
Xoodoo cookbook
Joan Daemen2, Seth Hoffert, Michaël Peeters1, Gilles Van Assche1 and

Ronny Van Keer1

1 STMicroelectronics
2 Radboud University

Abstract. This document presents Xoodoo, a 48-byte cryptographic permutation
that allows very efficient symmetric crypto on a wide range of platforms and a suite
of cryptographic functions built on top of it. The central function in this suite is
Xoofff, obtained by instantiating Farfalle with Xoodoo. Xoofff is what we call
a deck function and can readily be used for MAC computation, stream encryption
and key derivation. The suite includes two session authenticated encryption (SAE)
modes: Xoofff-SANE and Xoofff-SANSE. Both are built on top of Xoofff
and differ in their robustness with respect to nonce misuse. Other members of the
suite are a tweakable wide block cipher Xoofff-WBC and authenticated encryption
mode Xoofff-WBC-AE, obtained by instantiating the Farfalle-WBC and Farfalle-
WBC-AE constructions with Xoofff. Finally, for lightweight applications, we de-
fine Xoodyak, a cryptographic scheme that can be used for hashing, encryption,
MAC computation and authenticated encryption. Essentially, it is a duplex object
extended with an interface that allows absorbing strings of arbitrary length, their
encryption and squeezing output of arbitrary length. This paper is a specification
and security claim reference for the Xoodoo suite. It is a standing document: over
time, we may extend the Xoodoo suite, and we will update it accordingly.
Date: 14 March 2019
Keywords: permutation-based crypto · Farfalle · duplex construction · dec functions
· hashing · deck functions · authenticated encryption

1 Introduction
In [2] we presented new parallel modes of use of permutations for encryption, authentica-
tion, session authenticated encryption and wide block ciphers under the umbrella name
Farfalle. We also proposed concrete instantiations called Kravatte by plugging in the
Keccak-p[1600, nr] permutation with 6 rounds. All-over, Kravatte is very fast on a
wide range of platforms but can hardly be called lightweight: it operates on a large state
giving rise to considerable overhead on low-end CPUs and has for short inputs a relatively
large overhead per byte.

It therefore makes sense to consider instantiating Farfalle with a smaller permutation,
somewhere between 256 and 400 bits wide. Taking Keccak-p[400, nr] is problematic as it
is defined in terms of operations on 16-bit lanes. The permutation Gimli [1] has the nice
feature that it has a state of 384 bits and a round function that lends itself to low-end 32-
bit CPUs but also vectorization and dedicated hardware. Unfortunately, its propagation
properties are less than what could be expected. For constructing a Farfalle instance with
128-bit security strength one would have to take a relatively high number of rounds.

For that reason we took the initiative to design a permutation with the same width and
objectives as Gimli, but with more favorable propagation properties. We called the result
Xoodoo and it can be seen as a porting of the Keccak-p design approach to a Gimli-
shaped state. In this document we specify this permutation and a suite of cryptographic

functions built as modes of Xoodoo. This suite covers the symmetric-key crypto functions
and we expect it to be very efficient on a wide range of CPUs and in dedicated hardware
while having a comfortable safety margin. This makes the Xoodoo suite very competitive
to, e.g., block cipher based crypto.

Xoofff is the central instance of the suite, covering keyed symmetric crypto functions.
For more lightweight applications, we add Xoodyak to the suite, a compact and versatile
cryptographic object that is suitable for most symmetric-key functions, including hashing,
pseudo-random bit generation, authentication, encryption and authenticated encryption.

This document does not include extensive design rationale or analysis, nor does it
provide performance benchmarks. For this, please see [8]. Its purpose is to expose the
Xoodoo cipher suite to the cryptographic research community and security practicioners
by serving as specification and security claim reference. At this stage the security claims
serve as a challenge for cryptanalists and only a distant promise of security strength for
users. This promise will gain in credibility as over time third-party cryptanalysis and
public scrutiny accumulate.

Additionally, a reference implementation in C++ of Xoodoo and the members of the
Xoodoo suite is available in [13] and optimized implementations in C and assembler in
the eXtended (or Xoodoo and) Keccak Code Package (XKCP) [23].

Over time, we may add more cryptographic functions to the Xoodoo suite. When
that is the case, we will update this document accordingly. In ISO/IEC terminology this
would be called a standing document.

1.1 Notation
The set of all bit strings is denoted Z∗

2 and ϵ is the empty string. The size in bits of
the string X is denoted |X|. We denote a sequence of m strings X(0) to X(m−1) as
X(m−1) ◦ · · · ◦ X(1) ◦ X(0). The set of all sequences of strings is denoted (Z∗

2)∗ and ∅ is
the sequence containing no strings at all. Similarly, the set of all sequences containing at
least one string is denoted (Z∗

2)+.

1.2 Deck functions
The central function in the Xoodoo suite is a Xoodoo-based Farfalle instance called
Xoofff. Most other members of the suite are built as modes on top of Xoofff. Some of
these modes are specified in [2] while others are introduced in this document. We follow
the same naming conventions as in [2]. The name of the mode has two parts: a prefix
indicating the underlying primitive type and a suffix referring to the target functionality.
In instantiations with a particular primitive, we replace the prefix by the name of the
primitive.

In our paper on Farfalle [2] we introduced the concept of a keyed cryptographic function
with an extendable input and able to return an output of arbitrary length. In lack of a
better name, we called these pseudorandom functions (PRF). We called the primitive
type in our modes Farfalle as they needed support for sequences of strings as input and
a specific incremental property, present in Farfalle instances: computing F (Y ◦X) costs
only the processing of Y if F (X) was previously computed. Clearly, Farfalle is not the
only way to build functions with such properties and we now think it would be better to
decouple the input-output signature of the function (PRF with incremental sequence of
strings input) from the implementation (Farfalle).

We decided to introduce the name deck function for a keyed function that takes a
sequence of input strings and returns a pseudorandom string of arbitrary length and that
can be computed incrementally. Here deck stands for Doubly-Extendable Cryptographic
Keyed function.

2

Definition 1 ([8, 22]). A deck function takes as input a secret key K and a sequence of
an arbitrary number of strings X(m−1) ◦ · · · ◦X(0) ∈ (Z∗

2)+, produces a potentially infinite
string of bits and takes from it the range starting from a specified offset q ∈ N and for a
specified length n ∈ N. We denote this as

Z = 0n + FK

(
X(m−1) ◦ · · · ◦X(0)

)
≪ q .

A deck function should allow efficient incremental computing. In particular, by keep-
ing state after computing an output for input sequence X = X(m−1) ◦ · · · ◦ X(0), com-
puting an output for Y (n−1) ◦ · · · ◦ Y (0) ◦ X should have a cost independent of X. In
addition, by keeping state after compting 0n + FK

(
X(m−1) ◦ · · · ◦X(0))≪ q, computing

0m + FK

(
X(m−1) ◦ · · · ◦X(0))≪ (q + n) should have a cost independent of n or q.

As such, we will indicate the modes we define this document and that we will instan-
tiate with Xoofff by the prefix Deck. The modes on top of Farfalle specified in [2] may
as well be renamed by replacing the prefix Farfalle by Deck. To avoid confusion, we will
not do that.

1.3 Dec functions
Naturally, we can define the unkeyed equivalent of deck functions, namely dec functions,
where dec stands for Doubly-Extendable Cryptographic function [22]. In short, a dec
function is an extendable output function (XOF) that accepts sequences of strings as
input and that supports incremental queries efficiently.

Definition 2 ([22]). A dec function takes as input a sequence of an arbitrary number of
strings X(m−1) ◦ · · · ◦X(0) ∈ (Z∗

2)+, produces a potentially infinite string of bits and takes
from it the range starting from a specified offset q ∈ N and for a specified length n ∈ N.
We denote this as

Z = 0n + H
(

X(m−1) ◦ · · · ◦X(0)
)
≪ q .

Like a deck function, a dec function should allow efficient incremental computing.

1.4 Session authenticated encryption
In many use cases where one wishes confidentiality, authentication is required too and it
makes sense to offer a scheme that provides both: an authenticated encryption scheme.
Doing this with a deck function is simple: one enciphers the plaintext by adding to it the
output of a deck function applied to a nonce and computes a tag on the ciphertext (and
possibly metadata) also using the deck function.

Often, one does not only want to protect a single message, but rather a session where
multiple messages are exchanged, such as in the Transport Layer Security (TLS) protocol
[10] or the Secure Shell (SSH) protocol [24]. Examples of session authenticated encryption
schemes are Keyak [5], Ketje [4] and Kravatte-SAE [2]. They require only a nonce
at the startup of the session and each tag authenticates all messages already sent in the
session.

We consider authenticated encryption of a message as a process that takes as input
metadata A and plaintext P and that returns a cryptogram C and a tag T . We denote
this operation by the term wrapping and the reverse operation of taking metadata A, a
cryptogram C and a tag T and returning the plaintext P if the tag T is correct by the term
unwrapping. We further consider the process of authenticating and encrypting a sequence
of messages (A, P) = (A(1), P (1), A(2), . . . , A(n), P (n)) in such a way that the authenticity
is guaranteed not only on each (A, P) pair but also on the sequence received so far. This
is further formalized in [3, Section 2.1].

