
Privacy-preserving linkage/revocation of VANET
certificates without Linkage Authorities

Marcos A. Simplicio Jr.1, Eduardo Lopes Cominetti1, Harsh Kupwade Patil2,
Jefferson E. Ricardini1,2, Leonardo T. D. Ferraz1 and Marcos Vinicius M.

Silva1

1 Escola Politécnica, Universidade de São Paulo, Brazil,
{mjunior,ecominetti,lferraz,mvsilva}@larc.usp.br

2 LG Electronics, USA,
{harsh.patil,jefferson1.ricardini@lge.com}@lge.com

Abstract. Vehicular communication (V2X) technologies are expected to be common
in the future, providing better transportation safety and efficiency. However, their
large-scale deployment requires addressing some challenges. In particular, to prevent
abuse by drivers and by the system itself, V2X architectures must: (1) ensure
the authenticity of messages, which is usually accomplished by means of digital
certification; and (2) preserve the privacy of honest users, so owners of non-revoked
certificates cannot be easily identified or tracked by eavesdroppers. A promising
solution for managing V2X-oriented certificates in an efficient manner is the Security
Credential Management System (SCMS), which is among the main candidates for
standardization in the United States. In this paper, aiming to enhance and address
issues in the SCMS architecture, we provide three main contributions. First, we
describe and fix two birthday attacks against SCMS’s certificate revocation process,
thus preventing the system’s security degradation with the number of issued and
revoked certificates. In addition, we describe a mechanism for improving the flexibility
of revocation, allowing certificates and their owner’s privacy to be temporarily revoked
in an efficient manner; this functionality is useful, for example, in case of vehicle
theft or kidnapping. Finally, we propose a method that simplifies SCMS’s system
architecture, removing the need for the so-called Linkage Authorities (LAs); this not
only results in cost reductions for SCMS’s implementation, but also improves its
security and privacy due to the removal of one potential point of failure/collusion.
Keywords: No keywords given.

1 Introduction
The past decade has witnessed a surge in digital technologies embedded in physical objects,
leading to what today we know as the Internet of Things (IoT). This trend has also reached
the automotive industry, which has shown a growing interest in exploring interaction
models such as Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I) and Vehicle-to-
Pedestrian (V2P), collectively referred to as Vehicle-to-Everything (V2X) communications
[1].

V2X enables several applications aimed at improving transportation safety, efficiency,
and human to machine interaction [2]. For example, information classified as Basic Safety
Messages (BSMs) – which include velocity, direction and brake status – can help drivers
to keep a safe distance from other vehicles while maintaining a suitable speed. Actually,
onboard systems can evaluate such information and, if an accident appears to be imminent,
the vehicle itself can provide (semi-)automatic responses to prevent it in a timely manner.

mailto:{mjunior,ecominetti,lferraz,mvsilva}@larc.usp.br
mailto:{harsh.patil,jefferson1.ricardini@lge.com}@lge.com

2 Privacy-preserving linkage/revocation of VANET certificates without LAs

These prospects are among the motivations behind a recent publication by the United
States Department of Transportation (USDOT) [3] mandating that vehicles should be
capable of exchanging BSMs with each other.

Albeit promising, the large scale deployment of V2X requires addressing some challenges,
especially security and privacy concerns [4]. More precisely, V2X architectures are expected
to: (1) ensure the legitimacy of messages exchanged between vehicles, banning users in case
of misbehavior; and (2) preserve the anonymity of honest users, so their movements cannot
be easily tracked by any entity. One common approach for fulfilling these requirements is
to create a Vehicular Public-Key Infrastructure (VPKI) [4][5]. In this case, the system’s
security involves issuing digital certificates to vehicles, so they can sign their own messages.
Such certificates can, however, be revoked if the system detects some misbehavior, such as
the transmission of invalid messages (e.g., due to a malfunction or for malicious purposes).
Vehicles are then expected to verify the authenticity of received messages, acting upon
them only if signed by a non-revoked peer.

Ensuring the vehicles’ privacy, in turn, requires the vehicles’ certificates to be devoid
of any information that identifies their owners. Otherwise, by monitoring when and where
messages signed by vehicles are broadcast, an eavesdropper can track a given target. One
promising approach to alleviate such issues is to rely on pseudonym certificates [6], in
which random-like strings play the role of identifiers. By signing different messages with
distinct pseudonym certificates, those messages cannot be linked to the same vehicle,
thus preserving the sender’s privacy. Pseudonym certificates are usually short-lived (e.g.,
valid for one week), which contributes to their owner’s privacy and facilitates revocation.
The usage of traditional, long-term credentials is then reserved for situations in which a
vehicle must be identified, such as proving that it is authorized to obtain new pseudonym
certificates. The frequent renewal of pseudonym certificates should be avoided, though,
because vehicles are not expected to constantly have access to a reliable network connection.
Hence, vehicles are usually provisioned with batches of pseudonym certificates covering
current and future time periods, thus enabling their operation for a long time (e.g., years)
[7][8].

Among the many pseudonym-based security solutions for V2X (see [6] for a survey),
one of the most prominent is the Security Credential Management System (SCMS) [7][9].
Indeed, this solution is currently considered a leading candidate for protecting vehicular
communications in the United States [9]. One of the main merits of SCMS is that
vehicles can obtain arbitrarily large batches of (short-lived) pseudonym certificates from a
Pseudonym Certificate Authority (PCA) by means of a single, small-sized request sent to a
Registration Authority (RA). This process is such that, unless RA and PCA collude, they
are unable to link a pseudonym certificate to its owner, nor to learn whether two pseudonym
certificates belong to the same vehicle. In case of abuse, however, the misbehaving vehicle’s
privacy is annulled, while its pseudonym certificates are revoked altogether by placing a
small piece of information in a Certificate Revocation List (CRL). To accomplish this,
SCMS requires RA and PCA to collaborate with at least two Linkage Authorities (LAs),
which supply the information inserted into pseudonym certificates for enabling such an
efficient revocation procedure.

Motivated by this growing practical interest in SCMS, some recent studies unveiled
opportunities for enhancing its design, proposing novel or alternative procedures for
tackling identified issues [8][10][11]. In this article, we contribute to this research effort by
presenting three independent improvements to SCMS’s certificate revocation and linkage
approach, enhancing its security and flexibility while reducing the underlying architecture’s
complexity. Specifically, (1) while the original SCMS focused just on the permanent
revocation of devices, we describe an efficient method that enables vehicle revocation and
linkage for a limited time. Such capability is useful, for example, when vehicles need to be
temporarily suspended, or when aiding in investigations by law enforcement authorities.

Marcos A. Simplicio Jr., Eduardo Lopes Cominetti, Harsh Kupwade Patil, Jefferson E.
Ricardini, Leonardo T. D. Ferraz and Marcos Vinicius M. Silva 3

In addition, (2) we show that SCMS’s revocation procedure is prone to attacks built
upon the birthday paradox to degrade the VPKI’s security over time. We then propose
an alternative method that addresses this issue with minimal overhead. Finally, (3) we
describe a mechanism that simplifies SCMS’s overall architecture, removing the need for
LAs. Namely, we modify SCMS’s design in such a manner that the LAs’ roles can be
securely played by PCA and RA, thus avoiding the additional point of failure/collusion
represented by LAs in the original SCMS. This article extends and consolidates our previous
study, published in [12], in which building such an LA-free solution was left as a topic for
future work.

The remainder of this paper is organized as follows. Section 2 lists the notation and
main symbols employed in the document. Section 3 discusses some related works, giving
a broad view of the state of the art on V2X security and privacy. Section 4 describes
SCMS, focusing on its key linkage and revocation process. Section 5 presents our first
contribution, an efficient method for enabling the temporary revocation and linkage of
certificates. Section 6 shows how to build and fix birthday attacks against SCMS’s key
linkage, which is our second contribution. Our third contribution is described and analyzed
in Section 7, in which we show how to build an LA-free SCMS. Section 8 summarizes and
concludes the article.

2 General notation
For convenience, we list in Table 1 the symbols and general notation adopted in this paper.

When cryptographic algorithms are mentioned, we assume standardized schemes are
adopted, providing a security level of at least 128 bits. In particular, the following
algorithms are considered safe for use in modern systems: symmetric encryption (i.e., using
secret keys) is performed with the AES block cipher [13] whereas asymmetric encryption
(i.e., using public/private key pairs) is done with ECIES [14]; the hashing algorithm may
be either SHA-2 [15] or SHA-3 [16]; and digital signatures are generated and verified with
ECDSA [17] or EdDSA [18][19].

3 V2X security and privacy: state of the art
Following the emergence of V2X, many proposals have appeared in the literature aiming
to fulfill its security and privacy requirements. Notably, approaches based on pseudonym
certificates seem to be promising, and are being considered in standardization efforts
[20][21]. Existing schemes rely on a variety of security primitives, including asymmetric,
identity-based, and symmetric cryptography, as well as on group signatures (for a survey,
see [6]). In what follows we discuss some recent works, focusing on how they handle a
vehicle’s revocation, giving an overview of the state of the art.

The Pseudonym scheme with User-Controlled Anonymity (PUCA) [22] was designed to
ensure that the end users’ privacy is preserved even when multiple system entities collude.
PUCA assumes that each vehicle is equipped with a trusted module, which manages
long-term enrollment certificates, cryptographic keys and pseudonyms. This module is
also responsible for handling revocation: if a vehicle misbehaves, the system broadcasts
an order of self-revocation (OSR) to the corresponding pseudonym; the trusted module
responsible for that pseudonym is then expected to halt its operation. With this approach,
the users’ privacy is preserved even in case of misbehavior, since there is no need to
identify the real users behind revoked pseudonyms. One potential issue, however, is that
malicious users might somehow discard OSR messages addressed to them or tamper with
the trusted module, thus avoiding revocation. In addition, PUCA was designed to prevent
pseudonym certificates from being linked together, which might be reasonable if V2X itself

4 Privacy-preserving linkage/revocation of VANET certificates without LAs

Table 1: General notation and symbols

Symbol Meaning
G The generator point for an elliptic curve group G
r A random value
sig A digital signature
cert A digital certificate
U,U Public signature keys (stylized U : reserved for PCA)
u, U Private keys associated to U and U (respectively)
S, s Public and private caterpillar keys for signature
E, e Public and private caterpillar keys for encryption
Ŝ, ŝ Public and private cocoon keys for signature
Ê, ê Public and private cocoon keys for encryption
β Number of cocoon keys in a batch of certificates
la_id ID of a Linkage Authority (LA)
` Number of LAs (typically two)
ls, lh Linkage seed and linkage hook, respectively
lv, plv Linkage value and pre-linkage value, respectively
τ Number of time periods covered by a batch of certificates
t Index of a time period among the τ possible
σ Number of certificates valid in each time period
c Index of a certificate among the σ possible
υ Number of different key usages in a time period
f1, f2 Pseudorandom functions
Enc(K, str) Encryption of bitstring str with key K
Hash(str) Hash of bitstring str
str1 ‖ str2 Concatenation of bitstrings str1 and str2

did not lead to new threats. Unfortunately, however, this is not the case because malicious
users can abuse the V2X capabilities to deliberately cause accidents or facilitate robbery
(e.g., inducing vehicles to take a detour or reduce their speed by informing a fake road
accident). This is the reason why most V2X solutions argue in favor of revocable privacy
as a requirement (e.g., [7][8][11]).

