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Abstract. Double-authentication preventing signatures (DAPS) are a
variant of digital signatures which have received considerable attention
recently (Derler et al. EuroS&P 2018, Poettering AFRICACRYPT 2018).
They are unforgeable signatures in the usual sense and sign messages
that are composed of an address and a payload. Their distinguishing
feature is the property that signatures on two different payloads with
respect to the same address allow to publicly extract the secret signing
key. Thus, they are a means to disincentivize double-signing and are a
useful tool in various applications.

DAPS are known in the factoring, the discrete logarithm and the lattice
setting. The majority of the constructions are ad-hoc. Only recently,
Derler et al. (EuroS&P 2018) presented the first generic construction that
allows to extend any discrete logarithm based secure signature scheme
to DAPS. However, their scheme has the drawback that the number of
potential addresses (the address space) used for signing is polynomially
bounded (and in fact small) as the size of secret and public keys of
the resulting DAPS are linear in the address space. In this paper we
overcome this limitation and present a generic construction of DAPS with
constant size keys and signatures. Our techniques are not tailored to a
specific algebraic setting and in particular allow us to construct the first
DAPS without structured hardness assumptions, i.e., from symmetric
key primitives, yielding a candidate for post-quantum secure DAPS.
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1 Introduction

Digital signatures are an important cryptographic primitive used to provide
strong integrity and authenticity guarantees for digital messages. Among many
other applications, they are used to issue digital certificates for public keys within
public-key infrastructures, to guarantee the origin of executable code, to sign
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digital documents such as PDF documents (in a legally binding way), as well as
in major cryptographic protocols such as TLS. Recently, signatures also emerged
to be a cornerstone of distributed cryptocurrencies such as Bitcoin, i.e., are used
to bind coins to users (by means of public keys) and to sign transactions.

Double-authentication preventing signatures (DAPS) are a variant of digital
signatures used to sign messages of the form m = (a,p) with a being the so
called address and p the payload. They provide unforgeability guarantees in the
sense of conventional signatures but have the special property that signing two
different payloads p # p’ using the same address a allows to publicly extract the
secret signing key from the respective signatures. In the literature, various com-
pelling applications for DAPS have been proposed. Those applications include
penalizing double spending attacks in cryptocurrencies [RKS15] or penalizing
certification authorities for issuing two certificates with respect to the same do-
main name, but for two different public keys [PS14], for example. In this work
we purely focus on DAPS constructions and we refer the reader to [PS14,PS17]
for a comparison with other types of self-enforcing digital signatures.

Currently, DAPS are known in the factoring [PS14,PS17,BPS17], the discrete
logarithm [RKS15,DRS18b,Poel8] and the lattice setting [BKN17]. The majority
of the constructions (the only exception being [DRS18b]) are ad-hoc. Unfortu-
nately, such an approach yields very specific constructions, whose security may
not be well understood. Having generic DAPS constructions, in contrast, yields
much more flexibility, as it allows to plug in building blocks whose security is
well understood. In addition, this yields simplicity and modularity in the security
analysis. Only recently, Derler et al. (EuroS&P 2018) presented the first generic
construction that allows to extend any discrete logarithm based EUF-CMA se-
cure signatures scheme to DAPS. However, their scheme has the drawback that
the number of potential addresses (the address space) used for signing is poly-
nomially bounded (and in fact small) as the size of secret and the public keys
of the resulting DAPS are linear in the address space. We ask whether we can
come up with a generic construction without this drawback.

Somewhat orthogonal to the motivational discussion above, our work is also
driven by the question whether it is possible to construct DAPS without relying
on structured hardness assumptions, i.e., solely from symmetric key primitives
(following up on a very recent line of work [CDG*17a,DRS18a,BEF18 KKW18]).
This is interesting, because symmetric key primitives are conjectured to remain
secure in the advent of sufficiently powerful quantum computers. Such quantum
computers would break all discrete log and RSA based public key cryptosys-
tems [Sho97].

1.1 Existing DAPS Constructions

DAPS have been introduced by Poettering and Stebila [PS14,PS17] in a factoring-
based setting. Ruffing, Kate and Schroder later introduced the notion of ac-
countable assertions (AS) in [RKS15], being a related but weaker primitive than
DAPS. In addition they present one AS that also is a DAPS (RKS henceforth).
The RKS construction is based on Merkle tress and chameleon hash functions
in the discrete logarithm setting. Very recently, Bellare, Poettering and Ste-



Approach ‘ Address space ‘ Extraction ‘ Setting ‘ Generic
[PS14,PS17] exponential DSE factoring X
[RKS15] exponential DSE DLOG X
[BPS17] exponential DSE factoring X
[BKN17] exponential DSE lattices X
[DRS18b] small wDSE* DLOG v
[Poel§] small DSE DLOG X
Construction 1 | exponential wDSE symmetric | v’
Construction 2 | exponential DSE any v

Table 1: Overview of DAPS constructions

bila [BPS17] proposed new factoring-based DAPS from trapdoor identification-
schemes using an adaption and extension of a transform from [BPS16]. Their two
transforms applied to the Guillou-Quisquater (GQ) [GQ88] and Micali-Reyzin
(MR) [MRO02] identification scheme yield signing and verification times as well as
signature sizes comparable (or slightly above) standard RSA signatures. Boneh et
al. [BKN17] propose constructions of DAPS from lattices. They consider DAPS
as a special case of what they call predicate-authentication-preventing signa-
tures (PAPS). In PAPS one considers a k-ary predicate on the message space
and given any k valid signatures that satisfy the predicate reveal the signing key.
Consequently, DAPS are PAPS for a specific 2-ary predicate. Derler, Ramacher
and Slamanig (DRS henceforth) in [DRS18b] recently provided the first black-
box construction of DAPS from digital signatures schemes and demonstrate how
this approach can be used to construct N-times-authentication-preventing sig-
natures (NAPS) (a notion called k-way DAPS in [BKN17]). In addition, they
introduced weaker extraction notions, where the focus of the extraction is on the
signing key of the underlying signature scheme only. A drawback of their work
is that the constructions have O(n) secret and public key size where n is the size
of the address space. So their constructions are only suitable for small message
spaces. In a follow up work Poettering [Poel8], also focusing on DAPS for small
address spaces, showed how for a certain class of signature schemes (obtained
via Fiat-Shamir from certain identification schemes), the DRS approach can be
improved by reducing the signature size by a factor of five and the size of the
secret key from O(n) to O(1). However, this comes at the cost of no longer being
able to do a black-box reduction to the underlying signature scheme. In Table 1
we provide a comparison of existing DAPS approaches with the ones presented
in this paper regarding address space, extraction capabilities, algebraic setting
as well as their characteristic as either being tailored to a specific setting or
generic.

