Generalizing the SPDZ Compiler For Other Protocols*

Toshinori Arakit Assi Barak? Jun Furukawa$ Marcel KellerY Yehuda Lindell*
Kazuma Oharaf Hikaru Tsuchidaf

October 2, 2018

Abstract

Protocols for secure multiparty computation (MPC) enable a set of mutually distrusting
parties to compute an arbitrary function of their inputs while preserving basic security properties
like privacy and correctness. The study of MPC was initiated in the 1980s where it was shown
that any function can be securely computed, thus demonstrating the power of this notion.
However, these proofs of feasibility were theoretical in nature and it is only recently that MPC
protocols started to become efficient enough for use in practice. Today, we have protocols that
can carry out large and complex computations in very reasonable time (and can even be very
fast, depending on the computation and the setting). Despite this amazing progress, there is
still a major obstacle to the adoption and use of MPC due to the huge expertise needed to design
a specific MPC execution. In particular, the function to be computed needs to be represented
as an appropriate Boolean or arithmetic circuit, and this requires very specific expertise. In
order to overcome this, there has been considerable work on compilation of code to (typically)
Boolean circuits. One work in this direction takes a different approach, and this is the SPDZ
compiler (not to be confused with the SPDZ protocol) that takes high-level Python code and
provides an MPC run-time environment for securely executing that code. The SPDZ compiler
can deal with arithmetic and non-arithmetic operations and is extremely powerful. However,
until now, the SPDZ compiler could only be used for the specific SPDZ family of protocols,
making its general applicability and usefulness very limited.

In this paper, we extend the SPDZ compiler so that it can work with general underlying
protocols. Our SPDZ extensions were made in mind to enable the use of SPDZ for arbitrary
protocols and to make it easy for others to integrate existing and new protocols. We integrated
three different types of protocols, an honest-majority protocol for computing arithmetic circuits
over a field (for any number of parties), a three-party honest majority protocol for computing
arithmetic circuits over the ring of integers Zon , and the multiparty BMR protocol for computing
Boolean circuits. We show that a single high-level SPDZ-Python program can be executed using
all of these underlying protocols (as well as the original SPDZ protocol), thereby making SPDZ
a true general run-time MPC environment.

*An extended abstract of this work appeared at ACM CCS 2018.

INEC, t-araki@ek. jp.nec.com, k-ohara@ax.jp.nec.com, h-tsuchida@bk.jp.nec.com

#Dept. of Computer Science, Bar-Ilan University, Israel. assaf.barak@biu.ac.il,lindell@biu.ac.il. Supported
by the European Research Council under the ERC consolidators grant agreement n. 615172 (HIPS), by the BIU
Center for Research in Applied Cryptography and Cyber Security in conjunction with the Israel National Cyber
Directorate in the Prime Minister’s Office, and by the Alter Family Foundation.

SNEC Israel Research Center, jun.furukawa@necam. com

YData61, mks .keller@gmail.com

In order to be able to handle both arithmetic and non-arithmetic operations, the SPDZ
compiler relies on conversions from field elements to bits and back. However, these conversions
do not apply to ring elements (in particular, they require element division), and we therefore
introduce new bit decomposition and recomposition protocols for the ring over integers with
replicated secret sharing. These conversions are of independent interest and utilize the structure
of Zan (which is much more amenable to bit decomposition than prime-order fields), and are
thus much more efficient than all previous methods.

We demonstrate our compiler extensions by running a complex SQL query and a decision
tree evaluation over all protocols.

1 Introduction

Background. Secure multiparty computation (MPC) protocols provide the capability of com-
puting over private data without revealing it. In today’s privacy crisis, MPC can serve as a core
tool for utilizing data without compromising the security and privacy of an individual’s sensitive
information. In recent years there has been immense progress in the efficiency of MPC protocols,
and today we can securely compute large Boolean and arithmetic circuits representing real com-
putations of interest. However, most MPC protocols require the description of a Boolean and/or
arithmetic circuit in order to run. This is a significant obstacle in the deployment of MPC, since
circuits for real problems of interest can be very large and very hard to construct. In order to
deal with this, there has been quite a lot of work on compiling high-level programs to circuits;
see [15, 29, 8, 9] for just a few examples. However, many of these works are limited in the size
of the circuit that they can generate, and most of them do not deal with the general problem of
combined arithmetic and non-arithmetic (Boolean) computations. In addition, the paradigm of
working with static circuits is problematic for huge computations, due to the size of the circuit that
must be dealt with (this issue has been considered in [29] and elsewhere, but can still be an issue).

The SPDZ protocol and compiler. In contrast to the above, the series of works called “SPDZ”
took a very different approach. SPDZ is the name of a specific protocol for honest-minority mul-
tiparty computation [14]. However, beyond improvements to the protocol itself, follow-up work
on SPDZ included the implementation of an extremely powerful MPC run-time environment/com-
piler that is integrated into the SPDZ low-level protocol [13, 21, 7]. From here on we differentiate
between the SPDZ protocol which is a way of executing secure MPC over arithmetic circuits, and
the SPDZ compiler that is a general run-time environment that takes code written in a high-level
Python-type language, and executes it in MPC over the SPDZ protocol. We stress that SPDZ does
not generate a circuit and hand it down to the low-level protocol. Rather, it behaves more like an
interpreter, dynamically calling the lower-level protocol to carry out low-level operations.

A key property of the SPDZ compiler is that it separates the basic operations provided by MPC
protocols (binary or arithmetic circuits) from a protocol (or program) using those operations as
building blocks. While the basic operations mostly consist of simple arithmetic over some ring (more
precisely, a field in case of SPDZ), combining them to achieve higher-level operations, like integer or
fixed-point division, is a more complex matter. However, integrating such higher-level operations
into the core MPC engine is not a good strategy because the reduction to basic operations is likely
very similar even for different underlying protocols. The SPDZ compiler provides a tool to write
more complex building blocks, which then can be used in arbitrary MPC applications without being
concerned about the details of those blocks nor the underlying protocol. A concrete example of

the ease in which complex secure computations can be specified appears in Figure 1. This program
describes the task of selecting an element from an array, where both the array values and the
array index are private (and thus shared). Given that the size of the array is also a variable, this
is very difficult to specify in a circuit. This highlights another huge advantage of this paradigm.
The SPDZ system facilitates modular programming techniques, enabling the software engineer to
program functions that can be reused in many programs. (Note that a simpler linear program
could be written for the same task, but this method is more efficient. Observe the richness of the
language, enabling recursion, if-then-else branching, and so on.)

mpc/sql_3.py

1

2 import util

3

4 # Code for oblivious selection of an array member by a secure index

5~ def oblivious_selection(sec_array, array_size, sec_index):

6 bitcnt = util.log2(array_size)

7 sec_index_bits = sec_index.bit_decompose(bitcnt)

8 return obliviously_select(sec_array, array_size, 0, sec_index_bits, len(sec_index_bits) - 1)
9
10 - def obliviously_select(array, size, offset, bits, bits_index):
11 ~ if offset >= size:
12 return 0
13~ elif bits_index < 0:
14 return array[offset]
15~ else:
16 half_size = 2**(bits_index)
17 msb = bits[bits_index]
18 return msb.if_else(
19 obliviously_select(array, size, offset + half_size, bits, bits_index-1)
20 obliviously_select(array, size, offset, bits, bits_index-1))
21
22 #ACM-CCS 2018 end of code snippet

Figure 1: SPDZ Python code for oblivious selection from an array.

In Appendix A we demonstrate the ease with which the SPDZ language can be used, by doc-
umenting the timeline from the specification of a complex SQL query to implement at 8:45am, to
the pseudocode prepared by the researchers at 11:16am, to a working version of the SQL program
inside SPDZ at 2:49pm, all on the same day. We stress that this was the first time a program of
this type was constructed in our lab, and so this accurately reflects the time to develop (of course,
after gaining general experience with the SPDZ compiler).

Extending the SPDZ compiler. Prior to our work, the SPDZ compiler was closely integrated
with the SPDZ low-level protocol, preventing its more broad use. The primary aim of this work
is to extend the SPDZ compiler so that other protocols can be integrated into the system with
ease. This involved making changes to the SPDZ compiler at different levels, as is described in
Section 3. In order to demonstrate the strength of this paradigm, we integrated three different
protocols of completely different types. Specifically, we integrated the honest-majority multiparty
protocol of [24] for arithmetic circuits over a field, the three-party honest-majority protocol of [4, 3]
for arithmetic circuits over the ring Zon for any n, and the BMR protocol [6, 25] for constant-round
multiparty computation for Boolean circuits. The integration of the former protocol required the
fewest number of changes, since it works over any field just like the original SPDZ, whereas the
other protocols required more changes. For example, the SPDZ compiler already comes with high-
level algorithms for fixed-point and floating point operations, integer division and more. All of

these are reusable as-is for any other protocol based on fields. However, for protocols over the ring
Zon, different high-level algorithms needed to be developed. We have done this, and thus other
protocols over rings can utilize the relevant high-level algorithms.

We stress that the focus of our extensions were not to integrate these specific protocols, but to
modify the SPDZ system in order to facilitate easy integration of other protocols by others. We
believe that this is a significant contribution, and will constitute a step forward to enabling the
widespread use of MPC.

Bit decomposition and recomposition. The advantage of working over arithmetic circuits
(in contrast to Boolean circuits) is striking for computations that require a lot of arithmetic,
as is typical for computing statistics. In these cases, addition is for free, and multiplication of
large values comes at a cost of a single operation. However, most real-world programs consist of a
combination of arithmetic and non-arithmetic computations, and thus need a mix of arithmetic and
Boolean low-level operations. In order to facilitate this, it is necessary to have bit decomposition
and recomposition operations, to convert a shared field/ring element to a series of shares of its
bit representation and back. This facilitates all types of computation, by moving between the
field /ring representation and bit representation, depending on the computation. For example,
consider an SQL query which outputs the average age of homeowners with debt above the national
average, separately for each state. This requires computing the national debt average (arithmetic),
comparing the debt of each homeowner with the national average (Boolean) and computing the
average age of those whose debt is greater (mostly arithmetic for computing the sum, and one
division for obtaining the average). Note that the last average requires division since the number
of homeowner above the average is not something revealed by the output, and division is computed
using the Goldschmidt method which requires a mix of arithmetic and bit operations, including
conversions.

