
DRANKULA: a McEliece-like rank metric based
cryptosystem implementation

Ameera Salem Al Abdouli and Mohamed Al Ali and Emanuele Bellini
and Florian Caullery and Alexandros Hasikos and Marc Manzano and

Victor Mateu

DarkMatter, UAE

In Proceedings of the 15th International Joint Conference on
e-Business and Telecommunications (ICETE 2018), Volume 2:

SECRYPT, pages 64-75

August 26, 2018

Abstract

We present and analyze the performance of DRANKULA, a McEliece-like
cryptosystem implementation using rank metric instead of Hamming distance.
Namely, we use the scheme proposed by Loidreau in PQCrypto 2017 using Gabidulin
codes. We propose a set of carefully selected parameters and we address several
non-trivial issues when porting this scheme into real-world systems as, for exam-
ple, the generation of errors of a given rank. We provide the pseudo-code of the
core algorithms of the cryptosystem. In addition, we also show code optimization
when special instructions like Carry-less multiplications are available. Moreover,
we argue how to have a practical and side-channel resistant version of the cryp-
tosystem. We integrated the scheme in Open Quantum Safe and benchmarked it
against the other schemes implemented there. Our results show that DRANKULA
can be a practical alternative to other well-known quantum-safe schemes.

1 Introduction
Substantial advances in quantum computing in the past decade have re-assured the sci-
entific community about the necessity to build quantum-resistant cryptosystems (De-
voret and Schoelkopf, 2013). Recently, Google announced Bristlecone, a new 72 qubits
quantum processor (Google, 2018). Post-Quantum Cryptography (PQC) has raised as
the preferred solution to face the threat that quantum computers pose to traditional
public-key cryptography based on number theory (Shor, 1997). The recent announce-
ment by the National Institute of Standards and Technology (NIST) to define new stan-
dards for public-key encryption, digital signatures and key-exchange schemes has only
augmented the attention towards PQC (Chen et al., 2016).

There exist several alternative problems to classical public-key cryptography, which
is based on integer factorization or discrete logarithms. Lattice-based cryptography,

1

multivariate cryptography, hash-based cryptography schemes, isogeny-based cryptog-
raphy and code-based cryptography can be used to design cryptosystems secure against
both classical and quantum computers (Bernstein et al., 2008), and are thus regarded as
PQC algorithms, being candidates for becoming the next standards defined by NIST.

Code-based cryptography is the oldest PQC family known and consequently is the
most thoroughly studied among the PQC candidates (Sendrier, 2017). McEliece pro-
posed the first code-based public-key cryptosystem (McEliece, 1978), which is based
on binary Goppa codes, and so far has withstood all cryptanalytic efforts. Another well
known cryptosystem was proposed by Niederreiter in (Niederreiter, 1986). Recently,
Bernstein, Chou and Schwabe presented McBits, which improved decryption time with
respect to Niederreiter (Bernstein et al., 2015). An improved version was presented in
(Chou, 2017). However, the usage of the aforementioned schemes in real world appli-
cations has been prohibitive because of the significantly large key sizes (e.g., McBits
requires 64KB to achieve 280 classical security level). Therefore, the most important
challenge that code-based cryptography faces is how to reduce key sizes in order to be
implemented on limited resource devices.

Two different lines have been investigated with the purpose of reducing key sizes.
On the one hand, several works have tried to address this drawback by designing
McEliece variants with more compact keys by using quasicyclic codes (Gaborit, 2005;
Misoczki et al., 2013; Chou, 2016). On the other hand, the usage of rank metric rather
than Hamming distance has been considered.

The rank metric was introduced by Gabidulin in (Gabidulin, 1985) and he proposed
a family of codes, the Gabidulin codes, equivalent to Reed-Solomon codes in Hamming
distance, which can be decoded in polynomial time. Rank Syndrome Decoding (RSD)
is the equivalent in rank metric of the Syndrome Decoding problem in Hamming dis-
tance. Later on, Gabidulin et al. proposed the GPT cryptosystem, a McEliece-like
cryptosystem based on Rank metric (Gabidulin et al., 1991). One of the advantages of
using Gabidulin codes is that the complexity of the best known attacks for solving the
RSD problem have an exponential complexity which is quadratic in the parameters of
the system. As a consequence, key sizes can be notably reduced to achieve the same
security level than a Hamming distance-based cryptosystem.

Then, Overbeck proposed a framework that devastated all Gabidulin codes based
encryption schemes (Overbeck, 2005; Overbeck, 2008). Furthermore, evolutions of the
GPT cryptosystem have been shown to be also breakable in polynomial-time (Otmani
et al., 2016). Nevertheless, Loidreau has proposed a new McEliece-like rank metric
based encryption scheme from Gabidulin codes that is not affected by the so-called
Overbeck’s attacks (Loidreau, 2017).

In this work we carry out the first implementation of the scheme proposed in
(Loidreau, 2017), which we have called DRANKULA. We present a set of selected pa-
rameters that allow the scheme to achieve different levels of quantum security; namely
64, 96 and 128 bit. We motivate this parameter selection by implementation constraints
and optimization possibilities. Moreover, we go through all the caveats of the imple-
mentation of a cryptosystem based on rank metric codes, and we provide the pseudo-
code for the main algorithms. We also discuss several countermeasures that would
make the implementation side-channel resistant.

