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Abstract. We give a simple construction of indistinguishability obfus-
cation for Turing machines where the time to obfuscate grows only with
the description size of the machine and otherwise, independent of the
running time and the space used. While this result is already known
[Koppula, Lewko, and Waters, STOC 2015] from iO for circuits and
injective pseudorandom generators, our construction and its analysis
are conceptually much simpler. In particular, the main technical com-
ponent in the proof of our construction is a simple combinatorial peb-
bling argument [Garg and Srinivasan, EUROCRYPT 2018]. Our con-
struction makes use of indistinguishability obfuscation for circuits and
somewhere statistically binding hash functions.

1 Introduction

Indistinguishability Obfuscation (iO) [BGI+12, GGH+13] is a central primi-
tive in cryptography giving rise to new and powerful cryptographic applica-
tions [SW14, GGHR14]. iO requires that for any two circuits C0 and C1 com-
puting the exact same functionality, obfuscation of C0 is computationally in-
distinguishable from the obfuscation of C1. While circuits are powerful enough
to simulate other models of computation such as Turing machines or RAM pro-
grams [PF79], a drawback of using them is that size of the circuit (and hence the
size of obfuscation) grows with both the running time and the space of the com-
putation. In a beautiful work Koppula, Lewko and Waters [KLW15] (building
on prior work [BGL+15, CHJV15]) showed a method for removing this limita-
tion by giving a construction of succinct iO for Turing machines from iO for
circuits and injective pseudorandom generators. By succinct, we mean that the
time to obfuscate a machine grows only with its description size and is otherwise
independent of its running time and its space complexity.

Our Contribution. In this paper, we give a simple construction of succinct in-
distinguishability obfuscation for Turing machines from sub-exponentially secure
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iO for circuits and sub-exponentially secure somewhere statistically binding hash functions
[HW15, KLW15]. Our new construction is simple to describe and its analysis is
much simpler than the previous works. Inspired by [GS18a], the main technical
component in our security proof is a simple combinatorial pebbling argument.

In a bit more detail, we achieve the above new result by first giving a new con-
struction of succinct randomized encoding [AIK04, CHJV15, BGL+15, App17]
from polynomially hard indistinguishability obfuscation for circuits and laconic
oblivious transfer [CDG+17, DG17, BLSV18, DGHM18].1 A randomized encod-
ing allows to encode a Turing machine M , an input x and a time bound t to
M̂x,t. Given M̂x,t, the decoding procedure recovers M(x) which is the output
of M on input x obtained in time t. The security property requires that the
distribution of M̂x,t does not leak anything about x except M(x). A randomized
encoding is said to be succinct if the encoding procedure runs in time that is
polynomial in the security parameter, the machine description size and the input
size and is otherwise independent of the time and space complexity of M . Next,
to construct succinct iO for Turing machines, we use a transformation from any
succinct randomized encoding (with sub-exponential security) to succinct iO
for Turing machines given in the works of [CHJV15, BGL+15]. This yields the
desired result.

1.1 Overview

In this section, we give a high level overview of our construction of succinct
randomized encodings and the security proof.

Starting point. The starting point of our work is the construction of semi-
succinct randomized encodings for Turing machines in [CHJV15, BGL+15] based
on iO for circuits and Yao’s garbling scheme. Semi-succinct randomized encod-
ings require that the time to encode a machine to be independent of its running
time but could depend on the space complexity of the computation. In partic-
ular, it is a weaker requirement when compared to full succinctness wherein we
also require the time to encode a machine to be independent of the space com-
plexity. Below we start by recalling this construction and explain why it achieves
only semi-succinctness when compared to full succinctness.

The encoding procedure is given as input a Turing machine M , an input x
and a time bound t and it has to output a randomized encoding M̂x,t. The first
step in the above works is to reduce the machine M to a “succinctly describ-
able” circuit C that computes the same function as that of M . We say that
a circuit is succinctly describable if there exists a “small” circuit Csc that on

1 Note that [CDG+17] also described a construction of la-
conic oblivious transfer from witness encryption [GGSW13] and
somewhere statistically binding hash functions. Since witness encryption can
be instantiated from iO for circuits and one-way functions (which is implied by
somewhere statistically binding hash functions), we obtain our main result from iO
for circuits and somewhere statistically binding hash functions.
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input any gate index, outputs the binary function computed by that gate along
with the description of its input and output wires. Next, these works observed
that Yao’s garbling procedure is highly “local”, meaning that given only the
local information about a gate (which includes its input, output wires and the
functionality computed by it), Yao’s garbling procedure can output the garbled
encryption table corresponding to that gate. Now, these two ideas are combined
in an elegant way to obtain a randomized encoding of a Turing machine. To
give more details, the encoding consists of an obfuscated circuit that on input
any gate index, outputs the garbled encryption table corresponding to that gate.
Specifically, this circuit uses the succinct description to obtain the binary logic
computed by the gate along with the description of the input and output wires.
It uses a (puncturable) PRF key to obtain the labels corresponding to the input
and the output wires and outputs the Yao’s garbled table corresponding to that
gate (using randomness derived from the puncturable PRF key). The encoding
procedure outputs this obfuscation along with the labels corresponding to the
input x. The decoding procedure evaluates this obfuscation on every gate index
to obtain the garbled tables corresponding to every gate and then evaluates the
garbled circuit to obtain the output.

Let us now describe the simulator for the above construction. Recall that the
simulator on input M(x) must output a randomized encoding such that the dis-
tribution of the simulator’s output is computationally indistinguishable to the
distribution of an honestly generated encoding. The simulator in these works
obfuscates a circuit that on input any gate number, outputs the simulated Yao’s
garbled table. Intuitively, it should follow from the security of Yao’s garbled
circuit construction that the real garbled tables are computationally indistin-
guishable to the simulated garbled tables. However, for the proof to go through,
these works cannot change the distribution of all the garbled gates from the real
to simulated in one shot. Rather, they use a careful hybrid argument wherein
they change the distribution of the garbled tables from the real to simulated
for one gate at a time and this where the succinctness takes a hit. Let us now
explain this in more detail.

Recall from the proof of Yao’s garbled circuit construction [LP09], that each
hybrid corresponds to a particular distribution of garbled encryption tables (also
called as configurations in [HJO+16]). In a particular configuration, a garbled
gate can either be in three modes: the real mode, or the input dependent simu-
lation mode, or the simulated mode. The real mode is one where in the garbled
encryption tables are distributed exactly as in the construction. In the input
dependent simulation mode, all the entries of the garbled encryption table en-
crypt a single label and this label corresponds to the output of that gate. In the
simulated mode, every entry of the garbled encryption table encrypts a single
label and this label corresponds to the bit 0. The real world distribution cor-
responds to a configuration wherein each garbled gate is in the real mode and
the simulated configuration is one in which each garbled gate is in the simulated
mode. In order to go from the real world distribution to the simulated distribu-
tion, we need to go over a sequence of hybrids. Each hybrid change corresponds
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to changing the configuration of a particular gate. These changes can be made
according to the following two rules:

– Rule A: A garbled gate can be changed from the real mode to input depen-
dent simulation mode if all its fan-in gates are in input dependent simulation
mode.

– Rule B: A garbled gate can be changed from an input dependent simulation
mode to the simulated mode if all its fan-out gates are in input dependent
simulation mode.

A direct consequence of such a hybrid argument is that the obfuscated cir-
cuit (in the construction of succinct randomized encoding) in a particular hybrid
must somehow encode the outputs of all the gates that are in the input depen-
dent simulation mode. Notice that in general, the fan-out of a gate could be
as large as the space of the computation (denoted by s). Thus, to change one
garbled gate from input dependent simulation mode to the simulated mode, we
must encode the outputs of at most s gates in the obfuscated circuit. Thus,
the size of the obfuscated circuit in this intermediate hybrids grows with s.
Thus, to use iO security, the real world obfuscation must also be padded to the
size of the circuit in the intermediate hybrid and hence, these works could only
achieve semi-succinctness. Because of the above-mentioned challenges, this ap-
proach seemed insufficient for realizing full succinctness. Thus, Koppula, Lewko
and Waters [KLW15] gave a very different approach for realizing full succinct-
ness. However, unfortunately, their realization is rather involved.

Our Approach. In this work, we start with the above-mentioned approach fol-
lowed in the realization of semi-succinct iO constructions but employ a crucial
technique to achieve full succinctness. Specifically, to achieve full succinctness,
we use a linearized garbling scheme (introduced in the work of Garg and Srini-
vasan [GS18a]) in place of Yao’s garbling scheme. Informally, a linearized garbled
circuit helps in “flattening” the underlying circuit which may have large width
into a circuit with width 1. Intuitively, such a flattening would be helpful as
the size of intermediate obfuscations may not have to grow with the width of
the circuit (which is proportional to the space complexity). In the rest of the
overview, we give an informal description of the linearlized garbled circuit, state
its properties and explain the combinatorial pebbling game that forms the main
crux of the proof. This approach allows us to achieve a simpler construction than
Koppula, Lewko and Waters [KLW15].