As we discuss below in Section 2, the SPDZ compiler includes high-level algorithms for many
complex operations, and as such includes bit decomposition and recomposition. In some cases, the
operations rely on division in the field and so cannot be extended to rings. In order to facilitate
working with rings, we therefore develop novel protocols for bit decomposition and ring recompo-
sition between Zsn and Zo that are based on replicated secret sharing and therefore compatible
with [4, 3]. Since Zon preserves the structure of the individual bits much more than Z, for a prime
p, it is possible to achieve much faster decomposition and recomposition than in the field case.
Thus, in programs that require a lot of conversions, ring-based protocols can way outperform field-
based protocols. However, field-based protocols are typically more efficient for the basic arithmetic
(e.g., compare the ring version of [3] to [24]). Thus, different low-level protocols have different
performance for different programs. Stated differently, there is no “best” protocol, even consider-
ing a specific number of parties and security level, since it also depends on the actual operations
carried out (this is also true regarding deep vs shallow circuits, and constant versus non-constant
round protocols). This gives further justification to have a unified SPDZ system that can work
with many low-level protocols of different types, so that a program can be written once and tested
over different protocols in order to choose the best one.

Our protocols for bit decomposition and ring recomposition are described in Section 4.

Implementation and experiments. In Section 5, we present the results of experiments we ran
on programs for evaluating unbalanced decision trees (this is more complex than balanced decision

trees due to the need for the evaluation to be completely oblivious) and for evaluating complex
SQL queries. Although the focus of our work is not efficiency, we report on running times and
comparisons in order to provide support for the fact that this SPDZ extension is indeed very useful
and meaningful.

Our implementation is open-source and available for anyone interested in utilizing it.

2 The SPDZ Protocol and Compiler

2.1 Overview

SPDZ is the name given to a multiparty secure computation protocol by Damgard et al. [14, 13]
that works for any n parties. It provides active (malicious) security against any ¢ < n corrupted
parties, and it works in the preprocessing model, that is, the computation is split into a data-
independent (“offline”) and a data-dependent (“online”) phase. The main idea of SPDZ is to use
relatively expensive somewhat homomorphic encryption in the offline phase while the online phase
purely relies on cheaper modular arithmetic primitives. This also allows for an optimistic approach
to the distributed decryption used in the offline phase: Instead of proving correct behavior using
zero-knowledge proofs, the parties check the decrypted value for correctness and abort in case of
an error. Nevertheless, there is no leakage of secret data because no secret data has yet been used.

The main link between the two phases is a technique due to Beaver [5], which reduces the multi-
plication of secret values to a linear operation on secret values using a precomputed multiplication
of random values and revealing of masked secret-shared values. Using a linear secret sharing scheme
makes this technique straightforward to use. Additive secret sharing is trivially linear, and it pro-
vides the desired security against any number of ¢ < n corrupted parties. On the top of additive
secret sharing, SPDZ also uses an information-theoretic tag (the product of the secret value and a
global secret value), which is additively secret-shared as well, thus preserving the linear property.

Keller et al. [21] have created software to run the online phase of any computation, optimizing
the number of communication rounds. The software receives a description of the computation in a
high-level Python-like language, which is then compiled into a concise byte-code that is executed
by the SPDZ virtual machine (which includes the actual SPDZ MPC protocol); see Figure 2. The
design of the virtual machine follows the design principles of processors by providing instructions
such as arithmetic over secret-shared or public values (and a mix between them), and branching
on public values. The inclusion of branching means that one can implement concepts common
in programming languages such as loops, if-else statements, and functions. While the conditions
for loop and if statements can only depend on public values,' this provides an obvious benefit in
reducing the representation of a computation and the cost of the optimization described below. In
particular, it is possible to loop over a large set of inputs without representing the whole circuit
in memory. We call this software layer the SPDZ compiler, in order to distinguish it from the
SPDZ protocol. We remark that although the SPDZ compiler was developed with the SPDZ
protocol specifically in mind, its good design enabled us to extend it to other protocols and make
it a general MPC tool.

1This is an inherent requirement for “plain” multiparty computation. There are solutions that overcome this (18],
but they come with a considerable overhead.

optim.
Compiler i VM (online)

Figure 2: High-level SPDZ compiler architecture.

2.2 Circuit Optimizations

The core optimization of the software makes use of the fact that, using Beaver’s technique, the
only operation that involves communication is the revealing of secret values. This means that the
compiler can merge all operations in a single communication round into a single opening operation,
effectively reducing the communication to the minimum number rounds for a given circuit descrip-
tion. In addition, the software splits the communication into two instructions to mark the sending
and the receiving of information, and optimizes by placing independent computations in-between
the send-and-receive, providing the ability to use the time that is required to wait for information
from the other parties. As such, all opening operations are framed between start and stop in-
structions, and independent instructions that can be processed in parallel to the communication
are placed between them. For example, startopen denotes the beginning of a series of instructions
to open (reveal) shares, and stopopen denotes the end of the series.

In order to achieve the above effect of grouping all communication messages per round, the
SPDZ compiler represents the computation as a directed acyclic graph where every instruction is
represented as a node, and nodes are connected if one instruction uses another’s output as input.
The vertices are assigned weight one if the source instructions start a communication operation
and zero otherwise. The communication round of any instruction is then the longest path from any
source with respect to the vertex weights. It is straight-forward to compute this by traversing the
instructions in order and assigning the maximum value of all input vertices to each instruction.

It is important to note that merging all instructions that can be run in parallel needs to be done
carefully. In particular, it does not suffice to merge the open instructions that are independent of
each other, but also any operations that the open depends on. This is solved by computing the
topological order of the changed graph, and by adding vertices between instructions with side
effects, in order to maintain the order between them. This results in a trade-off because adding
more vertices in order to preserve the order can lead to more communication rounds.

The optimization described in this subsection (of reducing the number of communication rounds)
is only possible on a straight-line computation without any branching. We therefore perform this
optimization separately on each part of the computation of maximal size. These components are
called basic blocks in the compiler literature.

2.3 Higher-Level Algorithms

In terms of arithmetic operations, the virtual machine provides algebraic computations on secret
values provided by the MPC protocol (addition and multiplication) and general field arithmetic on
public values (such as addition, subtraction, multiplication, and division). This clearly does not
suffice for a general, easy to use programming interface. Therefore, in addition to the Beaver’s

& =

ANER)

Figure 3: Representing a program as a directed acyclic graph.

technique for secret-value multiplication described above, the compiler comes with a library that
provides non-algebraic operations on secret values such as comparison (equals, less-than, etc.), and
arithmetic for both floating- and fixed-point numbers. This library is based on a body of literature
[11, 10, 2] that uses techniques such as statistical masking to implement such operations without
having to rely solely on field-arithmetic circuits.?

The following bit decomposition of a secret-sharing of 0 < x < 2™ for some m illustrates the
nature of these protocols. Assume that [z] is a secret-sharing of a z in a field F such that 2™+ < |F|,
with %k being the statistical security parameter. Let r be a random value such that 0 < r < 27tk
consisting of bits r; for i = 0,...,m+k —1, and let [ro], ..., [Fm+k—1], [r] be their secret sharings, all
over the field F. (It is possible to generate these shares by sampling [ro], ..., [Fm+k—1] in the offline
phase, as discussed in [13], and then computing [r] = >_[r;] - 2! locally.) Similarly, we can compute
[2] = [z + 7] from [r] and [z] locally. Observe that z statistically hides x because the statistical
distance between the distributions of z and of r is negligible in k. Therefore, we can reveal z and
decompose it into bits zg, ..., zmik—1. Finally, the shares of the bits of z, ([zo],...,[Zm—1]), can
be computed from (zo, ..., Zm+x—1) and ([ro], ..., [rm+k—1]) via a secure computation of a Boolean
circuit.

The compiler also provides the same arithmetic interface when using the SPDZ protocol with
a finite field of characteristic two, allowing the execution of the same computation on different
underlying protocols. We used this as a stepping stone for the extension using garbled circuits

2 Arithmetic circuits are essentially polynomials, and a naive implementation of an operation like the comparison
of numbers in a large field is very expensive.

below because of the similarity between them.

Implementing these algorithms at this level rather than within the virtual machine below has
the advantage that all optimizations in the compiler are automatically applied to any MPC VM.
We stress that these algorithms are part of the SPDZ compiler layer.

3 Making SPDZ a General Compiler

In order to generalize the SPDZ compiler to work for other protocols, modifications needed to
be made at multiple levels. Our aim when designing these changes was to make them as general
as possible, so that other protocols can also utilize them. We incorporated three very different
protocols in order to demonstrate the generality of the result:

1. Honest-magjority MPC over fields: We incorporated the recent protocol of [24] that computes
arithmetic circuits over any finite field, assuming an honest majority. This protocol has a direct
multiplication operation, and does not work via triples like the SPDZ protocol. (The protocol
does use triples in order to prevent cheating, but not in a separate offline manner.) The specific
protocol incorporated works over Z, with Mersenne primes p = 261 _ 1 or p =217 1.

2. Honest-majority MPC over rings: We incorporated the three-party protocol of [4, 3] that com-
putes arithmetic circuits over any ring including the ring 7Z,, of integers for any n > 1. The fact
that this protocol operates over a ring and not a field means that it is not possible to divide
values; this requires changing the way many operations are treated, as will be described below.

3. Honest minority MPC' for Boolean circuits: We incorporated a protocol for computing any
Boolean circuit using the BMR paradigm [6]. Our starting point for this purpose was the
software of [23] that was developed for a different purpose; we therefore made the modifications
needed for our purpose.

We discuss these different protocols in more detail below. In this section, we describe the changes
that we made to the SPDZ compiler in order to enable other protocols to be incorporated in it,
with specific examples from the above.

3.1 DModifications to the SPDZ Compiler

Infrastructure modifications at the compiler level. The main difficulty in adapting the
SPDZ compiler to other protocols lies in the fact that many protocols do not use the Beaver
technique, and so do not reduce secret value multiplications to the opening of masked values only.
Such protocols include secret-value multiplications as an atomic operation of the protocol, and thus
working via startopen and stopopen only would significantly reduce the protocol’s performance.?
We therefore generalized the communication pattern of the compiler to allow general communication
and arbitrary pairs of start/stop instructions for communication, rather than specifically supporting
only start/stop of share openings. Our specific protocols have atomic multiplication operations
that involve communication, and so we specifically added e_startmult and e_stopmult (which
are start and stop of multiplication operations, where the e-prefix denotes an extension), but our
generalization allows adding any other type of communication as well.

3We stress that the only communication in the SPDZ protocol is in the opening of shared values, and all other
operations — including multiplication — are reduced to local computation and opening.

Since the multiplication within the protocols that we added involves communication, it is desir-
able to merge as many multiplications as possible with the reveal (or open) operations in the SPDZ
compiler. The fork of the SPDZ compiler used by Keller and Yanay for their BMR implementation
[22, 23] provides functionality to merge several kinds of instructions separately (AND and XOR in
their case). We used this for multiplication and open instructions, resulting in circuit descriptions
that minimize the number of multiplication and open rounds separately. This is not optimal be-
cause it does not provide full parallelization of the communication incurred by multiplication and
open operations that could be carried out in parallel. However, we argue that this is sufficient
because in protocols that support atomic multiplication, opening is typically only necessary at the
end of a computation that involves many rounds of multiplications.