1.1 Organization of the paper
The rest of the paper is structured as follows. First, in Section 2 we outline all the code-
based Key Encapsulation Mechanism (KEM) and Public Key Encryption (PKE) sub-

2

missions to the NIST competition and then in Section 3 we introduce the cryptosystem
we are implementing on this paper, and the selected parameters. Section 4 is devoted
to the base field arithmetic and matrix operations that are required to implement for
running the cryptosystem. In Section 5 we present the necessary code-blocks used to
build the cryptosystem, namely, (a) the key generation, (b) the encryption which in-
cludes the error generation, and (c) the decryption. Section 6 gives an overview of the
performance of the scheme compared with other post-quantum cryptography schemes.
Section 7 presents some directions to have a side-channel resistant implementation.
Finally, we provide the conclusions of our proposal in Section 8.

2 Rank-metric NIST submissions
There were four code-based KEM and PKE schemes based on the rank metric sub-
mitted to the first round of the NIST post-quantum cryptography standardization com-
petition (NIST, 2018). First, Ouroboros-R (Deneuville et al., 2017), is a cryptosystem
that inherits features from MDPC-McEliece (Misoczki et al., 2013) and the rank metric
quasi-cyclic family. The security relies on decoding small weight vectors of random
quasi-cyclic codes. The advantages are the security reduction with small public key
sizes resulting from cyclicity, the easy evaluation of the low decryption failure proba-
bilities and the efficiency of the decoding compared to MDP. Second, LAKE (Gaborit
et al., 2013), which stands for Low rAnk parity check codes Key Exchange, is a rank-
metric scheme for which the authors provide an efficient probabilistic decoding algo-
rithm. The quasi-cyclic family of codes that is being used produces a public key which
is significantly smaller than MDPC codes. Similar to LAKE, LOCKER (Aragon et al.,
2017) is built on a small variation of low rank parity check codes and has been adapted
to support low decryption probability failures with a versatile choice of parameters.
Considering the low decryption failure probabilities the scheme is efficient in terms of
key sizes and computational complexity. These three schemes share the property of
a probabilistic decryption algorithms. In contrast, DRANKULA offers a determinis-
tic decryption procedure which makes it more suitable in scenarios where we cannot
tolerate decryption failures.

Last, RQC (Melchor et al., 2016), is another rank-metric scheme that is also based
on the difficulty of decoding random quasi-cyclic codes. The key-size of the scheme is
restricted to a few thousands of bytes and has a deterministic decoding algorithm. It is
also resistant to code hidden structure recovery attacks. Although having a bigger key
size, DRANKULA reduces the ciphertext expansion by a factor of 2 in comparison to
RQC.

3 Cryptosystem description
The scheme we have chosen to implement is the one proposed in (Loidreau, 2017). It
is a scheme based on Gabidulin codes using a special sub-space for the entries of the
scrambling matrix which transforms the private key into the public key.

The essential difference between the presented cryptosystem and traditional McEliece
instantiations is that, instead of XORing the encoded plaintext with errors of a given
Hamming weight, we do it with an error of a specific rank weight.

3

Definition 1. Let e = {e1, . . . ,en} ∈ Fn
2m . The rank weight of e is defined by

rk(

e1,1 · · · en,1
e1,2 · · · en,2

...
. . .

...
e1,m · · · en,m

)
where ei, j is the jth component of ei seen as a vector over F2.

Definition 2 (Gabidulin codes). Let k< n≤m be non-negative integers and let {g1, ...,gn}∈
F2m , be linearly independent over F2. Let [i] = 2i such that x→ x[i] is the ith power
of the Frobenius automorphism x→ x2. The code Gabk,n(g), is the linear code with
generator matrix

G =

g1 · · · gn

g[1]1 · · · g[1]n
...

. . .
...

g[k−1]
1 · · · g[k−1]

n

that is:

Gabk,n(g) = {xG|x ∈ Fk
2m}.

These codes can be decoded in polynomial-time for errors of rank weight up to
b(n− k)/2c (Gabidulin, 1985).

Gabidulin Codes are the rank-metric equivalent of Reed Solomon Codes. The
scheme’s approach is to choose a randomly selected vector space of Fm

2 of fixed dimen-
sion which is used to scramble the codes. The proof of correctness of the cryptosystem
is based on the rank multiplication property, the same one used to show that the Low
Rank Parity Check (LRPC) codes decoding procedure works.

The scheme has four parameters:

• m:= the degree of the extension of F2 in which our code will be defined

• n:= the length of the code

• k:= the dimension of the code

• λ:= the dimension of a randomly selected subspace of F2m

The security bounds of the scheme given in (Loidreau, 2017) are the following:

• Decoding of the ciphertext in the public code corresponds to the complexity
of solving Bounded Distance binary Rank decoding BDR problem which is NP-
hard. In that setting, the decoding complexity is equal to m32(λRk(e)−1)b(k min(m,n))/nc

binary operations for a classical computer and to m32
1
2 (λRk(e)−1)b(k min(m,n))/nc

operations for a quantum computer.

• The lower bound on the complexity of distinguishability of the public code from
a random code is 2(λ−1)m−(λ−1)2

.

Finally, the scheme is separated into the three following parts:

4

m n k λ t dec. cplx quantum dec. cplx. key recovery cplx. public key size
64 63 31 3 5 142 78 124 7.75KB
96 71 35 3 6 194.76 104.76 188 14.77KB
96 96 48 4 6 259.75 139.75 279 27KB

Table 1: DRANKULA security parameters

• Key generation:

– Private key:
1. Select a Gabidulin code of length n and dimension k over F2m with

generator matrix Gpriv

2. Randomly generate a non-singular k× k matrix S ∈Mk(F2m)

3. Randomly select a vectorial subspace V ⊂ Fm
2 of dimension λ

4. Randomly generate a non-singular P ∈Mn(V)

– Public key: The public code Cpub has Gpub = SGprivP−1 as a generator
matrix.