Linearized Garbled Circuits. To understand the concept of a linearized gar-
bled circuits2, it is best to view the circuit C as a sequence of step circuits.
In more details, we will consider C as a sequence of step circuits along with a
database/memory D. The i-th step circuit implements the i-th gate (with some
topological ordering of the gates) in the circuit C. The database D is initially
loaded with the input x and contents of the database represent the state of the

2 This paragraph is taken verbatim from [GS18a].
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computation. That is, the snapshot of the database before the evaluation of the
i-th step circuit contains the output of every gate g < i in the execution of C on
input x. The i-th step circuit reads contents from two pre-determined locations
in the database and writes a bit to location i. The bits that are read correspond
to the values in the input wires for the i-th gate. The output of the circuit is
easily derived from the contents of the database at the end of the computation.

To garble a circuit C, we must garble each of the step circuits and the
database D. To draw a parallel with the Yao’s garbling scheme, the garbled
encryption tables are now replaced with garbled step circuits. As in the of Yao’s
garbling procedure, the task of garbling the step circuits has the desired locality
property, meaning that given only the locations accessed by the step circuit and
the functionality computed by it, we can computed the garbled version of that
particular step circuit. Furthermore, we can think of the distributions wherein a
step circuit is in real mode, or in input dependent simulation mode, or in simu-
lated mode as natural extensions of the same notions for a garbled gate. For the
sake of keeping things simple in the introduction, we wouldn’t be going into the
exact details of the actual distributions in these three modes.

Now we are ready to state the properties of a linearized garbled circuit. We
say a garbling scheme to be linearized if it satisfies the following two properties:

1. Rule A: A step circuit can be changed from the real mode to an input
dependent simulation mode (or, vice-versa) if the previous step circuit is in
input dependent simulation mode. This restriction however, does not apply
to the first step circuit i.e., it can always be changed from real to input
dependent simulation mode (or, vice-versa).

2. Rule B: A step circuit can be changed from input dependent simulation
mode to the simulated mode if the previous step circuit is in input dependent
simulation mode and all the subsequent step circuits are in simulated mode.
This rule must be contrasted with the corresponding rule for Yao’s garbled
circuits wherein we must maintain all the gates which fan-out from this
particular gate in input dependent simulation mode.

Garg and Srinivasan [GS18a] constructed such a linearized garbling scheme from
laconic oblivious transfer [CDG+17].3 We will now show that how this linearized
garbling structure is helpful in obtaining a fully succinct randomized encoding
scheme.

Pebbling Game. Now, let us explain how the concept of linearized garbled cir-
cuit helps us in achieving full succinctness. The simulator for our construction
of succinct randomized encoding is exactly the same as in the previous construc-
tions [CHJV15, BGL+15]. In particular, it obfuscates a circuit that on input
any step circuit index, outputs the garbled version of that step circuit in the
simulated mode. In the real world distribution, all the step circuits are garbled
in the real mode whereas in the simulated distribution all the step circuits are

3 As mentioned in the introduction, a laconic oblivious transfer can be constructed
from iO for circuits and somewhere statistically binding hash functions.
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garbled in the simulated mode. The goal is to change all the step circuits from
the real mode to the simulated mode where in each step/hybrid, we can use
either one of the above two rules to change the configuration of a particular
gate. In order to keep the size of the intermediate obfuscations small, we need
to minimize the number of step circuits that are present in the input dependent
simulation mode. This is because for every step circuit that is present in the
input dependent simulation mode, we must hardcode the output of the gate in
the obfuscation and hence the size of the obfuscation grows with this number.
These requirements can be abstractly modeled as the following pebbling game
whose description is taken verbatim from [GS18a].

Consider the positive integer line 1, 2, . . . , N . We are given pebbles of two
colors: gray and black . A black pebble corresponds to a step circuit in the
simulated mode and a gray pebble corresponds to a step circuit in the input
dependent simulation mode. A position without any pebble corresponds to real
garbling. We can place the pebbles on this positive integer line according to the
following two rules:

Rule A: We can place or remove a gray pebble in position i if and only if there
is a gray pebble in position i− 1. This restriction does not apply to position
1: we can always place or remove a gray pebble at position 1. This rule
captures the first requirement of a linearized garbling scheme.

Rule B: We can replace a gray pebble in position i with a black pebble as long
as all the positions > i have black pebbles and there is a gray pebble in
position i − 1 or if i = 1. This rule captures the second requirement of a
linearized garbling scheme.

Optimization goal of the pebbling game. The goal is to pebble the line
[1, N ] such that every position has a black pebble while minimizing the number
of gray pebbles that are present on the line at any point in time.

Any strategy for the above pebbling game that uses a maximum of ` gray
pebbles gives a randomized encoding scheme where the time to encode grows
with `. We note that the same pebbling game was considered in the work of
[GS18a] in the context of constructing adaptive garbled circuits with optimal
online complexity. Using the pebbling strategy considered in their work (that
uses logN gray pebbles), we give a construction of randomized encoding scheme
where the time to encode grows only with poly(|M |, |x|, λ, log T ) where T is the
running time of the computation. This gives us the desired succinctness.

1.2 Concurrent Work

In a concurrent and independent work, Ananth and Lombardi [AL18] gave a
construction of succinct randomized encoding from polynomially hard compact
functional encryption and laconic oblivious transfer. They defined an abstrac-
tion called as strong locally simulatable garbling schemes and then used it to
construct a succinct randomized encoding. At a conceptual level, the notion of
strong locally simulatable garbling scheme is similar to our notion of linearized
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garbling schemes and hence the underlying techniques used in both these papers
are similar. We remark that even our construction can be instantiated from poly-
nomially hard compact functional encryption using the works of [AJ15, BV15]
as the size of the input to the obfuscation scheme is O(log λ) where λ is the
security parameter.

2 Preliminaries

Let λ denote the security parameter. A function µ(·) : N → R+ is said to be
negligible if for any polynomial poly(·) there exists λ0 ∈ N such that for all λ > λ0
we have µ(λ) < 1

poly(λ) . For a probabilistic algorithm A, we denote A(x; r) to

be the output of A on input x with the content of the random tape being r.
When r is omitted, A(x) denotes a distribution. For a finite set S, we denote
x← S as the process of sampling x uniformly from the set S. We will use PPT
to denote Probabilistic Polynomial Time. We denote [a] to be the set {1, . . . , a}
and [a, b] to be the set {a, a + 1, . . . , b} for a ≤ b and a, b ∈ Z. For a binary
string x ∈ {0, 1}n, we will denote the ith bit of x by xi. We assume without
loss of generality that the length of the random tape used by all cryptographic
algorithms is λ. We will use negl(·) to denote an unspecified negligible function
and poly(·) to denote an unspecified polynomial function.

2.1 Succinct Circuits

We now recall the definition of succinct circuits. Most of this subsection is taken
verbatim from [BGT14].

Definition 1 (Succinct Circuits). Let C : {0, 1}n → {0, 1} be a circuit with
N − n binary gates. The gates of the circuit are numbered as follows. The input
gates are given the numbers {1, . . . , n}. The intermediate gates are numbered
{n+ 1, n+ 2, . . . , N − 1} such that a gate that receives its input from gates i and
j is given a number greater than i and j. The output gate is numbered N . Each
gate g ∈ [n + 1, N ] is described by a tuple (i, j, fg) ∈ [g − 1]2 × GType where
outputs of gates i and j serves as inputs to gate g and fg denotes the binary
functionality computed by the gate. Here, GType denotes the set of all binary
functions.

We say that C is succinctly represented by a circuit Csc, if Csc given a gate
label g ∈ [n+ 1, N ] gives out its description (i, j, fg). Furthermore, |Csc| < |C|.

We now recall the lemma from [PF79] that converts any uniform Turing
machine to a succinct circuit.

Lemma 1 ([PF79]). Any Turing machine M , which for inputs of size n, re-
quires a maximal running time t(n) and space s(n), can be converted in time
O(|M |+log(t(n))) to a circuit Csc that succinctly represents C : {0, 1}n → {0, 1}
where C computes the same function as M (for inputs of size n), and is of size

Õ(t(n) · s(n)).



8

2.2 Succinct Randomized Encoding

We now recall the definition of succinct randomized encoding.

Definition 2 ([BGT14]). A succinct randomized encoding (SRE) consists of
two algorithms (sRE.Enc, sRE.Dec) with the following syntax:

– M̂x,t ← sRE.Enc(1λ,M, x, t) : takes as input the security parameter λ, a
machine M , input x, time bound (encoded in binary) t and outputs the ran-

domized encoding M̂x,t.