3

We use the abbreviation SAE to indicate session authenticated encryption in general.
The generic term SAE should not be confused with Farfalle-SAE, that is a particular SAE
mode of a deck function specified in [2].

1.5 Overview
We specify the core of all functions in the Xoodoo suite, the Xoodoo[nr] family of
permutations, in Section 2. We depict in Figure 1 all suite members and their relations.
They are the following:

• The Xoofff deck function, specified in Section 3. We obtain this deck function
by instantiating Farfalle with Xoodoo and suitable rolling functions and make a
security claim.

• The Xoofff-SANE SAE scheme, specified in Section 4. We obtain this by defining
an SAE mode of deck functions called Deck-SANE and instantiate it with Xoofff.
Xoofff-SANE relies on user-provided nonces for confidentiality.

• The Xoofff-SANSE SAE scheme, specified in Section 5. We obtain this by defin-
ing an SAE mode of deck functions called Deck-SANSE and instantiate it with
Xoofff. Xoofff-SANSE is more robust against nonce misuse and realizes this
by using the SIV mechanism.

• The Xoofff-WBC wide block cipher, specified in Section 6. We obtain this by in-
stantiating Farfalle-WBC with Xoofff and Xoofffie, a variant of Xoofff whose
purpose is solely to provide differential uniformity. We give security claims for
Xoofff-WBC and a dedicated claim for Xoofffie. Finally, we define the Xoofff-
WBC-AE authenticated encryption scheme by applying Farfalle-WBC-AE on top
of Xoofff-WBC.

• The Xoodyak scheme, specified in Section 7. We obtain this by instantiating Cyclist
with Xoodoo.

We make no security claims for the Xoofff-SANE and Xoofff-SANSE SAE schemes
as their claimed security follows immediately from the security claim of Xoofff. Simi-
larly, the claimed security of Xoofff-WBC-AE follows directly from the security claim
of Xoofff-WBC. For Xoodoo[nr] we also do not make security claims as it is not a
cryptographic function per se, just a building block.

4

Xoodoo

Xoodyak

Cyclist

Xoofff

Farfalle

Xoofffie

Farfalle

Xoofff-SANE

Deck-SANE

Xoofff-SANSE

Deck-SANSE Xoofff-WBC

Farfalle-WBC Farfalle-WBC

Xoofff-WBC-AE

Farfalle-WBC-AE

Figure 1: Overview of the Xoodoo suite, with the schemes in boxes and the modes
indicated on the edges. All schemes and the modes in black print are specified in this
document, the modes in grey are defined in [2].

5

2 Xoodoo
Xoodoo is a family of permutations parameterized by its number of rounds nr and de-
noted Xoodoo[nr].

Xoodoo has a classical iterated structure: It iteratively applies a round function to
a state. The state consists of 3 equally sized horizontal planes, each one consisting of 4
parallel 32-bit lanes. Similarly, the state can be seen as a set of 128 columns of 3 bits,
arranged in a 4× 32 array. The planes are indexed by y, with plane y = 0 at the bottom
and plane y = 2 at the top. Within a lane, we index bits with z. The lanes within a
plane are indexed by x, so the position of a lane in the state is determined by the two
coordinates (x, y). The bits of the state are indexed by (x, y, z) and the columns by (x, z).
Sheets are the arrays of three lanes on top of each other and they are indexed by x. The
Xoodoo state is illustrated in Figure 2.

The permutation consists of the iteration of a round function Ri that has 5 steps: a
mixing layer θ, a plane shifting ρwest, the addition of round constants ι, a non-linear layer
χ and another plane shifting ρeast.

We specify Xoodoo in Algorithm 1, completely in terms of operations on planes and
use thereby the notational conventions we specify in Table 1. We illustrate the step
mappings in a series of figures: the χ operation in Figure 3, the θ operation in Figure 4,
the ρeast and ρwest operations in Figure 5.

The round constants Ci are planes with a single non-zero lane at x = 0, denoted as ci.
We specify the value of this lane for indices −11 to 0 in Table 2 and refer to Appendix A
for the specification of the round constants for any index.

Finally, in many applications the state must be specified as a 384-bit string s with
the bits indexed by i. The mapping from the three-dimensional indexing (x, y, z) and i is
given by i = z + 32(x + 4y).

6

x

y

z

lane
x

y

z

plane
x

y

z

state
x

y

z

sheet
x

y

z

column

Figure 2: Toy version of the Xoodoo state, with lanes reduced to 8 bits, and different
parts of the state highlighted.

Table 1: Notational conventions
Ay Plane y of state A
Ay ≪ (t, v) Cyclic shift of Ay moving bit in (x, z) to position (x + t, z + v)
Ay Bitwise complement of plane Ay

Ay + Ay′ Bitwise sum (XOR) of planes Ay and Ay′

Ay ·Ay′ Bitwise product (AND) of planes Ay and Ay′

Algorithm 1 Definition of Xoodoo[nr] with nr the number of rounds
Parameters: Number of rounds nr
for Round index i from 1− nr to 0 do

A = Ri(A)

Here Ri is specified by the following sequence of steps:
θ :

P ← A0 + A1 + A2
E ← P ≪ (1, 5) + P ≪ (1, 14)
Ay ← Ay + E for y ∈ {0, 1, 2}

ρwest :
A1 ← A1 ≪ (1, 0)
A2 ← A2 ≪ (0, 11)

ι :
A0 ← A0 + Ci

χ :
B0 ← A1 ·A2
B1 ← A2 ·A0
B2 ← A0 ·A1
Ay ← Ay + By for y ∈ {0, 1, 2}

ρeast :
A1 ← A1 ≪ (0, 1)
A2 ← A2 ≪ (2, 8)

Table 2: The round constants ci with −11 ≤ i ≤ 0, in hexadecimal notation (the least
significant bit is at z = 0).

i ci i ci i ci i ci

−11 0x00000058 −8 0x000000D0 −5 0x00000060 −2 0x000000F0
−10 0x00000038 −7 0x00000120 −4 0x0000002C −1 0x000001A0
−9 0x000003C0 −6 0x00000014 −3 0x00000380 0 0x00000012

7

0

1

2

complement

Figure 3: Effect of χ on one plane.

+ =

column parity θ-effect

fold

Figure 4: Effect of θ on a single-bit state.

0

1

2
shift (2,8)

shift (0,1)

0

1

2
shift (0,11)

shift (1,0)

Figure 5: Illustration of ρeast (left) and ρwest (right).

8

Table 3: Notational conventions for specification of the rolling functions
Ay,x Lane x of plane Ay

B An auxiliary variable that has the shape of a plane
Ay,x ≪ v Cyclic shift of lane Ay,x moving bit from x to x + v
Ay,x ≪ v Shift of lane Ay,x moving bit from x to x + v, setting bits x < v to 0
Ay,x + Ay′,x′ Bitwise sum (XOR) of lanes Ay,x and Ay′,x′

Ay,x ·Ay′,x′ Bitwise product (AND) of lanes Ay,x and Ay′,x′

3 Xoofff
Xoofff is a deck function obtained by applying the Farfalle construction on Xoodoo[6]
and two rolling functions: rollXc for rolling the input masks and rollXe for rolling the state.
We specify them with operations on the lanes of the state, following the conventions of
Table 1 and Table 3.
The input mask rolling function rollXc updates a state A in the following way:

A0,0 ← A0,0 + (A0,0 ≪ 13) + (A1,0 ≪ 3)
B ← A0 ≪ (3, 0)

A0 ← A1

A1 ← A2

A2 ← B

The state rolling function rollXe updates a state A in the following way:

A0,0 ← A1,0 ·A2,0 + (A0,0 ≪ 5) + (A1,0 ≪ 13) + 0x00000007
B ← A0 ≪ (3, 0)

A0 ← A1

A1 ← A2

A2 ← B

Definition 3 (Xoofff). Xoofff is Farfalle[pb, pc, pd, pe, rollc, rolle] with the following
parameters:

• pb = pc = pd = pe = Xoodoo[6],

• rollc = rollXc and

• rolle = rollXe.

We make the following security claim on Xoofff.

Claim 1. Let K = (K0, . . . , Ku−1) be an array of u secret keys, each uniformly and
independently chosen from Zκ

2 with κ < 384. Then, the advantage of distinguishing the
array of functions XoofffKi

(·) with i ∈ Zu from an array of random oracles RO(i, ·), is
at most

uN +
(

u
2
)

2κ
+ N

2192 + M

2128 +
√

uN ′

2κ/2−1 + N ′

295 . (1)

Here,

• N is the computational complexity expressed in the (computationally equivalent)
number of executions of Xoodoo[6],

• N ′ is the quantum computational complexity expressed in the (equivalent) number
of quantum oracle accesses to Xoodoo[6], and

9

• M is the online or data complexity expressed in the total number of input and output
blocks processed by XoofffKi

(·).