• Encryption:

1. Choose a random vector e ∈ Fn
2m of rank weight t := b(n− k)/(2λ)c

2. Compute y = xGpub + e

3. Send y

• Decryption:

1. Compute yP = xSG+ eP

2. Recover xS and eP by decoding and recover x by multiplying xS by S−1

We refer to (Loidreau, 2017) for the proof of work.

3.1 Parameters Selection
The parameters proposed in (Loidreau, 2017) were not optimal for its implementation
because they were focused on reducing the size of both private and public keys instead.
For our implementation, we have chosen a base field which is either F264 or F296 to fit
nicely into the words structure available on modern machines and carry out optimiza-
tions based on special sets of instructions (e.g. carry-less multiplication). We targeted
3 levels of post-quantum security, namely 64 bit, 96 bit and 128 bit and we have deter-
mined the following parameters. Table 1 shows our parameter sets and their respective
security levels. Such values are computed following the formulas given in (Loidreau,
2017) and are consistent with the ones presented in that paper.

4 Implementation of core components
Given the nature of the cryptosystem, the core components are the field arithmetic
and the matrix operations. Therefore, the performance of the resulting algorithms will
heavily rely on how efficient such operations are.

5

4.1 Field arithmetic
We implemented finite field arithmetic for the two binary fields F2m , with m = 64 and
m = 96, representing elements as polynomials of degree m− 1. As it was proven
in Swan’s Theorem (Swan, 1962) on factorization of polynomials over finite fields,
given that 64 and 96 are multiples of 8 there is no irreducible trinomial. Therefore,
we used the two following irreducible pentanomial f64(x) = x64 + x4 + x3 + x+1 and
f96(x) = x96+x10+x9+x6+1, respectively, both provided by the Allan Steel database
incorporated in Magma software (Bosma et al., 1997). Notice that in the case of f64 the
pentanomial has also lowest possible intermediate degree, allowing the shortest shift
during the reduction operations. Such irreducible polynomial for the case of F96 has
7 terms, i.e. x96 + x6 + x5 + x3 + x2 + x+ 1, which is not convenient to use compared
with the pentanomial.
We stored elements in both fields using 128 unsigned integers, with unused bits set to
zero.
Addition and subtraction of two elements are a simple XOR operation.
The multiplication of two polynomials has been performed using PCLMULQDQ in-
struction (Gueron and Kounavis, 2010). In the case of F96, three calls to such instruc-
tion are needed, since the instruction operates on 64 bit inputs. For this reason we split
one element of 96 bits in two elements of 32 and 64 bits respectively, and then apply
Karatsuba-Ofman method (Karatsuba and Ofman, 1962). In the case of F64, only one
call to the instruction is needed, and there is no need to split the element.
Since the multiplication provides polynomials of degree at most 2m− 2, we need to
perform the reduction of such result. The two algorithms for reduction are presented in
Algorithm 1 and Algorithm 2, where the symbols�,� denote field multiplication and
division by x respectively (left and right shift operators), ⊕ is the field addition (XOR
operator), and || is the concatenation operator.

Algorithm 1: Reduction in F264

input : A = (a126, . . . ,a0) ∈ F127
2

output : C = A mod f64 ∈ F64
2

1 A0 = (a63, . . . ,a0) ∈ F64
2

2 A1 = (0,a126, . . . ,a64) ∈ F64
2

3 A0 = A0⊕ (A1� 4)⊕ (A1� 3)⊕ (A1� 1)⊕A1
4 A1 = (A1� 60)⊕ (A1� 61)⊕ (A1� 63)
5 T = (0, . . . ,0,a67,a66,a65,a64) ∈ F64

2
6 A0 = A0⊕ (T � 4)⊕ (T � 3)⊕ (T � 1)⊕T
7 return A0

To limit memory usage, the inversion on the field relies on the Extended Euclidean
Algorithm (Hankerson et al., 2006). An alternative requiring more memory, which we
did not consider, would be Itoh-Tsujii algorithm with precomputed powers (Itoh and
Tsujii, 1988).

4.2 Matrix operations
The operations needed in our implementation are the following:

• Matrix multiplications

6

Algorithm 2: Reduction in F296

input : A = (a190, . . . ,a0) ∈ F191
2

output : C = A mod f96 ∈ F96
2

1 A0 = (a63, . . . ,a0) ∈ F64
2

2 A1 = (a127, . . . ,a64) ∈ F64
2

3 A2 = (0, . . . ,0,a190, . . . ,a128) ∈ F64
2

4 A0 = A0⊕ (A2� 42)⊕ (A2� 41)⊕ (A2� 38)⊕ (A2� 32)
5 A1 = A1⊕ (A2� 22)⊕ (A2� 23)⊕ (A2� 26)⊕ (A2� 32)
6 T = (0, . . . ,0,a127, . . . ,a96) ∈ F64

2
7 A0 = A0⊕ (T � 10)⊕ (T � 9)⊕ (T � 6)⊕T
8 return A1||A0 ∈ F96

2

• Gaussian elimination in order to perform:

– Matrix inversion for square matrices

– Assertion of linear independence

– Reduction of the generator matrix of the public code to the systematic form
(i.e. rewrite Gpub as [Idk||G′pub])

It has to be noted that those operations were implemented with two variants. That
is, one for the matrices with coefficients in F2 and one for the matrices with coeffi-
cients in F2m . As the sizes of the matrices are quite small (96× 96 at maximum), the
naive algorithms were actually faster than any optimized version. For example, the
matrix multiplication is not using Strassen’s algorithm and matrix inversion is carried
out using Gaussian elimination.

