer words
interpreted as unsigned integers. Moreover, starting from ARMv6 and above, there is an
Unsigned Multiply Accumulate Accumulate Long instruction UMAAL RdLo, RdHi, Rn, Rm

which computes RdHi ·232 +RdLo← Rn ·Rm+RdHi+RdLo. This does not result in an overflow
since (232 − 1)2 + 2(232 − 1) < 264.

Such multiply-and-accumulate instructions are not present on the x86 platform except for
vector instructions working with floating-point values. Motivated by these efficient arithmetic
instructions we explore if their usage can result in faster SIDH-specific field arithmetic. For
ease of explanation lets assume we have an SIDH modulus q = 2384 ·m − 1 where m is 382
bits and chosen such that it can be used in the SIKE protocol. The presented bit lengths can
be trivially adapted to any size. Recall from Section 2 that in every round j = 0 to j = 23
the input c < (2q − 1)2 < 248·12 is reduced as follows

c = (c+ (µc mod 232)q)/232 =

(
47−j∑
i=0

ci2
32i + c0(2

384m− 1)

)
/232

=

(
47−j∑
i=1

ci2
32i + c02

384m

)
/232 =

47−j∑
i=1

ci2
32(i−1) +

12∑
i=0

di2
32(i+11)

for d = c0m =
∑12

i=0 di2
32i. Observe that the first 12 iterations do not update the values

c0, . . . , c11 with the sum
∑12

i=0 di2
32(i+11) since the low words are zero. Hence, one could

instead compute this with two larger iterations (instead of the 24 smaller ones) which merges
12 smaller iterations each as

c =

47∑
i=12

ci2
32(i−12) +

11∑
i=0

cim232i

c =
35∑

i=12

ci2
32(i−12) +

11∑
i=0

cim232i.

Another way to look at this is computing the Montgomery reduction using a larger radix of
212·32 instead of the usual radix-232 approach.

This has the advantage that the sum
∑11

i=0 cim232i can be computed first before adding it
to the shifted value of c. The computation of the one-word times twelve word multiplication
cim and summing these together can be done efficiently using multiply accumulate accumulate
long instructions available on modern ARM architectures. Moreover, this lowers the total
number of additions required for the computation of the Montgomery reduction compared to
the product scanning approach with SIDH optimizations. The disadvantage of this technique
is that intermediate results are larger and therefore more registers / memory, and instructions
to move data from and to memory, are needed to compute the reduction.

Algorithm 2 outlines this approach where the usage of UMLAL is denoted by muladd(RdHi,
RdLo, Rn, Rm)) and the usage of UMAAL is denoted by muladdadd(RdHi, RdLo, Rn, Rm).
Addition of values c = a+b with set the carry-out are denoted by adds(c, a, b) and adcs(c, a, b)
where the latter also adds the value of the carry-flag as additional input.

3.2 SIDH Moduli with Zeros

In Montgomery reduction a multiplication with the modulus is required. In SIDH one can
already speed-up the operation by exploiting the special shape of q = 2xm− 1 where m = 3y



in SIKE. This can be made even faster if one or more of the digits in m are zero. We briefly
describe two approaches to generate such moduli.

Generate values of a special shape which are smooth. One approach is to construct
many moduli of a particularly “good” shape which allow for even faster reduction for a
selected method and checking if they are smooth. For example, moduli 2x ·m−1 where almost
all of the computer words of m are zero could be considered to speed-up the computation
of Montgomery reduction since the multiplication by m can be sped-up by omitting the
computations with these zero computer words. In order to estimate how many of such values
need to be tested we apply the Dickman–de Bruijn ρ function [11, 9]. This function can be
used to estimate the proportion of smooth numbers up to a given bound. More precisely, the
number of x1/a-smooth numbers (integers with all prime factors below x1/a) below x can be
estimated by

Ψ(x, x1/a) ≈ xρ(a)

where it has been shown that this estimate is accurate up to an error of O(x/ log x) [29].
Hence, in order to estimate the probability that a uniform random number between 2348 and
2384 (a range typical for moduli used in SIKE [1]) is 4096-smooth is

Ψ(2384, 212)− Ψ(2348, 212)

2384 − 2348
≈ 2384ρ(32)− 2348ρ(29)

2384 − 2348
≈ 2−179.