In (1), the first term accounts for the effort to find one of the u secret keys by exhaustive
search, and for the probability that two keys are equal. The second term expresses that
the complexity of recovering the accumulator or any rolling state inside Xoofff must be
as hard as recovering 192 secret bits. The third term expresses the effort to find a collision
in the accumulator.

The fourth and fifth terms only apply if the adversary has access to a quantum com-
puter. The fourth term accounts for a quantum search (or quantum amplification algo-
rithm) to find one of the u keys [11, 7]. The probability of success after N ′ iterations is
sin2 ((2N ′ + 1) θ) with θ = arcsin

√
u/2κ. We upper bound this as 2N ′

√
u/2κ. The fifth

term similarly accounts for a quantum search of a 192-bit secret.
Note that we assume that Xoofff is implemented on a classical computer. In other

words, we do not make claims w.r.t. adversaries who would make quantum superpositions
of queries to the device implementing Xoofff and holding its secret key(s).

We restrict keys to the uniform distribution to keep our claim simple and to avoid
pathological cases that would not offer good security. In the multi-user setting, we require
the keys to be independently drawn. If an adversary can manipulate Ki, such as in so-
called unique keys that consist of a long-term key with a counter appended, we recommend
hashing the key and the counter with a proper hash function.

We do support the use of variable-length keys in the multi-user setting, where we
assume that a key of given length is selected uniformly of the strings with that length.
The claimed distinguishing bound then becomes slightly more complex and is given in
Equation (2):

∑
κ∈L

uκN +
(

uκ

2
)

2κ
+ N

2192 + M

2128 +
∑
κ∈L

√
uκN ′

2κ/2−1 + N ′

295 , (2)

with L the array of the distinct key lengths in use and ul the number of keys of length l.

4 Xoofff-SANE
Xoofff-SANE is an SAE function built on top of Xoofff with a mode we introduce in
this document called Deck-SANE: deck function based Session Authentication and Nonce-
based Encryption. This mode keeps track of a nonce and the sequence of messages in
a string sequence called the history. It encrypts the plaintext of a message by adding
a keystream that is the result of applying the deck function to the history covering all
previous messages in this session. The consequence is that for confidentiality, the history
must be unique across all sessions for a given key. For that reason, Deck-SANE initializes
the history at the beginning of a session with a user-provided nonce.

4.1 A flaw in Farfalle-SAE
In [2], we presented a mode very similar to Deck-SANE, Farfalle-SAE. Unfortunately, we
found a flaw in Farfalle-SAE after closely inspecting it. This was triggered by an email
we received from Ted Krovetz reporting a weakness in Farfalle-SIV (see Section 5.1). So,
Deck-SANE can be seen as a fixed version of Farfalle-SAE.

The flaw in Farfalle-SAE is related to sequences of messages with empty plaintexts
and/or metadata. Let ϵ be the empty string. Namely, the way it constructs the history
as a sequence of strings does not allow distinguishing between the following two message
sequences:

10

• a message (A, P) with A ̸= ϵ and P ̸= ϵ,

• a message (A, ϵ) followed by a message (ϵ, P).

Both message sequences extend the history with C||1 ◦ A||0, so the tag returned by
wrap(A, P) in the first case and the tag returned by wrap(ϵ, P) in the second case are
equal. A situation where an adversary could exploit this would be if the sender intends
on sending two messages: one containing metadata only, followed by another containing
plaintext only. We would have T1 = wrap(A, ϵ) then (C, T2) = wrap(ϵ, P). The adversary
withholds T1, and passes off (A, C) as a single message with resulting tag T2. The receiver
is unable to detect this and successfully authenticates the message, and returns garbled
plaintext. We fix this in Deck-SANE by using an additional frame bit that toggles on
every message.

4.2 Deck-SANE
We define the SAE mode for deck functions Deck-SANE in Algorithm 2. The session
presents the history to a deck function for generating tags and keystream. Starting a
session initializes the history to a nonce N and returns a tag.

From then on, it supports messages consisting of metadata A and/or plaintext P .
Deck-SANE wraps a message in four phases:

1. Encryption: If the plaintext is non-empty, it generates the ciphertext by adding to
the plaintext the output of the deck function applied to the history.

2. If the metadata is non-empty or if the ciphertext is empty, it appends the metadata
to the history.

3. If the plaintext is non-empty, it appends the ciphertext to the history.

4. Tag generation: It generates the tag by applying the deck function to the history.

Note that a tag authenticates the full history of the session up to that point. Unwrapping
is similar.

Deck-SANE has two length parameters: the tag length t and an alignment unit length
ℓ. It reserves the first t bits of the output of the deck function for tags and takes keystream
from the output of the deck function from an offset that is the smallest multiple of ℓ not
shorter than t. It applies domain separation between metadata and ciphertext strings
in the history to skip the second phase for plaintext-only messages or the first and third
phase for metadata-only or even empty messages. Moreover, Deck-SANE has an attribute
e that takes the 1-bit string value 0 or 1 and toggles at each call to (un)wrap. Hence, the
individual calls to (un)wrap can be identified in the history without ambiguity.

4.3 Xoofff-SANE
Definition 4 (Xoofff-SANE). Xoofff-SANE is Deck-SANE(F, t, ℓ) with

• F = Xoofff,

• t = 128 bits and

• ℓ = 8 bits.

11

Algorithm 2 Definition of Deck-SANE(F, t, ℓ)
Parameters: deck function F , tag length t ∈ N and alignment unit length ℓ ∈ N

Initialization taking key K ∈ Z∗
2 and nonce N ∈ Z∗

2, and returning tag T ∈ Zt
2

offset = ℓ
⌈

t
ℓ

⌉
: the smallest multiple of ℓ not smaller than t

e← 01

history← N
T ← 0t + FK (history)
return T

Wrap taking metadata A ∈ Z∗
2 and plaintext P ∈ Z∗

2, and returning ciphertext C ∈ Z|P |
2

and tag T ∈ Zt
2

C ← P + FK (history)≪ offset
if |A| > 0 OR |P | = 0 then

history← A||0||e ◦ history
if |P | > 0 then

history← C||1||e ◦ history
T ← 0t + FK (history)
e← e + 11

return C, T

Unwrap taking metadata A ∈ Z∗
2, ciphertext C ∈ Z∗

2 and tag T ∈ Zt
2, and returning

plaintext P ∈ Z|C|
2 or an error

P ← C + FK (history)≪ offset
if |A| > 0 OR |C| = 0 then

history← A||0||e ◦ history
if |C| > 0 then

history← C||1||e ◦ history
T ′ ← 0t + FK (history)
e← e + 11

if T ′ = T then
return P

else
return error!

5 Xoofff-SANSE

Xoofff-SANSE is an SAE function built on top of Xoofff with a mode we introduce
in this document called Deck-SANSE: deck function based Session Authentication and
Nonce-Synthetic-based Encryption. Where Deck-SANE requires to user to ensure that
each session is started with a unique combination of key and nonce for confidentiality,
in Deck-SANSE this requirement is relaxed. It does this by constructing a nonce of the
metadata and plaintext with a generalization of Synthetic IV method of [19]. Similar to
Deck-SANE, encryption of plaintext is done by adding a keystream that is the output of
the deck function to a history. The difference is in what is covered in that history: In
Deck-SANSE, it covers all previous messages and the current message. In order to allow
decryption, this is realized through the tag: the history for the keystream generation
contains previous messages, the metadata of the current message and the tag. The tag is
computed before the keystream generation and covers the history of all messages, including
the current one. The consequence is that even if two sessions have equal history up to
some point and then have different plaintexts, they will likely lead to different tags and the

12

keystreams will be unrelated. Confidentiality still breaks down when these tags collide
and the user can eliminate the risk of (history,tag) collisions altogether by including a
nonce in the metadata of the first message. In any case, as long as two sessions have the
same sequence of messages, they will produce the same sequence of cryptograms. This is
unavoidable in a deterministic SAE scheme.

5.1 A flaw in Farfalle-SIV
In [2], we presented a similar mode, albeit with no support for sessions, called Farfalle-SIV.
In an email Ted Krovetz drew our attention on a flaw in Farfalle-SIV. So Deck-SANSE
is a fixed version of Farfalle-SIV and we took advantage of the occasion to extend to an
SAE mode.

The flaw in Farfalle-SIV is the following. Let a legitimate user do a first call to wrap
with (C1, T1) = wrap(A, P1). We have T1 = 0t + FK (P1 ◦A) and C1 = P1 + FK (T1 ◦A).
Then an adversary makes a second call to wrap with P2 = T1. She gets (C2, T2) =
wrap(A, P2) with T2 = 0t + FK (P2 ◦A) = 0t + FK (T1 ◦A). So the tag T2 reveals the
first t bits of the keystream used to encrypt P1. The root of the problem is the lack of
separation between the tag and the keystream generation. We fix this in Deck-SANSE by
enforcing domain separation between calls to FK (·) for tag or keystream.