5 Algorithms Implementation
Loidreau’s proposed scheme consists of the three algorithms sumarized in Section 3.
Here we present our implementation for each of them.

5.1 Key generation
The key generation is pretty simple. It just requires to generate random matrices with
coefficients in F2 or F2m of the right dimension and to ensure that they respect the
conditions given in the scheme specification. If the randomly generated matrix does
not fulfill the conditions, then repeat the process until one suitable candidate is found.

More precisely, the conditions are the following:

• The generators g1, . . . ,gn of the Gabidulin code with generator matrix Gpriv are
all linearly independent over F2. That is, the binary matrixg1,1 . . . gn,1

...
...

...
g1,m . . . gn,m

 ,

where gi, j is the j-th bit of gi, has a rank equal to n.

7

• The λ random elements of F2m which shall be seen as the basis of V have to be
linearly independent over F2.

• Matrices P ∈Mn(V) and S ∈Mk(F2m) should be non-singular.

Luckily, the density of non-singular matrices with coefficients in finite field is high
(see (Maples, 2013)) and the sample-rejection strategy is guaranteed to be fast for the
generation of P and S or even of g1, . . . ,gn in the case where m = n.

5.2 Encryption
The encryption operation uses a matrix multiplication and a vector addition. Neverthe-
less, the generation of an error vector of a given rank is a tricky process. Indeed, the
probability that a randomly generated n×m matrix with coefficients in F2 has a rank
equal to the value specified in the scheme is low (see (Maples, 2013)). There is a need
for a more optimized strategy. The idea is to generate t random linearly independent
vectors of Fm

2 and then generate n random linear combinations of those vectors. This
is the method which is also used in (Deneuville et al., 2017). The pseudo-code of the
error generation is given in Algorithm 3.

Algorithm 3: Random error generation
input : The binary field size m, the length of the error n and the error rank

t
output : A random element e := {e1, . . . ,en} ∈ Fn

2m such that rk(e) = t
1 while not linearly independent(b1, . . . ,bt) do
2 b1, . . . ,bt ←generate random vectors(t,F2m)

3 while rk(e) 6= t do
4 for i from 1 to n do
5 rand $←− {0,1}t

6 ei = ∑
t
k=1 randk×bk

7 return e

Even if highly unlikely, it could happen that the coefficient associated to one (or
more) of the generating vectors is always zero. In that case, the error vector would
have a rank lower than t. This is why the rank of the output error vector must be
checked and, in case it does not fulfill the requirements of the scheme, another error
vector must be generated.

5.3 Decryption
Given an encrypted message y = xSGprivP−1 + e, the first step to decrypt it is to multi-
ply y by P to obtain yP = xSGpriv + eP. After that, the Algorithm 11 might be used to
obtain the corrected message which is equal to xS. Finally, the cleartext x is computed
by multiplying xS and S−1. Notice that S is only needed during the public key genera-
tion but, for decryption, it is S−1 the required matrix. Therefore, in our implementation
we store S−1 as part of the private key instead of S in order to avoid the computations
and memory consumption from the inversion in each decryption operation.

The core component of the decryption algorithm is the error detection and correc-
tion. In order to optimize this step, we use the algorithms provided in (Puchinger and

8

Wachter-Zeh, 2015) and (Wachter-Zeh, 2013). Here we provide the pseudo-code of the
algorithms. We refer to the aforementioned papers for the proof that these algorithms
correctly decode any error with rank less or equal to b(n− k)/2λc, and an in-depth
explanation of the main idea. Essentially, this decoding procedure can be seen as the
equivalent of Gao’s algorithm (Gao, 2003) for decoding Gabidulin codes. It outputs
an evaluation polynomial of the estimated message thus avoiding to solve large linear
equations systems depending on the syndrome. To the best of our knowledge, this is
the fastest decoding procedure for Gabidulin codes. The algorithm takes advantage of
the properties of linearized polynomials to achieve a sub-quadratic complexity. Since
linearized polynomials are used in all the algorithms for decryption, we briefly recall
their definition.

Definition 3 (Linearized polynomials). A linearized polynomial a(x) ∈ F2m [x] is a
polynomial of the form

d

∑
i=0

aix[i],

where x[i] = x2i
and d is the 2-degree of a, denoted as deg2(a) in this paper.

We will denote by L2m [x] the space of all linearized polynomials of F2m [x] and
by L2m [x]≤s the space of all linearized polynomials of F2m [x] with maximum degree
s. When embedded with the standard addition + and composition ◦, L2m [x] is a left
(right) euclidean ring. Meaning that we can define a left (right) division.

5.3.1 Algorithms notation

Given that the algorithms required to compute the decoding of a message are presented
next, here we introduce the notation rules we have used:

• We denote as ci the coefficient at position i from polynomial c.

• We denote as Frobenius(x,n) the computation of the n-th iteration of Frobenius
automorphism over x.

• Given a linearized polynomial p, we denote as p = 0 the assignment to p of a
polynomial with all its coefficients being 0.

• Given a linearized polynomial p, we denote as p = x to represent that p is the
linearized polynomial with coefficient 1 in the lowest degree position (i.e. the
coefficient of the term x) and 0s in all others.