Algorithm modifications at the compiler level. The modular construction of the compiler
and the algorithm library allows us to re-use many higher-level protocols mentioned in the pre-
vious section. These algorithms are represented in the compiler as expansions of an operation.
For example, multiplication of shared values in the SPDZ protocol is a procedure that utilizes a
multiplication triple, and carries out a series of additions, subtractions and openings in order to
obtain the shared product. This algorithm is replaced by a single startmult and stopmult using
our new instructions for low-level MPC protocols that have an atomic multiplication operation.
See Figure 4 for code comparison.

def expand(self): def expand(self):
s = [program.curr_block.new_reg(’'s") for i in range(9)] e_startmult(self.args[1],self.args[2])
¢ = [program.curr_block.new_reg('c") for i in range(3)] e_stopmult(self.args[@])

triple(s[a], s[1], s[2])

subs(s[3], self.args[1], s[@]) mulm: multiply mixed values (multiply
subs(s[4], self.args[2], s[1]) share by a scalar)
startopen(s[3], s[4]) mulc: multiply clear values

stopopen(c[@], c[1])
mulm(s[5], s[1], c[e])

subs: subtract shared values
adds: add shared values

mulm(s[6], s[@], c[1])

mulc(e[2], c[e], c[1]) addm: add mixed values
adds(s[7], s[2], s[5]) muls: multiply shared values
adds(s[8], s[7], s[e])

addm(self.args[@], s[8], c[2])

Figure 4: Multiplication in the original SPDZ compiler vs using new instruction extension.

For the case of our honest-majority field-based protocol, this is the only change that we needed
to make to the compiler. This is because all of the original SPDZ compiler algorithms (e.g., for
floating and fixed-point operations, integer division, bit decomposition, etc.) work for any field-
based MPC, and thus also here. However, when field division is not available, as in the example of
the ring-based protocol, different high-level algorithms needed to be provided. A very important
example of this relates to bit decomposition and recomposition for ring-based protocols, which is an
operation needed for many higher-level arithmetic operations including non-algebraic operations like
comparison. We present a new highly-efficient method for bit decomposition and recomposition over
Zon in Section 4, and this was incorporated on the algorithm level. In addition, new algorithms were
added for fixed-point multiplication and division, integer division, comparison, equals, and more.

We stress that once the infrastructure modifications were made, all of these changes are algorithmic
only, meaning that they rewrite the expand operation that converts a high-level algorithm into a
series of low-level supported operations (like multiplication in Figure 4).

Modifications to bytecode. The bytecode that is generated by the compiler includes the low-
level instructions and opcodes supported by the MPC protocol itself. As such, some changes were
needed to add new instructions and opcodes supported by the other MPC protocols. Thus, a direct
multiplication opcode needed to be added (for both the field and ring protocols), as well as some
additional commands for the bit decomposition and recomposition needed for the ring protocol
(e.g., the local decomposition steps described in Sections 4.3 and 4.4). Finally, a new verify
command was added since the honest-majority field and ring protocols do not use SPDZ MACs
and verify correctness in a different way. The bytecode also includes a lot of instructions needed
for jumping, branching, merging threads and so on. Fortunately, all of this can be reused as is,
without any changes.

Modifications to the virtual machine. On the level of the virtual machine, we have modified
the SPDZ compiler software to call the relevant function of an external library for every instruction
that involves secret-shared values. This comes down to roughly twenty instructions. We have done
this in a way that facilitates plugging in other backend libraries, which allows us to easily run the
same program using different protocols. This is in line with our goal of enabling the same high-
level interface to be used to program for completely different MPC schemes. For the field case,
the changes here were relatively small. The multiplication was changed, but so was scalar addition
since in the SPDZ protocol each party carries out the same operation locally, whereas different
parties act differently for scalar addition in the replicated secret-sharing protocol version of [24].
In addition, triple generation is not carried out offline but done on demand, and the MAC was
disabled at the VM level (i.e., an extension was added to optionally disable the MAC so that the
VM is compatible both with protocols that use and do not use MACs). Finally, the original SPDZ
protocol relies on Montgomery multiplication [26]. While this is efficient for general moduli, in
some cases like when using Mersenne primes, more efficient modular multiplication can be achieved
directly. The field protocol implementation of [24] utilizes Mersenne primes, and this was therefore
also integrated into the VM interface.

For the ring protocol, there were more changes required since the division of clear elements
is not supported in a ring, and since more instructions are needed at the basic protocol level
(for decomposition and recomposition, as described above). In addition, the input procedure was
changed since the secret sharing is different. We stress that these are not just at the protocol level
since the VM uses special registers for local operations (to improve performance) and so these need
to be modified.

We remark that the compiler, bytecode, and VM needed to be very significantly modified for the
Boolean circuit (BMR) protocol, and thus a separate branch was created. This is understandable
since the protocol is of a completely different nature. Nevertheless, the key property that it all
runs under the same MPC program high-level language is achieved, and thus to the “MPC user”
writing MPC programs, this is not noticeable.

10

Explanation of Figure 5. In Figure 5 we present a diagram illustrating the different extensions
to the SPDZ compiler, for all three protocols incorporated. On the left, the original SPDZ architec-
ture is presented. Then, the field-based protocol of [24] is presented, with relatively minor changes
(mainly adding the multiplication extension); of course, the MPC protocol at the lower level is
replaced as well. Next, the ring-based protocol is presented, and it includes more modifications,
including support for different types of shares and numbers, as well as more modifications to the
compiler and below. There are also some additions to the language itself, since adding explicit
instructions like inject (which maps a bit into a ring element) improves the quality of the com-
piler. Finally, the architecture for the BMR protocol is added; as stated above, this requires major
changes throughout, except for the programmer interface and language which remain the same.

e
SDPZ Field-Based MPC with Mult Ring-based MPC SPDZ-BMR
Language Compiler Language Compiler Language Compiler Language Compiler
spec spec Tnstruction re-route spec
extend and rewrite

bytecode bytecode L_Custom instructions

>10 extended inst.

bytecode

fl

i MPC w/mult Custom Share\Type.
SPDZ offline A Protocol M T ustom p BMR M
-Machme oy offline
SPDZ online L2 M | | Processor
E processor i re.
MPC
Al i) i o0 0 P
Offline

Offline
data

input

t

3 T 0
|Pmmcm

ing
data

Figure 5: The extensions applied to the SPDZ compiler of [13].

3.2 Incorporating BMR Circuits

In this section, we provide additional details about the incorporation of the BMR Boolean circuit
protocol into SPDZ. Since the original SPDZ protocol is based on secret sharing and arithmetic
circuits, the changes required to incorporate a garbled-circuit based protocol were the most signif-
icant.

In order to evaluate our programs in a garbled circuit setting, we have made use of the recently
published software implementing oblivious RAM [22, 23] in the SPDZ-BMR protocol [25]. The
latter denotes the combination of BMR, which is a method of generating a garbled circuit using any
MPC scheme, with the SPDZ protocol [14] as the concrete scheme. While there are recent protocols
achieving similar goals [31, 17], we would argue that the BMR software is the most powerful one
publicly available to date, and that it still gives a reasonable indication of the performance of
garbled circuits with active security.

The software follows the same paradigm as SPDZ in that it implements a virtual machine that
executes bytecode consisting of instructions for arithmetic, branching, input/output, etc. The main

11

difference is that arithmetic here means XOR and AND. Furthermore, while the smallest units at the
virtual machine level are secret-shared and public values in a field for SPDZ, here they are vectors
of secret-shared bit and public values. This leads to more concise circuit descriptions. Furthermore,
the compiler merges several types of instructions to further vectorize instructions, which may reduce
the number of communications rounds (e.g., for inputs), enable the use of several processor cores,
and facilitate pipelining of AES-NT instructions when evaluating as many AND gates in parallel as
possible.

The primary goal of the software of [22, 23] is the evaluation of ORAM. Hence we needed to
extend it in various aspects, most notably the following:

Private inputs: This feature was omitted from [22, 23] who wished only to evaluate the perfor-
mance of computation. In our context however, private inputs play a major role. This change
mostly affected the virtual machine of the BMR implementation.

Arithmetic: While the software of [22, 23] contains provisions for integer arithmetic in fields of
characteristic two (and thus for binary circuits) and for fixed-point calculations in arithmetic
circuits, we had to combine and supplement this for our purposes. In particular, it turned out
that the translation of fixed-point division from arithmetic to binary circuits is non-trivial because
keeping exact track of bit lengths is vital in the latter. Since the virtual machine only deals with
binary circuits by design, this change was exclusively on the compiler side.

The software is incomplete in the sense that it only implements the evaluation phase securely,
while the use of the SPDZ protocol in the garbling part is simulated using a separate program.
Nevertheless, the evaluation timings are accurate because the garbled circuit is read from solid-
state disks. Furthermore, the uniform nature of the circuit generation as well as the offline phase
of SPDZ (called function-dependent phase in this context) allowed us to micro-benchmark the two
phases. For the latter, this has been done in various previous works [20, 13].

4 Protocols for Rings with Replicated Secret Sharing

As we have discussed above, the SPDZ compiler provides high-level algorithms for operations from
numerical comparisons to fixed and floating point computations. These algorithms require the ca-
pability to decompose a basic element into its bit representation and back. Since the SPDZ protocol
works over fields, it already contains these methods for field elements. However, it does not sup-
port bit decomposition and recomposition for ring elements. Since this is crucial for running SPDZ
programs over ring-based MPC, in this section we describe a new method for bit decomposition
and recomposition for the ring-based protocol of [4, 3]. We stress that our method works for any
3-party protocol based on replicated secret sharing as is the case for [4, 3], but it does not work for
any ring-based protocol in general. We follow this strategy in order to achieve highly efficient bit
decomposition and recomposition; since these operations are crucial and ubiquitous in advanced
computations, making the operation as efficient as possible is extremely important.

Before beginning, we explain why bit decomposition and recomposition can be made much more
efficient in the ring Zon. Consider the case of additive shares where the parties hold values s; such
that Y ;" | s; = s, where s is the secret. If the addition is in a field like Zj,, then the values of all
bits depend on all other bits. In particular, the value of the least significant bit depends also on
the most significant bits; consider computing 16 + 8 mod 17. The three least significant bits of 16

12

and 8 are zero, but the result is 7, which is 111 in binary. This is not the case in GF[2"] and bit
decomposition is actually trivial in this field. However, since we typically use arithmetic circuits to
embed numerical computations, we need integer addition and multiplication to be preserved in the
field or ring. For this reason, the ring Zon has many advantages. First, it allows for very efficient
local operations. Second, the sum of additive shares has the property that each bit of the result
depends only on the corresponding bit in each share, and the carry from the previous share. We will
use this in an inherent way in order to obtain more efficient bit decomposition and recomposition
protocols.