– y ← sRE.Dec(M,M̂x,t) : takes as input the machine M and the randomized

encoding M̂x,t and deterministically computes the output y.

We require the scheme to satisfy the following three properties.

– Correctness: For every x and M such that M halts on input x within t
steps, it holds that y = M(x) with probability 1 over the random coins of
sRE.Enc.

– Security: there exists a PPT simulator Sim such that for any poly size
adversary A there exists a negligible negl(·) such that for all λ ∈ N, machine
M , input x, and time bound t:∣∣∣Pr[A(M̂x,t) = 1]− Pr[A(Sim(1λ, y,M, t, 1|x|)) = 1]

∣∣∣ ≤ negl(λ) · p(t)

where M̂x,t ← sRE.Enc(1λ,M, x, t), y is the output of M(x) after t steps and
p(·) is a fixed polynomial that does not depend on (M,x, t).4

– Succinctness: The running time of sRE.Enc and the size of the encoding
M̂x,t are poly(|M |, |x|, log t, λ). The running time of sRE.Dec is poly(t, λ).

Remark 1. We note that our definition of succinct randomized encoding differs
from the original definition given in [BGT14] as the procedure sRE.Dec addition-
ally takes in M as input. We note that this is without loss of generality as we can
always set M to be the universal Turing machine and include the description of
the machine that has to be encoded as part of the input.

2.3 Indistinguishability Obfuscation

We now define indistinguishability obfuscator from [BGI+12, GGH+13].

Definition 3. A PPT algorithm iO is an indistinguishability obfuscator for a
family of circuits {Cλ}λ that satisfies the following properties:

– Correctness: For all λ and for all C ∈ Cλ and for all x,

Pr[iO(C)(x) = C(x)] = 1

where the probability is over the random choices of iO.

4 When t bounded by a polynomial then RHS can just be negl(λ).
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– Security: For all C0, C1 ∈ Cλ such that for all x, C0(x) = C1(x) and for
all poly sized adversaries A,

|Pr[A(iO(C0)) = 1]− Pr[A(iO(C1)) = 1]| ≤ negl(λ)

We now give the definition of a succinct indistinguishability obfuscation.

Definition 4 (Succinct Indistinguishability Obfuscator [BGL+15]). A
succinct indistinguishability obfuscator for a machine class {Mλ}λ∈N consists
of a uniform PPT machine iOM that works as follows:

– iOM takes as input the security parameter 1λ, the machine M to obfuscate,
and an input length n and time bound t for M .

– iOM outputs a machine obM which is an obfuscation of M corresponding to
input length n and time bound t. obM takes as input x ∈ {0, 1}n and t′ ≤ t.

The scheme should satisfy the following three requirements.

– Correctness: For all security parameters λ ∈ N, for all M ∈ Mλ, for all
inputs x ∈ {0, 1}n, time bounds t and t′ ≤ t, let y be the output of M on t′

steps, then we have that:

Pr[obM(x, t′) = y : obM ← iOM(1λ, 1n, 1log t,M)] = 1

– Security: For any (not necessarily uniform) PPT distinguisher D, there
exists a negligible function α such that the following holds: For all security
parameters λ ∈ N, time bounds t, and pairs of machines M0,M1 ∈ Mλ of
the same size such that for all running times t′ ≤ t and for all inputs x,
M0(x) = M1(x) when M0 and M1 are executed for time t′, we have that:

∣∣∣Pr
[
D(iOM(1λ, 1n, 1log t,M0)) = 1

]
−Pr

[
D(iOM(1λ, 1n, 1log t,M1)) = 1

]∣∣∣ ≤ α(λ)

– Efficiency and Succinctness: We require that the running time of iOM
and the length of its output, namely the obfuscated machine obM , is poly(|M |, log t, n, λ).
We also require that the obfuscated machine on input x and t′ runs in time
poly(|M |, t′, n, log t, λ) (or poly(t′, λ) for short).

2.4 Garbled Circuits

Below we recall the definition of garbling scheme for circuits [Yao82, Yao86,
AIK04] with selective security (see Lindell and Pinkas [LP09] and Bellare et
al. [BHR12] for a detailed proof and further discussion). A garbling scheme
for circuits is a tuple of PPT algorithms (GarbleCkt,EvalCkt). Very roughly,
GarbleCkt is the circuit garbling procedure and EvalCkt is the corresponding
evaluation procedure. We use a formulation where input labels for a garbled
circuit are provided as input to the garbling procedure rather than generated as
output. (This simplifies the presentation of our construction.) More formally:
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– C̃ ← GarbleCkt
(
1λ, C, {labw,b}w∈x,b∈{0,1}

)
: GarbleCkt takes as input a secu-

rity parameter λ, a circuit C, and input labels labw,b where w ∈ x (x is the
set of input wires to the circuit C) and b ∈ {0, 1}. This procedure outputs

a garbled circuit C̃. We assume that for each w, b, labw,b is chosen uniformly
from {0, 1}λ.

– y ← EvalCkt
(
C̃, {labw,xw

}w∈x
)

: Given a garbled circuit C̃ and a sequence of

input labels {labw,xw
}w∈x (referred to as the garbled input), EvalCkt outputs

a string y.

Correctness. For correctness, we require that for any circuit C, input x ∈
{0, 1}|x| and input labels {labw,b}w∈x,b∈{0,1} we have that:

Pr
[
C(x) = EvalCkt

(
C̃, {labw,xw}w∈x

)]
= 1

where C̃← GarbleCkt
(
1λ, C, {labw,b}w∈x,b∈{0,1}

)
.

Selective Security. For security, we require that there exists a PPT simulator
SimCkt such that for any circuit C and input x ∈ {0, 1}|x|, we have that{

C̃, {labw,xw
}w∈x

}
c
≈
{
SimCkt

(
1λ, 1|C|, C(x), {labw,xw

}w∈x
)
, {labw,xw

}w∈x
}

where C̃ ← GarbleCkt
(
1λ, C, {labw,b}w∈x,b∈{0,1}

)
and for each w ∈ x and b ∈

{0, 1} we have labw,b ← {0, 1}λ. Here
c
≈ denotes that the two distributions are

computationally indistinguishable.

Theorem 1 ([Yao86, LP09]). Assuming the existence of one-way functions,
there exists a construction of garbling scheme for circuits.

2.5 Updatable Laconic Oblivious Transfer

In this subsection, we recall the definition of updatable laconic oblivious transfer
from [CDG+17].

Definition 5 ([CDG+17]). An updatable laconic oblivious transfer consists of
the following algorithms:

– crs ← crsGen(1λ) : It takes as input the security parameter 1λ (encoded in
unary) and outputs a common reference string crs.

– (d, D̂) ← Hash(crs, D) : It takes as input the common reference string crs

and database D ∈ {0, 1}∗ as input and outputs a digest d and a state D̂. We

assume that the state D̂ also includes the database D.
– d∗ ← HashUpdate(crs, d, (L, b), aux) : It takes as input the common reference

string crs, a digest d, position L ∈ N , a bit b and some auxiliary information
of size poly(log |D|, λ) and outputs d∗.
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– e ← Send(crs, d, L,m0,m1) : It takes as input the common reference string
crs, a digest d, a location L ∈ N and two messages m0,m1 ∈ {0, 1}p(λ) and
outputs a ciphertext e.

– m← ReceiveD̂(crs, e, L) : This is a RAM algorithm with random read access

to D̂. It takes as input a common reference string crs, a ciphertext e, and a
database location L ∈ N and outputs a message m.

– ew ← SendWrite(crs, d, L, b, {mj,0,mj,1}|d|j=1) : It takes as input the common
reference string crs, a digest d, a location L ∈ N, a bit b ∈ {0, 1} to be written,

and |d| pairs of messages {mj,0,mj,1}|d|j=1, where each mj,c is of length p(λ)
and outputs a ciphertext ew.

– {mj}|d|j=1 ← ReceiveWriteD̂(crs, L, b, ew) : This is a RAM algorithm with ran-

dom read/write access to D̂. It takes as input the common reference string

crs, a location L, a bit b ∈ {0, 1} and a ciphertext ew. It updates the state D̂

(such that D[L] = b) and outputs messages {mj}|d|j=1.

We require an updatable laconic oblivious transfer to satisfy the following prop-
erties.

Correctness: We require that for any database D of size at most M = poly(λ),
any memory location L ∈ [M ], any pair of messages (m0,m1) ∈ {0, 1}p(λ)
where p(·) is a polynomial that

Pr

m = mD[L]

crs ← crsGen(1λ)

(d, D̂)← Hash(crs, D)
e ← Send(crs, d, L,m0,m1)

m ← ReceiveD̂(crs, e, L)

 = 1,

Correctness of Hash updates: We require that for any database D of size
M = poly(λ), any memory location L ∈ [M ], any bit b ∈ {0, 1}, we re-
quire HashUpdate(crs, d, (L, i), aux) to be same as Hash(crs, D∗) where D∗ is
same as D except that D∗[L] = b. Here, aux corresponds to an auxiliary
information that is specific to position L.