1.2 Contribution

Our contributions can be summarized as follows:

— We propose a generic DAPS, respectively NAPS, construction building upon
DRS’ secret-sharing approach, which resolves the address-space limitation in



the DRS construction, and, in particular, supports an exponentially large ad-
dress space. This improvement is achieved by deriving the coefficients of the
secret sharing polynomial from the address using a carefully chosen pseudo-
random function with an output domain being compatible with the secret
key space of the underlying signature scheme. Consequently, the overhead
in the public-key reduces to a constant factor. Like the DRS approach, our
generic approach satisfies a relaxed notion of extractability. Interestingly,
we can instantiate this construction solely from symmetric-key primitives,
yielding a candidate for post-quantum secure DAPS/NAPS.

— While the aforementioned construction thus closes an important gap in the
literature, the signature sizes are somewhat large compared to signatures in
the discrete log or RSA setting. To this end, we additionally follow a differ-
ent direction which basically targets the extension of any digital signature
scheme (such as ECDSA or EADSA, for example) to a DAPS. Essentially,
we present a compiler which uses an arbitrary DAPS scheme to extend any
given signature scheme to a DAPS. While this might sound somewhat odd
at first sight, we want to stress that all existing DAPS which have compact
keys and exponentially large address space are ad-hoc constructions, whereas
practical applications most likely will use standardized signature schemes.
Using our construction it is possible to generically bring extraction to any
signature scheme. Hence we obtain more efficient DAPS being compatible
with standardized signature schemes such as ECDSA or EADSA.

2 Preliminaries

In this section we firstly present a formal model for the security of signature
and DAPS schemes, recall non-interactive zero-knowledge proof systems and
Shamir’s secret sharing.

2.1 Digital Signature Schemes
Subsequently we formally recall the notion of digital signature schemes.

Definition 1 (Signature Scheme). A signature scheme ¥ is a triple (KGeny,
Signy, Verifys) of PPT algorithms, which are defined as follows:

KGeny (1%): This algorithm takes a security parameter k as input and outputs a
secret (signing) key sks and a public (verification) key pky with associated
message space M (we may omit to make the message space M explicit).

Signy (sks,m): This algorithm takes a secret key sky and a message m € M as
input and outputs a signature o.

Verifys (pky, m,0): This algorithm takes a public key pky, a message m € M
and a signature o as input and outputs a bit b € {0,1}.

We require a signature scheme to be correct and to provide existential unforge-
ability under adaptively chosen message attacks (EUF-CMA security). For cor-
rectness we require that for all x € N, for all (sky, pky) <= KGenx(1%) and for all
m € M it holds that

Pr [Verifys (pks, m, Signs (sky, m)) = 1] = 1.



Definition 2 (EUF-CMA). For a PPT adversary A, we define the advantage
function in the sense of EUF-CMA as

Advilfg'CMA(fi) =Pr Expilfg'CMA(m) =1

where the corresponding experiment is depicted in Figure 1. If for all PPT ad-
versaries A there is a negligible function (-) such that

AVEUE M (1) < <(s)

we say that ¥ is EUF-CMA secure.

ExpUE A )
(sks, pky) < KGeng(1%)
9«0
(m*70_*) « ASign'z(skz,-) (pk)
where oracle Signy on input m:
o < Signy (sks,m), Q < QU {m}
return o
return 1, if Verifyy (pky, m*,0") =1 A m* ¢ Q
return 0

Fig.1: EUF-CMA security.

2.2 Double-Authentication-Preventing Signatures

Double-authentication-preventing signatures (DAPS) are signature schemes be-
ing capable of signing messages from a message space M of the form A x P.
Each message m = (a,p) € M thereby consists of an address a in address space
A and a payload p from payload space P. In addition to the algorithms provided
by conventional signature schemes, a DAPS scheme provides a fourth algorithm
Exp that extracts the secret key from signatures on two colliding messages, i.e.,
two different messages sharing the same address. Formally, a pair of colliding
messages is defined as follows:

Definition 3 (Colliding Messages). We call two messages m1 = (a1,p1) and
my = (az,p2) colliding if a1 = az, but p1 # pa.

Below, we now formally define DAPS following [PS14,PS17].

Definition 4 (DAPS). A double-authentication-preventing signature scheme
DAPS is a tuple (KGenp, Signp, Verifyp, Exp) of PPT algorithms, which are de-
fined as follows:

KGenp(1%): This algorithm takes a security parameter k as input and outputs a
secret (signing) key skp and a public (verification) key pkp with associated
message space M (we may omit to make the message space M explicit).

Signp (skp,m): This algorithm takes a secret key skp and a message m € M as
input and outputs a signature o.



Verifyp (pkp, m,c): This algorithm takes a public key pkp, a message m € M
and a signature o as input and outputs a bit b € {0, 1}.

Exp(pkp,m1,me,01,02): This algorithm takes a public key pkp, two colliding
messages my and mso and signatures oy for my and oo for mo as inputs and
outputs a secret key skp.

Note that the algorithms KGenp, Signp, and Verifyp match the definition of
the algorithms of a conventional signature scheme. For DAPS one requires a
restricted but otherwise standard notion of unforgeability [PS14,PS17], where
adversaries can adaptively query signatures for messages but only on distinct
addresses. Figure 2 details the unforgeability security experiment.

Definition 5 (EUF-CMA [PS14]). For a PPT adversary A, we define the ad-
vantage function in the sense of EUF-CMA as

EUF-CMA EUF-CMA
Adv i paps (k) = Pr |Expypaps (k) =1

where the corresponding experiment is depicted in Figure 2. If for all PPT ad-
versaries A there is a negligible function (-) such that

AdVEDARS " (1) < (k)

we say that DAPS is EUF-CMA secure.