One interesting solution aimed at certificate revocation in the V2X scenario is the Issue
First Activate Later (IFAL) scheme [23]. IFAL provides mechanisms based on “activation
codes”, bitstrings that are required for the computation of any pseudonym certificate’s
private key. As long as a revoked vehicle does not receive the activation codes for pseudonym
certificates obtained prior to revocation, it is prevented from using those certificates even
if they are still valid. Non-revoked vehicles can then periodically request the activation
codes for their own certificates, whereas requests from revoked vehicles are ignored. This
results in a reduction of the CRLs’ sizes, since entries corresponding to that vehicle (or
to its pseudonyms) do not need to remain in the CRL. Two similar-purpose solutions,
Binary Hash Tree based Certificate Access Management (BCAM) [8] and Activation
Codes for Pseudonym Certificates (ACPC) [11], achieve an equivalent reduction on the
size of CRLs while introducing a more efficient process for distributing activation codes.

Marcos A. Simplicio Jr., Eduardo Lopes Cominetti, Harsh Kupwade Patil, Jefferson E.
Ricardini, Leonardo T. D. Ferraz and Marcos Vinicius M. Silva 5

Notation

SCMS Manager

Policy Technical

Root CA

Intermediate
CA

Certification
Services

Enrollment
CA

Pseudonym
CA

Request
Coordination

Registration
Authority

Device Conf.
Manager

Location
Obscurer Proxy

Linkage
Authority 1

Linkage
Authority 2 CRL Store

CRL
Broadcast

Intrinsically
Central

Not Intrinsically
Central

Device 1 Device 3Device 2

Misbehavior Authority

Internal
Blacklist
Manager

Global
Detection

CRL
Generator

Regular communication

Out-of-band communication

Figure 1: Overview of SCMS’s architecture. Source: [7].

Namely, activation codes can be computed from a small piece of information broadcast
by a Certificate Access Manager (CAM), so vehicles are not required to explicitly request
them. ACPC is advantageous over BCAM, though, in particular: better security, due to
the fact that a dishonest CAM cannot track vehicles even if it colludes with other system
entities (unlike BCAM); and a considerably smaller processing and bandwidth usage. Since
IFAL, BCAM and ACPC aim to reduce the number of identifiers placed in CRLs, without
affecting how these identifiers are constructed or organized, they can actually be seen as
complementary to the mechanisms hereby presented.

Finally, the Security Credential Management System (SCMS), originally proposed in
[7] and later extended in [9], is one of the main proposals in the literature for dealing with
revocable privacy while preventing non-colluding system entities from tracking devices.
These security properties are expected to hold in the so-called “honest-but-curious” threat
model: even though the system’s entities follow the correct protocols when issuing and
revoking pseudonym certificates, they might engage in passive attacks, trying to use the
information acquired during the protocols’ execution to their advantage (e.g., to track
vehicles) [4]. Since SCMS is one of the leading candidates for protecting V2X security in
the US [7][9], and the proposed improvements are built upon its certificate linkage and
revocation procedure, we analyze the latter more closely in Section 4.

4 The Security Credential Management System
In SCMS, each vehicle receives two types of certificates: an enrollment certificate, which
has a long expiration time (e.g., years) and identifies legitimate devices; and multiple
pseudonym certificates, each valid for a short time period (e.g., a few days), so σ > 1
certificates of this type are valid simultaneously. For privacy reasons, vehicles are expected
to frequently change the pseudonym certificate employed for signing messages, thus avoiding
tracking by eavesdroppers. However, the value of σ should be limited to avoid “sybil-like”
attacks [24], in which one vehicle pretends to be a platoon by signing multiple messages
with different pseudonyms [25][26]. For example, if traffic lights give higher priority to

6 Privacy-preserving linkage/revocation of VANET certificates without LAs

congested roads, such a fake platoon might receive preferential treatment while driving on
lightly loaded roads.

SCMS’s design is such that batches of pseudonym certificates can be efficiently dis-
tributed to vehicles, as well as revoked in case of misbehavior by their owners. The basic
architecture that gives support to these capabilities involves the following entities (see
Figure 1 for the complete architecture and [7] for the description of all of its elements):

• Registration Authority (RA): handles requests for batches of pseudonym certificates.
It acts as a proxy, turning a vehicle’s request carrying a single public key into multiple
individual requests for the PCA, with distinct keys. Requests from different vehicles
are shuffled together, thus preventing the PCA from linking groups of certificates to
the same requester. In addition, when revocation is required, the RA helps identifying
the corresponding certificates.

• Pseudonym Certificate Authority (PCA): issues batches of pseudonym certificates
to the vehicles in response to requests by RAs. The PCA randomizes the public
keys placed inside the certificates and encrypts its responses, thus ensuring that RAs
do not learn the contents of those certificates (and, thus, cannot easily track the
corresponding vehicles). During the revocation process, it also collaborates with the
RA for identifying which request generated the pseudonym certificate under scrutiny.

• Misbehavior Authority (MA): monitors the system for signs of misbehavior. When a
misbehaving vehicle is identified, its pseudonym certificates are linked together and
revoked, along with the corresponding enrollment certificate. This is accomplished
by placing that vehicle’s information into a Certificate Revocation List (CRL). As
a result, messages signed by that vehicle are not considered valid anymore, and it
becomes unable to request new pseudonym certificates.

• Linkage Authority (LA): generates linkage values that are inserted in the pseudonym
certificates, as well as placed in the CRL for efficiently revoking them.

Different organizations should run those authorities, aiming to reduce the probability of
collusion [27]. Also, like SCMS, we hereby assume a “dishonest-if-allowed” security model
[11]. This means that authorities may engage not only in passive attacks, but also actively
run protocols differently than specified, as long as: (1) some advantage is gained as a
result (e.g., the ability to track vehicles), and (2) such misbehavior goes undetected with
high probability. Nonetheless, authorities are not expected to abuse their own capabilities
(e.g., RAs and PCAs would not request or issue certificates for unauthorized vehicles).
In this article, we specifically consider the following attacks under this security model:
passive attacks by RAs, PCAs, or third parties; RAs taking advantage of their position
as proxy to modify or replay messages; and, although SCMS’s design is such that the
system’s privacy cannot resist a collusion between RAs and PCAs or between two LAs [7],
we aim to prevent any privacy degradation due to an RA-LA collusion. We note that this
assumption is stronger than the “honest-but-curious” security model found in some V2X
systems [4], in which the protocols cannot be subverted.

Such entities participate in SCMS’s two main procedures: the “butterfly key expansion”,
by means of which pseudonym certificates are issued to vehicles; and “key linkage”, which
allows the revocation of those certificates in case of misbehavior. For completeness, we
describe both procedures in what follows, although our proposed improvements are targeted
specifically at SCMS’s key linkage.

4.1 Butterfly key expansion
SCMS’s butterfly key expansion process allows vehicles to obtain arbitrarily large batches
of (short-lived) pseudonym certificates by means of a single, small-sized request. It involves

Marcos A. Simplicio Jr., Eduardo Lopes Cominetti, Harsh Kupwade Patil, Jefferson E.
Ricardini, Leonardo T. D. Ferraz and Marcos Vinicius M. Silva 7

S E

S E

S0 E0

...

U0

+ f1 , f2

+r0

+ metadata

cert0

(encrypted & signed)

^ ^
S1 E1
^ ^ Sβ-1 Eβ-1

^ ^

butterfly key expansion

Encrypt

VEHICLE

RA

PCA

RA

S0 E0
^ ^

Sign

(shuffled) (shuffled)

Sign

U1

+r1

+ metadata

cert1

(encrypted & signed)

S1 E1
^ ^

Sign

cert1:

Sign

Uβ-1

+rβ-1

+ metadata

certβ-1

(encrypted & signed)

Sβ-1 Eβ-1
^ ^

Sign

Uβ-1certβ-1:

Sign

cert0:

Encrypt Encrypt

U0

U0

U0

U1

U1

U1

Uβ-1

Uβ-1response

f1, f2 f1, f2 f1, f2

(deshuffled)

(batch)

U0U0Ui

Figure 2: SCMS’s butterfly key expansion and certificate generation.

the following steps, which are illustrated in Fig. 2. First, the vehicle generates two pairs
of caterpillar private/public keys, (s, S = s ·G) and (e, E = e ·G), for randomly picked s
and e. In addition, the vehicle also instantiates two pseudorandom functions (PRF), f1
and f2, which are sent to the RA together with the public caterpillar keys S and E.

The RA, in turn, uses S and f1 to generate β public cocoon signature keys Ŝi =
S+f1(i) ·G, where 0 6 i < β for an arbitrary value of β. Similarly, E and f2 are employed
in the computation of β public cocoon encryption keys Êi = E + f2(i) ·G. Pairs of cocoon
keys (Ŝi, Êi) corresponding to different vehicles are then shuffled together by the RA before
being individually sent to the PCA.

Upon reception of a (Ŝi, Êi) pair from the RA, the PCA creates the vehicle’s pseudonym
certificates. Assuming an explicit certification model (as opposed to implicit certificates
[28]), the vehicle’s public signature key is computed as Ui = Ŝi + ri ·G, for a random value
ri. The resulting Ui is then inserted into a certificate certi together with the required
metadata meta (e.g., the corresponding validity period and linkage values, as described
later in Section 4.2). Finally, the PCA digitally signs certi = (Ui, meta) with its own
private key U, uses Êi to encrypt both the signed certificate and the value of ri, and once
again signs the result before relaying it to the RA. As a result, only the requesting vehicle
can decrypt the PCA’s response with the private decryption key e+ f2(i). By doing so,
the vehicle learns the public signature key Ui, and then computes its corresponding private
signature key ui = s+ ri + f1(i).

This process preserves the vehicles’ privacy as long as there is no collusion between RA

8 Privacy-preserving linkage/revocation of VANET certificates without LAs

and PCA. After all, by shuffling the public cocoon keys from different vehicles together,
the RA prevents the PCA from linking groups of keys to the same device. Unlinkability of
public keys towards the RA, in turn, is ensured because RAs never learn the value of certi
from the PCA’s encrypted response. Finally, by signing its response the PCA prevents
Man-in-the-Middle (MitM) attacks by the RA, which could otherwise replace the vehicle’s
cocoon encryption key Êi with an arbitrary key Ê∗i , decrypt the PCA’s response, and then
reencrypt the (now known) certificate certi with the correct Êi [10].