4.1 The Challenge and Our Approach

Efficient bit decomposition and ring composition are essential primitives for efficient MPC, since
many real-world programs require both arithmetic computations, as well as comparison and other
operations that require bit representation. However, such conversions are difficult to carry out,
especially in the presence of malicious adversaries. This is due to the fact that malicious parties can
change the values that they hold, and a secure protocol has to prevent such behavior. We overcome
this by constructing protocols that are comprised of only standard ring-MPC operations (over shares
of ring elements), standard bit-MPC operations (over shares of bits), and local transformations from
valid ring-shares to wvalid bit-shares (and vice versa) that are carried out independently by each
party. Since this is the case, the security is easily reduced to the security of the ring and bit
protocols which have been proven.

Our bit-decomposition and ring-composition conversion protocols are constructed specifically
for replicated secret sharing and between the ring Zon (for any n) and Zg. Although this is a
very specific scenario, it enables very high throughput secure computation of any functionality (in
the setting of three parties, with at most one corrupted). In particular, the recent protocols of [4]
and [3] can be used. These protocols achieve high throughput by requiring very low communication:
in the protocol of [4] for semi-honest adversaries, each party sends a single bit (resp., ring element)
per AND gate (resp., multiplication gate) when computing an arbitrary Boolean circuit (resp.,
arithmetic circuit over Zon). Furthermore, the protocol of [3] achieves security in the presence of
malicious adversaries in this setting at the cost of just 7 times that of [4] (i.e., 7 bits/ring elements
per AND /multiplication gate).

Our method utilizes local computations and native multiplications and additions in Boolean
and ring protocols. As such, if the underlying Boolean and ring protocols are secure for malicious
adversaries, then the result is bit decomposition and recomposition that is secure for malicious
adversaries. Likewise, if the underlying protocols are secure for semi-honest adversaries then so is
the result.

4.2 Replicated Secret Sharing

Let Py, P>, P3 be the participating parties. We consider the ring Zon of n-bit integer operations
(modulo 2™). A highly efficient 3-party protocol for working over Zon with security in the presence of
semi-honest adversaries was presented in [4]. The protocol of [4] for the Boolean case was extended
to deal with malicious adversaries in [16, 3]. However, the exact same methods work to achieve
security for malicious adversaries for the case of Zsn as well. These protocols use replicated secret
sharing, defined as follows.

13

Let € Zon be an element. In order to generate a three-party sharing of x, first choose random
x1,x9 € Zon and define x5 = © —x1 — 22 mod 2" (all operations are modulo 2" and we will therefore
omit this from hereon). Observe that x = x; + z2 + x3 and thus these are additive shares. The
replicated secret sharing is such that each P; receives the pair (x;,z;—1). (We will write i — 1 and
i+1in a free manner, and the intention is that the value wraps around between 1, 2,3.) We denote
a replicated secret sharing of x € Zon by [x],. In [4, Section 2.3], it is shown that addition gates
can be computed locally, and multiplication gates can be computed semi-honestly with each party
sending just a single ring element to one other party. Using the methods of [16, 3], multiplication
gates can be computed with malicious security with each party sending just 7 ring elements to one
other party.

4.3 Bit Decomposition

Ring operations are extremely efficient for computing sums and products. However, in many cases,
it is necessary to also carry out other operations, like comparison, floating point, and so on. In
such cases, it is necessary to first convert the shares in the ring to shares of bits. For example,
we can efficiently compute comparison (e.g., less-than) using a Boolean circuit, but we first need
to hold the value in Boolean representation. This operation is called bit decomposition. Recall
that a sharing of © € Zgn is denoted by [z], (and thus a sharing of a bit a is denoted by [a]1).
Writing = 2™ - - - 2! (as its bitwise representation with 2! being the least significant bit), the bit
decomposition operation is a protocol for converting a sharing [z],, of a single ring element x € Zon
into n shares [x!]1,...,[2"]; of its bit representation. We stress that it is not possible for each
party to just locally decompose its shares into bits, because the addition of single bits results in a
carry. To be concrete, assume that © = 11019 = 1319 € Zga (where subscript of 2 denotes binary,
and a subscript of 10 denotes decimal representation). Then, an additive sharing of = could be
x1 = 10119 = 1149, z2 = 10015 = 919 and z3 = 10015 = 919. If we look separately at each bit of
x1,x2,x3, then we would obtain a sharing of 1011y = 1179 # = (this is computed by taking the
XOR z1, 22, 3).

Step 1 — local decomposition: In this step, the parties locally compute shares of the individual
bits of their shares. Let the sharing [z], be with values (z1,z3), (z2,21) and (z3,x2). The parties
begin by generating shares of their shares x1,x2,x3. This is a local operation defined by the
following table:

Py P, Py
Original shares of @: | (z1,23) | (z2,21) | (3,22)
New sharing of @1: (x1,0) | (0,21) (0,0)
New sharing of x3: (0,0) (x2,0) | (0,22)
New sharing of x3: (0, z3) (0,0) (x3,0)

Observe that each party can locally compute its sharing of the shares, without any interac-
tion. In addition, each sharing is correct. The above local decomposition is actually carried out
separately for each bit of the shares. Denote by z’ the jth bit of z; where 1 represents the

i
least-significant bit; i.e., z; = («, 27 ',...,2}) € (Z2)". Then, the jth bit of share x1 is lo-

cally converted into the sharing (:c{, 0), (0, x{), (0,0), the jth bit of share x5 is locally converted

into the sharing (0,0), (x3,0),(0,23), and the jth bit of share z3 is locally converted into the

14

sharing (O,xg), (0,0), (x% 0). Observe that these are already shares of bits, and are thus actually
[x{]l, [m%h, [ac]3]1 At this point, the parties all hold shares of the bit representation of the shares.
This is not a bitwise sharing of x, but just of z1,x2,x3. In order to convert these to a bitwise
sharing of =, we need to add the shares. However, this addition must take into account the carry,
and thus local share addition will not suffice.

Step 2 — add with carry: Our aim is to compute the bit representation of x = x1+x9+x3 using
the bitwise shares . Since this addition is modulo 2", we need to compute the carry. In the least
significant bit, the required bit is just [#1]; = [1]; + [£3]1 + [#3]1 mod 2 (i.e., using local addition of
shares). However, we also need to compute the carry, which involves checking if there are at least
two ones. This can be computed via the function majority(a,b,c) = a-b® b-c @ ¢ - a which requires
3 multiplications. Since this needs to be computed many times during the bit decomposition, it is
important to reduce the number of multiplications. Fortunately, it is possible to compute majority
with just a single multiplication by

majority(a,b,c) = (a®cd1)- (bDc) DD.
In order to see that this is correct, observe that

(adcdl) - bdc)Pb=a-(bBc)Bc-(bPc)d(bPc)Db
= a-bDa-c®b-cP®c-cODbPcDb=a-bDa-chb-c.

Having computed the carry, it is now possible to compute the next bit, which is the sum of
[23]1, [#3]1, [#3]1 and the carry from the previous bit. However, observe that since there are now
four bits to be added, the carry can actually be two bits. This in turn means that five bits actually
need to be added in order to compute the actual bit and to compute its two carries. Denote by
c¢; and d; the carries computed from the jth bit. Then, we claim that the bit and its carries can

be computed as follows. Compute [o;]; = [#]]1 @ [z}]1 ® [#3]1, [8j]1 = majority (az{,xé,z]> and

[vj]1 = majority (¢, ¢j—1,d;j—2). Then, compute

(271 = [ojh @ [ej—1)1 & [dj2]1,
[l = B @[y, and [dj]i = [Bj]1- [y

(Note that we initialize co = dg = d_; = 0 for computing x',22.) In order to see why this
computation is correct, observe the following:

1. Tt is clear that 27 is correct as it is the sum (modulo 2) of the three bits in the jth place, plus
the two relevant carry bits from previous places (specifically, ¢;—1 and d;_2).

2. The two carry bits are defined to be (dj, ¢;) = (85 - 75,8 © ;). These may equal 00, 01 or 10
in binary (there cannot be a carry of 11 since the maximum sum of 5 bits is 5 which is 101 in
binary, resulting in the carry 11).

This is best understood by looking at the table below. We write the result in the last three columns
in the order of dj, cj,a:j since this is actually the three-bit binary representation of the sum of 5
bits. Since the computation is symmetric between the values of x{,x;,mg and between c;_1,d;_2
(meaning that it only matters how many ones there are, but nothing else), it suffices to look only
at the number of ones for the x values and the number of ones for c, d.

15

x| @) | wy ¢ | djia | oy | B || di|c|a
0 /00| 0] 0 JOo]o]oOJo|O0]oO
T 0[0] 0 0 |[1]0]0f0[0]1
1| 1](0] 0 0 |[0[T]0]0][1]o0
1 1|1 0] 0 | t]1lo]o0[1]1
0]0]0] 1 | 0 JOJ]O]oJo]o]1
1,0]0] 1T | 0 | 1]o[T|o0[1]o0
1/1]0] 1] 0 Jo]1lolo[1]1
1|11 1] 0 | t]1|1]1]0]o0
0lo]o| 1 | T JoJo]t1]Jo|[t]oO
1100 1 | 1 | t]ol1]o0|1]1
Tl 1]0] 1 | 1 o1 |1]z1]0]o0
11| 1| 1 | 1 |11 |1]1]0]1

Observe that the last three columns equal the binary count of the number of ones in the
first 5 columns (from 0 to 5), as required. Since the cost of computing majority is just a single
multiplication, this means that the overall cost of the bit decomposition is three multiplications per
bit (two majority computations and one multiplication for computing d;).

We now show how to improve this to two multiplications per bit instead of three. The idea
here is to not explicitly compute the two carry bits ¢;, d;, and instead to leave them implicit in the
o, Bj,v; values. Specifically, we will show that 8; + a; (with the sum over the integers) actually
equals the sum of the carry.5 ‘ ‘ A

The actual computation is as follows. As above, compute [a;]1 = [2]]1 B [23]1 @ [4]1 and [;]1 =

majority (xl,xé,xé) However, differently to above, compute [y;]1 = majority (o, Bj—1,7j-1). Fi-

nally, compute [27]; = [a]1 @ [Bj—1]1 @ [vj-1]1-

Proof of correctness. We prove that this is correct by induction. The inductive claim is that
for every 7, the bit 27 is the correct jth bit of the sum, and the value BJ +v; € {0,1,2} with the
sum computed over the integers, is the carry from the sum :1:1 +)+ x3 + BJ 1 —|— vj—1. For j =1,
this is trivially the case, since By = 79 = 0 and so the bit 2! = a1 =z} @ 2l @ x3, and the carry is
just majority(x1, 23, 1). Assume now that this holds for j — 1, and we prove for j. We prove the
correctness of this inductive step via a truth table (as above, the computation is symmetric and so

it only matter how many ones there are amongst z7, xé, x3, and the value of 8;_1 + v;_1).