ExpEU5A (o)
(skp, pkp) + KGenp(17)
Q« 0, R+0
(m*,a*) P ASignl’D(skD,-)(pkz)
where oracle Signp, on input m:
(a,p) +m
if a € R, return L
o + Signp(skp,m), @+ QU {m}, R + RU{a}
return o
return 1, if Verifyy(pkp,m*,0%) =1 A m* ¢ Q
return 0

Fig. 2: EUF-CMA security for DAPS.

The interesting property of a DAPS scheme is the notion of double-signature
extractability (DSE). It requires that whenever one obtains signatures on two
colliding messages, one should be able to extract the signing key using the ex-
traction algorithm Exp. We present the security definition denoted as DSE in
Figure 3. Thereby, we consider the common notion which requires extraction to
work if the key pair has been generated honestly. In this game, the adversary is
given a key pair and outputs two colliding messages and corresponding signa-
tures. The adversary wins the game if the key produced by Exp is different from
the signing key, although extraction should have succeeded, i.e, the messages
were colliding and their signatures were valid.



Definition 6 (DSE [PS14]). For a PPT adversary A, we define the advantage
function in the sense of double-signature extraction (DSE) as

AdVEl?IEAPS(’%) =Pr EXPBSIEAPS(K) =1

where the corresponding experiment is depicted in Figure 3. If for all PPT ad-
versaries A there is a negligible function (-) such that

AdVE\S,EAPs(’f) <e(k),

then DAPS provides DSE.

EXPEZS,[E)APS('{):
(skp, pkp) + KGenp(17)
(m17m27 0-170-2) «— A(SkD7 ka)
return 0, if m; and mq are not colliding
return 0, if Verifyy (pkp, mi, 03) = 0 for any ¢ € [2]
skp  Exp(pkp,m1,m2,01,02)
return 1, if skp # skp
return 0

Fig. 3: DSE security for DAPS.

In Appendix A we recall the strong variant of extractability under malicious
keys (denoted as DSE*), where the adversary is allowed to generate the key
arbitrarily. The DSE* notion is very interesting from a theoretical perspective,
but no practically efficient DAPS construction can achieve this notion so far.

DRS in [DRS18b] argue that when DAPS are constructed by extending a
conventional signature scheme ¥, extraction of the part of the signing key cor-
responding to X is already sufficient to disincentivizes double-authentication
for many applications. Hence, Derler et al. [DRS18b] defined two weaker double-
signature extraction notions that cover extraction of the signing key of the under-
lying signature scheme for honestly and maliciously generated DAPS keys. The
security games for weak double-signature extraction (WDSE) and weak double-
signature extraction under malicious keys (wDSE*) are depicted in Figure 4 and
Figure 5. DSE and DSE* imply their weaker counterparts and wDSE* implies
wDSE.

Definition 7 (T' € {wDSE,wDSE*}). For a PPT adversary A, we define the
advantage function in the sense of weak double-signature extraction (T = wDSE)
and weak double-signature extraction under malicious keys (T’ = wDSE* ), as

Adva,DAPS(”‘J) =Pr EXpi,DAPS(“) =1

where the corresponding experiments are depicted in Figure 4 and Figure 5 re-
spectively. If for all PPT adversaries A there is a negligible function e(-) such
that

Adv}; paps () < &(k),



then DAPS provides T.

EXP&?S%PS(H)Z
(SkD7 ka) — KGenD(l") with skp = (Skz7 .. )
(m1, ma,01,02) < A(skp, pkp)
return 0, if m; and mg are not colliding
return 0, if Verifyp (pkp, mi, 05) = 0 for any ¢ € [2]
skp < Exp(pkp,m1,ma, 01, 02) where skp = (skg, ... )
return 1, if sk # sky
return 0

Fig. 4: wDSE security for DAPS.

ExpSiins (x):
(pkp,m1,m2,01,02) <= A(1") where pkp = (pkg, .. .)
return 0, if m; and mq are not colliding
return 0, if Verifyy (pkp, ms, 03) = 0 for any i € [2]
skp < Exp(pkp,mi1,m2, 01, 02) where skp = (skg,...)
return 1, if skg is not the secret key corresponding to pky
return 0

Fig. 5: wDSE* security for DAPS.

Finally, for our constructions we may sometimes require a very mild addi-
tional property of DAPS which we call verifiability of secret keys. Informally it
requires that there is an additional efficient algorithm VKey which, given a key
pair, outputs 1 if the given secret key is the key corresponding to the given public
key. Formally we define verifiability of keys as follows:

Definition 8 (Verifiability of Keys). We say that a DAPS scheme DAPS =
(KGenp, Signp, Verifyp, Exp) provides verifiability of keys, if it provides an ad-
ditional efficient algorithm VKey so that for all k € N, for all (sk, pk) it holds
that

VKey(sk,pk) =1 = (sk, pk) € KGenp(17).

2.3 Non-Interactive ZK Proof Systems (NIZK)

We recall a standard definition of non-interactive zero-knowledge proof systems.
Let L € X be an NP-language with associated witness relation R so that L =
{z | 3w : R(z,w) = 1}.

Definition 9 (Non-Interactive Zero-Knowledge Proof System). A non-
interactive proof system T is a tuple of algorithms (Setupp, Proofn, Verifyy),
which are defined as follows:

Setupp (1%): This algorithm takes a security parameter k as input, and outputs
a common reference string crs.



Proofp(crs, x,w): This algorithm takes a common reference string crs, a state-
ment x, and a witness w as input, and outputs a proof .

Verifyp(crs, z,7): This algorithm takes a common reference string crs, a state-
ment x, and a proof w as input, and outputs a bit b € {0,1}.

From a non-interactive zero-knowledge proof system we require completeness,
soundness and adaptive zero-knowledge and simulation-sound extractability. In
Appendix C we recall formal definitions of those properties.

NIZK from Y-protocols. A Y-protocol for language L is an interactive three
move protocol between a prover and a verifier, where the prover proves knowledge
of a witness w to the statement x € L. We recall the formal definition of X-
protocols in Appendix B. One can obtain a non-interactive proof system with
the above properties by applying the Fiat-Shamir transform [FS86] to any X-
protocol where the min-entropy p of the commitment a sent in the first message
of the X-protocol is so that 27# is negligible in the security parameter x and its
challenge space C is exponentially large in the security parameter. Essentially,
the transform removes the interaction between the prover and the verifier by
using a hash function H (modelled as a random oracle) to obtain the challenge.
That is, the algorithm Challenge obtains the challenge as H(a,z). Due to the
lack of space we postpone a formal presentation to Appendix C.1.