4.2 Key linkage
The revocation process in SCMS avoids creating large CRLs: by placing a small piece
of information in a CRL, SCMS allows multiple certificates from a vehicle to be linked
together. This is accomplished by including linkage values (lv) as part of the pseudonym
certificates’ metadata, as described in what follows.

Suppose the RA needs to create a batch of pseudonym certificates covering τ time
periods, with σ pseudonym certificates valid per period, so the batch size is β = τ · σ. In
this case, the RA chooses ` > 2 LAs, and requests from each of them β pre-linkage values
plvi(t, c), where 0 6 t < τ and 0 6 c < σ.

In response to the RA’s request, LAi picks a random 128-bit linkage seed lsi(0). Then, it
iteratively computes a τ -long hash chain [29] of the form lsi(t) = Hash(la_idi ‖ lsi(t−1)),
where la_idi is LAi’s identifier, ‖ denotes concatenation, and 1 6 t < τ . Each linkage seed
lsi(t) obtained in this manner is then employed in the computation of σ pre-linkage values
plvi(t, c) = Enc(lsi(t), la_idi ‖ c). Finally, every plvi(t, c) is truncated to a suitable
length, individually encrypted and authenticated1 using a key shared between PCA and
LAi, and sent to the RA.

After receiving the LAs’ responses, the RA simply includes this (encrypted) information
in the pseudonym certificate request sent to the PCA, so plvi(t, c) (for 1 6 i 6 `)
accompanies the c-th request for a pseudonym certificate that should be valid at time
period t. The PCA, after decrypting the pre-linkage values and verifying their authenticity,
computes the linkage value lv(t, c) by XORing those pre-linkage values together. In the
usual case, which consists of two LAs, the linkage value for the c-th certificate and time
period t is then computed as lv(t, c) = plv1(t, c) ⊕ plv2(t, c).

With this approach, whenever the MA notices that a pseudonym certificate was involved
in some malicious event, certificates from the same owner can be revoked altogether. This
requires the collaboration of the PCA, RA, and LAs, as follows. First, the PCA associates
the lv informed by the MA to the original pseudonym certificate request from the RA. The
PCA then sends this information, as well as the corresponding pre-linkage values plvi(t, c),
to the RA. Subsequently, the RA does the following: (1) identifies the vehicle behind the
original request, placing its enrollment certificate in a blacklist to prevent it from obtaining
new pseudonym certificates; and (2) asks LAi to identify the linkage seed lsi(0) from
which plvi(t, c) was computed. Each LAi responds with lsi(ts), so the revocation (and,
consequently, privacy loss) starts being valid at time period ts. For example, ts might
be the current time period, or the time period when the misbehavior was first detected.
The linkage seeds lsi(ts) provided by the LAs are then placed in a public CRL. This
allows any entity to compute lv(t, c) for time periods t > ts, identifying which certificates
correspond to a CRL entry. Such mechanism ensures forward privacy: the misbehaving
vehicle’s certificates for current and future time periods are revoked, and messages signed
with the corresponding keys can be traced back to that vehicle; messages signed in past
time periods cannot be linked, though, preserving the user’s privacy prior to the detection
of the malicious activity.

1 Authentication and freshness are not explicitly mentioned in [7][9]. However, they are important
properties to prevent a dishonest RA from delivering a forged or reused plv without contacting LAi. This

Marcos A. Simplicio Jr., Eduardo Lopes Cominetti, Harsh Kupwade Patil, Jefferson E.
Ricardini, Leonardo T. D. Ferraz and Marcos Vinicius M. Silva 9

lsi(0)

plvi(0,0)

Enc Enc

Hash
...

Hash Hash

...

...

plvi(0,σ-1)

LAi

plvi(1,0)

Enc Enc

...

...

plvi(1,σ-1) plvi(τ-1,0)

Enc Enc

...

...

plvi(τ-1,σ-1)

lsi(1) lsi(τ-1)

Figure 3: SCMS’s key linkage tree: LAi generates the linkage seeds (ls) and pre-linkage
values (plv) employed for certificate revocation/linkage.

lsi(0)

plvi(0,0)

...

...

...

plvi(0,σ-1)

LAi

plvi(1,0) ...

...

plvi(1,σ-1) plvi(τ-1,0) ...

...

plvi(τ-1,σ-1)

lsi(1) lsi(τ-1)

lhi(0) lhi(1) lhi(τ-1)

lhi(t)

lhi(t,0) lhi(t,υ-1)

...

...

Hash0 Hash0 Hash0

Hash1 Hash1 Hash1

Figure 4: Linkage tree with linkage hooks.

4.2.1 Processing costs

In terms of complexity, SCMS’s revocation process is such that, if the VPKI involves `
LAs, a total of ` pre-linkage values need to be inserted in to the CRL for each revoked
device. Hence, the CRL size grows linearly with the number of revoked devices, not with
the number of revoked certificates. Such mechanism is useful not only for saving bandwidth,
but also because the larger the number of entries in a CRL, the higher the processing
overheads for checking a certificate’s revocation status. More precisely, for each CRL entry
published at time period ts, verifying whether it covers a given certificate involves the
computation of two components:

a) lsi(tc): it takes ` · (tc − ts) hashes to compute lsi(tc) from lsi(ts), where 1 6 i 6 `
and tc is the time period in which the verification is performed. This cost may be reduced
by means of pre-computation, i.e., if the vehicle always keeps the updated version of the
linkage seeds, lsi(tc), besides the original ones provided in the CRL. Nevertheless, to cope
with the lack of a system-wide time synchronization [23], devices may actually need to
keep a slightly older linkage seed in memory; for example, by keeping lsi(tc − ε) for a
small ε, it is possible to compute lsi(tc) with only ε hashes.

b) plvi(tc, c): ` · σ encryptions are required to compute plvi(tc, c) from lsi(tc), since
the certificate under analysis may be any out of σ that are valid in the current time period
With enough memory, however, the latency of this process can be reduced to ` via the
pre-computation of a look-up table with all σ possible entries for each lsi(tc) in the CRL.

5 A more flexible revocation/linkage procedure: linkage
hooks

One shortcoming of SCMS is that it only allows the permanent revocation of users, via
the disclosure of the linkage seed for the current time period. This can be seen in Fig. 3,
which shows a graphical representation of the dependencies between linkage seeds and
pre-linkage values in the linkage tree: as indicated by the directed arrows, the disclosure
of linkage seed lsi(ts) allows anyone to compute the pre-linkage values associated to it,
plvi(ts, ·), as well as linkage seeds for subsequent time periods and their corresponding
pre-linkage values.

misbehavior would allow the RA to track vehicles, as further discussed in Section 7.1.

10 Privacy-preserving linkage/revocation of VANET certificates without LAs

Even though permanent revocation is indeed a critical use case for key linkage in
V2X communications, in some situations it is also important that a small set of messages
exchanged among vehicles can be traced to their origin. For example, when handling
traffic accidents, the messages sent by the vehicles involved in the event may be useful
for law enforcement authorities, so they can understand its causes (and, possibly, identify
culprits) [25]. Similarly, a hijacked car might have its privacy temporarily suspended.
This would allow nearby vehicles and roadside units to identify all messages coming from
it and, thus, track its movements. In the original SCMS, this could be accomplished
if the identifiers for all certificates belonging to that time period are placed in a CRL.
For improved performance, however, it would be interesting to enable this temporary
tracking by means of a single CRL-like entry, similarly to what happens with permanent
revocations.

Aiming to enable the temporary revocation of vehicles, while still maintaining SCMS’s
overall approach, we propose a slight modification to the construction of linkage trees. In
the proposed scheme, illustrated in Fig. 4, we create one extra layer to the linkage tree: a
linkage hook lhi(t) is inserted between any linkage seed lsi(t) and its corresponding pre-
linkage values plvi(t, ·). This is accomplished by applying a hash function with different
suffixes attached to their inputs when deriving linkage seed lsi(t+ 1) and linkage hook
lhi(t) from the same lsi(t) (e.g., a ‘0’ suffix for linkage seeds, and a ‘1’ suffix for linkage
hooks). As a result, the disclosure of lhi(ts) allows the recovery of every plvi(ts, ·), but
not of any plvi(t, ·) for t 6= ts. This simple modification is, thus, enough to grant the
VPKI the ability to link and/or revoke all certificates from a given time period.

In terms of performance, the added flexibility introduced by linkage hooks incurs only a
small overhead when compared to the original SCMS scheme. Namely, in any time period,
a single extra hash function call is required for verifying whether a device’s certificates were
permanently revoked, for computing the corresponding linkage hook. Checking whether a
certificate was temporarily revoked with a linkage hook, on the other hand, is as costly as
verifying if it was (permanently) revoked in SCMS.

5.1 Possible extensions

As a side note, it is worth mentioning that the same concept can be further extended to
address other use cases, such as a scenario in which only a part of the certificates from
a given time period need to be linked/revoked. For example, suppose that the system’s
certificates must have υ different purposes, so they display distinct “key usage” fields (like
in regular X.509 certificates [30]) even though they share the same validity period. This
feature might be the useful, e.g., for protecting the identity of official vehicles: whenever
they do not need (or want) to be identified, they could use their regular pseudonym
certificates, identical to those issued to other vehicles; however, when they need to prove
their status as official vehicles (e.g., aiming to get traffic priority), they would sign their
messages with special-purpose certificates.

In this scenario, one possible approach for allowing the independent revocation/linkage
of such different-purpose certificates is to create distinct linkage trees, one for each key
usage. Then, the certificates sharing the same purpose could be revoked altogether as
usual, by inserting ` linkage hooks (for temporary revocation) or seeds (for a permanent
revocation) in a CRL. However, revoking all certificates belonging to a vehicle would lead
to υ times more data placed in CRLs. Conversely, a more efficient revocation can be
obtained by adding one extra level to the linkage tree, with lhi(t) linking the multiple
lhi(t, 0) . . . lhi(t, υ − 1). Hence, if all certificates from a given time period need to be
linked/revoked, then lhi(t) would be disclosed as usual; conversely, if only certificates of a
certain type needed to be linked/revoked, then the disclosure of the corresponding linkage
hook would suffice.

Marcos A. Simplicio Jr., Eduardo Lopes Cominetti, Harsh Kupwade Patil, Jefferson E.
Ricardini, Leonardo T. D. Ferraz and Marcos Vinicius M. Silva 11

6 Building (and preventing) birthday attacks against SCMS’s
key linkage process

One issue with SCMS’s key linkage and revocation procedure is that it is prone to attacks
built upon the birthday paradox to degrade the VPKI’s security over time, allowing the
recovery of linkage seeds that have not been placed in CRLs. This issue appears during
the computation of linkage seeds and of pre-linkage values derived from them. In this
section, we describe both issues in detail and show how they can be fixed altogether by
modifying the linkage tree’s internal structure.

6.1 Birthday attacks on pre-linkage values
In SCMS, multiple plvs are computed by encrypting the same plaintext, under different
k-bit keys. Namely, for all users, the c-th pre-linkage value valid on a given time period t,
plvi(t, c) is computed by LAi as Enc(lsi(t), la_idi ‖ c), using the linkage seed lsi(t) as
encryption key.