Correctness of Writes: Let database D be of size at most M = poly(λ) and
let L ∈ [M ] be any memory location. Let D∗ be a database that is identical to
D except that D∗[L] = b. For any sequence of messages {mj,0,mj,1}j∈[λ] ∈
{0, 1}p(λ) we require that

Pr


m′j = mj,d∗j

∀j ∈ [|d|]

crs ← crsGen(1λ)

(d, D̂) ← Hash(crs, D)

(d∗, D̂∗) ← Hash(crs, D∗)

ew ← SendWrite
(
crs, d, L, b, {mj,0,mj,1}|d|j=1

)
{m′j}

|d|
j=1 ← ReceiveWriteD̂(crs, L, b, ew)

 = 1,

Sender Privacy: There exists a PPT simulator Sim`OT such that the for any
non-uniform PPT adversary A = (A1,A2) there exists a negligible function
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negl(·) s.t.,∣∣Pr[SenPrivExptreal(1λ,A) = 1]− Pr[SenPrivExptideal(1λ,A) = 1]
∣∣ ≤ negl(λ)

where SenPrivExptreal and SenPrivExptideal are described in Figure 1.

SenPrivExptreal[1λ,A]

1. crs← crsGen(1λ).
2. (D,L,m0,m1, st)← A1(crs).

3. (d, D̂)← Hash(crs, D).
4. Output
A2(st, Send(crs, d, L,m0,m1)).

SenPrivExptideal[1λ,A]

1. crs← crsGen(1λ).
2. (D,L,m0,m1, st)← A1(crs).

3. (d, D̂)← Hash(crs, D).
4. OutputA2(st, Sim`OT(crs, D, L,mD[L])).

Figure 1: Sender Privacy Security Game

Sender Privacy for Writes: There exists a PPT simulator Sim`OTW such that
the for any non-uniform PPT adversary A = (A1,A2) there exists a negli-
gible function negl(·) s.t.,∣∣Pr[WriSenPrivExptreal(1λ,A) = 1]−Pr[WriSenPrivExptideal(1λ,A) = 1]

∣∣ ≤ negl(λ)

where WriSenPrivExptreal and WriSenPrivExptideal are described in Figure 2.

WriSenPrivExptreal[1λ,A]

1. crs← crsGen(1λ).
2. (D,L, b, {mj,0,mj,1}j∈[λ], st) ←
A1(crs).

3. (d, D̂)← Hash(crs, D).

4. ew ← SendWrite(crs, d, L, b,

{mj,0,mj,1}|d|j=1)
5. Output A2(st, ew).

WriSenPrivExptideal[1λ,A]

1. crs← crsGen(1λ).
2. (D,L, b, {mj,0,mj,1}j∈[λ], st) ←
A1(crs).

3. (d, D̂)← Hash(crs, D).

4. (d∗, D̂∗) ← Hash(crs, D∗) where D∗

be a database that is identical to D
except that D∗[L] = b.

5. ew ← Sim`OTW(crs, D, L, b,
{mj,d∗j

}j∈[λ])
6. Output A2(st, ew).

Figure 2: Sender Privacy for Writes Security Game

Efficiency: The algorithm Hash runs in time |D|poly(log |D|, λ). The algorithms
HashUpdate, Send, SendWrite, Receive, ReceiveWrite run in time poly(log |D|, λ).
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Theorem 2 ([CDG+17]). Assuming iO for circuits and somewhere statistically binding hash functions,
there exists a construction of updatable laconic oblivious transfer.

Remark 2. We note that the security requirements given in Definition 5 is stronger
than the one in [CDG+17] as we require the crs to be generated before the ad-
versary provides the database D and the location L. However, the constructions
given in [CDG+17] already satisfies this stronger definition and this was noted
in [GS18a].

A Note on Hash Updates. The construction of updatable Laconic Oblivious
Transfer given in [CDG+17] uses a Merkle Hash to hash the database. Thus, to
compute the hash we need the contents of the entire database to be specified. But
in our construction of succinct randomized encodings, we need a methodology
to compute the Merkle tree “on the fly.” More specifically, let us consider a
scenario wherein we are not initially specified the entire database D ∈ {0, 1}M
but are only given the contents of the first n locations. We give a methodology
to compute the Merkle hash which “binds” the first n locations, keeps the other
locations to be unspecified and runs in time poly(n, λ, logM). A similar trick has
been used in [OPWW15].

Let us assume that we are given a hash function H : {0, 1}2λ → {0, 1}λ.
To store a database of size M , the Merkle tree consists of M leaves where each
leaf stores a λ bit string which either corresponds to the bit 0, or the bit 1 or
a special symbol ⊥ (using some canonical encoding). We construct the Merkle
tree in a bottom-up fashion by labeling all the internal nodes. The label of the
root node gives the hash value. We label each internal node of the Merkle tree
with children given labels lab` and labr as follows:

– If both lab` and labr are given labels ⊥, then node is given ⊥ as its label.
– Otherwise, the node is given H(lab`‖labr) as the label where ‖ denotes con-

catenation.

Note that if all the locations are unspecified then the label of the root corresponds
to ⊥. For each additional location L that is specified, we just fix the auxiliary
information aux to be labels of the all the nodes in the root to the leaf given
by L along with their siblings. Note we only need to maintain the state of
all labels which are not equal ⊥ when performing an hash update. Given this
information, we can easily recompute the label of the root. This gives the required
methodology to update the hash value in time poly(n, λ, logM) where n is the
number of specified locations.

2.6 Puncturable Pseudorandom Function

We recall the notion of puncturable pseudorandom function from [SW14]. The
construction of pseudorandom function given in [GGM86] satisfies the following
definition [BW13, KPTZ13, BGI14].
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Definition 6. A puncturable pseudorandom function PPRF is a tuple of PPT
algorithms (KeyGenPPRF,
PRF,Punc) with the following properties:

– Efficiently Computable: For all λ and for all S ← KeyGenPPRF(1λ),
PRFS : {0, 1}λ → {0, 1}λ is polynomial time computable.

– Functionality is preserved under puncturing: For all λ, for all y ∈
{0, 1}λ and ∀x 6= y,

Pr[PRFS{y}(x) = PRFS(x)] = 1

where S ← KeyGenPPRF(1λ) and S{y} ← Punc(S, y).
– Pseudorandomness at punctured points: For all λ, for all y ∈ {0, 1}λ,

and for all poly sized adversaries A

|Pr[A(PRFS(y), S{y}) = 1]− Pr[A(Uλ, S{y}) = 1]| ≤ negl(λ)

where S ← KeyGenPPRF(1λ), S{y} ← Punc(S, y) and Uλ denotes the uniform
distribution over {0, 1}λ.

Remark 3. We can generalize the puncturing procedure to puncture at multiple
points y1, . . . , ym. The security requirement now is that even given the punc-
tured key S{y1, . . . , ym}, the PRF evaluations on inputs y1, . . . , ym are com-
putationally indistinguishable to random. We note that in the case of multiple
puncturings, the size of the punctured key S{y1, . . . , ym} grows polynomially in
m and λ.

3 Construction of Succinct Randomized Encoding

In this section, we give a construction of succinct randomized encoding for suc-
cinctly describable Turing machines. More formally, we show that:

Theorem 3. Assuming the existence of indistinguishability obfuscation and up-
datable laconic oblivious transfer, there exists a construction of succinct random-
ized encoding.

As shown in [BGL+15], a succinct randomized encoding with sub-exponential
security gives a construction of succinct iO for Turing machines. For complete-
ness, we sketch the details of this transformation in the full version of our pa-
per [GS18b]. We give the formal description of our construction of succinct ran-
domized encodings in Figure 3 and give an overview below.

Overview. Let us start with an overview of the encoding scheme. The encoding
procedure takes as input a description of the Turing machine M and an input
x on which the machine has to be evaluated. The procedure first reduces M
to a circuit Csc (as given in Lemma 1) that succinctly represents the circuit C
which computes the same function as that of M . Let C consist of N − n binary
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gates with N being the output gate. Each gate g ∈ [n+ 1, N ] is described by a
tuple (i, j, fg) ∈ [g− 1]2×GType where outputs of gates i and j serves as inputs
to gate g and fg is the binary function computed by gate g. Given an input
g ∈ [n+ 1, N ], the succinct circuit Csc outputs (i, j, fg).