Efficient NIZK Proof Systems for General Circuits. Over the last few
years NIZK proof systems for general circuits have seen significant progress im-
proving their overall efficiency. Based on the MPC-in-the-head paradigm by Ishai
et al. [[KOS09], ZKBoo [GMO16] and the optimized version ZKB++ [CDG'17a]
are zero-knowledge proof systems covering languages over arbitrary circuits.
They roughly work as follows: The prover simulates all parties of a multiparty
computation (MPC) protocol implementing the joint evaluation of some func-
tion, say y = SHA-3(x), and computes commitments to the states of all play-
ers. The verifier then randomly corrupts a subset of the players and checks
whether those players performed the computation correctly. Following the same
paradigm, Katz et al. [KKW18] recently proposed to use a MPC protocol with
a preprocessing phase, which allows to significantly reduce the proof sizes. This
proof system, denoted as KKW, allows one to choose a larger number of players
then in the case of ZKB00O and ZKB—++, where larger numbers lead to smaller
proofs. For all three proof systems, the number of binary multiplication gates is
the main factor influencing the proof size, as the proof size grows linearly with
the number of those gates.

Finally, Ames et al. [AHIV17] introduced Ligero, which offers proofs of log-
arithmic size in the number of multiplication gates if the circuit is represented
using a prime field. When considering binary circuits, the number of addition
respectively XOR gates has also to be accounted for in the proof size. But, as
noted by Katz et al. in [KKW18], especially for large circuits with more than
100,000 gates Ligero beats ZKB00, ZKB++ and KKW in term of proof size.



2.4 Shamir’s Secret Sharing

Shamir’s (k, £)-threshold secret sharing [Sha79] is a secret sharing scheme which
allows to information-theoretically share a secret s among a set of ¢ parties so
that any collection of at least k shares allow to reconstruct s. Let s be the
constant term of an otherwise randomly chosen k£ — 1 degree polynomial

FX)=ppa X"k i X+

over a finite field F. A share is computed as f (i) for party 7, 1 < i < £. Let S be
any set of cardinality at least k of these ¢ shares and let Is be the set of indices
corresponding to shares in S. Using Lagrange interpolation one can then can
reconstruct the secret s by computing s = f(0) as

s= > Nf(G) with XN = ]] I

jels iers\y 7 "

As long as only k — 1 or less shares are available the secret s is information-
theoretically hidden.

3 DAPS without Structured Hardness Assumptions

For our first construction we follow the basic idea of Derler et al. [DRS18b] and
build DAPS by including secret shares of the signing key in the signatures. To
resolve the address space limitation of their approach, however, we derive the
coefficients of the sharing polynomial using a pseudorandom function (PRF).
By then additionally proving the correct evaluation of the PRF, it is no longer
necessary to store encrypted versions of the coefficients in the public key. The
only issue which remains, is to additionally prove consistency with respect to a
“commitment” to the PRF secret key contained in the public key (we commit to
it using a fixed-value key-binding PRF as defined in Appendix D). To bind the
message to the proof, we use a signature-of-knowledge style methodology [CL06].

More precisely, we start from a one-way function f : S — P, which we use
to define the relation between public and secret keys, i.e., so that pky = f(sksx).
In addition we carefully choose a PRF F, which maps to the secret key space S.
At the core of our DAPS construction we use a NIZK proof to prove consistency
of the secret signing key, as well as the correctness of the secret sharing. For this
proof we define an language L with associated witness relation R in the following
way:

((pk):7 ﬁ7cv a, Z)v (Ska SkPRF7 p)) € R+~
p = F(skprp,a) A z=pp—+sks A c= F(skprr,8) N pky = f(sks)

In this statement we cover three aspects: First, we prove that the polynomial for
Shamir’s secret sharing is derived from the address and that the secret share is
correctly calculated. Second, we prove the relation between the secret and public
key of the signature scheme. Third, we “commit” to the PRF secret key using a
fixed-value key-binding PRF. The full scheme is depicted in Scheme 1.



KGenp(17): Fix a signature scheme ¥ = (KGeng, Signy, Verifyy), a value-key-binding
PRF F : S x D — R with respect to 8 € D. Let skprr <= S, and crs < Setupp (1%).
Let ¢ = F(skprr, ). Set skp < (sks, skprr), pkp < (pky,crs, 8, ¢).
Signp (skp, m): Parse skp as (sks,skprr) and m as (a, p).
1. p ]:(SkPRH (l)
2. z < pp + sks
3. m < Proofn(crs, (pks, B, ¢, a, z,m), (sks, skerr, p))
4. Return (z,7).
Verifyp (pkp, m, o) : Parse pkp as (pky,crs, 8, ¢), m as (a,p) and o as (z, 7).
1. Return Verifyp(crs, (pkg, 8, ¢, a, z,m), ).
Exp (pkp, m1, m2,01,02): Parse o; as (z,-), m; as (as, pi).
1. If m; and m2 are not colliding, return L
2. if Verifyp(pkp, ms, 05) = 0 for any 4, return L
3. let sky ¢ Z1P2=22P1
p2—p1
4. return sky

Scheme 1: Generic DAPS from 2.

It is important to note that the PRF needs to be compatible with the signa-
ture scheme, in the sense that secret-key space of ¥, i.e., S, and R match. For
simplicity, we assume that R = S. Additionally, the domain and codomain of
the PRF also define the message space of the DAPS. In the following theorem
we prove that Scheme 1 is an EUF-CMA-secure DAPS.

Theorem 1. If the NIZK proof system I is simulation-sound extractable, F is
a PRF, and f is an OWF, then Scheme 1 provides EUF-CMA security.

Proof. We prove this theorem using a sequence of games. We denote the winning
event of game G; as S;. We let Qs be the number of signing oracle queries.