This procedure allows the construction of a key recovery attack typical of a multi-key
setting [31][32], as follows. First, the attacker picks 2n distinct keys lsji , where 0 6 j < 2n.
Then, the attacker performs 2n encryptions to build a table of the form {plvji , lsji}, where
plvji = Enc(lsji , la_idi ‖ c) for a target la_idi and a fixed 0 6 c < σ. According to the
birthday paradox, if the attacker can gather a total of 2m pre-linkage values computed
by LAi for the same index c, at least one of those pre-linkage values will match a plvji
in the attacker’s table with a high probability as long as m+ n > k [31]. Except in the
very unlikely case of equivalent keys, whenever there is a match for {plvji , lsji} it is safe
to assume that lsji corresponds to the linkage seed employed for the computation of that
pre-linkage value.

Since the 2m pre-linkage values employed in the attack can refer to different vehicles
and time periods, as long as they receive the same index in that time period and come
from the same LAi, the security of the system for a given choice of k degrades as time
passes and LAi serves more devices. To give some concrete numbers, suppose that 1
million pre-linkage values equally indexed by a given LA are disclosed in one year of the
VPKI’s operation, meaning that m ≈ 20. That would be the case, for example, if 20,000
vehicles receive batches of pseudonym certificates in the first week of the year, meaning
that pre-linkage values for ≈ 50 weeks become available for the attack. In that case, even
if that LA adopts a modern security level of k = 128 bits, in the span of one year the
system’s security against such collision attacks drops to k −m = 108 bits. Albeit still
high enough to prevent most practical attacks, this security level is below the minimum
currently recommended by NIST, of 112 bits [33]. In practice, this may end up limiting
the lifespan of LAs for a given security threshold, in particular because the recovery of a
given lsi(ts) allows the computation of any subsequent lsi(t) for t > ts. Therefore, the
effects of such key-recovery could be quite serious to the affected vehicles’ privacy.

Fortunately, SCMS is not completely defenseless against this attack, for at least two
reasons. The first is that, by design, only the PCA has access to the raw pre-linkage values
not included in CRLs, whereas the device’s certificates contain only linkage values (i.e., the
XOR of two or more pre-linkage values). Hence, even though the PCA is able to perform
the aforementioned attacks, external entities are in principle prevented from doing so. The
second is that the cipher’s output is actually truncated for the computation of plvi(t, c)
(namely, in [7], the authors suggest using the 8 most significant bytes of AES). This should
produce many partial matches on the attacker’s table, leading to multiple candidates for
the correct linkage seed lsi(t). Nevertheless, these candidates could still be filtered with
a certain probability if the attacker has access to additional pre-linkage values related
to the same linkage seed. For example, from plvi(t, c) and plvi(t + 1, c), the attacker

12 Privacy-preserving linkage/revocation of VANET certificates without LAs

obtains, respectively, one set of candidates for lsi(t) and one for lsi(t + 1); incorrect
candidates can then be filtered out if they do not satisfy lsi(t+ 1) = Hash(la_idi ‖ lsi(t)).
Alternatively, if the pre-linkage values obtained are plvi(t, c) and plvi(t, c′), with c′ 6= c,
two tables can be built: one of the form {Enc(lsji , la_idi ‖ c), lsji} and the other of the
form {Enc(lsji , la_idi ‖ c′), lsji}, for the same group of 2n keys lsji ; each table leads to a
different set of candidates for lsi(t), and candidates not appearing in both sets can be
eliminated.

6.2 Birthday attacks on linkage seeds
A second attack that can be perpetrated against SCMS, aimed specifically at its forward
privacy property, builds upon the fact that the k-bit long linkage seeds are computed via
iterative hashing, using a fixed prefix for each LA, i.e., lsi(t) = Hash(la_idi ‖ lsi(t− 1)).
More precisely, to discover lsi(t < ts) from a given lsi(ts) placed in a CRL, an attacker
can proceed as follows. First, the attacker picks 2n random values lci,α(0), where n is a
chosen parameter and 0 6 α < 2n/τ . Each lci,α(0) is then used as the anchor for a hash
chain of the form lci,α(j) = Hash(la_idi ‖ lci,α(j − 1)), where 1 6 j < τ∗ and τ∗ is the
length arbitrarily chosen by the attacker for its chains. For example, the attacker could set
τ∗ = w× τ for a small w, so the created chains’ length would be close to the length of hash
chains from the target LAi. For simplicity, we assume that all lci,α(j) computed in this
manner are distinct for any j and α, i.e., that no collisions occur; in this case, the attacker
obtains 2n hash chains at the cost of τ∗ × 2n hash computations. In practice, though,
collisions could be handled simply by merging the corresponding hash chains, so the total
number of chains would be smaller and some of them would be longer than others.

Once again due to the birthday paradox, an attacker who gathers 2m linkage seeds
computed by LAi has a high probability of finding a match between at least one of those
linkage seeds and some previously computed lci,α(j) if m + n + lg(τ∗) > k. If a match
occurs for lsi(ts) and lci,α(j), then a previous linkage seed lsi(ts − ε) will also match
lci,α(j − ε). Assuming lci,α(j − ε) is actually the pre-image of lsi(ts − ε+ 1), and not a
second pre-image, this would allow the attacker to associate non-revoked certificates to
the same device and, thus, violate the system’s forward privacy.

This attack can be performed both by internal and external entities, using pre-computed
hash chains for selected LAs; after all, it requires only access to linkage seeds from (public)
CRLs and to the LAs’ identifiers. Since the 2m linkage seeds employed for this purpose
can refer to any device and time period, once again the system’s security degrades as time
passes and certificates from devices served by the same LAi are included in CRLs. Thus,
for security reasons, the lifespan of a given LAi may become limited by the choice of k
and by the number of devices revoked with the participation of LAi.

6.3 Protection against birthday attacks: security strings
One straightforward approach for addressing the birthday attacks described in Sections
6.1 and 6.2 would be to increase the linkage seed size. For example, one could adopt
192-bit linkage seeds, thus matching the second lowest key size supported by the AES
block cipher. In that case, even after gathering 264 linkage seeds or pre-linkage values,
the attack’s cost would still be 2192−64 = 128. We note, however, that this approach
does not actually eliminate the aforementioned security degradation. Instead, it only
delays this issue, preventing the system from reaching a low security level too quickly.
Furthermore, larger key sizes also lead to some undesirable overheads. Specifically, a total
of 16 bytes added to each CRL entry (8 bytes per linkage seed); in addition, computing
any plv would be approximately 20% more processing-consuming, since AES-128 and
AES-192 encryption involve, respectively, 10 and 12 rounds. Hence, this simplistic solution
is actually sub-optimal both in terms of security and performance.

Marcos A. Simplicio Jr., Eduardo Lopes Cominetti, Harsh Kupwade Patil, Jefferson E.
Ricardini, Leonardo T. D. Ferraz and Marcos Vinicius M. Silva 13

lsi(0) lsi(1) lsi(τ-1)

Hash2 Hash2

Hash0
...

Hash0 Hash0

...

lhi(0)

Hash1

...

lhi(1)

Hash1

...

lhi(τ-1)

Hash1

lhi(t)

lhi(t,0) lhi(t,υ-1)

Hash1 Hash1

...

...

plvi(0,0) plvi(1,σ-1)plvi(1,0) plvi(τ-1,σ-1)plvi(τ-1,0)...plvi(0,σ-1)

depth: 0

depth: 1

depth: 2

 count: 0 ... count: σ-1 count: 0 ... count: σ-1 count: 0 ... count: σ-1

t: 0 t: 1 ... t: τ-1LAi

Hash2 Hash2 Hash2 Hash2

Figure 5: A more secure certificate linkage tree: adding security strings.

Table 2: Components of security strings

Field
Suggested

Description
length (bits)

depth 8
Node’s depth in tree (all linkage seeds are at depth
0, as shown in Fig. 5)

count 8
Node’s index in time period and depth (starting
at 0, as shown in Fig. 5)

t 24 Time period to which the node is associated
tree_id 40 Tree identifier (unique per tree from a given LA)
la_id 16 LA’s identifier
Total 96 Whole security string

To address birthday attacks in a more effective and efficient manner, preventing any
security degradation rather than masking it, we propose a slightly different process for
building linkage trees. Our proposal consists basically in using hash functions whose inputs
include a “security string”, i.e., a different suffix for each hash function invocation, for the
generation of pre-linkage values, linkage seeds, and linkage hooks (if the latter are present).
As originally discussed by Leighton and Micali [34] in the context of hash-based signatures
[35], such security strings limit the attackers’ ability to use the birthday paradox in their
favor, effectively thwarting the aforementioned birthday attacks. When applied to SCMS’s
linkage tree, the security string I can be built taking the tree’s structure into account, as
shown in Fig. 5. More precisely, each node receives a different value of I based on the
linkage tree’s identifier and on its location inside that tree. For this purpose, the fields
shown in Table 2 can be employed, leading to I = la_id ‖ tree_id ‖ t ‖ count ‖ depth.

Using this security string, the linkage seeds, linkage hooks and pre-linkage values are
computed by LAi as follows:

• Linkage seeds: lsi(0) is picked at random, and lsi(t) = Hash(lsi(t− 1) ‖ la_id ‖
tree_id ‖ t− 1 ‖ 0 ‖ 0).

• Linkage hooks: they are all computed as lhi(t) = Hash(lsi(t) ‖ la_id ‖ tree_id ‖ t ‖
0 ‖ 1).

• Pre-linkage values: they are all computed as plvi(t, c) = Hash(lhi(t) ‖ la_id ‖
tree_id ‖ t ‖ c ‖ 2).

We emphasize that this approach is generic enough to accommodate further changes
to the linkage tree’s structure, simply by modifying the composition of the security strings.
For example, suppose that more intermediate linkage hooks are added to give support to
additional key usages, as discussed in Section 5. In this case, the security string’s count
parameter is simply adjusted to the linkage hook’s position in the tree.

14 Privacy-preserving linkage/revocation of VANET certificates without LAs

128

98

108
112

1-year batch, 20k vehicles
è 220 plv for attack (by PCA)

1-year batch, 20M vehicles
è 230 plv for attack (by PCA)

SCMS with security strings

NIST-recommended minimum

SCMS without
security strings

20 30 lg(number of ls or plv disclosed)

A
tt

ac
k

co
st

 ,
in

 b
it

s
(a

ss
u

m
in

g
1

2
8

-b
it

 ls
)

Figure 6: Long-term protection of security strings against birthday attacks.

6.4 Security analysis
Against the approach hereby proposed, the birthday attacks described in Sections 6.1 and
6.2 would proceed as follows. First, the attacker builds a large table containing entries of
the form {hj = Hash(strj , I), strj} for a fixed security string I and for arbitrary k-long
bit strings strj , where 0 6 j < 2n for some n. Then, if some k-long linkage seed lsi(t)
matches hj , the attacker is able to recover the corresponding pre-image strj , which should
match lsi(t− 1) with high probability. A similar reasoning applies if the match occurs for
a linkage hook lhi(t) or for a pre-linkage value plvi(t, c), whose pre-images reveal lsi(t)
and lhi(t), respectively.