16

vl | @5 | @3 || Bi—1 | Vi1 || ey | B | v | @ | Carry B +;
000 0 | 0 J0JO0]o0]o0 0
1 0 0] 0] 0 || 1]0]o0]1 0
1 1|0 0 | 0 Jo]1]o0]o0 1
111 0o [o0 |[1 |1]o0]1 1
00 0 1] 0 JoJo]o]1 0
10 0] 1 | 0 |1]o]1]o0 1
1|10 T | 0 o1 o0]1 1
1|11 t [0 |[1]1][1]0 2
000 1 L Jo]o|1]o 1
1100 1 T (1011 1
110 1 T [0 [1]1]0 2
11 1] 1 T 1111 2

In order to see that this is correct, observe that le + mJQ + :):% + Bj—1 + 7j—1 should equal
2 +2- (B + 7;), with all addition over the integers (note that the carry is multiplied by 2 since
it is moved to the next bit). By observation, one can verify that this indeed holds for each row.
We therefore conclude that the above method correctly computes the sum [z1]q, ..., [#"]; requiring
only two multiplications per bit.

4.4 Bit Recomposition

In this section, we show how to compute [z], from [2!]1,..., [2"],, where x = 2" --- 2! (or stated
differently, where x = E?:l 271 . 7). At first sight, it may seem that it is possible for each party
to simply locally compute [z], = > 7, 2J=1 . [27]1, requiring only local scalar multiplications and
additions. However, this does not work since the shares [2/]; are of bits and not of ring elements,
and due to carries one cannot relate to each bit separately and naively embed the bits into ring
elements.

We use a similar method to that of bit decomposition, but in reverse order. As in decomposition,
there are two steps: local decomposition of the bit shares into three different shares, and then adding
with carry. The difference here is that we need to cancel out the carry, rather than compute it as
in decomposition. In order to see why, assume that we wish to compose two bit sharings into a
single sharing in Zg2. Let x = 2 be the value to be composed, and so the parties hold shares of 0
(for the least significant bit) and of 1. Assume now that the sharing of 0 is defined by z} = 1,
rd =1, and 23 = 0 (and so z1 & 2} ® 2} = 0). Then, the sum in the ring of these three shares is
actually 2. Thus, this value of 2 in the first bit needs to be cancelled out in the second bit. This
is achieved by subtracting 1 (or XORing 1) from the second bit. To make this more clear, denote
by bit(27) the jth shared bit (as a bit), and by carry(a:?) the integer carry of the integer-sum of the
bit-shares of 2. For example, if 2] = 1, 23 = 1 and 2} = 0 then bit(2?) = 0 and carry(z7) = 1 (the
carry equals 1 and not 2, since we consider it as a carry and so it is moved to the left by one bit;
stated differently, o] + 23 + 23 = bit(z7) + 2 - carry(27) where addition here is over the integers).
Our protocol for bit recomposition works by having the parties in the jth step compute shares in
the ring of the value 2/ = bit(2’) 4+ 2 - carry(z?) — carry(#7~1). Finally, they all locally compute
[2]n = >0 2J=1 . [27],,. This is correct since

17

n n

Z 207 2], = Z 2771 (bit(z?) + 2 - carry(z?) — carry(z?/ 1))
j=1 j=1

= Zijl - bit(2?) + 22]'*1 -2 - carry(2?) — Z 2971 carry(2771)

j=1 j=1 j=1

= 22] L bit(z?) —1—22] carry(z?) 223 carry ()

= [x]n +2" - carry(a") — carry(z%) = [x]n

where the third equality is by simply changing the range of the index j in the third term (from
1,...,nt00,...,n — 1), and the last equality is due to the fact that in the ring Zgon the carry to
the (n + 1)th place is just ignored (and that carry(aco) =0).

We now describe the algorithm. Let [z Y4,...,[#"]1 be the input bitwise shares; the output
should be [z], = > i 127

Step 1 — local decomposition: In this step, the parties locally compute shares of the individual
bits of their shares, for each j. Specifically, as above, let the sharing [27]; be with values (27, 23),
(23, 27) and (xg,xQ) The parties generate shares of their shares as follows, via local computation
only:

Py P, Ps
Original shares of 7: | (z7,23) | (23,27) | (2}, 7)
New sharing of x: (7,0) | (0,279) (0,0)
New sharing of 3: (0,0) (2,0) (0’@%)
New sharing of z3: (0,27) (0,0) (z4,0)

At this point, the parties hold [27]1, [4]1, [xg] for j =1,.

Step 2 — add while removing carry: For j =1,...,n, the parties compute the shares [a;]; =
[1]1 8 [z3]1 D [23]1,
[B;]1 = majority (:r]l,:r%,:n?,)) and [v,;]1 = majority (aj, Bj_1,7j-1), where 8y = 7 = 0. (Recall
that each majority computation requires one bit-wise multiplication.) Then, the jth bit of the
result is mapped to a share [27],, of a ring element by computing

[v/)1 = [yl @ [Bj-1 @ [yj-1h (1)

and projecting the result into the ring. That is, if a party holds a pair of bits (0, 1) for its share of
[v7]1, then it defines [27],, to simply be (0,1) in the ring Zon» (i.e., the integers 0 and 1). Finally,
the parties use local computation to obtain [z], = >°7_, 201 [27],,.

We stress that one should not confuse [v/]; and [27],; they are both shares of the same value
in some sense, but actually define very different values. To clarify this, observe that if v] = v} =1
and vé = 0, then (v]17v]2,v]3) constitute a bit sharing of [v/]; = 0. However, after projecting this
into the rlng, we have that it defines a ring-sharing of [27],, = 2 (because ’Ul + 112 + v} = 0 mod 2
but v{ 4+ v + v} = 2 mod 2").

18

Correctness: Correctness of the recomposition procedure is proven in a similar way to the de-
composition.

4.5 Reducing the Round Complexity

It is possible to use known methods for adding in logn rounds, in order to reduce the round
complexity of the bit decomposition. However, these come at a cost of much higher AND complexity.
Instead, we utilize specific properties of our bit decomposition method in order to reduce the
number of rounds, while only mildly raising the number of ANDs. Our method is basically a
variation of a carry-select adder [1], modified to be suited for bit decomposition. Observe that
since the computation is essentially the same for bit decomposition and recomposition (regarding
the computation of o, 8j,7;), the same method here works for recomposition as well.

Recall that bit decomposition works by computing [aj]1 = [& [zl & [:1:%]1,
[Bj]1 = majority (m{,xé,xé), and [vyj]1 = majority (o, 8j—1,7j—1). The final shares are obtained
by XORing these values and so does not add any additional rounds of communication. Observe
that the a;; and §; shares can all be computed in parallel in a single round. However, the «y; values
must be computed sequentially, since v; depends on «;_1. In order to explain the basic idea behind
our tradeoff between computation and rounds, we show concretely how to reduce the number of
rounds to approximately one half and one quarter, and then explain the general tradeoff:

Reducing to n/2 4 2 rounds. As described above, all of the o, §; values can be computed in
the first round, at the cost of exactly n AND gates. Next, the parties compute the following:

L. 71, ;Y2 at the cost of n/2 rounds and n/2 AND gates,

2. Vn/2+41s---»Y¥n under the assumption that v,,, = 0, at the cost of n/2 rounds and n/2 AND
gates, and

3. Ynj241s- -+, under the assumption that v, = 1, at the cost of n/2 rounds and n/2 AND
gates.

Observe that all three computations above can be carried out in parallel, and thus this requires
n/2 rounds overall. Next, the parties use a MUX to compute which v, /5,1, ..., values to take;
this is possible since 7,/ is already known at this point. This MUX uses a single AND gate per
bit, coming to a total of n/2 AND gates, and a single round. The overall cost is 3n AND gates and
n/2 + 2 rounds. Concretely for 32 bit values, this results in 96 AND gates and 17 rounds (instead
of 64 AND gates and 32 rounds).

Reducing to n/4 + 4 rounds. This time we divide the 7; values to be computed into 4 parts,
as follows. In the first round, all o, 3; values are computed. Then:

L. 71, ,Vn/4 are computed at the cost of n/4 rounds and n/4 AND gates,

2. In parallel to the above, yin 4, ..
4

the assumption that vin = 0 and that yin = 1, at the cost of n/4 rounds and n/4 AND gates
4 4

.Y+ for i =1, 2,3 are computed all in parallel, each under
4

each (overall 6 such computations).

19

When all of the above are completed, the parties compute sequentially the MUX over yin_ ;.. ., V@+1)n
4 a4

given yin for i = 1,2,3 (each at a cost of n/4 AND gates and 1 round). The overall cost is 3.5n
4

AND gates and n/4 + 4 rounds. Concretely for 32 bit values, this results in 112 AND gates and 12
rounds (instead of 64 AND gates and 32 rounds).

The general case. The above method can be used to divide the «; values into £ blocks. In this
case, the number of rounds is % to compute the v values, and ¢ — 1 to compute the sequential
MUXes. Using a similar computation to above, we have that the overall number of rounds is % + 2,
and the number of AND gates is n+ @ With this method, the number of rounds is minimized
when % = ¢, which holds when ¢ = /n and results in 2\/n rounds. In this case, the number
of AND gates to be computed equals 4n — 2y/n. Importantly, this method provides a tradeoff
between the number of rounds and the number of AND gates, since less blocks means less MUX
computations. See Table 1 for a comparison on the number of rounds and AND gates, minimizing
the number of rounds and minimizing the number of AND gates, when using our method. (Note
that the minimum number of AND gates is always obtained by taking £ = 1; i.e., by using the
original method above.) These values are computed using the general equations above.