Game 0: The original game.
Game 1: As before, but we modify KGenp as follows:
KGenp(17): As before, but let |(crs,7') — Sl,n(l”‘)‘ and store .
Transition 0 = 1: Both games are indistinguishable under adaptive zero-knowl-
edge of the proof system, i.e. | Pr[Sp] — Pr[S1]| < Advi{gn(m).
Game 2: As Game 1, but we modify Signp as follows:

Signp(sk,m): As before, but let |7T + San(ers, 7, (pks, B, ¢, a, z,m))‘.
Transition 1 = 2: Both games are indistinguishable under adaptive zero-knowl-
edge of the proof system, i.e. | Pr[S;] — Pr[S3]| < Advi'fs’,-,(n).
Game 3: As before, but we modify KGenp and Signp, as follows.

KGenp(17): As before, but let .

Signp (skp, m): As before, but let .
Transition 2 = 3: We engage with a PRF challenger C against F. We modify
Signp as follows:

KGenp(1%): As before, but let |e <= C(B)|
Signp (skp, m): As before, but let m.




Thus an adversary distinguishing the two games also distinguishes the PRF
from a random function, i.e. | Pr[Sy] — Pr[S3]| < Advp g (k).
Game 4: As before, but we modify Signp as follows.
Signp(skp, m): As before, but track all (a, p) pairs in Q.
We abort if there exists (a1, p), (a2, p) € Q such that a; # as.

Transition 3 = 4: Both games proceed identically, unless the abort event hap-
pens. The probability of the abort event is bounded by !/|Rr|, i.e. | Pr[S5] —
Pr[S4]| < @=/Ir|.

Game 5: As before, but we modify Signp as follows.

Signp(skp,m): As before, but let .

Transition 4 = 5: This change is conceptional. Note that p is uniformly ran-
dom and not revealed, and thus z is uniformly random.

Game 6: As before, but we modify KGenp as follows:

KGenp(1%): As before, but let ‘(crs, T,8) 817|-|(1”)‘ and store |(7, )|
Transition 5 = 6: Both games are indistinguishable under simulation-sound
extractability of the proof system, i.e. | Pr[Sg] — Pr[S5]| < Advixfgﬂ(n).
Game 7: As before, but we now use the extractor to obtain sky < & n(crs, &,

(pks, B, ¢, a,z,m), m) and abort in case the extraction fails.

Transition 6 = 7: Both games proceed identically, unless we abort. The prob-
ability of that happening is bounded by the simulation-sound extractablity
of the proof system, i.e. | Pr[S7] — Pr[Ss]| < Advi()tg,n(m).

Reduction. Now we are ready to present a reduction which engages with an
OWF challenger C. In particular, we obtain a challenge and embed it in the
public key, i.e.

KGenp(1%): As before, but .

Once the adversary returns a forgery, we extract sky and forward the solution to
the OWF challenger. Hence Pr[S7] < Adva\’/\}F (k), which concludes the proof. O

We now show that Scheme 1 also provides wDSE security. We note that in
the proof of Theorem 2 we do not need to simulate proofs, so a weaker extrac-
tion notion would suffice. The proof of Theorem 1, however, already requires
simulation-sound extractability which is why we directly resort to simulation-
sound extractability.

Theorem 2. If the NIZK proof system [ is simulation-sound extractable and
the PRF F is computationally fived-value-key-binding, then Scheme 1 provides
wDSE security.

Proof. We prove this theorem using a sequence of games. We denote the winning
event of game G; as S;. Let m1, mo, 01,02 denote the output of A. For simplicity
we write m; = (a,p;), 0; = (z;,7;) for j € [2]. Now, we have proofs attesting
that z; = pp; + sks for j € [2].

Game 0: The original game.
Game 1: As before, but we modify KGenp as follows:



KGenp(17): As before, but let |(crs, T) Sl,n(l”)‘ and store .
Transition 0 = 1: Both games are indistinguishable under adaptive zero-knowl-
edge of the proof system, i.e. | Pr[Sp] — Pr[S1]| < Advi{gn(n).
Game 2: As before, but we modify KGenp as follows:

KGenp(17): As before, but let ‘(CI’S,T, &) + 517|-|(1")‘ and store .
Transition 1 = 2: Both games are indistinguishable under simulation-sound
extractability of the proof system, i.e. | Pr[Se] — Pr[S;]]| < AdvE{(,tglvn(/s).
Game 3: As before, but we now use the extractor to obtain (sk)*:d»7 skERF)j) —

Enlers, &, (pks, B, ¢, a, zj,m;), m) for j € [2] and abort if the extraction fails.
Transition 2 = 3: Both games proceed identically, unless we abort. The prob-
ability of that happening is bounded by the simulation-sound extractablity
of the proof system, i.e. | Pr[S3] — Pr[Ss]| < 2+ Adv 2 (k).
Game 4: As before, but we abort if skprr # skpgg ; for any j € [2].
Transition 3 = 4: Both games proceed identically, unless we abort. Let j € [2]
be such that skprr 7# skprg ;- We bound the abort probability using F. Let
C be a computational fixed-value-key-binding challenger. We modify KGenp
as follows:
KGenp(1%): As before, but let |(skpgrg, £)| < C.
Then we have that F(skprr, 3) = F(skpge ;, ), hence we forward skpge ; to
C. Thus we built an adversary B against fixed-value-key-binding of F, i.e.
| Pr[Sy] — Pr[Ss]| < Advig s (k) = &(k).

As we have now ensured that the correct PRF secret key was used to generate p
from a, sky is now uniquely determined via the secret sharing. Thus the adversary
can no longer win, i.e. Pr[S4] = 0. O

Extension to NAPS. Following the ideas outlined in [DRS18b], Scheme 1
can be extended to an N-time authentication-preventing signature scheme by
changing the sharing polynomial pX + sky to a polynomial of degree N —1 with
coefficients p1,...,pn—1 obtained from the PRF via p; = F(skprr, al|?).

Instantiations. The requirement on the signature scheme are very weak, yet
finding a suitable combination of primitives can be difficult. Thus we discuss
some possible instantiations. One candidate scheme on top of which the DAPS
extension can be applied is Picnic [CDGT17a,CDG*17b]. In Picnic the pub-
lic key pky is the image of the secret key sky under a one-way function built
from LowMC [ARST15,ARS™16]. Signatures are then generated by proving this
relation using a NIZK from ZKB++ made non-interactive. In this case it is
straight forward to use the block cipher LowMC (denoted by £) as PRF by
setting F(s,z) = E(s,z) @ . We argue that this PRF can also be considered
a computational fixed-value-key-binding PRF, since it is reasonable to assume
that finding a new key which maps one particular input to one particular output
is no easier than generic key search. Furthermore, when increasing the block size
of LowMC relative to the key size, the existence of second key mapping to the
same output becomes increasingly unlikely.