• We use the notation U [i] to denote that U is a vector of elements in F2m where
we access its ith position.

• We use —— as the concatenation operation.

• We use #U to denote the amount of elements of a vector U .

5.3.2 Linearized polynomial multiplication

The first needed subroutine is the fast multiplication of two linearized polynomials.
Recall that the multiplication in the ring L2m [x] is actually the standard composition.
The details of its implementation are in Algorithm 4.

9

Algorithm 4: Multiplication
input : a,b ∈ L2m [x]≤s
output: c = a◦b ∈ L2m [x]≤s

1 for i from 0 to deg2(a)+deg2(b) do
2 y = 0
3 for j from 0 to i do
4 if j ≤ deg2(a) and i− j ≤ deg2(b) then
5 z = Frobenius(bi− j, j)
6 z = z ·a j
7 y = y+ z

8 ci = y

9 return c

5.3.3 Linearized polynomial divisions

As L2m [x] is a Euclidean ring, we can define a division. As the multiplication in that
ring is not commutative, there exist a well-defined left and right division. The fast
algorithms for the left and right division are given by Algorithms 5 and 6, respectively.

Algorithm 5: LeftDivision
input : a, b ∈ L2m [x]−{0}
output : q,r ∈ L2m [x] such that b◦q+ r = a
initialize: r = a, db = deg2(b),

q = 0, di = deg2(r),
1 if di < db then
2 return q, r

3 while di≥ db do
4 q′ = 0
5 q′di−db = Frobenius(rdi/bdb,m−db)
6 q = q+q′

7 r = r+b◦q′

8 di = deg2(r)

9 return q, r

5.3.4 Right Linearized Extendend Euclidean Algorithm

We can use a Linearized version of the Euclidean Algorithm (LEEA) based on the
divisions defined above. Given that only the version using right division is required, in
Algorithm 7 we show the implementation of the right LEEA algorithm.

5.3.5 Minimal Subspace Polynomial (MSP) and Multi-Point Evaluation (MPE)

The next needed notion is the so-called Minimal Subspace Polynomial which is the
linearized polynomial of minimal degree which vanishes over a subspace of Fm

2 . Its
existence and uniqueness is ensured by the following lemma.

10

Algorithm 6: RightDivision
input : a,b ∈ L2m [x]−{0}
output : q,r ∈ L2m [x] such that q◦b+ r = a
initialize: r = a, db = deg2(b),

q = 0, di = deg2(r),
1 if di < db then
2 return q, r

3 while di≥ db do
4 q′ = 0
5 q′di−db = rdi/ Frobenius(bdb,di−db)
6 q = q+q′

7 r = r+q′ ◦b
8 di = deg2(r)

9 return q, r

Algorithm 7: RightLEEA
input : a,b ∈ L2m [x] with deg2(a)≥ deg2(b), stopping degree dstop
output : τ,z,y ∈ L2m [x] such that τ = z◦a+ y◦b and deg2(τ)< dstop
initialize: z = 0, y = x,

v = 0, u = x,
a′ = a, b′ = b

1 while deg2(b)≥ dstop and a 6= 0 do
2 q,r = RightDivision(b′,a′)
3 l = z+q◦u
4 i = y+q◦ v
5 b′ = a′, a′ = r
6 z = u, y = v
7 u = l, v = i

8 τ = b′

9 return τ, z, y

11

Lemma 1 (Minimal Subspace Polynomial (MSP), (Lidl and Niederreiter, 1997)). Let
U be a linear subspace of Fm

2 . Then there exists a unique nonzero monic polynomial
MU ∈ L2m of minimal degree such that kerMU = U. Its degree is dimU.

Algorithm 8 is used to find the MSP of a subspace of Fm
2 and requires another oper-

ation called Multi-Point Evaluation (MPE) which outputs the evaluation of a linearized
polynomial over a set of points in F2m . The algorithm to compute MPE is presented
in Algorithm 9. Both algorithms apply the divide and conquer strategy and call each
other recursively.

Algorithm 8: MSP
input : Generating set U = u1, . . . ,us of a subspace U ∈ Fm

2
output: p ∈ L2m [x]≤s such that p(ui) = 0 for each i ∈ {1, . . . ,s}

1 if s = 1 then
2 if U [1] = 0 then
44 return p = x

5 else
6 return p = x−U [1]

7 else
8 for i from 1 to bs/2c do
9 A[i] :=U [i]

10 for i from bs/2c+1 to s do
11 B[i−bs/2c] =U [i]

12 a = MSP(A)
13 P′ = MPE(a,B)
14 b = MSP(P′)
15 return p = b◦a

5.3.6 Interpolation

The last subroutine is shown in Algorithm 10, and depicts an instantiation of the inter-
polation algorithm optimized for linearized polynomials which also uses the MSP and
MPE Algorithms 8, 9.

5.3.7 Gabidulin Decoding

Finally, we present the main decoding procedure in Algorithm 11. One can immedi-
ately spot that the second step of this procedure is only depending on the generators of
the chosen Gabidulin code which is part of the private key. Hence, one can store the
MSP(〈gi, . . . ,gn〉) into the private key to optimize the decoding speed at the price of
memory consumption. Notice that, the value v computed in the RightLEEA step is the
error span polynomial as defined in (Wachter-Zeh, 2013).