5.2 Deck-SANSE
Deck-SANSE combines the SIV approach with the session support of Deck-SANE. We
define it in Algorithm 3. Deck-SANSE wraps a message in four phases:

1. If the metadata is non-empty or if the ciphertext is empty, it appends the metadata
to the history.

2. Tag generation: It generates the tag by applying the deck function to the history,
extended with the plaintext of the current messsage, if non-empty.

3. Encryption: If the plaintext is non-empty, it generates the ciphertext by adding to
the plaintext the output of the deck function applied to the history extended with
the tag.

4. If the plaintext is non-empty, it appends it to the history.

As in Deck-SANE, a tag authenticates the complete history of the session. Unwrapping
is similar.

Deck-SANSE has a single length parameter: the tag length t. It applies domain
separation between metadata and plaintext strings in the history, as well as between the
generation of keystream and of tag. Moreover, as in Deck-SANE, Deck-SANSE has an
attribute e that toggles at each call to (un)wrap.

5.3 Xoofff-SANSE
Definition 5 (Xoofff-SANSE). Xoofff-SANSE is Deck-SANSE(F, t) with

• F = Xoofff and

• t = 256 bits.

We take a 256-bit tag because collisions in the tag are likely to appear after generating
2t/2 tags and we target 128-bit security.

13

Algorithm 3 Definition of Deck-SANSE(F, t)
Parameters: deck function F and tag length t ∈ N

Initialization
e← 01

history is initialized to the empty string sequence

Wrap taking metadata A ∈ Z∗
2 and plaintext P ∈ Z∗

2, and returning ciphertext C ∈ Z|P |
2

and tag T ∈ Zt
2

if |A| > 0 OR |P | = 0 then
history← A||0||e ◦ history

if |P | > 0 then
T ← 0t + FK (P ||01||e ◦ history)
C ← P + FK (T ||11||e ◦ history)
history← P ||01||e ◦ history

else
T ← 0t + FK (history)

e← e + 11

return C, T

Unwrap taking metadata A ∈ Z∗
2, ciphertext C ∈ Z∗

2 and tag T ∈ Zt
2, and returning

plaintext P ∈ Z|C|
2 or an error

if |A| > 0 OR |C| = 0 then
history← A||0||e ◦ history

if |C| > 0 then
P ← C + FK (T ||11||e ◦ history)
history← P ||01||e ◦ history

T ′ ← 0t + FK (history)
e← e + 11

if T ′ = T then
return P

else
return error!

6 Xoofff-WBC and Xoofff-WBC-AE
Xoofff-WBC is a tweakable block cipher built on top of Xoofff and a variant Xoofffie
with the mode Farfalle-WBC [2], that constructs the block cipher in a four-round Feistel
network.

We first define Xoofffie, a variant of Xoofff aimed at providing differential uni-
formity, and used in the first and last rounds of Xoofff-WBC. Then, we define and
make a security claim on Xoofff-WBC. Finally, we instantiate the Xoofff-WBC-AE
authenticated encryption scheme.

6.1 Definition and security claim of Xoofffie
Xoofffie is a function that has the same parameters as Xoofff, with the sole exception
of pd that is the identity function instead of Xoodoo[6].

Definition 6. Xoofffie is Farfalle[pb, pc, pd, pe, rollc, rolle] with the following parame-
ters:

• pb = Xoodoo[6],

14

• pc = Xoodoo[6],

• pd = Id,

• pe = Xoodoo[6],

• rollc = rollXc and

• rolle = rollXe

with Id the identity permutation.

We make the following security claim on Xoofffie:

Claim 2. Let K = (K0, . . . , Ku−1) be an array of u secret keys, each uniformly and
independently chosen from Zκ

2 with κ < 384. Consider an adversary that can query a
function with chosen inputs (X, ∆, i), with M ∈ (Z∗

2)+, ∆ ∈ Z∗
2 and i ∈ Zu that is one of

the two following, without knowing which one:

• RO(∆ + XoofffieKi(X)): the sum of the output of Xoofffie and an offset ∆,
and truncated to the length of that offset, and this filtered by random oracle RO.

• RO2(i, X, ∆): random oracle RO applied to the combination of the three inputs.

Then, the distinguishing advantage is at most:

M

2128 + M2

2∆min−4 , (3)

with ∆min the minimum length of ∆ over the adversary’s queries. Note that the adversary
can not make direct queries to RO.

This claim expresses a differential uniformity property. When trying to distinguish
RO(∆+XoofffieKi

(X)) fromRO(i, X, ∆), the adversary is limited to observing equality
in the expression ∆ + XoofffieKi

(X) for chosen inputs (i, X, ∆). In other words, an
adversary succeeds if she can find XoofffieK outputs with a predictable difference ∆,
i.e., XoofffieKi(X) + XoofffieKj (Y) = ∆ for (i, X) ̸= (j, Y). The output blurring by
a random oracle prevents state or key retrieval in the absence of collisions and hence the
bound only contains terms related to generating collisions. The first term in (3) covers
collisions in the accumulator and the second term in ∆min-bit outputs. For an ideal
function the second term would be birthday bound M2

2∆min+1 . We tolerate some non-ideal
behaviour by multiplying the birthday expression by a factor 25.

6.2 Definition of Xoofff-WBC
The wide block cipher Xoofff-WBC instantiates Farfalle-WBC [2] with two Xoodoo-
based deck functions that are in turn Farfalle instances.

Definition 7 (Xoofff-WBC). Xoofff-WBC is Farfalle-WBC[H, G, ℓ] with

• H = Xoofffie,

• G = Xoofff and

• ℓ = 8 bits.

Making joint use of Xoofff and Xoofffie instances that share a key is not something
we support in general. However, in Xoofff-WBC we believe this is no problem and we
make the following dedicated security claim on Xoofff-WBC.

15

Claim 3. Let K = (K0, . . . , Ku−1) be an array of u secret keys, each uniformly and
independently chosen from Zκ

2 with κ < 384 and let PKi
(·) with i ∈ Zu be instances of

Xoofff-WBC. Each of these instances support two interfaces:

Encipherment denoted as C = PKi(W, P) taking as input a tweak W and a plaintext P
and returning a cryptogram C;

Decipherment denoted as P = P −1
Ki

(W, C) taking as input a tweak W and a cryptogram
C and returning a plaintext P .

We express as Advsprp the probability of distinguishing PKi(W, ·) from an array of uni-
formly and independently drawn random permutations πi,W,n indexed by the key index i,
the value of W and the length n = |P | = |C|, where the adversary can query the inverse
permutations.

Let nmin be the minimum length n among all the queries. The Advsprp is claimed to
be upper bounded by

(1) + M2

2nmin/2−8 . (4)

Here, N , N ′ and M are as in Claim 1, except that M also counts the number of input
and output blocks processed by Xoofffie.

The terms in (4) are those of Claim 1 and an additional term. The additional term
covers the case of an adversary obtaining a collision in one of the branches of the Feistel
network, see [2] for details. We relate this to the ability of doing this in the first and last
rounds, that make use of Xoofffie. In this use case, it has ∆min ≥ nmin/2−4 and hence
the term M2

2∆min−4 becomes M2

2nmin/2−8 .

6.3 Definition of Xoofff-WBC-AE
On top of Xoofff-WBC, we define the Xoofff-WBC-AE authenticated encryption
scheme as an instance of Farfalle-WBC-AE [2] with the same parameters as Xoofff-
WBC and with t = 128. In a nutshell, when wrapping, Xoofff-WBC-AE adds t bits
of redundancy at the end of the plaintext P before encipherment with Xoofff-WBC: it
enciphers P ||0t with the metadata A as tweak. When unwrapping, Xoofff-WBC-AE
calls Xoofff-WBC decryption and checks that the last t bits of the result are indeed 0t.

Definition 8 (Xoofff-WBC-AE). Xoofff-WBC-AE is Farfalle-WBC-AE[H, G, ℓ, t]
with

• H = Xoofffie,

• G = Xoofff,

• ℓ = 8 bits,

• t = 128 bits.

7 Xoodyak
In this section, we specify Xoodyak, a versatile cryptographic object that is suitable for
most symmetric-key functions, including hashing, pseudo-random bit generation, authen-
tication, encryption and authenticated encryption. It is based on the duplex construction,
and in particular on its full-state (FSKD) variant when it is fed with a secret key [3, 9].
It is stateful and shares features with Markku Saarinen’s Blinker [20], Mike Hamburg’s
Strobe protocol framework [12] and Trevor Perrin’s Stateful Hash Objects (SHO) [17]. In

16

practice, Xoodyak is straightforward to use and its implementation can be shared for
many different use cases. The mode of operation employed in Xoodyak is called Cyclist,
as a lightweight counterpart to Keyak’s Motorist mode [5]. It is simpler than Motorist,
mainly thanks to the absence of parallel variants. Another important difference is that
Cyclist is not limited to authenticated encryption, but rather offers fine-grained services,
à la Strobe, and supports hashing.