For our construction, we consider an alternate view of the circuit C. We view
the circuit C as a sequence of step circuits SCn+1, . . . ,SCN along with a database
D. The database is initially loaded with the input x and each step circuit writes
a single bit to the database. More precisely, for each g ∈ [n + 1, N ], the step
circuit SCg implements the functionality of the gate g and writes the output
of that gate to position g in the database. Further, the step circuits access the
database via an updatable laconic OT. Specifically, the step circuit SCg takes as
input the digest of the database where the first g−1 cells are filled appropriately
and the rest of the positions being ⊥. Using the digest, it reads the contents of
the database in positions i and j (where (i, j) are the inputs to gate g) using
the Send function of laconic OT. Once it has read the contents of those two
locations, it applies the function fg on those two bits and writes the output
to the location g using the SendWrite function. It passes on the updated digest
to the next circuit SCg+1. Thus, each of the step circuits faithfully model the
computation of the corresponding gate and the contents in location N of the
database gives the output of the circuit C.

Let us now explain how the encoding procedure uses the above view of the
circuit. The encoding procedure obfuscates the function Gate (formally described
in Figure 4). The function Gate on input g ∈ [n+ 1, N ], uses the succinct circuit
Csc to get the description of gate g. Next, it constructs the step circuit SCg
(formally described in Figure 5) and garbles the circuit (the randomness and
the labels are derived using a puncturable pseudorandom function). The Gate

function finally outputs the garbled step circuit S̃Cg. The output of the encoding
function is this obfuscation along with the labels corresponding to the initial
digest of the database (where the input is loaded).

Given an obfuscation of the function Gate, a decoder can run this obfuscation

on every gate g ∈ [n + 1, N ] to obtain the garbled step circuit S̃Cg. Given
the labels corresponding to the initial digest, the decoder evaluates each of the
garbled step circuits from n+1 to N (labels corresponding to the gth step circuit
are output by the (g− 1)th circuit). At the end of the computation, the content
of the database at location N gives the output.

However, there is one technical issue. Recall that the laconic OT is not guar-
anteed to hide the contents of the database. In order to hide the contents of the
database, we use a one-time pad to mask each bit that is written. This one time
pad is succinctly derived using a puncturable pseudorandom function.

Correctness. This argument is based on the correctness proof in [GS18a]. Let
Dg∗ be the contents of the database at the beginning of g∗-th iteration of the
for loop in sRE.Dec. We first argue via an inductive argument that for each gate
g∗ ∈ [1, N ], Dg∗+1,g is the output of gate g masked with rg for every g ∈ [1, g∗].
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sRE.Enc(1λ,M, x, t): On input a Turing machine M , an input x ∈ {0, 1}n and a
time bound t do:
1. Reduce M to a succinct circuit Csc from Lemma 1 that describes the

circuit C : {0, 1}n → {0, 1} computing the same function as that of M .
Let N − n be the number of binary gates in C.

2. Sample crs← crsGen(1λ) and three PRF keys S,R,K ← KeyGenPPRF(1λ).
We will truncate the output length of PRFR(·) to one bit.

3. For each k ∈ [λ] and b ∈ {0, 1}, compute lab1k,b = PRFK((1, k, b)).
4. Compute iO(pad`(Gate[Csc, crs, S,R,K])) where the circuit Gate is de-

scribed in Figure 4 and pad`(·) pads the circuit to size ` which will be
specified in the proof.

5. For each i ∈ [n], set yi = xi ⊕ PRFR(i).
6. Set d = ⊥ and for each i ∈ [n],

(a) Recompute d = HashUpdate(crs, d, (i, yi), aux) where aux is the auxil-
iary information for updating position i.

7. Compute rN = PRFR(N).
8. Output

(
iO(pad`(Gate[Csc, crs, S,R,K])), {lab1k,dk}k∈[λ], {yi}i∈[n], rN

)
.

sRE.Dec(M, M̂x,t) : On input the machine M and the randomized encoding M̂x,t

do:
1. Initialize the Merkle tree D̂ with the leaf node i storing bit yi for every

i ∈ [n]. Initialize all other leaves with special symbol ⊥.
2. For each g ∈ [n+ 1, N ] do:

(a) S̃Cg := iO(pad`(Gate[Csc, crs, S,R,K]))(g).
3. Set lab = {lab1k,dk}k∈[λ].
4. for each g from n+ 1 to N do:

(a) Let (i, j, fg) be the description of gate g.

(b) Compute (γ, e) := ReceiveD̂(crs,ReceiveD̂(crs,EvalCkt(S̃Cg, lab), i), j).

(c) Set lab := ReceiveWriteD̂(crs, g, γ, e).

5. Recover the contents of the leaves D from the final state D̂.
6. Output DN ⊕ rN .

Figure 3: Succinct Randomized Encoding

Given this, the correctness follows by setting g∗ := N and observing that the
DN+1,N is unmasked using rN in Step 7 of sRE.Dec.

The base case is g∗ = n which is clearly true since in the beginning Dn+1 is
set as (r[1,n]⊕x||⊥N−n). In order to prove the inductive step for a gate g∗ (with
description (i, j, fg∗)), we now argue that that the γ recovered in Step 4.(b)
of sRE.Dec corresponds to fg∗(Dg∗,i ⊕ riDg∗,j ⊕ rj) ⊕ rg∗ which by inductive
hypothesis corresponds to output of the gate g∗ masked with rg∗ . This is shown
as follows.
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Gate

Input: A gate g ∈ [n+ 1, N ].
Hardcoded: The circuit Csc, common reference string crs, a triplet of PRF keys
(S,R,K).

1. Run Csc on input g to obtain (i, j, fg).
2. Set ri = PRFR(i), rj = PRFR(j) and rg = PRFR(g).
3. Compute labgk,b = PRFK(g, k, b) and labg+1

k,b = PRFK(g+1, k, b) for each k ∈ [λ]
and b ∈ {0, 1}. (We use {labgk,b} to denote {labgk,b}k∈[λ],b∈{0,1}.)

4. Compute (where the step-circuit SC is described in Figure 5)

S̃Cg ← GarbleCkt
(

1λ,SC[crs, (ri, rj , rg), (i, j), fg, {labg+1
k,b }, 0], {labgk,b};PRFS(g)

)
.

5. Output S̃Cg.

Figure 4: Description of Gate

Step Circuit SC

Input: A digest d.
Hardcoded: The common reference string crs, a triplet of masking bits (ri, rj , rg),
a description (i, j) of gate g, a binary function fg : {0, 1}2 → {0, 1}, a set of labels
{labk,b} and a bit τ (τ = 1 case is only relevant for the proof).

1. Compute eb ← SendWrite(crs, d, g, b, {labk,0, labk,1}k∈[λ]) for b ∈ {0, 1}.

2. Define for all α, β ∈ {0, 1}, γ(α, β) :=

{
fg(α⊕ ri, β ⊕ rj)⊕ rg if τ = 0

rg if τ = 1

3. Generate

c0 ← Send
(
crs, d, j, (γ(0, 0), eγ(0,0)), (γ(0, 1), eγ(0,1))

)
,

c1 ← Send
(
crs, d, j, (γ(1, 0), eγ(1,0)), (γ(1, 1), eγ(1,1))

)
.

4. Output Send (crs, d, i, c0, c1)

Figure 5: Description of the Step Circuit

(γ, e) := ReceiveD̂(crs,ReceiveD̂(crs,EvalCkt(S̃Cg, lab), i), j)

= ReceiveD̂(crs,ReceiveD̂(crs,Send (crs, d, i, c0, c1) , i), j)

= ReceiveD̂(crs, cDg∗,i , j)

= ReceiveD̂
(
crs,Send

(
crs, d, j, (γ(Dg∗,i, 0), eγ(Dg∗,i,0)), (γ(Dg∗,i, 1), eγ(Dg∗,i,1))

)
, j
)

=
(
γ(Dg∗,i, Dg∗,j), eγ(Dg∗,i,Dg∗,j)

)
=
(
fg∗(Dg∗,i ⊕ riDg∗,j ⊕ rj)⊕ rg∗ , efg∗Dg∗,i⊕riDg∗,j⊕rj⊕rg∗

)
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4 Security Proof

In this section, we prove that the construction presented in the Section 3 satisfies
security property given in Definition 2. In Subsection 4.1, we start by defining
circuit configurations. Next, in Subsection 4.2 we show that both the real world
garbling procedure and the simulated distributions are special cases of this circuit
configuration. Finally, in the rest of the subsection we show that the real garbling
and the simulated distributions are indistinguishable.