6 Performance results
Our software implementation has been designed as an extension of the Open Quantum
Safe (OQS) project (Mosca et al., 2017). The main motivation was to be able to com-

12

Algorithm 9: MPE
input : a ∈ L2m [x]≤s,{u1, . . . ,us} ∈ Fs

2m

output: Vector A = [a(u1), . . . ,a(us)] ∈ Fs
2m

1 if a = 0 then
2 return A = [01, . . . ,0s];

3 if s = 1 then
4 σ = 0
5 for i from 0 to deg2(a) do
6 σ = σ+ai+1 ·Frobenius(U [1], i)

7 return A = [σ]

8 else
9 for i from 1 to bs/2c do

10 A[i] =U [i]

11 for i from bs/2c+1 to s do
12 B[i−bs/2c] =U [i]

13 w = MSP(A)
14 w′ = MSP(B)
15 q, r = RightDivision(a,w)
16 q′, ′ = RightDivision(a,w′)
17 return A = MPE(r′,A)‖MPE(r′,B)

Algorithm 10: Interpolation

input : (w1,y1), . . . ,(ws,ys) ∈ F2
2m , xi linearly independent over F2

output: Interpolation polynomial p such that p(wi) = yi for all i ∈ {1, . . . ,s}
1 if s = 1 then
2 return [y[1]/w[1]]

3 else
4 for i from 1 to bs/2c do
5 A[i] = w[i]

6 for i from bs/2c+1 to s do
7 B[i−bs/2c] = w[i]

8 p = MSP(A)
9 p′ = MSP(B)

10 Z = MPE(p′,A)
11 Z′ = MPE(p,B)
12 I = Interpolation(Z, [y[1], . . . ,y[#Z]])
13 I′ = Interpolation(Z′, [y[#Z], . . . ,y[#Z +#Z′]])
14 return I ◦M′+ I′ ◦M

13

Algorithm 11: Gabidulin Decoding
input : Received word r ∈ Fn

2m and the Gabk,n code generators
{g1,g2, . . . ,gn}

output: Corrected codeword z, or a decoding failure message
1 r̃ = Interpolation(g,r)
2 M = MSP(g)
3 r,u,v = RightLEEA(M, r̃,b(n+ k)/2c)
4 z, p = LeftDivision(r,v)
5 if p = 0 then
6 return z

7 else
8 return ”Decoding Failure”

pare our scheme with the other available cryptosystems under the same conditions. We
have integrated DRANKULA in the OQS library and have performed the automated
benchmarks. The benchmarks have been run on a MacBook Pro 2017, 2.9 GHz Intel
Core i7, 16 GB 2133 MHz LPDDR3.

Table 2 presents the OQS benchmark results. As can be observed, DRANKULA
has a faster key generation than McBits as well as a significantly lower public key
size. Moreover, our scheme is faster than SIDH for encryption and decryption, but that
comes at the price of a larger ciphertext. Same results apply to SIKE. Although RLWE
BCNS15 has the best key generation performance, its encryption is substantially worse
than DRANKULA with respect to both performance and ciphertext size.

Scheme Class. sec. PQ sec. operation mean CPU cycles Bytes comm.
McBits 128 - Key gen. 196,718,429 311,736

Encryption 72,952 141
Decryption 331,282

DRANKULA 128 78 Key gen. 159,808,905 7,936
Encryption 115,975 504
Decryption 7,761,451

SIDH 126 84 Key gen. 70,672,623 378
Encryption 143,629,801 378
Decryption 56,956,858

SIKE 126 84 Key gen. 77,602,053 378
Encryption 126,294,194 402
Decryption 134,851,945

RLWE BCNS15 163 76 Key gen. 1,807,319 4,096
Encryption 2,895,648 4,224
Decryption 297,673

Table 2: Performance comparison between different post-quantum cryptography
schemes using OQS

Tables 3 and Table 4 show DRANKULA’s performance for the three levels of se-
curity considered in this work, and for an implementation without and with carry-less
multiplication optimization, respectively. As observed, a simple software optimization
as is the carry-less multiplication provides a significant performance improvement.

14

Scheme Class. sec. PQ sec. operation mean CPU cycles Bytes comm.
DRANKULA 128 78 Key gen. 717,478,286 7,936

Encryption 1,167,473 504
Decryption 64,645,692

DRANKULA 192 104 Key gen. 1,405,999,903 15,120
Encryption 2,154,776 852
Decryption 131,834,096

DRANKULA 256 139 Key gen. 3,537,521,289 27,648
Encryption 3,887,225 1,152
Decryption 276,356,299

Table 3: Performance comparison for different security levels without carry-less mul-
tiplication

Scheme Class. sec. PQ sec. operation mean CPU cycles Bytes
DRANKULA 128 78 Key gen. 159,808,905 7,936

Encryption 115,975 504
Decryption 7,761,451

DRANKULA 192 104 Key gen. 281,555,550 15,120
Encryption 209,117 852
Decryption 127,45,290

DRANKULA 256 139 Key gen. 544,649,920 27,648
Encryption 320,951 1,152
Decryption 23,559,649

Table 4: Performance comparison for different security levels with carry-less multipli-
cation

7 A note on a side-channel resistant implementation
When implementing a new cryptosystem there is always the challenge of finding the
fastest way to compute each algorithm. As we detailed in the previous sections, the
approach to implement the operations required in each algorithm could be done in
different manners. A typical technique to speed up an implementation is to remove
operations under certain conditions or to compute the same in a different way depend-
ing on the inputs (i.e., by means of branching). This conditional execution is usually
exploited by side-channel attackers who try to gather information about the inputs of
operations by studying the time difference or any other physical measurement that may
lead to some information leakage.