Like before, the birthday paradox dictates that finding at least one match with high
probability requires 2m tests for m + n > k. Since I is used only once in the system,
however, the attacker can only perform one test per I, meaning that the attack would work
in practice only for n ≈ k. If k is chosen appropriately (e.g., k = 128), the construction of
such table with 2k entries becomes computationally unfeasible. In addition, if the value
of tree_id is unpredictable by attackers, they would not be able to pre-compute (parts
of) such look-up table before one node in the corresponding tree is revoked. In this case,
tree_id provides additional security similarly to what is done by salts in the context of
password hashing [36]. Fig. 6 illustrates this long-term protection against birthday attacks,
when compared to the original SCMS.

Finally, it is interesting to note that SCMS does use something similar to a security
string in its design. Namely, it includes la_id in the derivation process employed for
creating pre-linkage values and linkage seeds. This avoids security issues that might arise
from collisions among data produced by different LAs. Therefore, the approach hereby
proposed can be seen as an extension of the SCMS design, improving even further its
resilience against birthday attacks.

6.5 Performance considerations
Adding a security string I to the computation of the linkage tree’s nodes has little impact
on processing as long as the hash function’s input fits its block size. For example, SHA-256
operates on 512-bit blocks, appending at least 65 bits to its input message (a bit ‘1’
for padding, and a 64-bit length indicator) [15]; therefore, a single call to its underlying
compression function is enough to process a 128-bit linkage seed, linkage hook or pre-linkage
value even when it is combined with a 319-bit security string.

Marcos A. Simplicio Jr., Eduardo Lopes Cominetti, Harsh Kupwade Patil, Jefferson E.
Ricardini, Leonardo T. D. Ferraz and Marcos Vinicius M. Silva 15

On the other hand, parts of the security string need to be published in the CRLs
together with the corresponding linkage seeds or linkage hooks. Therefore, its length
should be limited to avoid unnecessary communication overheads, motivating the parameter
lengths suggested in Table 2. Specifically, the depth and count fields correspond to counters,
so they do not need to be explicitly included in the CRL: it suffices to indicate whether
the entry refers to a linkage seed or a linkage hook to determine whether depth = 0 or
depth = 1, respectively, and in both cases count starts at zero. The LA’s identifier la_id
and the time period t are likely to be explicitly shown, although multiple CRL entries in
which these fields are identical may be grouped together under the same data structure,
thus avoiding the need of repeating them. In addition, those fields would also have to
be shown in SCMS, so they do not represent any extra overhead when compared to the
original scheme. In [9], the suggested length of la_id is 16 bits, hence the size hereby
proposed.

The tree_id field is, thus, the only actual added by the proposed solution when
compared to SCMS. The reason is that it should be unique for each CRL entry from the
same LA, so it always appears explicitly. The choice of 40 bits for this field is justified by the
fact that this is the length suggested in the literature for vehicle identifiers [8]. Therefore,
this length should be enough for indexing any linkage tree ever created. Meanwhile, it
prevents the system’s security degradation with at most 62.5% of the overhead resulting
from the sub-optimal solution of increasing the system’s key sizes. Actually, in some cases
this overhead does not even need to be exactly 40 bits per linkage seed in CRL entry. For
example, if tree_id assumes the form of a serial number starting at 0, one can omit or
compress its leading zeros to save space in CRLs. Alternatively, tree_id might be built by
the RA itself as a concatenation of (1) its own identifier, (2) a serial number and (3) one
bit b = 0 or b = 1 for discerning between LA1 and LA2, respectively. In that case: the
RA can ensure that each LA’s tree_id remains unique, simply by using different serial
numbers for different vehicles; the serial number can replace the two values of tree_id
(one for each LA) that, otherwise, would need to be placed in the CRL; and the bit b can
be inferred simply by the order in which the LA’s information (i.e., linkage hooks or seeds)
are placed in the CRL. The result would then be 40 bits per CRL entry, which is 31.25%
of the 16 bytes incurred in a solution relying on larger key sizes.

As a final remark, it is interesting to note that one can obtain a zero-overhead solution
by simply omitting tree_id entirely. Even though this extreme approach would be unable
to fully prevent birthday attacks, the resulting system’s security would still be higher
than what is provided by SCMS. The reason is that, since t remains as part of the hash
function’s input, any table mapping hashes to their pre-images would be bound to a specific
time period. More precisely, suppose that some hash h(t1), computed from t1 and part of
the attacker’s table, matches a linkage seed lsi(t2) from a vehicle. If t1 6= t2, then the
pre-images of h(t1) and lsi(t2) inevitably differ, since the former is computed from t1 − 1
and the latter from t2 − 1. An analogous argument applies to a linkage hook lhi(t2) and
to a pre-linkage value plvi(t2, c), the difference being that the pre-images for both would
involve t2, whereas h(t1) would take t1. As a result, the system’s security only degrades
with the number of vehicles whose linkage trees share the same time period, not with
the size of linkage trees as in the original SCMS. This also means that, unlike in SMCS,
attacking any given time period would require the construction of a distinct pre-image
table, forcing attackers to divide their resources if their goal is to attack multiple time
periods.

7 Linking certificates without Linkage Authorities
In the original SCMS design, even though a single LA cannot identify which set of
certificates belong to the same device, it is trivial for LAs in collusion to do so: after

16 Privacy-preserving linkage/revocation of VANET certificates without LAs

all, they are responsible for creating and storing pre-linkage values, so these entities can
easily compute a certificate’s linkage value by combining their knowledge. This is actually
the basis of SCMS’s efficient revocation process, so at first sight this might be seen as
unavoidable given the scheme’s design goals. Unfortunately, however, this represents an
extra point of collusion in the VPKI, in addition to the one already presented by PCAs
colluding with RAs during the creation of certificates (independently of any linkage values
thereby enclosed). Even worse: as described in this section, there are many possible ways
by which a dishonest RA or PCA can collude with a single LA and, as a result, gain
the ability to track vehicles. The solution hereby presented, which eliminates LAs as
independent entities, is aimed at reducing this attack surface while preserving the system’s
ability to revoke/linking misbehaving vehicles.

7.1 Privacy issues involving LAs
Besides the straightforward collusion between LAs for learning linkage values, there are a
few other ways to exploit their existence as separate entities aiming to violate the system’s
privacy. Namely, we describe three possible attacks: replay attacks by RA, RA-LA collusion
and PCA-LA collusion.

• Replay attacks by RA: as described in Section 4.2, in SCMS the RA is responsible
for relaying the LA-generated pre-linkage values, plv1 and plv2, to the PCA. Even
though both pre-linkage values are encrypted, so only the PCA learns their actual
values, the RA can still replay a (plv1, plv2) pair for some (or all) pseudonym
certificates from a target vehicle. If the PCA does not employ any mechanism for
identifying the freshness of such (encrypted) pre-linkage values, the corresponding
certificates would receive the same lv. Hence, a simple relationship is created
between those certificates. Fortunately, such a relationship is obvious enough to be
detectable by vehicles, which might refuse to use certificates that have the same lv:
after all, for k-bit long linkage values, such collisions occur only with a negligible
probability when the number of certificates is much smaller than 2k/2. Nevertheless,
variants of this attack would be harder to detect. In particular, suppose the RA
sends bogus pseudonym certificate requests to the PCA, containing (1) cocoon keys
for which the RA knows the decryption key, and (2) the same encrypted (plv1, plv2)
pair that will be used later when requesting certificates for a target vehicle. By
decrypting the bogus certificate, the RA learns the linkage value lv that is placed
on the target’s certificate, and can then associate that certificate to its owner. The
RA might even collect raw pre-linkage values, simply by replacing plv1 with a plv∗
that was previously revealed (e.g., due to a revocation); by doing so, the companion
plv2 in the bogus certificate request can be computed as plv2 = lv ⊕ plv∗. Unless
the PCA filters such replayed pre-linkage values, the vehicle itself would be unable
to defend from (or even detect) such attacks. Standard methods for checking data
freshness, however, may encumber the batch generation process: if timestamps are
used, an honest RA might be prevented from collecting many plv values from the
LAs for accelerating the certificate batching generation; if data freshness is enforced
via nonces, on the other hand, the PCA would need to store a large number of nonces
for each LA.

• RA-LA collusion: by colluding with LA1, the RA can provide a fresh plv1 and
replay a known value plv∗ from LA2. In that case, every linkage value lv(t, c) in the
target certificate takes the form lv(t, c) = plv1(t, c) ⊕ plv∗. Hence, even though
each lv(t, c) appears to be uncorrelated from the vehicle’s perspective, it would be
easy for RA and LA1 to identify certificates belonging to the same vehicle: it would
suffice to check whether lv(t, c) ⊕ plv∗ results in values of plv1(t, c) that belong to

Marcos A. Simplicio Jr., Eduardo Lopes Cominetti, Harsh Kupwade Patil, Jefferson E.
Ricardini, Leonardo T. D. Ferraz and Marcos Vinicius M. Silva 17

lv(t,c) = plv1(t,c) ⊕ plv2(t,c)

PCARA

LA1

[plvPCA(t, c)]PCA

{ plv1(t,c) }PCA

LA2

ls1(0) ls1(τ-1)

lh1(0)

plv1(0,0) ...

...

plv1(0,σ-1)

{ plv1(t,c) }PCA

ls2(0) ls2(τ-1)

lh2(0)

plv2(0,0) ...

...

plv2(0,σ-1)

PCA

lsPCA(0) lsPCA(τ-1)

lhPCA(0)

plvPCA(0,0) ...

...

plvPCA(0,σ-1)

[plvPCA(t,c)]PCA

RA

lsRA(0) lsRA(τ-1)

lhRA(0)

plvRA(0,0) ...

...

plvRA(0,σ-1)

...
cocoon keys, request ID,

{ plv1(t,c) }PC A , { plv2(t,c) }PC A (Shuffled)
cert

... ...
...

lv(t,c) = plvPCA(t,c) + plvRA(t,c)

...

+hom

cert

encrypted with PCA’s public key (and, ideally, signed by LA){ }PCA: homorphically encrypted with PCA’s public key[]PCA:

...(Shuffled)

cocoon keys, request ID,
[plvPC A(t,c) + plvRA(t,c)]PC A

[plvRA(t,c)]PCA

...

Figure 7: Using linkage values in SCMS (left) and in the LA-free approach proposed in
this article (right).

the same linkage tree. Once again, preventing such attack would require the PCA to
check the freshness of the (plv1, plv2) pair.

• PCA-LA collusion: the PCA could collude with LA1 to identify which values of plv1
belong to the same linkage tree upon the generation of the corresponding pseudonym
certificates. Like an RA-PCA collusion, this attack would remain undetectable by
any system entity or vehicle.