The value 4096 is chosen somewhat arbitrary but can be considered quite large in the light
of the more expensive isogeny computations and the values which are used in our results in
Section 5. This clearly shows that attempting to find better moduli with this approach is not
practical.

Generate smooth values which have a nice shape. This approaches the problem the
other way around. We generate integers as the product of small odd prime powers making
them smooth for some selected bound. This limits the negative performance impact on the
isogeny computation. At some point some of these generated values will have additional
desirable properties, making the modular reduction more efficient. Our main criterion is that
one of the digits of the generated smooth value is zero since this means that multiplication
by this word together with the associated additions can be omitted. If we generate 32n-bit
integers in such a way then a very crude estimate is that we expect to find such a zero-digit
integer once every 232/(n − 2) integers since the most-significant and the least-significant
computer words cannot be zero. This approach is practical but the performance impact is
obviously more limited. It will be investigated further in the upcoming sections.

4 Generating smooth values

As outlined in the previous Section the idea is to generate smooth values m of an appropriate
bit-length such that they can be used in SIDH and with the additional requirement that at
least one computer word is equal to zero. The SIKE submission specifies three parameter sets
targeting three different security levels [1]. The sizes of the moduli used are as follows

Scheme e2 e3 dlog2(2
e2 · 3e3 − 1)e quantum security

SIKEp503 250 159 503 84-bit
SIKEp761 372 239 761 125-bit
SIKEp964 486 301 964 160-bit



Table 1. The number of possible values x which are the product of small prime powers with integer exponents
a > 1 and b, c, d, e, f, g ≥ 0 such that 2352 < x < 2480.

x #candidates #integers with at least
one zero-digit

5b · 3c 14 406


1 259

7a · 5b · 3c 1 072 157

11a · 7b · 5c · 3d 43 976 602

13a · 11b · 7c · 5d · 3e 1 286 638 341

17a · 13b · 11c · 7d · 5e · 3f 27 666 549 374

19a · 17b · 13c · 11d · 7e · 5f · 3g 485 711 473 846

23a · 19b · 17c · 13d · 11e · 7f · 5g · 3h 6 966 901 075 661 21 183

29a · 23b · 19c · 17d · 13e · 11f · 7g · 5h · 3i 82 736 661 003 058 180 850
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Fig. 1. Plot which shows the number of candidates which need to be inspected for different exponents e13 in
x = 13e13 · 11b · 7c · 5d · 3e such that 2352 < x < 2480.

We target the two higher security levels and look for values of m such that 11·32 < m < 15·32.
Since 2e and m have approximately the same bit-length due to security considerations this
gives a prime in the range of SIKEp761 and SIKEp964.

We implemented a brute-force search algorithm which for the first s odd primes below
some bound B generates all possible B-smooth integers in this specified range and tests if one
of the 32-bit computer words is zero. We show incremental results in Table 1 for (s,B) = (2, 5)
until (s,B) = (9, 29) together with how many integers were checked and how many zero-digit
integers were found. This approach is already quite successful, we managed to identify over
200 000 unique integers which are 29-smooth and have a zero-digit, we will see in the next
subsection that this does not seem to lend itself directly to run concurrently on devices which
allow massive parallelism.

4.1 GPU Implementation

The approach from the previous section simply iterates over all possible prime powers for one
prime-base at-a-time. Using the notation from Table 1, the run-time for a = 1 is significantly
longer than for a = 50. This is due to the remaining search space being much larger since



Algorithm 3 Brute-force GPU algorithm to search for smooth moduli with a zero 32-bit
computer word.

Input:



t ∈ Z, thread index
` ∈ Z, size of the set S2

S2, set of ` odd primes
L, list of input values
count, value updated by all threads which keeps track of how

many integers have been found (initial value is zero).

Output: The list outputi, for 0 ≤ i < count, of integer values such that 232·11 < outputi < 232·16 and at least
one of the 32-bit computer words is zero.