The fact that an implementation is weak against some side-channel attack does not
mean that the cryptosystem itself is not secure. It usually means that some performance
improvements must be modified from the implementation so that secret information
remains secure. Nevertheless, nowadays performance is such an important property
for cryptosystems that the lack of an efficient implementation may end up with the
cryptosystem becoming not used at all and eventually obsolete.

One alternative to protect an implementation from side-channel attacks is by means
of constant-time operations. This way, the operations required by each algorithm take
the same time no matter the input and, therefore, an attacker can only extract infor-
mation about the operations, which might be public, but not about the inputs and out-
puts. The main drawback of this approach is that the cost of the algorithms is heavily
increased. For this reason, we propose to modify only a subset of operations to be
constant-time, and we analyze the information leaked to check the feasibility of ob-

15

taining any knowledge of the secret key, or the error generated during encryption, from
the leaked data.

We propose to only modify some algorithms used for the decryption procedure in
order to make them constant time, namely: the linearized polynomial addition, the
linearized polynomial multiplication and part of the Minimal Subspace Polynomial.
The first modification is simple, we just computed the addition for all the elements
and checked the degree by iterating over all the positions. For the multiplication, in
Algorithm 12 we modified a little bit the previous Algorithm 4 to avoid conditional
instructions in the loop,. We also computed the multiplication up to the maximum
degree, not only up to the degree of the polynomials.

Algorithm 12: Constant-Time Multiplication
input : a,b ∈ L2m [x]≤n+1
output: c = a◦b ∈ L2m [x]≤n+1

1 for i from 0 to n+1 do
2 y = 0
3 for j from 0 to i do
4 z = Frobenius(bi− j, j)
5 z = z ·a j
6 if j ≤ deg2(a) and i− j ≤ deg2(b) then
7 y = y+ z

8 else
9 y = y+0

10 ci = y

11 return c

Finally, the changes in MSP only affected the initial conditions to return values.
In Algorithm 8 we returned either 1 or 2 values depending if the input subspace is 0
or not. This would leak information of the 0s in the input subspace. To prevent that
from happening we generated the same result but we fill the polynomial with a 0 in the
second position. More precisely, we change the return value so instead of the return
statement in Algorithm 8 line 4, we return p = x−0.

We have chosen only these three operations because our analysis showed that with
these changes, the decryption would not leak not enough information to threaten the
security of the cryptosystem. Indeed, the unmodified operations are: interpolation,
rightLEEA and left / right division, which usually take polynomials of the same degree
as inputs at a given recursion degree.

Table 5 shows the performance of our constant-time implementation of DRANKULA
for the same three security levels that we have considered in our work. It must be noted
that our solution uses the carry-less multiplication and, as the constant-time implemen-
tation only affects the decryption, we skip the other two operations. Results show that
decryption is heavily impacted when the countermeasures are put in place.

The only identified cases where an attacker would observe a timing difference are
the following:

1. The interpolation polynomial r̃ is of 2-degree less than n−1: the attacker would
be able to learn that the point (gn,rn) is already part of the graph of the interpo-
lation polynomial of {(gi,ri)}1≤i<n. As the attacker does not have any control

16

on the gi and neither on the ris (as they are actually the coefficients of cP where
P is unknown to him), he will not be able to extract any meaningful information.

2. The degree controlling the number of iterations in the loop of RightLEEA or the
right division is decreasing more than 1: the attacker would observe in the best
case that the Interpolation polynomial r̃ divides the MSP of the generators of the
Gabidulin code. Again, as the coefficients of r̃ are actually depending on the
coefficients of cP, then the attacker will not gain any valuable knowledge on the
private key.

Nevertheless, a deeper analysis of the possible leakages through timing analysis
constitutes a path for future works.

Scheme Class. sec. PQ sec. operation mean CPU cycles
DRANKULA 128 78 Decryption 314,116,991
DRANKULA 192 104 Decryption 878,204,550
DRANKULA 256 139 Decryption 2,662,744,720

Table 5: Performance comparison for different security levels of the constant-time
implementation with carry-less multiplication

8 Conclusions and future work
This work is presenting a software implementation of DRANKULA, a rank based
McEliece-like cryptosystem with deterministic decryption presented in (Loidreau, 2017),
and its performance results. We address several caveats of the scheme when carrying
out a practical implementation, and we provide three sets parameters targeting 64, 96
and 128 bits of post-quantum security. In addition we provide the pseudocode for the
main subroutines of our algorithms, which might be helpful to the community to con-
tinue investigating this scheme. Results show that DRANKULA is a viable alternative
to other post-quantum cryptography schemes and efficient in terms of key sizes and
computational complexity. We end up providing a note on a side-channel resistant
implementation of our proposal. As future work it would be interesting to formally
investigate the IND-CCA and IND-CPA properties of DRANKULA.

REFERENCES
Aragon, N., Blazy, O., Deneuville, J.-C., Gaborit, P., Hauteville, A., Ruatta, O., Tillich,

J.-P., and Zemor, G. (2017). Locker - low rank parity check codes encryption.

Bernstein, D. J., Buchmann, J., and Dahmen, E. (2008). Post Quantum Cryptography.
Springer Publishing Company, Incorporated, 1st edition.

Bernstein, D. J., Chou, T., and Schwabe, P. (2015). Mcbits: fast constant-time code-
based cryptography. IACR Cryptology ePrint Archive, 2015:610.

Bosma, W., Cannon, J., and Playoust, C. (1997). The Magma algebra system. I. The
user language. J. Symbolic Comput., 24(3-4):235–265. Computational algebra
and number theory (London, 1993).