7.1 Notation
Xoodyak works with bytes, i.e., a sequence of 8 bits, and in the sequel we assume that
all strings have a length that is multiple of 8 bits. The length in bytes of a string X is
denoted |X|8, which is equal to its bit length divided by 8. We denote with enc8(x) a byte
whose value is the integer x ∈ Z256. Byte values are noted in hexadecimal in a typewriter
font enclosed in single quotes, e.g., ‘1A‘ is a byte whose value is the integer 26.

7.2 The Cyclist mode of operation
The Cyclist mode of operation relies on a cryptographic permutation and yields a state-
ful object to which the user can make calls. It is parameterized by the permutation f ,
by the block sizes Rhash, Rkin and Rkout, and by the ratchet size ℓratchet, all in bytes.
Rhash, Rkin and Rkout specify the block sizes of the hash and of the input and output in
keyed modes, respectively. As Cyclist uses up to 2 bytes for frame bits, we require that
max(Rhash, Rkin, Rkout) + 2 ≤ b′, where b′ is the permutation width in bytes.

Upon initialization with Cyclist(K, id, counter), the Cyclist object starts either in
hash mode if K = ϵ or in keyed mode otherwise. In the latter case, the object takes the
secret key K together with its (optional) identifier id, then absorbs a counter in a trickled
way if counter ̸= ϵ. In the former case, it ignores the initialization parameters. Note that,
unlike Strobe, there is no way to switch from hash to keyed mode, although we might
extend Cyclist this way in the future.

The available functions depend on the mode the object is started in: The functions
Absorb() and Squeeze() can be called in both hash and keyed modes, whereas the
functions Encrypt(), Decrypt(), SqueezeKey() and Ratchet() are restricted to the
keyed mode. The purpose of each function is as follows:

• Absorb(X) absorbs an input string X;

• C ← Encrypt(P) enciphers P into C and absorbs P ;

• P ← Decrypt(C) deciphers C into P and absorbs P ;

• Y ← Squeeze(ℓ) produces an ℓ-byte output that depends on the data absorbed so
far;

• Y ← SqueezeKey(ℓ) works like Y ← Squeeze(ℓ) but in a different domain, for
the purpose of generating a derived key;

• Ratchet() transforms the state in an irreversible way to ensure forward secrecy.

The state of a Cyclist object will depend on the sequence of calls to it and on its
inputs. More precisely, the intention is that any output depends on the sequence of all
input strings and of all input calls so far, and that any two subsequent output strings are
in different domains. It does not only depend on the concatenation of input strings, but
also on their boundaries without ambiguity. For instance, a call to Absorb(X) means
the output will depend on X ◦Absorb, while a call to Encrypt(P) will make the output
depend also on P ◦ Crypt. However, some dependency comes as a side-effect of other

17

Table 4: Symbols and strings appended to the process history.

Hash mode:
Absorb(X) X ◦Absorb
Squeeze(ℓ) after another Squeeze() Blocknhash(ℓ) ◦ Squeeze
Squeeze(ℓ) (otherwise) Blocknhash(ℓ)

Keyed mode:
Cyclist(K, id, counter) counter ◦ id ◦AbsorbKey
Absorb(X) X ◦Absorb
C ← Encrypt(P) P ◦Crypt
P ← Decrypt(C) P ◦Crypt
Squeeze(ℓ) Blocknkout(ℓ) ◦ Squeeze
SqueezeKey(ℓ) Blocknkout(ℓ) ◦ SqueezeKey
Ratchet() Ratchet

design criteria, like minimizing the memory footprint. As a result, the state also depends
on the number of blocks in the previous calls to Squeeze() and the previously processed
plaintext blocks in Encrypt() or Decrypt().

Together, everything that influences the output of a Cyclist object, as returned by
Squeeze(), SqueezeKey() or as keystream produced by Encrypt(), is captured by the
process history, see Definition 9 below. When in keyed mode, the output also depends on
the secret key absorbed upon initialization, although the key is not part of the process
history itself. This ensures the security claim can be properly expressed in an indistin-
guishability setting where the adversary has full control on the process history but not on
the secret key, see Claim 5.

Definition 9. The process history (or history for short) is a sequence of strings and
symbols in (Z∗

2 ∪ S)∗, with

S = {Absorb, AbsorbKey, Crypt, Squeeze, SqueezeKey, Block, Ratchet}.

At initialization of the Cyclist object, the history is initialized to ∅. Then, each call to
the Cyclist object appends symbols and strings according to Table 4, where

nhash(ℓ) = max
(

0,

⌈
ℓ

Rhash

⌉
− 1

)
and nkout(ℓ) = max

(
0,

⌈
ℓ

Rkout

⌉
− 1

)
.

In addition, the process history is updated with the Rkout-byte blocks of plaintext as they
are processed by Encrypt() or Decrypt().

The Cyclist mode of operation is defined in Algorithms 4 and 5.

18

Algorithm 4 Definition of Cyclist[f, Rhash, Rkin, Rkout, ℓratchet]
Instantiation: cyclist← Cyclist[f, Rhash, Rkin, Rkout, ℓratchet](K, id, counter)

Phase and state: (phase, s)← (up, ‘00‘f.b′)
Mode and absorb rate: (mode, Rabsorb, Rsqueeze)← (hash, Rhash, Rhash)
if K not empty then AbsorbKey(K, id, counter)

Interface: Absorb(X)
AbsorbAny(X, Rabsorb, ‘03‘ (absorb))

Interface: C ← Encrypt(P), with mode = keyed
return Crypt(P, false)

Interface: P ← Decrypt(C), with mode = keyed
return Crypt(C, true)

Interface: Y ← Squeeze(ℓ)
return SqueezeAny(ℓ, ‘40‘ (squeeze))

Interface: Y ← SqueezeKey(ℓ), with mode = keyed
return SqueezeAny(ℓ, ‘20‘ (key))

Interface: Ratchet(), with mode = keyed
AbsorbAny(SqueezeAny(ℓratchet, ‘10‘ (ratchet)), Rabsorb, ‘00‘)

19

Algorithm 5 Internal interfaces of Cyclist[f, Rhash, Rkin, Rkout, ℓratchet]
Internal interface: AbsorbAny(X, r, cD)

for all blocks Xi in Split(X, r) do
if phase ̸= up then Up(0, ‘00‘)
Down(Xi, cD if first block else ‘00‘)

Internal interface: AbsorbKey(K, id, counter), with |K || id|8 ≤ Rkin − 1
(mode, Rabsorb, Rsqueeze)← (keyed, Rkin, Rkout)
AbsorbAny(K || id || enc8(|id|8), Rabsorb, ‘02‘ (key))
if counter not empty then AbsorbAny(counter, 1, ‘00‘)

Internal interface: O ← Crypt(I, decrypt)
for all blocks Ii in Split(I, Rkout) do

Oi ← Ii ⊕Up(|Ii|8, ‘80‘ (crypt) if first block else ‘00‘)
Pi ← Oi if decrypt else Ii

Down(Pi, ‘00‘)
return ||i Oi

Internal interface: Y ← SqueezeAny(ℓ, cU)
Y ← Up(min(ℓ, Rsqueeze), cU)
while |Y |8 < ℓ do

Down(ϵ, ‘00‘)
Y ← Y || Up(min(ℓ− |Y |8, Rsqueeze), ‘00‘)

return Y

Internal interface: Down(Xi, cD)
(phase, s)← (down, s⊕ (Xi || ‘01‘ || ‘00‘∗ || cD & ‘01‘ if mode = hash else cD))

Internal interface: Yi ← Up(|Yi|8, cU)
(phase, s)← (up, f(s if mode = hash else s⊕ (‘00‘∗ || cU)))
return s[0] || s[1] || . . . || s[|Yi|8 − 1]

Internal interface: [Xi]← Split(X, n)
if X is empty then return array with a single empty string [ϵ]
return array [Xi], with X = ||i Xi and |Xi|8 = n except possibly the last block.

7.3 Xoodyak and its claimed security
We instantiate Xoodyak in Definition 10 and attach to it security Claims 4 and 5.

Definition 10. Xoodyak is Cyclist[f, Rhash, Rkin, Rkout, ℓratchet] with

• f = Xoodoo[12] of width 48 bytes (or b = 384 bits)

• Rhash = 16 bytes

• Rkin = 44 bytes

• Rkout = 24 bytes

• ℓratchet = 16 bytes

Claim 4. The success probability of any attack on Xoodyak in hash mode shall not be
higher than the sum of that for a random oracle and N2/2255, with N the attack complexity

20

in calls to Xoodoo[12] or its inverse. We exclude from the claim weaknesses due to the
mere fact that the function can be described compactly and can be efficiently executed, e.g.,
the so-called random oracle implementation impossibility [14], as well as properties that
cannot be modeled as a single-stage game [18].