1: for j from 0 to `− 1 do
2: cj ← Lt

3: while true do
4: x← c`−1

5: if 232·11 < x =
∑n

i=0 xi2
32i < 232·16 and xj = 0 for one or more 0 ≤ j ≤ n then

6: oldCount ← atomicAdd(count, 1)
7: outputoldCount ← x

8: x← x× s`−1

9: if x ≥ 232·16 then
10: k ← `− 1
11: do
12: if k = 0 then
13: return
14: k ← k − 1
15: ck ← ck · sk
16: while ck ≥ 232·16

17: for j from k + 1 to `− 1 do
18: cj ← ck

the starting value is lower. Accelerating the search by running this on a GPU seems like a
natural fit: we could generate and check many integers in parallel without any communication
between the different threads.

However, the naive approach of assigning every thread a different power of the first prime
base seems inefficient. Consider the setting where five primes are used. Figure 1 shows the
number of integer candidates which need to be checked per exponent of the largest prime
base 13. The threads which get assigned the smallest exponents do almost all the work of the
entire computation. In the GPU setting this means that many threads will stall and wait for
the computations of the threads assigned with these small exponents since they all need to
follow the exact same computational steps.

Therefore, we decided to go for a different strategy for the GPU implementation. In order
for every thread to compute roughly the same amount of work we select two sets S1 and
S2. The set S1 = {p0, . . . , pk−1} consists of k prime values pi used in a pre-computation
phase while S2 = {s0, . . . , s`−1} consists of ` prime values sj for the online phase such that
S1 ∩ S2 = ∅. For a given bound B, the precomputation phase computes all the possible
products

∏k−1
i=0 p

ei
i < B for pi ∈ S1 and enumerating all possible positive integer exponent

values ei. This large list of integers is used as input to the GPU. Every thread picks a
number from this list and enumerates all possible exponents of sj ∈ S2 such that 2352 <∏k−1

i=0 p
ei
i ·
∏`−1

j=0 s
êj
j < 2480. When k is not too small, most pre-computed values

∏k−1
i=0 p

ei
i will

be of approximately the size B. Hence, the amount of work per thread is similar: this is further
improved by sorting the precomputed list by size. This overcomes the problem outlined in



Table 2. Overview of the number of different ARM assembly instructions used to implement the different
described approaches. The value of m is assumed to be less than 2382.

algorithm prime zero mul add ldr,str,mov eor

word umull umlal umaal

product scanning 23723239 − 1 Ö 1 311 0 731 1101 347

product scanning 2384m− 1
Ö 1 287 0 677 1027 322

X 1 263 0 627 955 298

radix-2384 2384m− 1
Ö 2 44 242 60 1344 44

X 2 42 220 104 1296 66

Figure 1 while it still allows to efficiently check large ranges of smooth numbers by choosing
the sets S1 and S2 suitably.

Algorithm 3 shows the part executed by the GPU. The function atomicAdd is a GPU-
specific function which allows a thread to read-modify-write a value to a global memory
location. It is atomic in the sense that it ensures that no other threads interfere during the
operation. We use this function to determine the correct location in the output list.

5 Performance and Search Results

5.1 Montgomery Reduction on Embedded Platforms

In order to test which arithmetic approach is better; the product scanning approach as used
in the SIKE implementation or the radix-2384 approach presented in Section 3.1, we imple-
mented both algorithms in assembly for the BeagleBone Black. This is a development platform
featuring a 32-bit AM335x 1GHz ARM Cortex-A8. Since the SIKE submission package [1]
only has optimized assembly code for the ARM64 and x64 platforms we ported the product
scanning approach to this ARM platform. The approach is identical to the one from the SIKE
authors and the only thing we changed was to merge the multiply and addition instruction
into the dedicated multiply-and-add (umlal) instruction.