4.1 Circuit Configuration

Our proof of security proceeds via a hybrid argument over different circuit con-
figurations which we describe in this section. A circuit configuration denoted
by conf = (I, i) consists of a set I ⊆ [n + 1, N ] and an index i ∈ [n + 1, N ].
Intuitively, each circuit configuration defines a distribution of the randomized
encoding M̂ conf

x,t . Let us now explain the semantics of the set I and the index i.
Recall that from our construction described in Figure 3, iO(pad`(Gate)) out-

puts S̃Cg when given a gate g ∈ [n+ 1, N ] as input. Intuitively, a configuration

of a circuit defines a particular distribution of S̃Cg for each g ∈ [n + 1, N ]. In

particular, for each gate g, the distribution of S̃Cg can be in one of the three

modes: White mode, Gray mode and the Black mode. We say that S̃Cg is said to

be in White mode if for the distribution of S̃Cg is same as the honest garbling

procedure given in Figure 4. We say that S̃Cg is in Gray mode if its distribution
depends only on the output of the gate g when the circuit C is evaluated with

input x. We say that S̃Cg is in Black mode if its distribution is independent of
the input x. Looking ahead, initially all the step circuits will be in White mode
and the goal will be to convert all of them to Black in the simulation. We will
achieve this in the reverse order i.e., we first change SCN to Black mode and
then change SCN−1 and so on. The index i (given as part of defining the circuit
configuration) is such that for all g > i the distribution of the garbled step cir-

cuit S̃Cg is in Black mode. We can also extend the notion of Black mode to input
gates [1, n]. So i can be any element in the set [0, N ]. The subset I indicates

the set of gates g such that the distribution of the garbled step circuit S̃Cg is in

Gray mode. The rest of the garbled step circuits S̃Cg where g 6∈ I and g ≤ i are
generated in White mode. We say a configuration is valid if I ∩ [i+ 1, N ] = ∅.

Simulation in a valid configuration. In Figure 6, we describe the simulated
encoding procedure SimsRE.Enc for any given configuration conf. Note that these
simulated encoding function also takes x as input whereas the ideal world simu-
lation does not. We describe our simulator functions with these additional inputs
so that it captures simulation in all of our intermediate hybrids. We note that
final ideal world simulation does not use these values.
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SimsRE.Enc(1λ,M, x, t): On input a Turing machine M , an input x ∈ {0, 1}n and
a time bound t do:
1. Reduce M to a succinct circuit Csc from Lemma 1 that describes the

circuit C : {0, 1}n → {0, 1}. Let N − n be the number of binary gates in
C.

2. Sample crs← crsGen(1λ) and three PRF keys S,R,K ← KeyGenPPRF(1λ).
We will truncate the output length of PRFR(·) to one bit.

3. Notation: For g ∈ [n+ 1, N + 1], we let Dg be such that

Dg,w =


xw ⊕ PRFR(w) w ≤ n,
Ew ⊕ PRFR(w) n+ 1 ≤ w < g,

⊥ otherwise,

where Ew is the bit assigned to wire w of the circuit C computed on input
x. Finally, we let dg be the digest of Dg (i.e., (dg, ·) := Hash(crs, Dg)) and
dg,k be the kth bit of dg.

4. For each k ∈ [λ] and b ∈ {0, 1}, compute lab1k,b = PRFK((1, k, b)).
5. for each g from N down to n+ 1 such that g ∈ I:

(a) Set e← Sim`OTW(crs, Dg, g,Dg+1,g, {labg+1
k,dg+1,k

}k∈[λ]).
(b) Set outg ← Sim`OT (crs, Dg, i, Sim`OT (crs, Dg, j, e))

6. Compute iO(pad`(SimGate[Csc, crs, S,R,K, (I, i), {outg, dg}g∈I ])) where
the circuit SimGate is described in Figure 7 and pad`(·) pads the circuit
to size ` which will be specified later.

7. For each w ∈ [n], set yw = PRFR(w) if w > i and yw = xw ⊕ PRFR(w)
otherwise.

8. Set d = ⊥ and for each w ∈ [n],
(a) Recompute d = HashUpdate(d, aux, w, yw) where aux is the auxiliary

information for updating position w.
9. If i < N then compute r′N = PRFR(N) ⊕ M(x); else, compute r′N =

PRFR(N).
10. Output

(
iO(pad`(Gate[Csc, S,R,K])), {labk,dk}k∈[λ], {yi}i∈[n], r

′
N

)
.

Figure 6: Succinct Randomized Encoding in configuration conf = (I, i).

4.2 Our Hybrids

For every circuit configuration conf = (I, i), we define Hybridconf to be a distri-

bution of M̂x,t as given in Figure 6. We start by observing that both real world
and ideal distribution from Definition 2 can be seen as instance of Hybridconf
where conf = (∅, N) and conf = (∅, 0), respectively. In other words, the real
world distribution corresponds to having all gates in White mode and the ideal
world distribution corresponds to having all gates in Black mode. The goal is
to move from the real world distribution to the ideal world distribution while
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SimGate

Input: A gate g ∈ [n+ 1, N ].
Hardcoded: The circuit Csc, common reference string crs, a triplet of PRF keys
(S,R,K), the configuration (I, i), {outg}g∈I and {dg}g∈I .

1. Run Csc on input g to obtain fg, (i, j).
2. Set ri = PRFR(i), rj = PRFR(j) and rg = PRFR(g).
3. Compute labgk,b = PRFK(g, k, b) and labg+1

k,b = PRFK(g+1, k, b) for each k ∈ [λ]
and b ∈ {0, 1}. (We use {labgk,b} to denote {labgk,b}k∈[λ],b∈{0,1}.)

4. If g ≤ i and g 6∈ I then compute (where the step-circuit SC is described in
Figure 5)

S̃Cg ← GarbleCkt
(

1λ,SC[crs, (ri, rj , rg), (i, j), fg, {labg+1
k,b }, 0], {labgk,b};PRFS(g)

)
.

5. Else if g > i, compute

S̃Cg ← GarbleCkt
(

1λ, SC[crs, (0, 0, rg), (i, j), {labg+1
k,b }, 1], {labgk,b};PRFS(g)

)
.

6. Else, compute S̃Cg ← SimCkt

(
1λ, 1|SC|, outg, {labgk,dg,k}k∈[λ];PRFS(g)

)
.

7. Output S̃Cg.

Figure 7: Description of SimGate

minimizing the maximum number of gates in the Gray mode in any intermediate
hybrid.5

4.2.1 Rules of Indistinguishability We will now describe the two rules
(we call these rule A and rule B) to move from one valid circuit configuration
conf to another valid configuration conf ′ such that Hybridconf is computationally
indistinguishable from Hybridconf′ .

Rule A: Rule A says that for any valid configuration conf we can indistinguish-
ably change gate g∗ in White mode to Gray mode if it is the first gate or if
its predecessor is also in Gray mode. More formally, let conf = (I, i) and
conf ′ = (I ′, i′) be two valid circuit configurations and g∗ ∈ [n + 1, N ] be a
gate such that:

– i = i′.

– g∗ 6∈ I, I ′ = I ∪ {g∗} and g∗ ≤ i.
– Either g∗ = n+ 1 or g∗ − 1 ∈ I.

5 This is because the number of gates in the Gray mode increases the circuit size of
SimGate by a proportional factor.
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In Lemma 4, we will show that for two valid configurations conf, conf ′ satisfy-

ing the above constraints we have that Hybridconf
c
≈ Hybridconf′ . Note that we

can also use this rule to move a gate g∗ from Gray mode to White mode. We
refer to those invocations of the rule as inverse A rule. Rule A is illustrated
in Figure 8.

Rule B: Rule B says that for any configuration for any valid configuration conf
we can indistinguishably change gate g∗ in Gray mode to Black mode if all
gates subsequent to g∗ is in Black mode and the predecessor is in Gray mode.
More formally, let conf = (I, g∗) and conf ′ = (I ′, g′) be two valid circuit
configurations such that:

– g∗ = g′ + 1.

– g∗ ∈ I, I ′ = I \ {g∗}.
– Either g∗ = n+ 1 or g∗ − 1 ∈ I.

In Lemma 5, we will show that for an valid configurations conf, conf ′ satis-

fying the above constraints we have that Hybridconf
c
≈ Hybridconf′ . Rule B is

illustrated in Figure 9.

conf g∗ i

conf′ g∗ i

Figure 8: Example of Rule A

conf g∗

conf′ g′ g∗

Figure 9: Example of Rule B
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4.2.2 Interpreting the rules of indistinguishability as a pebbling game
Sections 4.2.2 and 4.2.3 are taken verbatim from [GS18a]. Our sequence of hy-
brids from the real to the ideal world follow an optimal strategy for the following
pebbling game. The two rules described above correspond to the rules of our
pebbling game below.

Consider the positive integer line n+ 1, n+ 2, . . . N . We are given pebbles of
two colors: gray and black . A black pebble corresponds to a gate in the Black
(i.e., input independent simulation) mode and a gray pebble corresponds to a
gate in the Gray (i.e., input dependent simulation) mode. A position without
any pebble corresponds to real garbling or in the White mode. We can place the
pebbles on this positive integer line according to the following two rules:

Rule A: We can place or remove a gray pebble in position i if and only if there
is a gray pebble in position i− 1. This restriction does not apply to position
n+ 1: we can always place or remove a gray pebble at position n+ 1.