This means that Xoodyak hashing has essentially the same claimed security as, e.g.,
SHAKE128 [15].

Claim 5. Let K = (K0, . . . , Ku−1) be an array of u secret keys, each uniformly and
independently chosen from Zκ

2 with κ ≤ 256 and κ a multiple of 8. Then, the advantage
of distinguishing the array of Xoodyak objects after initialization with Cyclist(Ki, ·, ·)
with i ∈ Zu from an array of random oracles RO(i, h), where h ∈ (Z∗

2 ∪ S)∗ is a process
history, is at most

qivN +
(

u
2
)

2κ
+ N

2184 +
(L + Ω)N +

(
L+Ω+1

2
)

2192 + M2

2382 + Mq

2min(192+κ,384) . (5)

Here we follow the notation of the generic security bound of the FSKD [9], namely:

• N is the computational complexity expressed in the (computationally equivalent)
number of executions of Xoodoo[12].

• M is the online or data complexity expressed in the total number of input and output
blocks processed by Xoodyak.

• q ≤M is the total number of initializations in keyed mode.

• Ω ≤ M is the number of blocks, in keyed mode, that overwrite the outer state and
for which the adversary gets a subsequent output block. In particular, this counts
the number of blocks processed by Decrypt(·) for which the adversary can also get
the corresponding key stream value or other subsequent output (e.g., in the case of
the release of unverified plaintext in authenticated encryption). And it also counts
the number of calls to Ratchet() followed by Squeeze(ℓ) or SqueezeKey(ℓ) with
ℓ ̸= 0.

• L ≤ M is the number of blocks, in keyed mode, for which the adversary knows the
value of the outer state from a previous query and can choose the input block value
(e.g., in the case of authentication without a nonce, or of authenticated encryption
with nonce repetition). This includes the number of times a call to Absorb() follows
a call to Squeeze(ℓ) or to SqueezeKey(ℓ) with ℓ ̸= 0.

• qiv ≤ u is the maximum number of keys that are used with the same id, i.e.,

qiv = max
id
|{(i, id) | Cyclist(Ki, id, ·) is called at least once}| .

Claims 4 and 5 ensure Xoodyak has 128 bits of security both in hash and keyed modes
(assuming κ ≥ 128). Regarding the data complexity, it depends on the values of q, Ω and
L, for which we will see concrete examples in Section 7.4. Given that they are bounded
by M , Xoodyak resists to a data complexity of up to 264 blocks, as the probability in
Eq. (5) is negligible as long as N ≪ 2128 and M ≪ 264. In the particular case of L+Ω = 0,
it resists even higher data complexities, as the probability remains negligible also when
M ≪ 2160.

The parameter qiv relates to the possible security degradations in the case of multi-
target attacks, as an exhaustive key search would erode security by log2 qiv ≤ log2 u bits
in this case. However, when the protocol ensures qiv = 1, there is no degradation and the
security remains at min(128, κ) bits even in the case of multi-target attacks.

21

7.4 Using Xoodyak
Xoodyak, as a Cyclist object, can be started in hash mode and therefore used as a hash
function. Alternatively, one can start Xoodyak in keyed mode and, e.g., to use it as a
deck function or for duplex-like session authenticated encryption. In this section, we cover
use cases in this order, first in hash mode, then in keyed mode, then some combination of
both.

7.5 Hash mode
As already mentioned, Xoodyak can be used as a hash function. More generally, it can
serve as an extendable output function (XOF), the generalization of a hash function with
arbitrary output length. To get a n-byte digest of some input x, one can use Xoodyak
as follows:

Cyclist(ϵ, ϵ, ϵ)
Absorb(x)
Squeeze(n)

This sequence is the nominal sequence for using Xoodyak as a XOF. Its security is
summarized in the following Corollary.

Corollary 1. Assume that Xoodyak satisfies Claim 4. Then, this hash function has the
following security strength levels, with n the output size in bytes:

collision resistance min(8n/2, 128) bits
preimage and second preimage resistance min(8n, 128) bits
m-target preimage resistance min(8n− log m, 128) bits

Xoodyak can also naturally implement a dec function and process a sequence of
strings. Here the output depends on the sequence as such and not just on the concatena-
tion of the different strings and, in this sense it is similar to TupleHash [16]. To compute
a n-byte digest over the sequence x3 ◦ x2 ◦ x1, one does:

Cyclist(ϵ, ϵ, ϵ)
Absorb(x1)
Absorb(x2)
Absorb(x3)
Squeeze(n)

A XOF can be implemented in a stateful manner and can come with an interface
that allows for requesting more output bits. This is the so-called extendable output
feature, and for Cyclist this is provided quite naturally by the Squeeze() function.
Here, some care must be taken for interoperability: For supporting use cases such as
the one in Section 7.6.4, Cyclist considers squeezing calls as being in distinct domains.
This means a Cyclist objects with some given history, the n + m bytes returned by
Squeeze(n) || Squeeze(m) and Squeeze(n + m) will be the same in the first n bytes
and differ in the last m bytes. If an extendable output is required without this feature,
an interface can be built to allow incremental squeeze calls. For instance, an interface
SqueezeMore() would behave such that calling Squeeze(n) followed by SqueezeMore(m)
is equivalent to calling Squeeze(n + m) in the first place.

22

7.6 Keyed mode
In keyed mode, Xoodyak can naturally implement a deck function, although we focus
instead on duplex-based ways to perform authentication and (authenticated) encryption.

To use Xoodyak as a keyed object, one starts it with Cyclist(K, id, counter) where
K is a secret key with a fixed length of κ bits. We first show how to use the id and
counter parameters, to counteract multi-target attacks and to handle the nonce, then
discuss various kinds of authenticated encryption use cases.

7.6.1 Two ways to counteract multi-target attacks

The id is an optional key identifier. It offers one of two ways to counteract multi-target
attacks.

In a multi-target attack, the adversary is not interested in breaking a specific device
or key, but in breaking any device or key from a (possibly large) set. If there are u keys in
a system, the security can degrade by up to log2 u bits in such a case [6]. Claim 5 reflects
this in the term qivN

2κ ≤ N
2κ−log2 u as qiv ≤ u.

Let us assume that we wish to target a security strength level of 128 bits including
multi-target attacks. Xoodyak can achieve this in two ways.

• We extend the length of the secret key. By setting κ = 128 + log2 u, then the term
qivN

2κ becomes
qivN

2128+log2 u
≤ N

2128 .

• We make the key identifier id globally unique among the u keys and therefore ensure
that qiv = 1. Then, there is no degradation for exhaustive key search in a multi-
target setting, and the key size can be equal to the target security strength level, so
κ = 128 in this example.

7.6.2 Three ways to handle the nonce

The counter parameter of Cyclist() is a data element in the form of a byte string that
can be incremented. It is absorbed in a trickled way, one digit at a time, so as to limit the
number of power traces an attacker can take with distinct inputs [21]. At the upper level,
the user or protocol designer fixes a basis 2 ≤ B ≤ 256 and assumes that the counter is
a string in Z∗

B . A possible way to go through all the possible strings in Z∗
B is as follows.

First, the counter is initialized to the empty string. Then, as the counter is incremented,
it takes all the possible strings in Z1

B , then all the possible strings in Z2
B , and so on.

The counter shall be absorbed starting with the most significant digits. This allows
caching the state after absorbing part of the counter as the first digits absorbed will change
the least often. The smaller the value B, the smaller the number of possible inputs at
each iteration of the permutation, so the better protection against power analysis attacks
and variants.

This method of absorbing a nonce, as a counter absorbed in a trickled way, is desired in
situations where protection against power analysis attacks matter. Otherwise, the nonce
can be absorbed at once with Absorb(nonce) just after Cyclist(K, id, ϵ).

Finally, a third method consists in integrating the nonce with the id parameter. If id
is a global nonce, i.e., it is unique among all the keys used in the system, this also ensures
qiv = 1 as explained above.

7.6.3 Authenticated encryption

We propose using Xoodyak for authenticated encryption as follows. To encrypt a plain-
text P under a given nonce and associated data A under key K with identifier id, and to

23

get a tag of t = 16 bytes, we make the following sequence of calls:

Cyclist(K, id, ϵ)
Absorb(nonce)
Absorb(A)
C ← Encrypt(P)
T ← Squeeze(t)
return (C, T)

To decrypt (C, T), we proceed similarly:

Cyclist(K, id, ϵ)
Absorb(nonce)
Absorb(A)
P ← Decrypt(C)
T ′ ← Squeeze(t)
if T = T ′ then

return P
else

return ⊥

If the nonce is not repeated and if the decryption does not leak unverified decrypted
ciphertexts, then we have L = Ω = 0 here, see Claim 5. The resulting simplified security
claim is given in the following corollary.