The circuit for the secret sharing can either be implemented using a binary
circuit realizing the required arithmetic, or, more efficiently, by computing the



sharing bit-wise. For the latter, we consider p, p and sky as n bit values, and
compute secret shares z; = p;p; + sky ; for each bit ¢ € [n]. Thus only n ANDs
are required to implemented the secret sharing. All in all Picnic signatures can
be easily extended to a DAPS without requiring extensive changes. We also
note that the Fiat-Shamir transformed ZKB++ is in fact simulation-sound ex-
tractable NIZK proof systems as confirmed in [DRS18a]. Using the signature size
formulas, we can estimate DAPS signatures sizes at around 408 KB, meaning
there is a overhead of 293 KB compared to Picnic signatures requiring roughly
115 KB in the ROM targeting 256 bit classical security. Analogously to the
QROM security of Picnic, Unruh’s transform [Unr12,Unr15,Unr16] can be used
to obtain QROM security for the DAPS construction.

Also hash-based signatures such as SPHINCS [BHH'15] are well suited for
this construction. Similar to the case of Picnic, the PRF can be instantiated
using LowMC. However, the consistency proof is more expensive, as computing
the public key requires multiple evaluations of hash functions.

Relying on Structured Hardness Assumptions. The situation is different
for signature schemes relying on structured hardness assumptions, e.g., those
in the discrete logarithm setting such as Schnorr signatures [Sch89], ECDSA
and EADSA [BDL*12]. While they would fulfill the requirement for the secret-
key-to-public-key relation, i.e., here working in a group G with generator g the
OWTF is of the form f(z) := g”, the problem is finding an efficient NIZK proof
system to prove statements over Z, and in a prime order group G simultaneously.
Furthermore the NIZK proof system would also need to support statements
over binary circuits for the PRF evaluation. Recently, Agrawal et al. [AGM18|
made progress in this direction, enabling non-interactive proofs of composite
statements for relations over multiple groups and binary circuits. Using these
techniques to construct DAPS is an interesting open problem.

4 Extending Any Signature Scheme Using DAPS

Finally, we follow a different direction for our second approach. Here we start
from an already existing DAPS and use it to extend any unforgeable signature
scheme to a DAPS. Interestingly, both the unforgeability and extraction follow
in a black-box way from the signature scheme and the underlying DAPS, re-
spectively. In this construction, the secret key consists of the secret keys of the
underlying DAPS and signature scheme. To guarantee extraction of the full se-
cret key, we apply the technique of Bellare et al. [BPS17] and encrypt the key
of the signature scheme using a one-time pad derived from the secret key of the
DAPS scheme. The public key then consists of that encrypted key and the public
keys of the underlying DAPS and signature scheme. However, for extraction of
maliciously generated keys, i.e., DSE*-security, this means that public keys need
to be extended with a NIZK proof that the encryption was performed correctly.
For the sake of simplicity, we thus concentrate on the DSE security of the scheme.
We present the compiler in Scheme 2.

In the following theorem we formally state that the DAPS construction in
Scheme 2 yields an EUF-CMA-secure DAPS.



KGenp(17): Fix some signature scheme ¥ = (KGeng, Signy, Verifyy) and some DAPS
DAPS = (KGenp, Signp, Verifyp, Exp) with verifiability of keys. Let (sks,pky)
Y KGens(1%), (sk,pk) <« DAPS.KGenp(1®), Y <« sks & H(sk), and return
(SkDa ka) = ((Skz, Sk)v (Pk):, pk, Y))
Signp (skp, m): Parse skp as (sks, sk).
1. oo < X.Signy(sks,m)
2. o1 < DAPS.Signp(sk,m)
3. Return o = (09,01)
Verifyp (pkp, m, o) : Parse pkp as (pky, pk, -), and return 1 if all of the following checks
hold and 0 otherwise:
— X.Verifys (pk, (a,p)) =1
— DAPS . Verifyy (pkp, (a,p)) =1
Exp (pkp, m1,m2,01,02): Parse pkp as (pky, pk, Y'), obtain sk < DAPS.Exp (pk, m1, m2,
o1,02) and sky « Y @ H(sk), and return skp = (sks, sk).

Scheme 2: Black-Box Extension of any Signature Scheme to DAPS.

Theorem 3. If Y is unforgeable, DAPS is unforgeable and provides verifiability
of keys, then the DAPS construction in Scheme 2 is unforgeable in the ROM.

The theorem above is proven in Appendix E.1. Additionally, Scheme 1 provides
DSE-security if the underlying DAPS provides it as well.

Theorem 4. If DAPS provides DSE-security, then the construction of DAPS in
Scheme 2 provides DSE-security as well.

The theorem above is proven in Appendix E.2.
5 Conclusion

In this work, we close two important gaps in the literature on DAPS. First, we
present a generic DAPS construction, which, in contrast to [DRS18b], does not
come with the drawback of a polynomially bounded address space. Our con-
struction only relies on assumptions related to symmetric key primitives, which
is why we also obtain a candidate for a post-quantum DAPS construction. Sec-
ond, we also present an alternative generic construction of DAPS which basically
shows how to bring DAPS features to any signature scheme. This is of particu-
lar practical importance, as it allows to extend arbitrary signature schemes with
double signature extraction features. As our compiler works by using an arbi-
trary DAPS scheme to extend a given signature scheme in a black-box way, this
yields more efficient DAPS than previously known for standardized and widely
used signature schemes such as ECDSA or EdDSA.
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A DSE* Security of DAPS

We recall the DSE* security notion of DAPS. The game is depicted in Figure 6,
where in contrast to Figure 3 the keys are generated by the adversary.