In order to give an impression how these assembly implementations of the different al-
gorithms compare to each other we give an overview of the number of instructions used in
Table 2. The first row shows the results of the product scanning implementation using the
prime from SIKE directly ported to the 32-bit ARM. The second row shows this for the more
efficient primes given in [5], where the m part is chosen small enough to fit in fewer computer
words. Just as observed in [5] for the x86 platform this reduces the number of multiplica-
tion instructions needed on the ARM architecture. We also present the instruction count for
m chosen such that one 32-bit computer word is zero. The last row in Table 2 shows the
radix-2384 approach. By using the unsigned multiply accumulate accumulate long instruction
umaal the number of addition instructions are reduced by more than one order of magnitude.
However, as expected, the total number of load and store instructions is higher than for the
product scanning approach. The exact benchmark results for this approach are reported in
Section 5.3.

5.2 Searching for Faster SIDH-Moduli

We have implemented and executed Algorithm 3 on a Nvidia Quadro K5000 GPU. This GPU
has 1536 CUDA cores, 4GB of global memory and the core clock runs at 706MHz. The CPU



we used for testing is an Intel Xeon CPU E5-2650 (running at 2.60GHz): this machine has 8
CPU cores. After doing some basic throughput experiments we found that running 32 blocks of
256 threads each optimize throughput for this GPU and for the size of numbers considered in
this work. All of the 8192 threads are assigned a 64-bit value: hence, we use a value of B = 264

in the notation of Section 4.1. Moreover, we use S1 = {17, 19, 23, 29, 31, 37, 41, 43, 47, 53} and
S2 = {3, 5, 7, 11, 13}.

The GPU significantly outperforms the CPU. Given an integer
∏k−1

i=0 p
ei
i < 264, where

the pi ∈ S1, one has to inspect approximately 229.5 candidates to check if one of the 32-
bit computer words is zero. The single-core CPU implementation executes in 167 seconds.
Since there are 8 cores this means 20.8 seconds per number of the entire CPU. The GPU
implementation has a significantly longer latency: 11585 seconds which is over 3.2 hours
compared to the latency of less than 3 minutes on the CPU. However, the GPU can execute
8192 in parallel. This means that the throughput is 1.4 seconds per input number on this
GPU: almost a factor 15 improvement.

Given the sets S1 and S2 as defined above we generated over 1.1 ·106 64-bit input integers.
Hence, the GPU checked in total around 249.6 integers if they have one or more zero-valued
32-bit computer words. As a result we found over 2.3 · 106 ≈ 221.2 such values.

5.3 Performance Results of the Faster SIDH-Moduli

The CPU implementation, as described in Section 4, found over 200 000 unique integers which
are 29-smooth and have a zero-digit (see Table 1). Moreover, the GPU implementation found
an order of magnitude more integers (around 221.2) such that m is 53-smooth. Given this
large list of values for m we need to check if the potential SIDH moduli q̂ = 2x · m − 1
fulfill a number of requirements in order for them to be usable in practice. The bit-length
dlog2(m)e of m determines the possible values of the exponent x one can use: we select
x ∈ {dlog2(m)e − 10, . . . , 0, . . . , dlog2(m)e + 10} since SIDH security requires 2x ≈ m [1]. Of
course we also require that q̂ is prime. Given the 2 575 077 input values this results in 530 612
pairs of (x,m) such that these requirements are satisfied.

Since this list is still large enough we set additional requirements which are beneficial for
a real implementation. First, we require that x ≡ 0 mod 32 to ensure that the multiplication
with the 2x part is completely for free instead of requiring shift instructions. The subtraction-
less variant of Montgomery reduction as described in Section 1.1 additionally requires that
dlog2(m)e mod 32 < 30 and dlog2(m)e < x to ensure 4q̂ < 22x.

Even with these additional restrictions, there are 787 result pairs (384,m) when x = 384.
When we select pairs with the minimum bit-difference between 384 and dlog2(m)e 102 pairs are
left. Similarly, when x = 480 this results in 2535 pairs (480,m) which fulfill these requirements
and 370 of them are left when the bit-difference is minimal. As an example we show two
of the values found below where we looked for values of m which maximize the power of
3 and additionally preferring m which have smaller prime divisors: both for performance
considerations when computing the large odd-degree isogenies. For the prime 2384 · m − 1,
which could be considered as a replacement in SIKEp761, one can use

m = 3154 · 55 · 722 · 116 · 173 · 293 · 372 · 431

=
0x1dba73ea e32a1380 d3733fb7 ececcb64

565dcf70 a6b12bb5 7da00322 3a32f0cb

56bf9bb6 00000000 fa1d470f f92bce7b.