7.2 Generating linkage values without LAs
The proposed LA-free approach still relies on linkage values for correlating certificates
belonging to the same user, similarly to what is done in the original SCMS (see Fig. 7).
The linkage trees employed may encompass only linkage seeds and pre-linkage values, as
in Fig. 3, or also include linkage hooks for allowing temporary revocation of vehicles,
as depicted in Fig. 5. Whichever the case, however, it is the PCA who is responsible
for generating its own linkage trees, playing a role similar to LA1 in the system. Each
pre-linkage value in this tree is then encrypted by the PCA with its public key, using
an additively homomorphic encryption algorithm (e.g., the Paillier cryptosystem [37]).
Those pre-linkage values are associated to the same identifier tree_idPCAi , unique per
tree, and are then sent to the RA. As a result, the RA is able to recognize which set of
pre-linkage values {plvPCA(t, c)} belong to the same linkage tree, and also identify their
corresponding indices in that tree, t and c. Nevertheless, the RA is unable to decrypt any
given plvPCA(t, c), so it never learns any actual pre-linkage value.

Similarly, the RA also creates a set of linkage trees, playing a role analogous to LA2.
Then, whenever a new batch of certificates needs to be issued, the RA selects one of its own
trees, identified by tree_idRAi , and homomorphically adds its corresponding pre-linkage
values to those received from the PCA. The outcome is that the RA obtains a set of
(encrypted) linkage values of the form lv(t, c) = plvPCA(t, c)+plvRA(t, c), which can only
be decrypted by the PCA. The RA then delivers to the PCA those (encrypted) linkage
values, together with any other data normally included in the pseudonym certificate
issuance process (e.g., cocoon keys), using SCMS’s shuffling mechanism for mixing up
requests from different users. Finally, the PCA creates and signs the certificates as usual,
the only difference being that lv(t, c) is retrieved directly from the RA’s request, instead
of computed by XORing pre-linkage values provided by different LAs.

As a result of this process, even though PCA and RA create the pre-linkage values
without the intervention of any LA, they have no knowledge of which pre-linkage value

18 Privacy-preserving linkage/revocation of VANET certificates without LAs

is attached to each certificate (unless, of course, they collude). More precisely, the RA
does not learn any plvPCA(t, c) received from the PCA, since they are random-like values
encrypted with PCA’s public key; hence, the RA is unable to determine lv(t, c) despite
the fact that its computation involves the (known) pre-linkage value plvRA(t, c). The
PCA, in turn, is unable to determine which plvPCA(t, c) corresponds to a given lv(t, c)
received from the RA, since plvRA(t, c) acts as a random mask during the computation
of lv(t, c); therefore, assuming that the RA correctly shuffled the vehicles’ requests, any
received lv(t, c) follows a uniform distribution from the PCA’s perspective. Consequently,
as in the original SCMS, the RA only knows that a given batch of certificates belongs
to the same user, but has no access to the batch’s contents, including the linkage values
enclosed in the certificates. In comparison, the PCA knows the certificates’ contents, but
cannot link any information thereby enclosed to a given user; for example, it is unable to
correlate a lv(t, c) to its corresponding plvPCA(t, c) and, thus, to a specific linkage tree.

7.3 The LA-free revocation process
Revocation in the proposed LA-free scheme follows a process quite similar to the one
originally proposed in SCMS [7]. Namely, when the MA detects that the owner of a given
certificate cert is misbehaving, it provides that certificate’s linkage value, lv, to the PCA.
In response, the PCA sends to the MA the identifier of the request in which cert was
generated. The MA can then ask the RA for the values of plvRA and plvPCA employed
in that request: the former is known by the RA, so its actual value can be presented
together with any additional data that allows associated certificates to be revoked in a
forward secure manner (e.g., a linkage seed or hook, depending on whether the revocation
should be permanent or temporary); the latter, on the other hand, is homomorphically
encrypted with the PCA’s public key, so only this encrypted data is provided by the RA.
With this information, the MA obtains from the PCA the decrypted value of plvPCA,
together with the corresponding linkage seed/hook that must be disclosed as part of the
revocation process. Finally, the MA places those linkage seeds/hooks in a CRL, so anyone
can use them in the computation of lv(ts, c), for any revoked time period ts. The RA can
also place the corresponding vehicle in a blacklist, so it cannot receive new certificates.

When compared with the original SCMS revocation procedure, the main difference in
the described process is that the PCA needs to be contacted twice, the first for identifying
the pseudonym certificate request and the second for the retrieval of the unencrypted
value of plvPCA. In addition, this process is designed to avoid the leakage of information
between PCA and RA, as well as to allow extra verifications by the MA. More precisely,
the MA should confirm that the correct certificate is being revoked, by checking that
lv

?= plvRA + plvPCA holds true and that the provided linkage seed/hook does produce
those linkage values. Hence, if either PCA or RA sends an invalid seed/hook to the MA
either due to an unintentional mistake or to malicious intent (e.g., an attempt to prevent
the vehicle from being revoked), this issue can be detected. The reason is that, since
the PCA (resp. RA) does not learn the value of plvRA (resp. plvPCA) in this process,
providing a wrong value of plvPCA (resp. plvRA) should lead to the correct lv with
negligible probability.

7.4 Detection of dishonest RA by MA
In principle, one possible drawback of the proposed solution is that it does not prevent a
dishonest RA from providing a bogus linkage value to the PCA aiming to track devices.
More precisely, suppose that the RA does not use the additively homomorphic scheme to
compute the encrypted value of lv(t, c) = plvRA(t, c) + plvPCA(t, c). Instead, it simply
encrypts an arbitrary bitstring z(t, c) with the PCA’s public key, and then presents the
resulting ciphertext in place of the correct lv(t, c). By design, the PCA should be unable

Marcos A. Simplicio Jr., Eduardo Lopes Cominetti, Harsh Kupwade Patil, Jefferson E.
Ricardini, Leonardo T. D. Ferraz and Marcos Vinicius M. Silva 19

to distinguish a correctly computed lv(t, c) from a random bitstring, since otherwise it
might also be able to identify which value of plvPCA(t, c) was employed in the computation
of lv(t, c) (and, thus, to associate different requests to the same user). Therefore, such
trickery would go unnoticed by the PCA, and z(t, c) would be used as that certificate’s
linkage value. Then, it would be trivial for the RA, who knows every value of z(t, c) and
also the identities of the vehicles making each request, to link a pseudonym certificate to
its owner.

Besides violating the users’ privacy, such misbehavior from the RA might have disastrous
consequences to the VPKI’s revocation process. Namely, it would prevent an MA from
actually revoking the corresponding certificates using a single pair of linkage seeds/hooks.
The reason is that it is very unlikely that the set of (plvRA(t, c), plvPCA(t, c)) derived
from the RA’s and PCA’s linkage seeds/hooks would match the arbitrary z(t, c) values
inserted into the certificates as linkage values. Actually, except for a negligible probability,
this should only happen if every z(t, c) value was originally computed from a linkage
seed/hook, like plvRA(t, c), and then added to the corresponding plvPCA(t, c).

This issue is taken into account in the revocation procedure described in Section 7.3,
which enables the MA to identify that something is wrong when the linkage seeds/hooks
provided by PCA and RA do not lead to the expected lv(t, c). Indeed, when the RA forces
lv(t, c) = z(t, c) aiming to track vehicles, it would only pass the lv(t, c) ?= plvPCA(t, c) +
plvRA(t, c) check performed by the MA if: (1) the RA is able to provide z(t, c)−plvPCA(t, c)
as the value of plvRA(t, c), as well as linkage seeds/hooks that are pre-images of such
plvRA(t, c); or (2) plvPCA(t, c) = 0 for every t and c, in which case the RA can simply
compute z(t, c) from a regular linkage tree and provide linkage seeds/hooks as usual.
However, since RA never learns the value of plvPCA during the pseudonym certificate
issuing process, it cannot compute z(t, c)− plvPCA(t, c), let alone find the corresponding
pre-images; in addition, the plvPCA(t, c) = 0 condition only occurs with negligible
probability, since each plvPCA(t, c) is the output of a hash function. Hence, it is unfeasible
for a malicious RA to avert such misbehavior detection by the MA whenever a certificate
is revoked.

The security of such an auditing procedure can be more formally summarized in
Theorem 1.
Theorem 1. Detection (by MA) of invalid linkage value provided by RA: Let E be a
homomorphic encryption algorithm, and let E(plvPCA) be the result of encrypting a secret
plvPCA with E. Suppose that, given E(plvPCA), a malicious RA produces E(lv) = E(z),
for an arbitrary z. Then, that RA is able to provide an arbitrary plvRA that passes the
check lv

?= plvPCA+plvRA if and only if that RA is also able to violate the confidentiality
of E.

Proof. Since in this scenario the RA ends up forcing lv = z, passing the check lv
?= plvPCA+

plvRA implies z = plvPCA + plvRA. Hence, if the RA is able to choose z and plvRA
satisfying this equation, this also means that the RA can compute plvPCA = z − plvRA
given E(plvPCA). Similarly, if the RA is able to obtain the secret plvPCA from E(plvPCA),
it is straightforward to pick z and plvRA accordingly.

7.5 Detection of dishonest RA by PCA
Albeit useful, the mechanism described in Section 7.4 for misbehavior detection by an MA
is only applicable when a CRL is issued. Therefore, it may not be enough in practice,
for at least two reasons: first, honest users are not expected to be revoked, meaning that
they could be inconspicuously tracked by the malicious RA for the entire lifetime of their
certificates; second, some recent proposals preclude the need of certificate revocation, but
instead focus on preventing their decryption by misbehaving vehicles [8][11], in which case
the RA’s honesty would be rarely (or never) scrutinized.

20 Privacy-preserving linkage/revocation of VANET certificates without LAs

Fortunately, an auxiliary mechanism can be employed by the PCA for a more frequent
evaluation of an RA’s behavior. Namely, without loss of generality, assume that an RA
should be audited periodically, after a total of n pseudonym certificates certi (where
1 6 i 6 n) are issued by the PCA. Whenever this number is reached, the PCA requests
(1) the sum of the n pre-linkage values generated by the RA for those certificates, denoted
θRA =

∑n
i=1(plvRA,i); and (2) the shuffled list of all encrypted plvPCA,i associated to

those certificates — or, equivalently, a shuffled list containing the IDs of the corresponding
PCA’s linkage trees, as well as the indices of every plvPCA,i in those trees. With this
information, the PCA sums up its own pre-linkage values plvPCA,i, obtaining θPCA =∑n
i=1(plvPCA,i), without learning in which order each plvPCA,i was used by the RA.