Rule B: We can replace a gray pebble in position i with a black pebble as long
as all the positions > i have black pebbles and there is a gray pebble in
position i− 1 or if i = n+ 1.

Optimization goal of the pebbling game. The goal is to pebble the line
[n + 1, N ] such that every position has a black pebble while minimizing the
number of gray pebbles that are present on the line at any point in time.

4.2.3 Optimal Pebbling Strategy To provide some intuition, we start with
the näıve pebbling strategy. The näıve pebbling strategy involves starting from
position n+ 1 and placing a gray pebble at every position in [n+ 1, N ] and then
replacing them with black pebbles from N to n+ 1. However, this strategy uses
a total of N−n gray pebbles. Using a more clever strategy, it is actually possible
to do the same using only log(N − n) gray pebbles. We first recall the following
lemma from [GPSZ17].

Lemma 2 ([GPSZ17]). For any integer n+1 ≤ p ≤ n+2k−1, it is possible to
make O((p− n)log2 3) ≈ O((p− n)1.585) moves and get a gray pebble at position
p using k gray pebbles.

Proof. For completeness we give the proof. This proof is taken verbatim from
[GPSZ17].

First we observe to get a gray pebble placed at p, for each i ∈ [n+ 1, p− 1]
there must have been at some point a gray pebble placed at location i.

Next, we observe that it suffices to show we can get a gray pebble at position
p = n+ 2k− 1 for every k using O(3k) = O((p−n)log2 3) steps. Indeed, for more
general p, we run the protocol for p′ = n+ 2k − 1 where k = dlog2(p− n− 1)e,
but stop the first time we get a gray pebble at position p. Since p′/p ≤ 3, the
running time is at most O((p− n)log2 3).

Now for the algorithm. The sequence of steps will create a fractal pattern,
and we describe the steps recursively. We assume an algorithm Ak−1 using k−1
gray pebbles that can get a gray pebble at position n+ 2k−1 − 1. The steps are
as follows:
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– Run Ak−1. There is now a gray pebble at position n+ 2k−1 − 1 on the line.
– Place the remaining gray pebble at position n+ 2k−1, which is allowed since

there is a gray pebble at position n+ 2k−1 − 1.
– Run Ak−1 in reverse, recovering all of the k−1 gray pebbles used by A. The

result is that there is a single gray pebble on the line at position n+ 2k−1.
– Now associate the portion of the number line starting at n+ 2k−1 + 1 with a

new number line. That is, associate n+ 2k−1 +a on the original number line
with n′+a (where n′ = n+2k−1) on the new number line. We now have k−1
gray pebbles, and on this new number line, all of the same rules apply. In
particular, we can always add or remove a gray pebble from the first position
n′+1 = n+2k−1+1 since we have left a gray pebble at n+2k−1. Therefore, we
can run Ak+1 once more on the new number line starting at n′+ 1. The end
result is a pebble at position n′+2k−1 − 1 = n+2k−1+(2k−1−1) = n+2k−1.

It remains to analyze the running time. The algorithm makes 3 recursive calls
to Ak−1, so by induction the overall running time is O(3k), as desired.

Using the above lemma, we now give an optimal strategy for our pebbling
game.

Lemma 3 ([GS18a]). For any N ∈ N, there exists a strategy for pebbling
the line graph [n + 1, N ] according to rules A and B by using at most logN
gray pebbles and making poly(N) moves.

Proof. The proof is taken verbatim from [GS18a].
The strategy is given below. For each g from N down to n+ 1 do:

1. Use the strategy in Lemma 2 to place a gray pebble in position g. Note that
there exists a gray pebble in position g − 1 as well.

2. Replace the gray pebble in position g with a black pebble. This replacement
is allowed since all positions> g have black pebbles and there is a gray pebble
in position g − 1.

3. Recover all the gray pebbles by reversing the moves.

The correctness of this strategy follows by inspection and the number of moves
is polynomial in N .

4.3 Proof of Indistinguishability for the Rules

In this subsection, we will use the security of underlying primitives to implement
the two rules.

4.3.1 Implementing Rule A

Lemma 4 (Rule A). Let conf and conf ′ be two valid circuit configurations
satisfying the constraints of rule A, then assuming the security of garbling scheme
for circuits, updatable laconic oblivious transfer, indistinguishability obfuscation

and puncturable PRFs we have that Hybridconf
c
≈ Hybridconf′ .
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Proof. We prove this via a hybrid argument.

– Hybridconf : This is our starting hybrid and is distributed as Hybrid(I,i).
– Hybrid1: In this hybrid, instead of hardwiring the PPRF keys K and S in the

circuit SimGate, we hardwire the key K that is punctured at (g∗, k, b) for
every k ∈ [λ], b ∈ {0, 1} and S punctured at g∗. We additionally hardwire

{labg
∗

k,b}k∈[λ],b∈{0,1} and PRFS(g∗). This blows up the size of the circuit by a
factor poly(λ). On input g∗ − 1 and g∗, the circuit now uses the hardwired
labels/randomness instead of computing them using the PPRF.
It can be noted that the SimGate circuits in both Hybridconf and Hybrid1
computes the exact same functionality and hence the indistinguishability
between Hybridconf and Hybrid1 follows from the security of iO.

– Hybrid2: We make three changes to the SimGate.
• By conditions of Rule A, we have that g∗−1 ∈ I (if g∗ 6= n+1). Therefore,

we note that all the input labels {labg
∗

k,b} are not used in SimGate but only

the labels corresponding to dg∗ i.e., {labg
∗

k,dg∗,k
}k∈[λ]. We just hardwire

these labels in SimGate.
• We also hardwire S̃Cg∗ (that is computed using randomness PRFS(g∗))

in SimGate instead of generating it inside SimGate.
• We remove the hardwired randomness PRFS(g∗).

The computational indistinguishability between Hybrid2 from Hybrid1 follows
from the security of iO since the function computed by SimGate in Hybrid1
and Hybrid2 is exactly the same.

– Hybrid3 : In this hybrid, we sample the labels {labk,dg∗,k}k∈[λ] and the ran-

domness used in generating S̃Cg∗ uniformly at random instead of generating
them as outputs of the puncturable PRF. The computational indistinguisha-
bility between Hybrid2 and Hybrid3 follows from the security of puncturable
PRF.

– Hybrid4: In this hybrid, we generate S̃Cg∗ (that is hardwired inside SimGate)
from the simulated distribution. More formally, we generate

S̃Cg∗ ← Simckt(1
λ, 1|SC|, out, {labg

∗

k,dg∗,k
}k∈[λ])

where out← SC[crs, (ri, rj , rg), (i, j, fg), {labg
∗+1
k,b }, 0](dg∗).

The only change in hybrid Hybrid3 from Hybrid2 is in the generation of the

garbled circuit S̃Cg∗ and the security follows directly from the selective se-
curity of the garbling scheme.

– Hybrid5: In this hybrid, we change how the output value out hardwired in

S̃Cg∗ is generated. Recall that in Hybrid4 this value is generated by first com-
puting c0 and c1 as in Figure 5 and then generating out as Send (crs, d, i, c0, c1).
In this hybrid, we just generate cDg∗,i and use the laconic OT simulator to
generate out. More formally, out is generated as

out← Sim`OT

(
crs, Dg∗ , i, cDg∗,i

)
.

Computational indistinguishability between hybrids Hybrid4 and Hybrid5 fol-
lows directly from the sender privacy of the laconic OT scheme.
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– Hybrid6: In this hybrid, we change how the value cDg∗,i is generated. Recall
from Figure 5 that cDg∗,i is set as Send(crs, d, j, (γ(Dg∗,i, 0), eγ(Dg∗,i,0)), (γ(Dg∗,i, 1), eγ(Dg∗,i,1))).
We change the distribution of cDg∗,i to Sim`OT(crs, Dg∗ , j, eDg∗+1,g∗ ), where
eDg∗+1,g∗ is sampled as in Figure 5.
Computational indistinguishability between hybrids Hybrid6 and Hybrid5 fol-
lows directly from the sender privacy of the laconic OT scheme. The argu-
ment is analogous to the argument of indistinguishability between Hybrid4
and Hybrid5.

– Hybrid7: In this hybrid, we change how eDg∗+1,g∗ is generated. More specifi-
cally, we generate it using the simulator Sim`OTW. In other words, eDg∗+1,g

is generated as

Sim`OTW(crs, Dg∗ , g
∗, Dg∗+1,g∗ , {labg

∗+1
k,dg∗+1,k

}k∈[λ]).