Minimal ANDs Minimal Rounds
| Size n || ANDs | Rounds || £ [ANDs | Rounds

16 32 16 4 56 8
32 64 32 4 112 12
64 128 64 8 240 16
128 256 128 10 487 23

Table 1: Different parameters and their cost

Somewhat surprisingly, it is possible to do even better by using a wvariable-length carry-adder
approach. The idea behind this is that it is possible to start computing the MUXes for the first
blocks while still computing the v values for the later blocks. To see why this is possible, consider
the concrete example of n = 16 and £ = 4. When dividing into equal-size blocks of length 4, the
overall number of rounds is 8 (1 round for computing «;, 5; and 7 for the rest). For this concrete
case, we could divide the input into five blocks of sizes 2,2,3,4,5, respectively. Observe that the
MUX needed using the result of the first block to choose between the two results of the second
block can be computed in parallel to the last v value on the third block. Likewise, the next MUX
can be computed in parallel to the last v value of the fourth block, and so on. In this way, there
are no wasted rounds, and the overall number of rounds is reduced from 7 to 6. Although this
is a modest improvement, for larger values of n, it is more significant. For example, we need 18
rounds for bit decomposition of 128-bit values, in contrast to 23 rounds with fixed-length blocks
(see Table 1). We wrote a script to find the optimal division into blocks for this method, for various
values of n; the results appear in Table 2.

Observe that the number of ANDs required for this method is greater than in Table 1, thus
further contributing to the aforementioned tradeoff. We stress that this tradeoff is significant since
different parameters may provide better performance on slow, medium and fast networks.

20

Size n || ANDs | Rounds Block Sizes
16 63 7 5,4,3,2,2
32 128 10 8,7,6,5,4,2
64 255 13 11,10,9,8,7,6,5,4,4
128 519 18 | 16,15,14,13,12,11,10,9,8,7,6,5,2

Table 2: Optimal block-size and costs for the variable-length approach (computation is from right-
to-left)

Bit decomposition using conditional sum adders. We conclude with a different approach
that is based on a conditional sum adder. This variant takes a divide-and-conquer approach to
computing the blocks. That is, it splits the n-bit input into two blocks of n/2 bits, uses a conditional
sum adder to compute the sum of the lower block with carry 0 and the sum of the higher block
with carries 0 and 1, and then uses MUX gates to select the correct outputs for the higher block.
At the bottom level, a pair of bits is simply added using a full adder. This tree-based approach
leads to a logarithmic number of rounds at an overall cost of O(nlogn) AND gates, since there are
a linear number of MUX gates at every level. The concrete costs for this method are presented in
Table 3. As can be seen, the number of rounds is significantly reduced, but at the cost of a notable
increase in the number of ANDs. In slow networks with fast computing devices, this approach can
be preferable.

Size n || ANDs | Rounds
16 121 6

32 280 7

64 631 8

128 1398 9

Table 3: Costs for the conditional-sum adder approach

4.6 Security

Let v be a value. We say that type(v) = Zan if v € Zon and we say that type(v) = Zy if v € {0, 1}.
We will relate to the addition, scalar multiplication and multiplication of values below. In all cases,
these operations are only possible for values of the same type.

In Frpe, we define a general MPC functionality that enables carrying out standard operations
on shared values: addition, scalar multiplication and multiplication (beyond sharing input and
getting output). However, in contrast to the usual definition, we define Fyype to carry out these
operations on both shares of bits and shares of ring elements. In addition, the functionality enables
the decomposition of a ring element in Za» to n shares of bits, and the recomposition of n shares
of bits to a ring element. This provides a much more general functionality since computations can
be carried out both using arithmetic circuits and Boolean circuits.

Observe that add and scalarmult in i, are operations that depend only on the honest parties.
This is due to the fact that they involve local operations only, and thus the adversary cannot
interfere in their computation. The standard Fy,p functionality fulfilled by secret-sharing based
protocols is the same as Functionality 4.1, with the exception that all operations of one type only

21

FUNCTIONALITY 4.1 (The Mixed MPC Functionality F,,c)

Fmpe Tuns with parties P,..., Py, and the ring Zs», as follows:

e Upon receiving (input,id,?,v) from party P; where v € Zaon or v € {0,1} and id has not been
used before, Finpe sends (input,id,) to all parties and locally stores (id,v).

e Upon receiving (add, idy, idz,ids) from all honest parties, if there exist vy, ve such that (idy,vq)
and (ids, v2) have been stored and type(v;) = type(vs), and id3 has not been used before, then
Fmpe locally stores (ids, vi + va).

e Upon receiving (scalarmult, idy, ids, ¢) from all honest parties, if there exists a v such that (id;, v)
has been stored and type(c) = type(v), and ids has not been used before, then Fyype locally
stores (idg, c- v).

e Upon receiving (mult, idy, idy, id3) from all parties, if there exist vy, ve such that (idy,v;) and
(tdg, v2) have been stored and type(vi) = type(vs), and ids has not been used before, then Fppe
locally stores (ids, vy - v2).

e Upon receiving (decompose, id, ids, . .., id,) from all parties, if there exists a v such that (id, v)
has been stored and type(v) = Zgn, and idy,...,id, have not been used before, then Fipc
locally stores (id;,v;) for i =1,...,n, where v = vy,...,vy,.

e Upon receiving (recompose, idy, ..., id,,id) from all parties, if there exist v1,...,v, such that
(id;,v;) has been stored and type(v;) = Zs for all i = 1,...,n, and id has not been used before,
then Finpe locally stores (id,v), where v = vy,...,v,.

e Upon receiving (output, id, i) from all parties, if there exists a v such that (id, v) has been stored
then Fpe sends (output, id, v) to party P;.

and there are not decompose or recompose operations. We denote the standard Fy,pc functionality

that works over the ring R by fﬁpc (and so denote FZ2 _ for bits and gffé for the ring Zon.

mpc
Security of bit decomposition and recomposition. The fact that our protocols are secure
follow immediately from the fact that they are comprised solely of the following elements:

e Local transformation operations from walid bit shares to valid ring shares and vice versa,
e Bit-MPC add and multiply operations over bit shares, and
e Ring-MPC add and multiply operations over ring shares.

Since the MPC operations use secure protocols and work on valid shares of the appropriate type,
these operations are securely carried out. Furthermore, since the local transformations require no
communication, an adversary cannot cheat. Thus, the combination of the bit and ring protocols,
along with the bit decomposition and recomposition protocols presented above, constitute a protocol
that securely computes the mixed MPC functionality Fipe.

In order for the above to work, we need the bit and ring protocols to have the property that the
original simulator (that did not consider bit-decompositon) also successfully simulate the protocol
in the presence of the bit-decomposition protocols. It is straightforward to see that the simulation
of the new protocol is exactly the same as before except for outputs that depend on a share of
some value. This happens when local bit decomposition converts a share into a secret shared value.
This simulation is not trivial since the above MPC functionality does not keep shares as its internal

22

state. Nevertheless, fortunately, this exception does not happen in our functionality since full bit-
decomposition does not reveal any value that depends on a share. By being deliberate in this point,
we are able to simulate the functionality as before.

4.7 Theoretical Efficiency

The complexity of our MPC conversions of shares between that of Zy» and that of Z% are given
in Table 4. These numbers refer to the three-party protocol of [3] that is secure in the presence
of malicious adversaries. The most optimized version of that protocol requires each party to send
just 7 bits per AND gate, meaning an overall cost of 21 bits per AND gate for all parties. In Table 4
we provide the communication cost and number of rounds for our protocol, with different tradeoffs
between computation and round complexity:

Version Total comm. bits | Rounds
Basic conversion (n = 32) 1,344 32
Variable-length adder (n = 32) 2,688 10
Conditional-sum adder (n = 32) 5,880 7
Basic conversion (n = 128) 5,376 128
Variable-length adder (n = 128) 10,899 18
Conditional-sum adder (n = 128) 29,358 9

Table 4: Complexity of decomposition and recomposition

We now compare our protocol to the previous best protocols. We stress that previous protocols
work generically for any ring, and as such are more general. However, this shows that much can be
gained by focusing on rings of specific interest, especially the ring of integers which is of interest in
many real-world computations. In Table 5, we present the cost of our protocols versus those of [12],
[27] and [30], when applied to the ring Zqs2. In all cases, we consider the concrete cost when using
the low-communication three-party protocol of [3] that requires only 7-bits of communication per
party per AND gate. The results show the striking improvement our method makes over previous
protocols, for the specific case of the ring Zson, and when using replicated secret sharing. For our
protocol, we present the costs for the 32-round version, with minimum AND complexity.

Protocol Method | Total comm. bits | Rounds
Bit-Decomposition | [12] +[3] 723,912 38
[27] +[3] 408,072 25
Ours+[3] 1,302 32
Ring-Composition | [30] +[3] 340,704 62
Ours+[3] 1,302 32

Table 5: Comparison of Complexity of 32-bit Integer Conversions for Secure 3-Party Computation
We remark that a direct conversion of the SPDZ bit decomposition method to the case of rings

would yield the complexity of [12]+[3] in Table 5. Thus, our special-purpose conversion protocols
are significant with respect to the efficiency of the result.

23

5 Experimental Evaluation

In order to evaluate our toolchain and protocol, we have implemented various computations, ranging
from a simple mean and variance computations, to a more involved computations of inference via
a non-balanced decision tree and the private processing of an SQL query. The SQL query is quite
a complex computation and is derived from the following query for a typical survey:

SELECT count(*), avg(credit limit) FROM Census
WHERE State==Utah
GROUP BY Age, Sex HAVING count(*) > 100;

This query computes the average credit limit of every age-group and sex (i.e., average credit limit
of 30 year old females, average credit limit of 30 year old males, and so on), outputting only results
for sets that have at least 100 data items in the set. This last requirement is necessary to preserve
privacy and to ensure that there are no results based on very few individuals. For all fields that
have a small range such as state, age, and sex we input the data in a bit-wise unary encoding (a
list of bits of which only one is 1), which simplifies the selection operation in secure computation.

The decision tree private inference example uses the decision tree built from real data published
for a paper on credit decisions [28]. The concrete decision tree in our computation has 1256 leaves
at depths from 4 to 30. Since multiparty computation reveals the amount of computation (i.e.,
how many gates are computed), we have to always execute 30 decisions in order to hide the path
traversed in the evaluation. This is achieved using dummy data if a leaf is reached before the last
step. Furthermore, traversal of the tree makes use of oblivious selection from the current depth of
the tree represented as an array (this selection is of the node to be used in the current level of the
decision tree), in order to not reveal anything about the path of computation in the tree.

Whenever non-integer computation is required, we use fixed-point computation as implemented
in the SPDZ compiler [7]. This is justified because the mean over a set of numbers in a limited
range will also be in this range and thus not require the larger range of floating-point numbers.
The bit decomposition and recomposition used for the SQL query is the SPDZ compiler method
for SPDZ and MHMZ,,, and is our new method from Section 4. The times given are for the basic
conversion (see Table 4) which minimizes the amount of communication at the expense of a higher
number of rounds. (We also implemented the other versions, but they were slower in our tests since
we ran the experiments on a very low-latency network.)

We ran our experiments on AWS with three parties in a single region, using m5.12xlarge
instances providing 10 Gbps network communication. The only exception is for the BMR protocol,
where we used i3.2xlarge instances due to the increased amount of storage needed to store the
garbled circuit.