The PCA also adds together the corresponding linkage values that were inserted in the
n certificates issued during that period, obtaining

∑n
i=1(lvi). Finally, the PCA checks

whether θRA + θPCA
?=

∑n
i=1(lvi); the certificates were created properly only if this

equality holds true.
Similarly to the MA’s verification procedure, this auxiliary auditing mechanism per-

formed by the PCA allows the latter to identify situations in which the RA responds
with an arbitrary zi instead of using plvPCA,i for computing the correct (homomor-
phically encrypted) linkage value lvi. More precisely, by misbehaving in this man-
ner, the RA ends up forcing lvi = zi and, hence,

∑n
i=1(zi) =

∑n
i=1(lvi). Therefore,

the RA would only be able to avert detection if it provides in its response a value of
θRA∗ =

∑n
i=1(plvRA,i) +

∑n
i=1(plvPCA,i), which should be unfeasible because the RA

never learns the value of any plvPCA,i during the pseudonym certificate issuing process.
The main difference when compared with the MA’s procedure is that this process prevents
the PCA from learning which plvPCA,i is associated with each certificate, so it cannot
track devices either. More precisely, the PCA only learns which pre-linkage values have
already been used and, thus, can estimate how many vehicles have received the different
certi. As long as the number of vehicles is large enough, however, this knowledge does not
lead to any actual privacy issue.

Theorem 2. Detection (by PCA) of invalid linkage value provided by RA: Let E be a
homomorphic encryption algorithm, and let E(plvPCA,i) be the result of encrypting a secret
plvPCA,i with E. Suppose that, given a set containing n encrypted pre-linkage values
E(plvPCA, i)(say, for 1 6 i 6 n), a malicious RA selects some of them and responds: (1)
honestly, with E(lvi) = E(plvPCA,i + plvRA,i); and dishonestly, with E(lvi) = E(zi), for
arbitrary values of zi. Then, that RA is able to provide an arbitrary θRA that passes the
check θRA +

∑n
i=1(plvPCA,i)

?=
∑n
i=1(lvi) if and only if that RA is also able to violate

the confidentiality of E.

Proof. This can be seen as a corollary of Theorem 1. Specifically, let H and D denote
the sets of indices for which the RA responds honestly and dishonestly, respectively. The
verification equation can then be divided considering those sets, so:

θRA +
∑n
i=1(plvPCA,i)

?=
∑n
i=1(lvi)

θRA +
∑
h∈H(plvPCA,h) +

∑
d∈D(plvPCA,d)

?=∑
h∈H(lvh) +

∑
d∈D(lvd)

Replacing the RA’s responses for each set H and D, we have:

Marcos A. Simplicio Jr., Eduardo Lopes Cominetti, Harsh Kupwade Patil, Jefferson E.
Ricardini, Leonardo T. D. Ferraz and Marcos Vinicius M. Silva 21

Table 3: Performance of LA-free solution compared to original SCMS.

Operation Time (cycles) Time (sec.) Phase
LA

-fr
ee

Paillier keygen (PCA) 1.4×10+9 0.4 Bootstrap
plv encryption (PCA,RA) 114.0×10+6 31.7×10−3 Out-of-band
Homomorphic add (RA) 0.03×10+6 0.01×10−3

In-band
lv decryption (PCA) 17.7×10+6 4.9×10−3

SC
M
S ECIES keygen (PCA) 0.2×10+6 0.06×10−3 Bootstrap

plv encryption (LAs) 0.2×10+6 0.05×10−3 Out-of-band
2 plv decryption (PCA) 0.4×10+6 0.1×10−3 In-band

θRA +
∑
h∈H(plvPCA,h) +

∑
d∈D(plvPCA,d)

?=∑
h∈H(plvPCA,h) +

∑
h∈H(plvRA,h) +

∑
d∈D(zd)

θRA +
∑
d∈D(plvPCA,d)

?=
∑
h∈H(plvRA,h) +

∑
d∈D(zd)

In principle, every plvRA,h and zd are under the attacker’s control, and so is θRA.
However, if the RA can somehow find a value of θRA that satisfies this equation, this implies
that RA’s ability to compute

∑
d∈D(plvPCA,d) =

∑
h∈H(plvRA,h) +

∑
d∈D(zd) − θRA

given every value of E(plvPCA,d). In other words, this means that the RA is able to violate
the confidentiality of E for the ciphertext E(

∑
d∈D(plvPCA,d)), which can be obtained

from the individual E(plvPCA,d) using the additively homomorphic property of E .
The converse implication follows an analogous reasoning. After all, as long as the

malicious RA can decrypt E(
∑
d∈D(plvPCA,d)), it is trivial to compute a valid θRA by

combining the obtained plaintext with the previously picked plvRA,h and zd.

Finally, it is noted that an analogous perusal by the RA to verify the PCA’s honesty
is unnecessary, since the PCA has no advantage in misbehaving during the computation
of linkage values. For example, if the PCA inserts an arbitrary value z in the certificate
instead of decrypting and using the lv provided by the RA, this would not reveal any
information about the owner of the certificates. Instead, it would only needlessly disrupt
the revocation process in a manner that is detectable by the MA when, as discussed in
Section 7.4, the latter verifies whether lv

?= plvRA + plvPCA holds true. Actually, a
similar non-issue occurs in the original SCMS protocol, in which the PCA might replace
the linkage values received from the LAs by an arbitrary bitstring. Similarly to the LA-free
solution, (1) the PCA would not gain any knowledge by doing so and (2) the PCA could
be detected if the MA performs a similar verification considering the pre-linkage values
provided by the LAs.

7.6 Performance and cost analysis
To assess the performance of the proposed LA-free solution, we benchmarked its main
building blocks and compared the results with those obtained with similar-purpose opera-
tions in the original SCMS. Specifically, for homomorphic encryption and decryption, we
employed the Paillier cryptosystem with 3072-bit keys, which provides 128-bit security;
for this, we used the paillier v0.2.0 Rust library [38]. For the regular encryption and
decryption in SCMS, we use the ECIES [14] cryptosystem built upon NaCl library [39],
with Curve-25519 [40], once again getting a 128-bit security level.

For the proposed LA-free solution, we measured the time taken by the following
operations: key generation by PCA, which is performed only once as part of the system’s

22 Privacy-preserving linkage/revocation of VANET certificates without LAs

initialization; encryption of pre-linkage values by RA and PCA, which can be performed
out-of-band, before pseudonym certificates are actually requested; and the homomorphic
operation of pre-linkage values (by the RA) and the subsequent decryption (by the PCA),
both of which are performed in-band, as part of the certificate issuance procedure. In
SCMS, we consider: the (one-time) ECIES key generation by the PCA; the encryption
of one pre-linkage value by each LA, which is assumed to be done out-of-band; and the
decryption of two pre-linkage values by the PCA, which has to be performed in-band.

Table 3 shows the results obtained, both in cycles and in seconds, considering a single
pseudonym certificate request on a machine equipped with an Intel Core i7-7700, at 3.60
GHz. The numbers correspond to the average cost of 250,000 executions for each operation,
leading to a standard deviation below 7% in all cases. As shown in this table, most of
the processing overhead in the proposed solution can be done out-of-band and, thus, does
not actually impact the latency of certificate provisioning. The in-band processing of the
LA-free solution, in turn, is dominated by the decryption procedure performed by the
PCA, which is roughly 45× larger than the corresponding process in the original SCMS.
Albeit relatively high, the incurred latency remains quite small: the total time is smaller
5 ms in our testbed. Running SCMS on more powerful servers or specialized hardware
should lead to even lower numbers in practice. Also, in a large-scale deployment, this extra
latency can be (at least partially) masked by processing different requests with parallel
hardware.

In terms of bandwidth usage, the proposal also adds some overhead. Specifically,
for a 128-bit security level, the data structures resulting from a Paillier encryption are
roughly 6144-bit long. In comparison, ECIES should lead to approximately 448-bit
encrypted packages for the same security level, assuming 64-bit authentication tags and
128-bit pre-linkage values. On the other hand, the absence of LAs reduces the number of
communications in half (namely, there are no LA-to-RA transmissions). Therefore, the
net cost of the proposal when compared with the original SCMS is 10 KiB per pseudonym
certificate, or a 6.9× overhead. We emphasize, though, that this extra communication
applies only to RA and PCA, which should have high-bandwidth capabilities, while
resource-limited devices such as vehicles are not affected.

Finally, it is worth examining the actual financial costs for implementing the proposed
LA-free solution, when compared to the original SCMS. At first sight, it might seem that
our proposal translates to a more expensive VPKI, since extra hardware may be required
for handling the higher processing at the PCA, as well as the extra bandwidth costs.
However, in reality an LA-free solution is likely to create a less costly VPKI. After all, the
secure facilities that would be required for implementing the PKI-like infrastructure for
running LAs [27, Table 9], as well as the personnel for managing them, become unnecessary.
This is especially relevant because the capital costs of PKIs are dominated exactly by the
construction of secure premises (e.g., physical installations, access control and monitoring
equipment, telecommunication and disaster recovery systems) [41]. Furthermore, their
main yearly costs, which may reach hundreds of thousands or even millions of dollars for a
scale much smaller than VPKIs, come from the maintenance of such facilities, regular audits,
and personnel expenditures [41, 42]. Hence, in practice the extra hardware investments
for handling additively homomorphic operations should be compensated by the financial
savings on the VPKI itself, besides the reduced architectural complexity [43].

8 Conclusion
The broad adoption of intelligent transportation systems (ITS) requires attention to two
important aspects: data authentication, so invalid messages can be filtered out by vehicles;
and (revocable) user privacy, so honest drivers cannot be tracked by their peers or by the
system itself. A promising design tackling such requirements is the Security Credential

Marcos A. Simplicio Jr., Eduardo Lopes Cominetti, Harsh Kupwade Patil, Jefferson E.
Ricardini, Leonardo T. D. Ferraz and Marcos Vinicius M. Silva 23

Management System (SCMS), which provides efficient, scalable and privacy-preserving
mechanisms for issuing and revoking pseudonym certificates. Such characteristics recently
motivated standardization efforts [9], as well as research initiatives aiming to enhance
SCMS’s design [8][10][11].

In this paper, we provide three contributions for improving SCMS’s linkage and
revocation process. First, we propose modifications to the structure of SCMS’s key
linkage tree aiming to address additional use cases. In particular, the proposed approach
efficiently supports the temporary revocation and linkage of pseudonym certificates, which
should be useful to implement suspension mechanisms or aid in investigations by law-
enforcement authorities. Second, we describe two birthday attacks against SCMS’s key
linkage/revocation process, both of which are able to affect the vehicles’ privacy as time
passes and more certificates are revoked. One way to tackle this issue would be to limit the
lifespan of the corresponding Linkage Authorities (LAs), thus preventing the security level
from dropping below a given threshold. Instead, the proposed approach based on security
strings averts this security degradation with a small overhead, or, alternatively, increases
the systems security without incurring any overhead. Finally, we show how the role of
LAs can be redistributed to the PCA and RA in a secure manner, eliminating the need
of maintaining LAs as independent entities. The result is improved security and lower
deployment costs, despite a small increase in the total latency time for issuing pseudonym
certificates.

Acknowledgment. This work was supported by the Brazilian National Council for
Scientific and Technological Development (CNPq – grant 301198/2017-9), and by LG
Electronics.