17

Chen, L., Jordan, S., Liu, Y.-K., Moody, D., Peralta, R., Perlner, R., and Smith-Tone,
D. (2016). Report on post-quantum cryptography.

Chou, T. (2016). Qcbits: Constant-time small-key code-based cryptography. In Cryp-
tographic Hardware and Embedded Systems - CHES 2016 - 18th International
Conference, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings, pages
280–300.

Chou, T. (2017). Mcbits revisited. In International Conference on Cryptographic
Hardware and Embedded Systems, pages 213–231. Springer.

Deneuville, J.-C., Gaborit, P., and Zémor, G. (2017). Ouroboros: A simple, secure
and efficient key exchange protocol based on coding theory. In International
Workshop on Post-Quantum Cryptography, pages 18–34. Springer.

Devoret, M. H. and Schoelkopf, R. J. (2013). Superconducting circuits for quantum
information: An outlook. Science, 339(6124):1169–1174.

Gabidulin, E. M. (1985). Theory of codes with maximum rank distance. Problems of
Information Transmission (English translation of Problemy Peredachi Informat-
sii), 21(1).

Gabidulin, E. M., Paramonov, A. V., and Tretjakov, O. V. (1991). Ideals over a Non-
Commutative Ring and their Application in Cryptology, pages 482–489.

Gaborit, P. (2005). Shorter keys for code based cryptography, pages 81–90.

Gaborit, P., Murat, G., Ruatta, O., and Zmor, G. (2013). Low rank parity check codes
and their application to cryptography.

Gao, S. (2003). A New Algorithm for Decoding Reed-Solomon Codes, pages 55–68.

Google (2018). A preview of bristlecone, googles new quantum proces-
sor. Available at https://research.googleblog.com/2018/03/
a-preview-of-bristlecone-googles-new.html.

Gueron, S. and Kounavis, M. E. (2010). Intel R© carry-less multiplication instruction
and its usage for computing the gcm mode. White Paper.

Hankerson, D., Menezes, A. J., and Vanstone, S. (2006). Guide to elliptic curve cryp-
tography. Springer Science & Business Media.

Itoh, T. and Tsujii, S. (1988). A fast algorithm for computing multiplicative inverses in
gf (2m) using normal bases. Information and computation, 78(3):171–177.

Karatsuba, A. and Ofman, Y. (1962). Multiplication of many-digital numbers by auto-
matic computers. Doklady Akademii Nauk SSSR, Translation in Physics-Doklady
7, 595-596, 1963, 145(2):293–294.

Lidl, R. and Niederreiter, H. (1997). Finite fields, volume 20 of Encyclopedia of Math-
ematics and its Applications. Cambridge University Press, Cambridge, second
edition.

Loidreau, P. (2017). A New Rank Metric Codes Based Encryption Scheme, pages 3–17.

Maples, K. (2013). Singularity of random matrices over finite fields.

McEliece, R. J. (1978). A Public-Key Cryptosystem Based On Algebraic Coding The-
ory. Deep Space Network Progress Report, 44:114–116.

Melchor, C. A., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville, J.-C.,
Gaborit, P., and Zmor, G. (2016). Rank quasi-cyclic (rqc).

18

https://research.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://research.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html

Misoczki, R., Tillich, J., Sendrier, N., and Barreto, P. S. L. M. (2013). Mdpc-mceliece:
New mceliece variants from moderate density parity-check codes. In Proceed-
ings of the 2013 IEEE International Symposium on Information Theory, Istanbul,
Turkey, July 7-12, 2013, pages 2069–2073.

Mosca, M., Stebila, D., and Contributors (2017). Open quantum safe.

Niederreiter, H. (1986). Knapsack-type cryptosystems and algebraic coding theory.
Problems of Control and Information Theory, 15:159–166.

NIST (2018). Round 1 submissions. Available at https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography/Round-1-Submissions.

Otmani, A., Kalachi, H. T., and Ndjeya, S. (2016). Improved cryptanalysis of rank
metric schemes based on gabidulin codes. CoRR, abs/1602.08549.

Overbeck, R. (2005). A New Structural Attack for GPT and Variants, pages 50–63.

Overbeck, R. (2008). Structural attacks for public-key cryptosystems based on
gabidulin codes. Journal of Cryptology, 21(2):280–301.

Puchinger, S. and Wachter-Zeh, A. (2015). Fast operations on linearized polynomials
and their applications in coding theory. CoRR, abs/1512.06520.

Sendrier, N. (2017). Code-based cryptography: State of the art and perspectives. IEEE
Security & Privacy, 15(4):44–50.

Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–
1509.

Swan, R. G. (1962). Vector bundles and projective modules. Transactions of the Amer-
ican Mathematical Society, 105(2):264–277.

Wachter-Zeh, A. (2013). Decoding of block and convolutional codes in rank metric,
PhD thesis.

19

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

	Introduction
	Organization of the paper

	Rank-metric NIST submissions
	Cryptosystem description
	Parameters Selection

	Implementation of core components
	Field arithmetic
	Matrix operations

	Algorithms Implementation
	Key generation
	Encryption
	Decryption
	Algorithms notation
	Linearized polynomial multiplication
	Linearized polynomial divisions
	Right Linearized Extendend Euclidean Algorithm
	Minimal Subspace Polynomial (MSP) and Multi-Point Evaluation (MPE)
	Interpolation
	Gabidulin Decoding

	Performance results
	A note on a side-channel resistant implementation
	Conclusions and future work