Figures 6—8 show the online times for mean, variance, and our SQL query for various numbers
of inputs, and Table 6 shows the results of decision tree computation. MHM Z, refers to the
malicous honest-majority protocol over Z, of [24], while SHM Zgn /Zy refers to the semi-honest
honest-majority protocol of [4] over the ring of integers Zgon for any n > 1. Note that the different
protocols operate in different security models: SPDZ and BMR provide security in the presence
of any ¢ < n malicious corruptions, MHM Z, provides security in the presence of a malicious
minority, and SHM Zon /Z9 provides security in the presence of semi-honest adversaries with an
honest minority. This explains the expensive offline phase for SPDZ and BMR because more
expensive operations such as somewhat homomorphic encryption are used there. To time the
offline phase of SPDZ, the newer “Low Gear” protocol [20] has been used on r4.8xlarge instances

24

due to the larger memory requirement of homomorphic encryption, while the MASCOT protocol
[19] has been used for BMR. (The SPDZ offline was also computed using a large number of threads,
in contrast to a single thread for MHM/SHM.)

We stress that we present these results to demonstrate the new capability of writing a sin-
gle complex program and running it on four completely different low-level protocols, and not in
order to compare efficiency. Indeed, we are continuing our work to improve the efficiency of the
SPDZ-compiled lower-level protocols (e.g., adding vectorization, more parallelism and specific op-
timizations). Nevertheless, it is interesting to observe that the SHM Zgyn method is approximately
50 times faster than the MHM Z, method for the SQL processing (Figure 8). Although there is
a difference between semi-honest and malicious, the cost of MHM Zan is only 7-times slower than
SHM Zgn» [3]. The rest of the difference is due to the faster bit decomposition and recomposition
for the ring-based protocol versus the field-based protocol.

Resources SPDZ MHM Z, | SHM Zan BMR
Security Malicious | Malicious | Semi-honest | Malicious
level: t<n t<n/2 t<n/2 t<n
Online: 1 core 0.3005 3.0416 0.4641 0.5353
time:
rounds: 783 584 2746 28
Offline: | o ores | 5.2204 Not Not 1041.8
time: required required

Table 6: Decision tree computation (seconds).

107
—+—SPDZ (online)
105 | | —SPDZ (total)
——MHM Z, (online)
4| | MHM Z, (total)
2 10 e saM Zpn/z, |
= ——BMR (online)
& 10" [|—+—BMR (total)

1071

%
A
+

4

10737\\\\ [N [N
10! 107 10°

Figure 6: Mean computation (X-axis=num. inputs).

25

107

—+—SPDZ (online)
——SPDZ (total)
——MHM Z, (online)

——MHM Z, (total) | ——"

105 |

Z 10°1| o SHM Zgn /Zs
g ——BMR (online)
= 10 || BMR (total)
/
/
1071 | — .
‘ /
10—340\\‘ Lo (|
101 102 103

Figure 7: Variance computation (X-axis=num. inputs).

107
—+—SPDZ (online)
—+—SPDZ (total)
10° | | ——~MHM Z, (online) | ——°
——MHM Z, (total)
= SHM Zon /Zo
¢ 10°|| . BMR (online)
= ——BMR (total)
101 — —
+——————*—'—_‘*+"”””””’+
1071 L | Ll
10! 102 103

Figure 8: US Census SQL query (X-axis=num. inputs).

Batch vectorization. We have implemented batch vectorization for the Ring-based protocol at
the VM level. This works by defining the level of vectorization desired, and then the same single-
execution code written at the compiler level is run on vectors of the specified length. For example,
defining vectorization of level 64 for the decision tree inference problem means that inference is run
on 64 inputs at the same time. This works by representing each element as a vector of 64, and
running the MPC in parallel for each.

We ran these batch executions on the same problems as above; these results appear in Table 7.
Observe that the “non-batch” and “Batch x 1”7 both run a single execution, but there is a fixed
overhead in the VM for running the batched experiments. Comparing these two columns, one can
see that this overhead is quite high; we are working on reducing it. Beyond this, observe that the cost
of batching many executions together is very minor. Thus, a single decision tree inference (without
batching) takes approximately 0.5 seconds whereas 64 in parallel takes just under 6 seconds, or an

26

average of under 0.1 second. We believe that by reducing the fixed overhead, we will obtain that
parallelism is essentially for free. This is of great importance in many real-world use cases where
the same computation is carried out many times. For example, census statistics like the SQL query
in our example would be computed for every state, and so could be vectorized.

Non-batch | Batch x 1 | Batch x 8 | Batch x 32 | Batch x 64
Mean (10 inputs) 0.031 0.139 0.138 0.136 0.149
Mean (100 inputs) 0.033 0.145 0.145 0.142 0.153
Mean (1000 inputs) 0.060 0.178 0.184 0.176 0.171
Variance (10 inputs) 0.039 0.362 0.371 0.391 0.381
Variance (100 inputs) 0.053 0.428 0.688 0.677 0.687
Variance (1000 inputs) 0.175 2.501 2.318 2.348 2.461
SQL (10 inputs) 0.779 10.233 10.335 10.997 11.285
SQL (100 inputs) 1.122 10.766 11.029 11.754 13.606
SQL (1000 inputs) 6.039 17.755 15.216 31.154 36.471
Decision tree 0.464 2.949 3.276 4.399 5.945

Table 7: Running times for batch vectorization in seconds. Batch X N means running N executions in
parallel (i.e., with vectors of length N).

Open source. Our code is open source and available for free use. Our fork of SPDZ-2, including
our extensions and hooks to them and changes to the compiler to support adding instructions
and so on, can be found at https://github.com/cryptobiu/SPDZ-2. Furthermore, the extension
required for plugging in the multiparty honest-majority protocol of [24] can be found at https:
//github.com/cryptobiu/SPDZ-2-Extension-MpcHonestMajority.

6 Future Work

This paper describes the first steps towards making the SPDZ compiler a general-purpose tool that
can enable the use of MPC by software developers without MPC expertise. In order to complete
this task, more work is needed in the following areas:

e Ffficiency: The current run-time requires additional optimizations to achieve running-time that
is comparable to that of a native protocol that works directly with a circuit and is optimized
for latency or throughput. It is unreasonable to assume that a general compiler will achieve the
same level of efficiency as a tailored optimized version of a protocol. Nevertheless, the usability
gains are significant enough so that a reasonable penalty (of say, 15%) is justified. An important
goal is thus to achieve efficiency of this level, and we are currently working on this.

e Protocol generality: As we have argued, there is no single MPC protocol that is best for every
task. On the contrary, we now understand that many different protocols of different types are
needed for different settings. The best protocol depends on the efficiency goal (low latency or
high throughput), the network setting (LAN or WAN), the function being computed (arithmetic
or Boolean or mixed, and if mixed how many transitions are needed), and so on. In order to
achieve this goal, more protocols need to be incorporated into the SPDZ compiler framework.

27

https://github.com/cryptobiu/SPDZ-2
https://github.com/cryptobiu/SPDZ-2-Extension-MpcHonestMajority
https://github.com/cryptobiu/SPDZ-2-Extension-MpcHonestMajority

In addition to the above, we believe that an additional method should be added that outputs
a circuit (arithmetic, Boolean or mixed) generated from the Python code. This deviates from
the SPDZ run-time paradigm and requires running the protocol with a specific circuit, but it
enables the use of the compiler in the more traditional circuit-compiler methodology that also
has advantages. In particular, it can be used for protocols that have not been incorporated into
the SPDZ run-time, and for optimized code that works specifically with a static circuit.

o Compiler generality: The SPDZ compiler is already very general and provides support for a rich
high-level language. However, as more real use cases are discovered, it will need to be further
enriched. This work is already being done independently on the original SPDZ compiler and we
hope that these works will be merged, for the benefit of the general community.

References

[1] Carry-Select Adder, Wikipedia, March 2018. https://en.wikipedia.org/wiki/
Carry-select_adder

[2] Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele. Secure Computation
on Floating Point Numbers. In NDSS 2013, 2013.

[3] T. Araki, A. Barak, J. Furukawa, T. Lichter, Y. Lindell, A. Nof, K. Ohara, A. Watzman
and O. Weinstein. Optimized Honest-Majority MPC for Malicious Adversaries - Breaking the

1 Billion-Gate Per Second Barrier. In the 38th IEEE Symposium on Security and Privacy,
pages 843-862, 2017.

[4] T. Araki, J. Furukawa, Y. Lindell, A. Nof and K. Ohara. High-Throughput Semi-Honest
Secure Three-Party Computation with an Honest Majority. In the 23rd ACM CCS, pages
805-817, 2016.

[5] Donald Beaver. Efficient Multiparty Protocols Using Circuit Randomization. In CRYPTO’91,
Springer (LNCS 576), pages 420432, 1992.

[6] D. Beaver, S. Micali, and P. Rogaway. The Round Complexity of Secure Protocols. In the
22nd STOC, pages 503-513, 1990.

[7] Bristol Cryptography Group. SPDZ software. https://www.cs.bris.ac.uk/Research/
CryptographySecurity/SPDZ/, 2016.

[8] Niklas Buscher, Andreas Holzer, Alina Weber and Stefan Katzenbeisser. Compiling Low
Depth Circuits for Practical Secure Computation. In ESORICS 2016, pages 8098, 2016.

[9] Niklas Buscher and Stefan Katzenbeisser. Compilation for Secure Multi-party Computation.
Springer Briefs in Computer Science, Springer 2017.

[10] Octavian Catrina and Sebastiaan de Hoogh. Secure Multiparty Linear Programming Using
Fixed-Point Arithmetic. In ESORICS 2010, Springer (LNCS 6345), pages 134-150, 2010.

[11] Octavian Catrina and Amitabh Saxena. Secure Computation With Fixed-Point Numbers. In
FC 2010, Springer (LNCS 6052), pages 35-50, 2010.

28

https://en.wikipedia.org/wiki/Carry-select_adder
https://en.wikipedia.org/wiki/Carry-select_adder
https://www.cs.bris.ac.uk/Research/CryptographySecurity/SPDZ/
https://www.cs.bris.ac.uk/Research/CryptographySecurity/SPDZ/

[12]

[13]

[14]

[15]

I. Damgard, M. Fitzi, E. Kiltz, J.B. Nielsen, and T. Toft. Unconditionally Secure Constant-
Rounds Multi-party Computation for Equality, Comparison, Bits and Exponentiation. In the
3rd Theory of Cryptography Conference (TCC), Springer (LNCS 3876), pages 285-304, 2006.

I. Damgard, M. Keller, E. Larraia, V. Pastro, P. Scholl and N.P. Smart. Practical Covertly
Secure MPC for Dishonest Majority - or: Breaking the SPDZ Limits. In 18th ESORICS,
pages 1-18, 2013.