Corollary 2. Assume that (1) Xoodyak indeed satisfies Claim 5; (2) this authenticated
encryption scheme is fed with a single κ-bit key with κ ≤ 192; (3) it is implemented
such that the nonce is not repeated and the decryption does not leak unverified decrypted
ciphertexts. Then, it can be distinguished from an ideal scheme with an advantage whose
dominating terms are:

N

2κ
+ N

2184 + M2

2192+κ
.

This translates into the following security strength levels assuming a t-byte tag (the com-
plexities are in bits):

computation data
plaintext confidentiality min(184, κ, 8t) 96 + κ/2
plaintext integrity min(184, κ, 8t) 96 + κ/2
associated data integrity min(184, κ, 8t) 96 + κ/2

7.6.4 Session authenticated encryption

Session authenticated encryption works on a sequence of messages and the tag authen-
ticates the complete sequence of messages received so far. Starting from the sequence
in Section 7.6.3, we add the support for messages (Ai, Pi), where Ai, Pi or both can be
empty.

Cyclist(K, id, ϵ)
Absorb(nonce)
Absorb(A1)
C1 ← Encrypt(P1)
T1 ← Squeeze(t)
⇒ output (C1, T1) and wait for next message

Absorb(A2)

24

C2 ← Encrypt(P2)
T2 ← Squeeze(t)
⇒ output (C2, T2) and wait for next message

Absorb(A3)
T3 ← Squeeze(t)
⇒ output T3 and wait for next message

C4 ← Encrypt(P4)
T4 ← Squeeze(t)
⇒ output (C4, T4) and wait for next message

T5 ← Squeeze(t)
⇒ output T5 and wait for next message

In this example, T2 authenticates (A2, P2) ◦ (A1, P1). The third message has no plain-
text, the fourth message has no associated data, and the fifth message is empty. In such
a sequence, the convention is that the call to Squeeze() ends a message. Since it appears
in the processing history, there is no ambiguity on the boundaries of the messages even if
some of the elements (or both) are empty.

The use of empty messages may be clearer in the case of a session shared by two (or
more) communicating devices, where each device takes a turn. A device may have nothing
to say and so skips its turn by just producing a tag.

To relate to Claim 5, we have to determine L by counting the number of invocations
to Absorb() that follow Squeeze(). If the nonce is not repeated and if the decryption
does not leak unverified decrypted ciphertexts, we have L = T − q, with T the number of
messages processed (or tags produced), and Ω = 0.

7.6.5 Ratchet

At any time in keyed mode, the user can call Ratchet(). This causes part of the state
to be overwritten with zeroes, thereby making it computationally infeasible to compute
the state value before the call to Ratchet().

In an authenticated encryption scheme, the call to Ratchet() can be typically in-
serted either just before producing the tag or just after. The advantage of calling it just
before the tag is that it is most efficient: It requires only one extra call to the permutation
f . An advantage of calling it just after the tag is that its processing can be done asyn-
chronously, while the ciphertext is being transmitted and it waits for the next message.
Unless Ratchet() is the last call, the number of calls to it must be counted in Ω.

Cyclist(K, id, ϵ)
Absorb(nonce)
Absorb(A)
C ← Encrypt(P)
Ratchet() {either here . . . }
T ← Squeeze(t)
Ratchet() {. . . or here}

7.6.6 Rolling subkeys

As an alternative to using a long-term secret key together with its associated nonce
that is incremented at each use, Cyclist offers a mechanism to derive a subkey via the
SqueezeKey() call. On an encrypting device, one can therefore replace the process of
incrementing and storing the updated nonce at each use of the long-term secret key with
the process of updating a rolling subkey:

25

K1 ← K and i← 1
while necessary do

Initialize a new Xoodyak instance with Cyclist(Ki, ϵ, ϵ)
Ki+1 ← SqueezeKey(ℓsub) {and store Ki+1 by overwriting Ki}
Ratchet() {optional}
Absorb(Ai)
Ci ← Encrypt(Pi)
Ti ← Squeeze(t)
⇒ output (Ci, Ti) and wait for next message

i← i + 1

Here ℓsub should be chosen large enough to avoid collisions, say ℓsub = 32 bytes (256
bits). Assuming that there are no collisions in the subkeys, L = 0 and Ω is the number of
calls to Ratchet().

Using Cyclist this way offers resilience against side channel attacks, as the long-term
key is not exposed any more and can even be discarded as soon as the first subkey is derived.
The key to attack becomes a moving target, just like the state in session authenticated
encryption.

7.6.7 Nonce reuse and release of unverified decrypted ciphertext

The authenticated encryption schemes presented in this section assume that the nonce is
unique per session, namely that the value is used only once per secret key. It also assumes
that an implementation returns only an error when receiving an invalid cryptogram and
in particular does not release the decrypted ciphertext if the tag is invalid. If these two
assumptions are satisfied, we refer to this as the nominal case; otherwise, we call it the
misuse case.

In the misuse case security degrades and hence we strongly advise implementers and
users to respect the nonce requirement at all times and never release unverified decrypted
ciphertext. We detail security degradation in the following paragraphs.

A nonce violation in general breaks confidentiality of part of the plaintext. In partic-
ular, two sessions that have the same key and the same process history (i.e., the same K,
id, counter and the same sequence of associated data, plaintexts) will result in the same
output (ciphertext, tag). We call such a pair of sessions in-sync. Clearly, in-sync sessions
leak equality of inputs and hence also plaintexts. As soon as in-sync sessions get differ-
ent input blocks, they lose synchronicity. If these input blocks are plaintext blocks, the
corresponding ciphertext blocks leak the bitwise difference of the corresponding plaintext
blocks (of Rkout = 24 bytes). We call this the nonce-misuse leakage.

Release of unverified decrypted ciphertext also has an impact on confidentiality as it
allows an adversary to harvest keystream that may be used in the future by legitimate
parties. An adversary can harvest one key stream block at each attempt.

Nonce violation and release of unverified decrypted ciphertext have no consequences for
integrity and do not put the key in danger for Xoodyak. This is formalized in Corollary 3.

Corollary 3. Assume that (1) Xoodyak satisfies Claim 5; (2) this authenticated encryp-
tion scheme is fed with a single κ-bit key with κ ≤ 192. Then, except for nonce-misuse
leakage and keystream harvesting, it can be distinguished from an ideal scheme with an
advantage whose dominating terms are:

N

2κ
+ N

2184 + MN + M2

2192 .

This translates into the following security strength levels assuming a t-byte tag (the com-
plexities are in bits):

26

computation data
plaintext confidentiality (nominal case) min(128, κ, 8t) 64
plaintext confidentiality (misuse case) - -
plaintext integrity min(128, κ, 8t) 64
associated data integrity min(128, κ, 8t) 64

7.7 Authenticated encryption with a common secret
A key exchange protocol, such as Diffie-Hellman or variant, results in a common secret
that usually requires further derivation before being used as a symmetric secret key. To
do this with a Cyclist object, we can use an object in hash mode, process the common
secret, and use the derived key in a new object that we start in keyed mode. For example:

Cyclist(ϵ, ϵ, ϵ)
Absorb(ID of the chosen protocol)
Absorb(KA) {Alice’s public key}
Absorb(KB) {Bob’s public key}
Absorb(KAB) {Their common secret produced with Diffie-Hellman}
KD ← Squeeze(ℓ)

Cyclist(KD, ϵ, ϵ)
Absorb(nonce)
Absorb(A)
C ← Encrypt(P)
T ← Squeeze(t)
return (C, T)

Note that if ℓ ≤ Rhash, an implementation can efficiently chain KD ← Squeeze(ℓ)
and the subsequent reinitialization Cyclist(KD, ϵ, ϵ). Since KD is located in the outer
part of the state, it needs only to set the rest of the state to the appropriate value before
calling f .

Note also that if one of the public key pairs is ephemeral, the common secret KAB is
used only once and no nonce is needed.

Acknowledgement
We thank Bart Mennink and Guido Bertoni for useful discussion, Ted Krovetz for finding
and reporting to us the flaw in Farfalle-SIV, as noted in Section 5.1 and Johan De Meulder
for his contributions on the early stages of the definition of Xoodoo.

References
[1] D. J. Bernstein, S. Kölbl, S. Lucks, P. Maat Costa Massolino, F. Mendel, K. Nawaz,

T. Schneider, P. Schwabe, F.-X. Standaert, Y. Todo, and B. Viguier, Gimli : A cross-
platform permutation, Cryptographic Hardware and Embedded Systems - CHES 2017,
Proceedings (W. Fischer and N. Homma, eds.), Lecture Notes in Computer Science,
vol. 10529, Springer, 2017, pp. 299–320.

[2] G. Bertoni, J. Daemen, S. Hoffert, M. Peeters, G. Van Assche, and R. Van Keer,
Farfalle: parallel permutation-based cryptography, IACR Trans. Symmetric Cryptol.
2017 (2017), no. 4, 1–38.

27

[3] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, Duplexing the sponge: Single-
pass authenticated encryption and other applications, Selected Areas in Cryptography
- SAC 2011, Revised Selected Papers (A. Miri and S. Vaudenay, eds.), Lecture Notes
in Computer Science, vol. 7118, Springer, 2011, pp. 320–337.