Definition 10 (DSE* [PS14]). For a PPT adversary A, we define the advan-
tage function in the sense of double-signature extraction under malicious keys
(DSE*) as

DSE* DSE*
AdVA,DAPs(’i) =Pr EXPA,DAPS(“) =1

where the corresponding experiment is depicted in Figure 6. If for all PPT ad-
versaries A there is a negligible function (-) such that

AdvEBaps (1) < £ (k).

then DAPS provides DSE*.

EXPZSBLPS(H):
(pkp, m1,m2,01,02) < A(1")
return 0, if m; and mg are not colliding
return 0, if Verifyy (pkp, ms, 0¢) = 0 for any i € [2]
skp < Exp(pkp,m1,m2,01,02)
return 1, if sk’ is not the secret key corresponding to pkp
return 0

Fig. 6: DSE* security for DAPS.

B J-Protocols

Let L C X be an NP-language with associated witness relation R so that L =
{z | Jw: R(z,w) =1}. A Y-protocol for language L is defined as follows.

Definition 11. A X -protocol for language L is an interactive three-move pro-
tocol between a PPT prover P = (Commit, Prove) and a PPT wverifier V =
(Challenge, Verify), where P makes the first move and transcripts are of the form
(a,c,s) € A x Cx S. Additionally they satisfy the following properties:

Completeness A X -protocol for language L is complete, if for all security pa-
rameters k, and for all (x,w) € R, it holds that

Pr[(P(1%,z,w),V(17,2)) = 1] = 1.



Special Soundness A X -protocol for language L is special sound, if there exists
a PPT extractor € so that for all x, and for all sets of accepting transcripts
{(a,ci,si) bigpz) with respect to x where ¢ # ca, generated by any algorithm
with polynomial runtime in K, it holds that

Prw <« (1%, z,{(a,ci,si) }iepy) : (z,w) € R] > 1 —e(k).

Special Honest-Verifier Zero-Knowledge A Y -protocol is special honest-
verifier zero-knowledge, if there exists a PPT simulator S so that for every
x € L and every challenge c from the challenge space, it holds that a tran-
script (a, c,s), where (a,s) <+ S(1%,x,c) is indistinguishable from a transcript
resulting from an honest execution of the protocol.

C NIZK Security Properties

Definition 12 (Completeness). A non-interactive proof system for language
L is complete, if for all k € N, for all crs « Setupp(1%), for all x € L, for
all w such that R(xz,w) = 1, and for all © < Proofn(crs, z, w), we have that
Verifyp (crs,z, m) = 1.

This captures perfect completeness.

Definition 13 (Soundness). For an efficient adversary A, we define the ad-
vantage function in the sense of soundness as

crs < Setupp (17%), . Verifyp(crs,z,m) =1

Sound .
Advin® (k) = Pr (z,7) « Alcrs) NxgL|"

If for any efficient adversary A there exists a negligible function e(-) such that
AV (r) < e(x),
I is sound.

Definition 14 (Adaptive Zero-Knowledge). For an efficient simulator S =
(81, 82) and an efficient adversary A, we define the advantage functions in the
sense of zero-knowledge as

AdVE™, 1 (k) = ‘Pr [crs «+ Setupp (1) : A(ers) = 1] — ‘

Pr(crs, 7) < S1(17%) : A(ers) = 1]
and

1
Adviis (k) = ‘Pr [EXP%&H(“) - 1} 2

where the corresponding experiment is depicted in Figure 7. If there exists an
efficient simulator S = (81, 82) such that for any efficient adversary A there
exist negligible functions e1(+) and 2() such that

AdV?AiTgyn(K,) <e1(k) and Advi'fs,n(/f) < ea(k)

then N provides adaptive zero-knowledge.



EXPi\K,s,n("‘@):
b+« {0,1}
(crs, 7) < S1(17)
b* 4 AP (crs)
where oracle Pg on input (z,w):
return 7w <— Proofp(crs, z, w), if (z,w) € R
return L
and oracle Py on input (z,w):
return m < Saz(crs, 7, 2), if (z,w) € R
return L
return 1, if b = b*
return 0

Fig. 7: Adaptive Zero-Knowledge

Definition 15 (Simulation-Sound Extractability). For an adaptively zero-
knowledge non-interactive proof system I, for an efficient extractor extractor
E = (&1,&) and an efficient adversary A, we define the advantage functions in
the sense of simulation-sound extractability as

Ad"Etx,té’n(K) _ ‘Pr [(crs, 7) « S1(1%) : Alcers) = 1] ’

Pr(crs, 7, &) < &1(17%) : A(crs) = 1]
and
1
AdvEﬁEM;@) =Pr [Exp%tg,n(/s:) = 1} ~3
where the corresponding experiment is depicted in Figure 8. If there exists an

efficient extractor £ = (£1,&2) such that for any efficient adversary A there
exist negligible functions e1(-) and e2(-) such that

Adviftgl’n(m) <ei(k) and Advi?’n(m) < es(k)

then N provides simulation-sound extractactability.

C.1 NIZK from Y-Protocols

To convert a X-protocol to a NIZK, Setupp (17) fixes a hash function H : AxX —
C, sets crs < (k, H) and returns crs. The algorithms Proofp; and Verifyy are
defined as follows:

Proofn(crs, z,w): Start P on (17,2, w), obtain the first message a, answer with
c < H(a,x). Finally obtain s and return 7 < (a,s).

Verifyp(crs,z, 7): Parse 7 as (a,s). Start V on (17, z) and send a as first message
to the verifier. When V outputs c, reply with s and output 1 if V accepts
and 0 otherwise.

Combining [FKMV12, Thm. 1, Thm. 2, Thm. 3, Prop. 1] (among others) shows
that a so-obtained proof system is complete, sound, adaptively zero-knowledge,



EXPE\XE,H(”)i

(crs, 7, &) < &E1(17)

Qs =10

(x*, w*) + ASC) (crs)

where oracle S on input (z,w):

Qs + Qs U{(z,w)}
return w < Sa(crs, 7, 2), if (z,w) € R
return L

w <+ Ex(ers, &,z ")

return 1, if Verifyp(crs,z*,7%) = 1A (2%, 7%) € Qs A (2", w) € R

return 0

Fig. 8: Simulation-sound extractability

if the underlying X'-protocol is special sound and the commitments sent in the
first move are unconditionally binding. Security of the Fiat-Shamir transform
in the quantum-accessible ROM (QROM) requires stronger properties of the X-
protocols [Unrl7], however Unruh’s transform [Unr12,Unr15,Unr16] can be used
to obtain QROM-secure NIZKs from X-protocols.