Computational indistinguishability between hybrids Hybrid6 and Hybrid7 fol-
lows directly from the sender privacy for writes of the laconic OT scheme.

– Hybrid8 − Hybrid10: In this hybrid, we reverse the changes made in Hybrid1 to
Hybrid3 except that we hardwire {outg∗ , dg∗} in SimGate and use it to gen-

erate S̃Cg∗ . The indistinguishability between Hybrid7 to Hybrid10 follows in
analogous manner to the indistinguishability between Hybridconf to Hybrid3.
Finally, observe that hybrid Hybrid10 is the same as Hybridconf′ .

This completes the proof of the lemma. We additionally note that the above
sequence of hybrids is reversible. This implies the inverse rule A.

4.3.2 Implementing Rule B

Lemma 5 (Rule B). Let conf and conf ′ be two valid circuit configurations
satisfying the constraints of rule B, then assuming the security of somewhere
equivocal encryption, garbling scheme for circuits and updatable laconic oblivious

transfer, we have that Hybridconf
c
≈ Hybridconf′ .

Proof. We prove this via a hybrid argument starting with Hybridconf′ and ending
in hybrid Hybridconf . We follow this ordering of the hybrids as this keeps the
proof very close to the proof of Lemma 4.

– Hybridconf′ : This is our starting hybrid and is distributed as Hybrid(I′,g′).
– Hybrid1: In this hybrid, instead of hardwiring the PPRF keys K, R and S in

the circuit SimGate, we hardwire the key K that is punctured at (g∗, k, b)
for every k ∈ [λ], b ∈ {0, 1}, R and S are punctured at g∗. We additionally

hardwire {labg
∗

k,b}k∈[λ],b∈{0,1}, (ri, rj ,g ), PRFR(g∗) and PRFS(g∗). This blows
up the size of the circuit by a factor poly(λ). On input g∗ − 1 and g∗, the
circuit now uses the hardwired labels/randomness instead of computing them
using the PPRF. Note that by constraints on conf and conf ′, PRFR(g∗) is
only needed on input g∗. This is because all gates g > g∗ are in Black mode.
It can be noted that the SimGate circuits in both Hybridconf and Hybrid1
computes the exact same functionality and hence the indistinguishability
between Hybridconf and Hybrid1 follows from the security of iO.
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– Hybrid2: We make three changes to the SimGate.

• By conditions of Rule A, we have that g∗−1 ∈ I (if g∗ 6= n+1). Therefore,

we note that all the input labels {labg
∗

k,b} are not used in SimGate but only

the labels corresponding to dg∗ i.e., {labg
∗

k,dg∗,k
}k∈[λ]. We just hardwire

these labels in SimGate.
• We also hardwire S̃Cg∗ (where SCg∗ has rg∗ hardwired and S̃Cg∗ is com-

puted using randomness PRFS(g∗)) in SimGate instead of generating it
inside SimGate.

• We remove the hardwired randomness PRFS(g∗) and PRFR(g∗).

The computational indistinguishability between Hybrid2 from Hybrid1 follows
from the security of iO since the function computed by SimGate in Hybrid1
and Hybrid2 is exactly the same.

– Hybrid3 : In this hybrid, we sample the labels {labk,dg∗,k}k∈[λ], PRFR(g∗)

and the randomness used in generating S̃Cg∗ uniformly at random instead
of generating them as outputs of the puncturable PRF. The computational
indistinguishability between Hybrid2 and Hybrid3 follows from the security of
puncturable PRF.

– Hybrid4: In this hybrid, we generate S̃Cg∗ (that is hardwired inside SimGate)
from the simulated distribution. More formally, we generate

S̃Cg∗ ← Simckt(1
λ, 1|SC|, out, {labg

∗

k,dg∗,k
}k∈[λ])

where out← SC[crs, (0, 0, rg), (i, j, fg), {labg
∗+1
k,b }, 1](dg∗).

The only change in hybrid Hybrid3 from Hybrid4 is in the generation of the

garbled circuit S̃Cg∗ and the security follows directly from the selective se-
curity of the garbling scheme.

– Hybrid5: In this hybrid, we set change how the output value out hardwired

in S̃Cg∗ is generated. Recall that in hybrid Hybrid4 this value is generated
by first computing c0 and c1 as in Figure 5 and then generating out as
Send (crs, d, i, c0, c1). In this hybrid, we just generate cDg∗,i and use the la-
conic OT simulator to generate out. More formally, out is generated as

out← Sim`OT

(
crs, Dg∗ , i, cDg∗,i

)
.

Computational indistinguishability between hybrids Hybrid4 and Hybrid5 fol-
lows directly from the sender privacy of the laconic OT scheme.

– Hybrid6: In this hybrid, we change how the how the value cDg∗,i is generated

in hybrid Hybrid5. Recall from Figure 5 that cDg∗,i is set as Send
(
crs, d, j, erg∗ , erg∗

)
.

We change the distribution of cDg∗,i to Sim`OT

(
crs, Dg, j, erg∗

)
, where erg∗

is sampled as in Figure 5.
Computational indistinguishability between hybrids Hybrid5 and Hybrid6 fol-
lows directly from the sender privacy of the laconic OT scheme. The argu-
ment is analogous to the argument of indistinguishability between Hybrid4
and Hybrid5.



27

– Hybrid7: In this hybrid, we change how erg∗ is generated. More specifically,
we generate it using the simulator Sim`OTW. In other words, erg∗ is generated
as

Sim`OTW(crs, Dg∗ , g
∗, rg∗ , {labg

∗+1
k,dg∗+1,k

}k∈[λ]).

Computational indistinguishability between hybrids Hybrid6 and Hybrid7 fol-
lows directly from the sender privacy for writes of the laconic OT scheme.

– Hybrid8 : The only difference between Hybrid7 and Hybrid8 is how Dg∗+1,g∗ is
set. Namely, in Hybrid7 this value is set to be rg∗ while in Hybrid8 this value
is set as rg∗ ⊕ fg∗(Dg∗,i ⊕ ri, Dg∗,j ⊕ rj). We argue that the distributions
Hybrid7 and Hybrid8 are identical. Two cases arise:
• g∗ ≤ N − 1: In this case, note that since rg∗ is not hardwired anywhere

else, we have that the distribution rg∗ and rg∗⊕fg∗(Dg∗,i ⊕ riDg∗,j ⊕ rj)
are both uniform and identical.

• g∗ = N : In this case, we have that rg∗ = M(x) ⊕ r′g∗ which is again
identical to the distribution of rg∗ in Hybrid8.

– Hybrid9 − Hybrid11: In this hybrid, we reverse the changes made in Hybrid1 to
Hybrid3 except that we hardwire {outg∗ , dg∗} in SimGate and use it to gen-

erate S̃Cg∗ .. The indistinguishability between Hybrid8 to Hybrid11 follows in
analogous manner to the indistinguishability between Hybridconf′ to Hybrid3.
Observe that Hybrid11 is distributed identically to Hybridconf .

This completes the proof of the lemma.

4.3.3 Completing the Hybrids The strategy given in Lemma 3 yields a
sequence of configurations conf0 . . . confm for an appropriate polynomial m with

conf0 = (∅, N) and confm = (∅, n), where Hybridconfi−1

c
≈ Hybridconfi either using

rule A (i.e., Lemma 4) or using rule B (i.e., Lemma 5). We now show that
Hybridconfm is computationally indistinguishable to the ideal world distribution
given by Hybrid(∅,0). This is argued using the security property of puncturable
PRF using the key R and the security of iO as follows.

– Hybrid1 : In this hybrid, we puncture the PRF key R at points {1, . . . , n}
and hardwire it in SimGate. Note that in Hybrid(∅,n), the function SimGate
never uses the PRF key on inputs {1, . . . , n} and hence the functionality
computed by the SimGate is exactly the same in this hybrid and Hybrid(∅,n).
The computational indistinguishability follows from the security of iO.

– Hybrid2 : In this hybrid, we replace yw with a random bit rw for each w ∈ [n].
The computational indistinguishability between Hybrid1 and Hybrid2 follows
from the security of puncturable PRF.

– Hybrid3 : In this hybrid, we replace yw with PRFR(w) for every w ∈ [n]. The
computational indistinguishability between Hybrid2 and Hybrid3 follows from
the security of puncturable PRF.

– Hybrid4 : In this hybrid, we reverse the change made in Hybrid1 and the
indistinguishability follows from the security of iO. Notice that Hybrid4 is
distributed identically to Hybrid(∅,φ).
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Finally, the padding size ` is set to be maximum over the sizes of SimGate in
every intermediate hybrid in the proof of Lemma 4, Lemma 5 and in the proof
of indistinguishability between Hybrid(∅,n) and Hybrid(∅,0). This is observed to be
poly(|M |, logN,λ, n). This completes the proof of security.
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