Table 3. Benchmark results summary of the various implementation strategies for Montgomery reduction
modulo the modulus given where m < 2382 on the BeagleBone Black. The zero-digit column states if the
reduction assumes one of the computer words of m is zero. The column with x̄ ± σ gives the mean x̄ and
standard deviation σ expressed in the number of cycles.

algorithm prime zero word x̄± σ
product scanning [1] 23723239 − 1 Ö 3738± 11

product scanning 2384m− 1
Ö 3473± 55

X 3202± 12

radix-2384 2384m− 1
Ö 2595± 12

X 2492± 9

Similarly, for SIKEp964 one could use 2480 ·m− 1 where

m = 3192 · 517 · 79 · 114 · 1310 · 175 · 191 · 312 · 431 · 473

=

0x17e08fbd 62bb1dd4 00000000 32a79450

aa7ac081 f870e00d 03c471eb 0826bd2c

d2a4dfca 584e9ffb ae0b6729 8400ee97

113129cc 7c343b7c cf233d65.

We implemented the product scanning approach as used in [1] as well as the radix-2384

approach for the 32-bit ARM platform. The benchmark figures presented in this Section are
obtained by accessing the Cycle CouNT (CCNT) Register. We measure the time to compute
103 dependent Montgomery reductions and store the mean cycle count for a single operation.
This process is repeated 103 times and from this set the mean x̄ and standard deviation σ are
computed. We remove the outliers (more than 2.5 standard deviations away from the mean)
and these figures are reported.

Similar to [5] we compare the Montgomery reduction for the prime 23723239 − 1 from
SIKE [1] to an SIDH modulus of the form 2384m − 1 where m < 2382. As summarized in
Table 3 the usage of such generic faster primes results in a speedup of a factor of 1.08. This is
less than the 12 percent speedup as observed in [5] for 64-bit platforms when m = 271988 is
considered. This is explained by the increased number of multiplications on 32-bit platforms
which makes saving one multiplication less significant. When one out of twelve of the 32-bit
computer words needed to represent m is zero the observed speed-up is a factor 1.08: this is
as one would expect.

As summarized in Table 2 the radix-2384 approach from Section 3 significantly reduces the
number of addition instructions required due to the usage of the unsigned multiply accumu-
late accumulate long instructions. When comparing the product scanning to this radix-2384

approach the speedup of the latter over the former is significant: a factor of 1.34. The speed-
up when one of the computer words of m is zero is a factor of 1.04. This is lower than
expected and lower than for the product scanning approach; which is explained by the fact
that a zero-computer word does not remove a number of addition instructions but changes a
multiply-accumulate-accumulate to a multiply-accumulate.

Overall, when combining the faster radix-2384 Montgomery reduction approach and the
zero-computer word modulus this results in a reduction which is 1.5 times faster than used
in SIKE. This is a promising speed-up which can facilitate the realization of isogeny-based
cryptographic protocols on embedded platforms.



6 Conclusions and Future Work

In this work we studied two optimizations to realize faster modular arithmetic for crypto-
graphic schemes based on supersingular isogenies such as SIKE [1] where the focus is on
embedded devices like 32-bit ARM platforms. We have shown that a large radix approach for
Montgomery reduction can make use of the special fused multiply-and-accumulate-accumulate
instructions and significantly outperforms the product scanning approach currently used in
SIKE. Moreover, motivated by the results from [7], which shows new efficient formulas for
computing arbitrary odd-degree isogenies between elliptic curves in Montgomery form, we
search for faster SIDH-friendly moduli. Using the computational power of GPUs we manage
to find a large set of such moduli for different security levels where one 32-bit computer word
is zero. When combining these two optimizations the performance of the modular reduction
is increased by a factor 1.5.

It remains an interesting question if such larger odd-degree isogenies have a negative
impact on the security. Moreover, it would be even more beneficial if we could find multiple
32-bit computer words which are zero. Even better would be a 64-bit computer word equal
to zero such that high-end servers can also benefit from this arithmetic speed-up.
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