References
[1] J. Harding, G. Powell, R. Yoon, J. Fikentscher, C. Doyle, D. Sade, M. Lukuc, J. Simons,

and J. Wang, “Vehicle-to-vehicle communications: Readiness of V2V technology for
application,” NHTSA, Tech. Rep. DOT HS 812 014, 2014.

[2] P. Papadimitratos, A. L. Fortelle, K. Evenssen, R. Brignolo, and S. Cosenza, “Vehicular
communication systems: Enabling technologies, applications, and future outlook on
intelligent transportation,” IEEE Communications Magazine, vol. 47, no. 11, pp.
84–95, November 2009.

[3] NHTSA, “Federal Motor Vehicle Safety Standards; V2V Communication,” National
Highway Traffic Safety Administration, U.S. Department of Transportation (USDOT),
Tech. Rep. 8, Jan 2017.

[4] M. Khodaei and P. Papadimitratos, “The key to intelligent transportation: Identity
and credential management in vehicular communication systems,” IEEE Veh. Technol.
Mag., vol. 10, no. 4, pp. 63–69, Dec 2015.

[5] P. Cincilla, O. Hicham, and B. Charles, “Vehicular PKI scalability-consistency trade-
offs in large scale distributed scenarios,” in IEEE Vehicular Networking Conference
(VNC), Dec 2016, pp. 1–8.

[6] J. Petit, F. Schaub, M. Feiri, and F. Kargl, “Pseudonym schemes in vehicular networks:
A survey,” IEEE Communications Surveys Tutorials, vol. 17, no. 1, pp. 228–255, 2015.

[7] W. Whyte, A. Weimerskirch, V. Kumar, and T. Hehn, “A security credential manage-
ment system for V2V communications,” in IEEE Vehicular Networking Conference
(VNC’13), 2013, pp. 1–8.

24 Privacy-preserving linkage/revocation of VANET certificates without LAs

[8] V. Kumar, J. Petit, and W. Whyte, “Binary hash tree based certificate access
management for connected vehicles,” in Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec’17). New York, NY, USA: ACM, 2017, pp.
145–155.

[9] CAMP, “Security credential management system proof–of–concept implementation –
EE requirements and specifications supporting SCMS software release 1.1,” Vehicle
Safety Communications Consortium, Tech. Rep., may 2016.

[10] M. Simplicio, E. Cominetti, H. Kupwade-Patil, J. Ricardini, and M. Silva, “The
unified butterfly effect: Efficient security credential management system for vehicular
communications,” in IEEE Vehicular Networking Conference (VNC’18), 2018.

[11] ——, “ACPC: Efficient revocation of pseudonym certificates using activation codes,”
Ad Hoc Networks, p. (in press), 2018.

[12] M. Simplicio, E. Cominetti, H. Kupwade-Patil, J. Ricardini, L. Ferraz, and M. Silva,
“A privacy-preserving method for temporarily linking/revoking pseudonym certificates
in VANETs,” in 17th IEEE Int. Conf. On Trust, Security And Privacy In Computing
And Communications (TrustCom’18), 2018, pp. 1322–1329.

[13] NIST, FIPS 197: Advanced Encryption Standard (AES), National Institute
of Standards and Technology, November 2001. [Online]. Available: http:
//csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[14] IEEE, IEEE Standard Specifications for Public-Key Cryptography – Amendment 1:
Additional Techniques, IEEE Computer Society, 2004.

[15] NIST, FIPS 180-4: Secure Hash Standard (SHS), National Institute of Standards and
Technology, August 2015.

[16] NIST, FIPS 202: SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions, National Institute of Standards and Technology, August 2015,
doi:10.6028/NIST.FIPS.202.

[17] ——, FIPS 186-4: Digital Signature Standard (DSS), National Institute of Standards
and Technology, July 2013. [Online]. Available: http://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.186-4.pdf

[18] D. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-speed high-
security signatures,” Journal of Cryptographic Engineering, vol. 2, no. 2, pp. 77–89,
Sep 2012.

[19] S. Josefsson and I. Liusvaara, “RFC 8032: Edwards-curve digital signature algorithm
(EdDSA),” https://tools.ietf.org/html/rfc8032, Jan 2017.

[20] ETSI, “TR 102 941 – intelligent transport systems (ITS); security; trust and privacy
management,” European Telecommunications Standards Institute, Tech. Rep., Jun
2012.

[21] IEEE, “IEEE standard for wireless access in vehicular environments–security services
for applications and management messages - amendment 1,” IEEE Std 1609.2a-2017
(Amendment to IEEE Std 1609.2-2016), pp. 1–123, Oct 2017.

[22] D. Förster, F. Kargl, and H. Löhr, “PUCA: A pseudonym scheme with strong privacy
guarantees for vehicular ad-hoc networks,” Ad Hoc Networks, vol. 37, pp. 122–132,
2016.

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
https://tools.ietf.org/html/rfc8032

Marcos A. Simplicio Jr., Eduardo Lopes Cominetti, Harsh Kupwade Patil, Jefferson E.
Ricardini, Leonardo T. D. Ferraz and Marcos Vinicius M. Silva 25

[23] E. Verheul, “Activate later certificates for V2X: Combining ITS efficiency
with privacy,” Cryptology ePrint Archive 2016/1158, 2016. [Online]. Available:
http://eprint.iacr.org/2016/1158

[24] J. Douceur, “The Sybil attack,” in Proc. of 1st Int. Workshop on Peer-to-Peer
Systems (IPTPS). Springer, 2002. [Online]. Available: www.microsoft.com/en-us/
research/publication/the-sybil-attack/

[25] R. Moalla, B. Lonc, H.Labiod, and N. Simoni, “Risk analysis study of ITS commu-
nication architecture,” in 3rd Int. Conf. on The Network of the Future, 2012, pp.
2036–2040.

[26] K. Alheeti, A. Gruebler, and K. McDonald-Maier, “An intrusion detection system
against malicious attacks on the communication network of driverless cars,” in 12th
Annual IEEE Consumer Communications and Networking Conference (CCNC), Jan
2015, pp. 916–921.

[27] USDOT, “National security credential management system (SCMS) deployment sup-
port – SCMS baseline summary report,” US Department of Transportation (USDOT),
Tech. Rep., Jan 2018.

[28] Certicom, “Sec 4 v1.0: Elliptic curve Qu-Vanstone implicit certificate scheme (ECQV),”
Certicom, Canada, Tech. Rep., 2013, http://www.secg.org/sec4-1.0.pdf.

[29] L. Lamport, “Password authentication with insecure communication,” Commun. ACM,
vol. 24, no. 11, pp. 770–772, 1981.

[30] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk, “RFC 5280:
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) profile,” Internet Engineering Task Force (IETF), Tech. Rep., 2008.

[31] E. Biham, “How to decrypt or even substitute DES-encrypted messages in 228 steps,”
Inf. Process. Lett., vol. 84, no. 3, pp. 117–124, nov 2002.

[32] N. Mouha and A. Luykx, “Multi-key security: The Even-Mansour construction
revisited,” in Advances in Cryptology – CRYPTO 2015: 35th Annual Cryptology
Conference. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 209–223.

[33] NIST, Special Publication 800-131A Rev. 1: Transitions: Recommendation for Tran-
sitioning the Use of Cryptographic Algorithms and Key Lengths, National Institute of
Standards and Technology, Nov. 2015.

[34] F. Leighton and S. Micali, “Large provably fast and secure digital signature schemes
based on secure hash functions,” July 1995, US Patent 5,432,852.

[35] D. McGrew, M. Curcio, and S. Fluhrer, “RFC 8554 – Leighton-Micali
hash-based signatures,” IETF, Tech. Rep., apr 2019. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc8554

[36] E. Andrade, M. Simplicio, P. Barreto, and P. Santos, “Lyra2: efficient password
hashing with high security against time-memory trade-offs,” IEEE Transactions on
Computers, vol. 65, no. 10, pp. 3096–3108, 2016, See also: http://eprint.iacr.org/2015/136.

[37] P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,”
in Eurocrypt’99. Springer, 1999, pp. 223–238.

[38] M. Poumeyrol, M. Dahl, and M. Cornejo, “Paillier 0.2.0: A pure-rust implementation
of the Paillier encryption scheme,” https://docs.rs/crate/paillier/0.2.0, 2018.

http://eprint.iacr.org/2016/1158
www.microsoft.com/en-us/research/publication/the-sybil-attack/
www.microsoft.com/en-us/research/publication/the-sybil-attack/
http://www.secg.org/sec4-1.0.pdf
https://datatracker.ietf.org/doc/html/rfc8554
http://eprint.iacr.org/2015/136
https://docs.rs/crate/paillier/0.2.0

26 Privacy-preserving linkage/revocation of VANET certificates without LAs

[39] D. Bernstein, T. Lange, and P. Schwabe, “NaCl: Networking and cryptography
library,” https://nacl.cr.yp.to/index.html, 2016.

[40] D. J. Bernstein, “Curve25519: new diffie-hellman speed records,” in Int. Workshop on
Public Key Cryptography. Springer, 2006, pp. 207–228.

[41] VeriSign, “Total cost of ownership for public key infrastructure – white paper,”
www.imaginar.org/sites/ecommerce/index_archivos/guias/G_tco.pdf, Verisign, Inc., Tech. Rep.,
2005.

[42] Entrust, “Why outsourcing your PKI provides the best value – white paper,” www.
entrust.com/wp-content/uploads/2013/05/Entrust-Managed-Services-PKI_TCO.pdf, Tech. Rep.,
July 2009.

[43] TCA, “Key decisions to progress Australian deployment of a security credential
management system (SCMS),” Transport Certification Australia, Tech. Rep., Jan
2018. [Online]. Available: https://tca.gov.au/documents/Report-SCMS-TCA.pdf

https://nacl.cr.yp.to/index.html
www.imaginar.org/sites/ecommerce/index_archivos/guias/G_tco.pdf
www.entrust.com/wp-content/uploads/2013/05/Entrust-Managed-Services-PKI_TCO.pdf
www.entrust.com/wp-content/uploads/2013/05/Entrust-Managed-Services-PKI_TCO.pdf
https://tca.gov.au/documents/Report-SCMS-TCA.pdf

	Introduction
	General notation
	V2X security and privacy: state of the art
	The Security Credential Management System
	Butterfly key expansion
	Key linkage

	A more flexible revocation/linkage procedure: linkage hooks
	Possible extensions

	Building (and preventing) birthday attacks against SCMS's key linkage process
	Birthday attacks on pre-linkage values
	Birthday attacks on linkage seeds
	Protection against birthday attacks: security strings
	Security analysis
	Performance considerations

	Linking certificates without Linkage Authorities
	Privacy issues involving LAs
	Generating linkage values without LAs
	The LA-free revocation process
	Detection of dishonest RA by MA
	Detection of dishonest RA by PCA
	Performance and cost analysis

	Conclusion