[4] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer, CAESAR
submission: Ketje v2, September 2016, https://keccak.team/ketje.html.

[5] , CAESAR submission: Keyak v2, document version 2.2, September 2016,
https://keccak.team/keyak.html.

[6] E. Biham, How to decrypt or even substitute des-encrypted messages in 228 steps,
Inf. Process. Lett. 84 (2002), no. 3, 117–124.

[7] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, Quantum amplitude amplification
and estimation, Contemporary Mathematics 305 (2002), 53–74.

[8] J. Daemen, S. Hoffert, G. Van Assche, and R. Van Keer, The design of Xoodoo and
Xoofff, IACR Trans. Symmetric Cryptol. 2018 (2018), no. 4, 1–38.

[9] J. Daemen, B. Mennink, and G. Van Assche, Full-state keyed duplex with built-in
multi-user support, Advances in Cryptology - ASIACRYPT 2017, Proceedings, Part
II (T. Takagi and T. Peyrin, eds.), Lecture Notes in Computer Science, vol. 10625,
Springer, 2017, pp. 606–637.

[10] T. Dierks and E. Rescorla, The transport layer security (TLS) protocol version 1.2,
Network Working Group of the IETF, RFC 5246, August 2008.

[11] L. K. Grover, A fast quantum mechanical algorithm for database search, Proceedings
of the 28th Annual ACM Symposium on the Theory of Computing, May 1996 (Gary L.
Miller, ed.), ACM, 1996, pp. 212–219.

[12] M. Hamburg, The STROBE protocol framework, Real World Crypto, 2017.

[13] S. Hoffert, Xoodoo reference code in C++, August 2018, https://github.com/
XoodooTeam/.

[14] U. Maurer, R. Renner, and C. Holenstein, Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology, Theory of Cryptog-
raphy - TCC 2004 (M. Naor, ed.), Lecture Notes in Computer Science, no. 2951,
Springer-Verlag, 2004, pp. 21–39.

[15] NIST, Federal information processing standard 202, SHA-3 standard: Permutation-
based hash and extendable-output functions, August 2015, http://dx.doi.org/10.
6028/NIST.FIPS.202.

[16] , NIST special publication 800-185, SHA-3 derived functions: cSHAKE,
KMAC, TupleHash and ParallelHash, December 2016, https://doi.org/10.6028/
NIST.SP.800-185.

[17] T. Perrin, Stateful hash objects: API and constructions, https://github.com/
noiseprotocol/sho_spec/blob/master/output/sho.pdf, 2018.

[18] T. Ristenpart, H. Shacham, and T. Shrimpton, Careful with composition: Limitations
of the indifferentiability framework, Eurocrypt 2011 (K. G. Paterson, ed.), Lecture
Notes in Computer Science, vol. 6632, Springer, 2011, pp. 487–506.

28

https://keccak.team/ketje.html
https://keccak.team/keyak.html
https://github.com/XoodooTeam/
https://github.com/XoodooTeam/
http://dx.doi.org/10.6028/NIST.FIPS.202
http://dx.doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.6028/NIST.SP.800-185
https://github.com/noiseprotocol/sho_spec/blob/master/output/sho.pdf
https://github.com/noiseprotocol/sho_spec/blob/master/output/sho.pdf

[19] P. Rogaway and T. Shrimpton, A provable-security treatment of the key-wrap prob-
lem, Advances in Cryptology - EUROCRYPT 2006, Proceedings (S. Vaudenay, ed.),
Lecture Notes in Computer Science, vol. 4004, Springer, 2006, pp. 373–390.

[20] M.-J. O. Saarinen, Beyond modes: Building a secure record protocol from a cryp-
tographic sponge permutation, Topics in Cryptology - CT-RSA 2014. Proceedings
(J. Benaloh, ed.), Lecture Notes in Computer Science, vol. 8366, Springer, 2014,
pp. 270–285.

[21] M. M. I. Taha and P. Schaumont, Side-channel countermeasure for SHA-3 at almost-
zero area overhead, 2014 IEEE International Symposium on Hardware-Oriented Se-
curity and Trust, HOST 2014, IEEE Computer Society, 2014, pp. 93–96.

[22] G. Van Assche, On dec(k) functions, INDOCRYPT 2018, December 2018, https:
//keccak.team/files/OnDecAndDeckFunctions-Indocrypt2018.pdf.

[23] G. Van Assche, R. Van Keer, and Contributors, Extended Keccak code package,
August 2018, https://github.com/XKCP/XKCP.

[24] T. Ylonen and C. Lonvick, The secure shell (SSH) protocol architecture, Network
Working Group of the IETF, RFC 4251, January 2006.

29

https://keccak.team/files/OnDecAndDeckFunctions-Indocrypt2018.pdf
https://keccak.team/files/OnDecAndDeckFunctions-Indocrypt2018.pdf
https://github.com/XKCP/XKCP

Table 5: The round constants with indices -11 to 0
i qi si ci in hex

−11 1 + t 3 t3 + t4 + t6 0x00000058
−10 t + t2 2 t3 + t4 + t5 0x00000038
−9 1 + t + t2 6 t6 + t7 + t8 + t9 0x000003C0
−8 1 + t2 4 t4 + t6 + t7 0x000000D0
−7 1 5 t5 + t8 0x00000120
−6 t 1 t2 + t4 0x00000014
−5 t2 3 t5 + t6 0x00000060
−4 1 + t 2 t2 + t3 + t5 0x0000002C
−3 t + t2 6 t7 + t8 + t9 0x00000380
−2 1 + t + t2 4 t4 + t5 + t6 + t7 0x000000F0
−1 1 + t2 5 t5 + t7 + t8 0x000001A0

0 1 1 t1 + t4 0x00000012

A Constants for any number of rounds
We here detail how the round constants are constructed and, following the formula, how
to compute them for any number of rounds.

The round constants Ci are planes with a single non-zero lane at x = 0. We specify
the value of the lanes at x = 0 in the round constants as binary polynomials pi(t) where
the coefficient of ti denotes the bit of the lane with coordinate z = i. We define pi(t) in
terms of a polynomial qi(t) and an integer si in the following way:

pi(t) = tsi
(
qi(t) + t3)

with qi(t) = ti mod 1 + t + t3 and si = 3i mod 7 .

The sequence of polynomials qi(t) has period 7 and the sequence of offsets si has period
6. It follows that the sequence of round constants Ci(t) have period 42. An instance of
Xoodoo with r rounds uses the round constants with indices 1−r to 0. We list the round
constants with indices −11 to 0 in Table 5.

30

B Single-page definition sheet
Modes specified in this document:

• Deck-SANE(F, t, ℓ)

• Deck-SANSE(F, t)

• Cyclist[f, Rhash, Rkin, Rkout, ℓratchet]

Modes instantiated in this document, specified in [2]:

• Farfalle[pb, pc, pd, pe, rollc, rolle]

• Farfalle-WBC[H, G, ℓ]

• Farfalle-WBC-AE[H, G, ℓ, t]

Members of the Xoodoo suite, built on top of Xoodoo[nr]: Xoodoo with nr rounds:

• Xoofff≜Farfalle[Xoodoo[6], Xoodoo[6], Xoodoo[6], Xoodoo[6], rollXc, rollXe]

• Xoofffie≜Farfalle[Xoodoo[6], Xoodoo[6], Id, Xoodoo[6], rollXc, rollXe]

• Xoofff-SANE≜Deck-SANE(Xoofff, 128, 8)

• Xoofff-SANSE≜Deck-SANSE(Xoofff, 256)

• Xoofff-WBC≜Farfalle-WBC[Xoofffie, Xoofff, 8]

• Xoofff-WBC-AE≜Farfalle-WBC-AE[Xoofffie, Xoofff, 8, 128]

• Xoodyak≜Cyclist[Xoodoo[12], 16, 44, 24, 16]

31

C Change log
C.1 14 March 2019
This version adds Xoodyak to the Xoodoo suite, see Section 7.

C.2 25 August 2018
Initial release.

32

	Introduction
	Notation
	Deck functions
	Dec functions
	Session authenticated encryption
	Overview

	Xoodoo
	Xoofff
	Xoofff-SANE
	A flaw in Farfalle-SAE
	Deck-SANE
	Xoofff-SANE

	Xoofff-SANSE
	A flaw in Farfalle-SIV
	Deck-SANSE
	Xoofff-SANSE

	Xoofff-WBC and Xoofff-WBC-AE
	Definition and security claim of Xoofffie
	Definition of Xoofff-WBC
	Definition of Xoofff-WBC-AE

	Xoodyak
	Notation
	The Cyclist mode of operation
	Xoodyak and its claimed security
	Using Xoodyak
	Hash mode
	Keyed mode
	Authenticated encryption with a common secret

	Constants for any number of rounds
	Single-page definition sheet
	Change log
	14 March 2019
	25 August 2018