D One-way Functions and Pseudorandom Function Fami-
lies

We recall the definitions of one-way functions and pseudorandom function (fam-

ilies).

Definition 16 (OWF). Let f : S — P be a function. For a PPT adversary A
we define the advantage function as

AV (k) = Pr [z 4% 5,2% « A(L", f(2)) : f(x) = f(A7)].

The function f is one-way function (OWF) if it is efficiently computable and for
all PPT adversaries A there exists a negligible function (-) such that

Adva\f\}F (k) < e(k).

Definition 17 (PRF). Let F : S x D — R be a family of functions and let
I be the set of all functions D — R. For a PPT distinguisher D we define the
advantage function as

AdVERE (1) = ‘Pr [s &8, DFEI (A7) — Prlf &£ 1 Df<‘>(1”)} ‘ .

F is a pseudorandom function (family) if it is efficiently computable and for all
PPT distinguishers D there exists a negligible function e(-) such that

Adviy (k) < (k).

Below, we provide a slightly stronger variant of a definition of a notion introduced
in [CMR98,Fis99].



Definition 18 (Fixed-Value-Key-Binding PRF). A PRF family F : S x
D — R and a B € D, is fixred-value-key-binding if for all adversaries A

Pr [s&S,S'(—A(S,B)2.7:(8,5):}—(5/’6) A 57&5/] =0.

Moreover, we present a relaxed (computational) version of the above definition.

Definition 19 (Computational Fixed-Value-Key-Binding PRF). For a
PREF family F : S x D — R and a f € D, we define the advantage function of a
PPT adversary A as

Adij}yB(n) = Pr [5 &S, s A1, 5,8) : F(s,B) = F(s',8) A s# s'} .

F is computationally fixed-value-key-binding if for all PPT adversaries there
exists as negligible function e(-) such that

Advf{f}yB(/ﬁ) =¢e(k).

E Security Proofs
E.1 Proof of Theorem 3

Proof. To prove the theorem above, we proceed in a sequence of games where
we play ExpEﬁiE‘é%A(m) with the DAPS in Scheme 1 and adversary A.

Game 0: The original unforgeability game.

Game 1: As Game 0, but we choose Y uniformly at random and abort as soon
as A queries the random oracle H on sk with VKey(sk, pk) = 1.

Transition 0 = 1: Let this event be called E. The distributions in Game 0 and
Game 1 are identical unless F happens. We bound the probability of F to
happen by constructing an adversary B with

Advis paps () = Pr[E].

To do so, we honestly generate (sky,pky) and engage in an experiment
Exp%EJ,gA(,:pl\s/'A(/f) to obtain pk for DAPS. We choose Y uniformly at random,
and set (skp,pkp) + ((skg, L), (pks,pkp,Y)). Whenever a signature for
DAPS is required, we use the signing oracle provided by Expgfj&%'\s/m(m). If
E happens, we have that VKey(sk, pk) = 1, which—by the correctness of
DAPS—means that we can choose an arbitrary unqueried message m from
the message space of DAPS which satisfies the winning condition, and output
(m, DAPS.Signp(sk,m)) as a forgery for DAPS. All in all, we thus have that
| Pr[So] — Pr[S1]] < AdVETSAA (k).

Reduction. Now we are ready to show that the winning probability in Game 1
is bounded by maX{Adv%lf,FiCMA(/i), Adv%ﬁfﬁ%’}ﬂé(m)}. To do so, we construct
two reductions which use A to construct By or By respectively. Both By and
By will succeed whenever A succeeds.

B; : In this case, we engage in an experiment Exp%?ECMA(n) to obtain pky.
We choose Y uniformly at random, obtain (sk, pk) <~ DAPS.KGenp(1%)

and set (skp, pkp) < ((L,sk), (pks, pk,Y)). Whenever a ¥ signature is



required, the signature is obtained using the oracle provided by the
experiment. If the adversary eventually outputs a forgery (m*,o*) =
(m*, (0f,07)) we output (m*, o) as a forgery to win Expg?SfCMA(n).
Clearly, Advil’)gacr!\feAl(/i) < Adv%?ECMA(K).

Bs : In this case, we engage in an experiment Exp%ﬁfﬁ%’,\)@(m) to obtain pk. We
choose Y uniformly at random, obtain (skg, pky) < X.KGenz(1%) and
set (skp, pkp) < ((skg, L), (pks, pk,Y)). Whenever a DAPS signature
is required, the signature is obtained using the oracle provided by the
experiment. If the adversary eventually outputs a forgery (m*,o*) =
(m*, (o§,07)) we output (m*,o]) as a forgery to win Exp%‘;f[;f\,“,"_cf‘(n).

EUF-CMA EUF-CMA
Clearly, Adv 4 Game 1(5) < Advg, paps (k).

All in all, we now have Pr[Sp] = Advile’ACP'\gA(m) < maX{AdvE;?SECMA(/Q),
Adv%ﬁfﬁ%’},ﬂ?(n)} + AdvEL,iE'S(f%A(n) which concludes the prove. O

E.2 Proof of Theorem 4

Proof. We prove this theorem using a reduction. Assume that A breaks DSE-
security of Scheme 1. We build a DSE adversary B against DAPS: When B
is started on the secret key sk and public key pk of DAPS, we compute the
key pair of X honestly, i.e., (skg,pky) < X.KGens(1%). Then, we compute
the combined public key by extending it with Y «+ sky @ H(sk). Now, we
start A on the combined key-pair (sks,sk), (pky,pk,Y). Once A returns col-
liding messages m1,mz and signatures o1 = (01,0,01,1), 02 = (02,0,02,1), for-
ward the messages with the corresponding DAPS signatures o1 1,021 to B. Let
(sky, sk*) < Exp((pks, pk, Y), m1,ma, 01, 02). Since, by definition, the adversary
needs to output (sky,sk™) # (sks, sk), it follows that sky # sky or sk* # sk. If we
have sk™ = sk, we have that sky =Y & H(sk) = sky since Y was set up honestly.
Hence we have sk® # sk, so B wins the DSE-security game if A wins it, which
concludes the proof. O
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