I. Damgard, V. Pastro, N.P. Smart and S. Zakarias. Multiparty Computation from Somewhat
Homomorphic Encryption. In CRYPTO 2012, pages 643-662, 2012.

M. Franz, A. Holzer, S. Katzenbeisser, C. Schallhart and H. Veith. CBMC-GC: An ANSI C
Compiler for Secure Two-Party Computations. In CC 201/, pages 244-249, 2014.

J. Furukawa, Y. Lindell, A. Nof and O. Weinstein. High-Throughput Secure Three-Party Com-
putation for Malicious Adversaries and an Honest Majority In EUROCRYPT 2017, Springer
(LNCS 10211), pages 225-255, 2017.

Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low Cost Constant Round MPC
Combining BMR and Oblivious Transfer. In ASIACRYPT 2017 Springer (LNCS 10624),
pages 598-628, 2017.

Marcel Keller. The Oblivious Machine - Or: How to Put the C Into MPC. Cryptology ePrint
Archive, Report 2015/467, 2015. http://eprint.iacr.org/2015/467.

Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arith-
metic secure computation with oblivious transfer. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 16, pages 830—
842. ACM Press, October 2016.

Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making SPDZ great again. In
EUROCRYPT 2018, Springer (LNCS 10822), pages 158-189, 2018.

Marcel Keller, Peter Scholl, and Nigel P. Smart. An Architecture for Practical Actively Secure
MPC With Dishonest Majority. In ACM CCS 2013, pages 549-560, 2013.

Marcel Keller and Avishay Yanai. Efficient Maliciously Secure Multiparty Computation for
RAM. In EUROCRYPT 2018, Springer (LNCS 10822), pages 91-124, 2018.

Marcel Keller and Avishay Yanay. ORAM in SPDZ-BMR, 2018. https://github.com/
mkskeller/SPDZ-BMR-0RAM.

Y. Lindell and A. Nof. A Framework for Constructing Fast MPC over Arithmetic Circuits
with Malicious Adversaries and an Honest-Majority. In the 24th ACM CCS, pages 259-276,
2017.

Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient Constant Round
Multi-Party Computation Combining BMR and SPDZ. In CRYPTO 2015, Springer (LNCS
9216), pages 319-338, 2015.

29

http://eprint.iacr.org/2015/467
https://github.com/mkskeller/SPDZ-BMR-ORAM
https://github.com/mkskeller/SPDZ-BMR-ORAM

[26]

[27]

28]

[29]

Peter L. Montgomery. Modular Multiplication Without Trial Division. Mathematics of Com-
putation, 44:519-521, 1985.

T. Nishide and K. Ohta. Multiparty Computation for Interval, Equality, and Comparison
Without Bit-Decomposition Protocol. In the 10th PKC, Springer (LNCS 4450), pages 343
360, 2007.

Vivek Kumar Singh, Burcin Bozkaya, Alex Pentland, Money Walks: Implicit Mobility Be-
havior and Financial Well-Being, PLoS ONE 10(8): €0136628. https://doi.org/10.1371/
journal.pone.0136628

Ebrahim M. Songhori, Siam U. Hussain, Ahmad-Reza Sadeghi, Thomas Schneider, Farinaz
Koushanfar. TinyGarble: Highly Compressed and Scalable Sequential Garbled Circuits. IEEE
Symposium on Security and Privacy 2015, pages 411-428, 2015.

T. Toft. Constant-Rounds, Almost-Linear Bit-Decomposition of Secret Shared Values. In
CT-RSA 2009, Springer (LNCS 5473), pages 357-371, 2009.

Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated Garbling and Efficient
Maliciously Secure Two-Party Computation. In ACM CCS 17, pages 21-37, 2017.

30

https://doi.org/10.1371/journal.pone.0136628
https://doi.org/10.1371/journal.pone.0136628

A From SQL to Pseudocode to SPDZ

On Thursday April 12, at 8:45am, the minutes of our morning meeting defined an MPC experiment
involving a complex SQL query. The experiment was defined according to the table and query
appearing in Figure 9. We stress that although the researchers in our lab had already gained
some experience in “SPDZ programming”, these involved programming a decision tree and genetic
computation and so were in completely different domains.

“olumn Name data type | constraint comment
Monthly housing cost integer 0 <z < 1,000,000 UsD
Overall mortgage debt integer 0 < & < 1,000,000, 000 uUsD
Mortgage percentage over property integer (< < 100 %
‘redit Limit integer 0 < z < 1,000,000 UsD
Total other debt integer 0 <z < 1,000,000, 000 UsD
Monthly housing cost in bucket bit string | 20 bits, all are 0 except one is 1 | dependency
Owerall mortgage debt in bucket bit string | 20 bits, all are 0 except one is 1 | dependency
Mortgage percentage over property in bucket | bit string | 20 bits, all are 0 except one is 1 | dependency
Credit Limit in bucket bit string | 20 bits, all are 0 except one is 1 | dependency
Total other deb in bucket bit string | 20 bits, all are 0 except one is 1 | dependency
Ape bit string | 83 bits, all are 0 except one is 1 | 18 < x < 100
Income in bucket bit string | 20 bits, all are 0 except one is 1
Sex bit string | 2 bits, all are 0 except one is 1 M/F
Family size bit string | 10 bits, all are 0 except one is 1 1-9
State bit string | 50 bits, all are 0 except one is 1 50 states

Table 1: Census

Queries such as the followings will be computed by MIPPC.

e SELECT count(*), avg(mortage debt), stddev(mortage debt) FROM Census GROUP BY Incme
bucket, State;

e SELECT count(*), avg(eredit limit) as avg, stddev(credit limit) as dev FROM Census
Where State==Utah and Overall mortage debt =100 GROUI® BY Age, Sex
Having 1.3 avg + 1.2 dev > avg(monthly housing cost) ;

Figure 9: The SQL experiment definition (8:45am).

At 11:16am on the same day, the researchers sent an email specifying the pseudocode for pro-
cessing the query; see Figure 10. The pseudocode was written based on an understanding of MPC
costs and thus how to optimize (e.g., by storing discrete values in bit vectors that are 0 in all places
except for the place representing the value — i.e., age can represented by a vector of length 120 and
a person of age 40 will have the 40th bit equal 1 and all else equal 0).

31

Algorithm 173 SQL Query

Query Notation:

Select. count(*), “"H(““klu}klh.m Lang 1) 88 [,]™, stfdtllw({||';.|"]-,,|y*_'w Lwg=1) 85 [dys]™
From Census

Where [uy] = [([fia] == [1)] - [lox]" > [100]"]

GROUP BY gk, pe) = (lok,u] @ [55,0])

HAVING Ry, = (L3 [my]™ + 1.2[d,|" > ave({[m]™ bejgy o =1,0e=1):

Where Clause Computation:
For each k-th row, MPC [wi] = [fru == [1]] - [lox]™ = [100]*] where fi . represents u-th bits in the
array fi ..

Group By Clause Computation (conceptual):
For each k-th row, MPC g 0] = 0g,.] @ [55,.]-

Aggregation
For each g, v, MPC O™ = 37, A linj(ak,.)™ @ [inj([sg,o] - [we)])]™)
For each p, v, MPC [Spp]™ = 3¢ {([ek]™ - [inj(a,.)]™) @ ([inj(s.)]™ - [inj(wi)]")}
For each ji,v, MPC [S/,,]" = Y {(fm]" - inj(apyu)|™) & (ini(si,p)]" - imj(uw)|™)}
For each p, v, MPC |D:“_,]“ =30 ler]™ - lex)™ - linjlar,u)]™) @ (ling(se,)])™ - linj(w)]™)} = [Spe]™ = [Spr]™
For each p, v, MPC [Dy,,|" = sqrt([D],]" /[Cp]™)

Having Clause Computation:
For each p, v, MPC [k, |" = 1.3 [S],]"/[Cpu|™ + 1.2+ [Dy " [|Cpur]™ = [Spe]" /C |-
For each p, v, [I,] = ([hu]™ = 0).

Query Result: For each p, v, open all [h),,]. For those that are 1, open [Cpu|™, [Su|™]/[Cpe]™, and [Dy ™.

Figure 10: The SQL experiment pseudocode (11:16am).

Finally, at 2:49pm on the same day, the researchers delivered a working program in SPDZ to
compute the SQL query; see Figure 11.

This anecdote demonstrates the power of the SPDZ compiler and system, and is why we choose
to extend this system specifically.

32

Y mpc/sqgl_3_.py

1 #Based on “"Algorithm 173 SQL Query"”

2

I e e e
4 L = (208, 20, 20, 206, 20, 83, 28, 2, 18, 58)

5 a==5 #5 <=a <= 14

6 v =20 #0 <=v <=4

7 N = 1868

8

RN gy gy
1@+ def read_row():E2

5o

(S e e i

o
=

- def print_tup(t):

62 print_1ln('showing 5 integers')

63~ for i in range(5):

64 print_ln('int #s = ¥%s', i, t[i].reveal())

65

66 - for i in range(5, 15):

67 print_ln('showing bit array %s', i)

68 - for j in range(L[i-5]):

69 print_1n('bit %s = %s', j, t[i][j].reveal())
7e

i et
72

73 S = Array(L[a], sint)

74 C = Array(L[a], sint)

75

76 @for_range(N)

77 - def perform_row(i):

78 Ti = read_row()

79 #print_tup(Ti)

80 - for j in range(L[a-5]):

81 S[3] = s[3] + Ti[v]*Ti[a][]]

82 €3l = 3l « Tifalli]

83

84 R = Array(L[a-5], sfix)

85~ for j in range(L[a-5]):

86 sfSj = sfix(e)

87 sf5j.load_int(5[j])

28 sfCj = sfix(@)

39 sfCj.load_int(C[j])

90 R[J] =sf5]/sfCj

91 print_In('R[%s] = %s; C[%s] = %s;", j, R[Jj].reveal(), j, C[j].reveal())
92
212 I R i A
94 print_In(Algorithm 173 SQL Query test done’)

nc

Figure 11: Working SQL code in SPDZ (4:49pm).

33

	Introduction
	The SPDZ Protocol and Compiler
	Overview
	Circuit Optimizations
	Higher-Level Algorithms

	Making SPDZ a General Compiler
	Modifications to the SPDZ Compiler
	Incorporating BMR Circuits

	Protocols for Rings with Replicated Secret Sharing
	The Challenge and Our Approach
	Replicated Secret Sharing
	Bit Decomposition
	Bit Recomposition
	Reducing the Round Complexity
	Security
	Theoretical Efficiency

	Experimental Evaluation
	Future Work
	From SQL to Pseudocode to SPDZ

