
Succinct Garbling Schemes from Functional Encryption

through a Local Simulation Paradigm

Prabhanjan Ananth
MIT

Alex Lombardi
MIT

August 17, 2018

Abstract

We study a simulation paradigm, referred to as local simulation, in garbling schemes. This
paradigm captures simulation proof strategies in which the simulator consists of many local
simulators that generate different blocks of the garbled circuit. A useful property of such a
simulation strategy is that only a few of these local simulators depend on the input, whereas
the rest of the local simulators only depend on the circuit.

We formalize this notion by defining locally simulatable garbling schemes. By suitably
realizing this notion, we give a new construction of succinct garbling schemes for Turing machines
assuming the polynomial hardness of compact functional encryption and standard assumptions
(such as either CDH or LWE). Prior constructions of succinct garbling schemes either assumed
sub-exponential hardness of compact functional encryption or were designed only for small-space
Turing machines.

We also show that a variant of locally simulatable garbling schemes can be used to generically
obtain adaptively secure garbling schemes for circuits. All prior constructions of adaptively
secure garbling that use somewhere equivocal encryption can be seen as instantiations of our
construction.

1

Contents

1 Introduction 3
1.1 Our Contributions . 4
1.2 Technical Overview . 6

2 Preliminaries 12
2.1 Garbling Schemes for Circuits . 13
2.2 Decomposable Garbling Schemes for Circuits . 14
2.3 Succinct Garbling Schemes . 14
2.4 Indistinguishability Obfuscation . 15
2.5 Somewhere Equivocal Encryption . 16

3 Locally Simulatable Garbling Schemes 17
3.1 Semi-Adaptive Local Simulation . 18
3.2 Strong Local Simulation . 19
3.3 Locally Simulatable Garbling Schemes . 22

4 Statements of Our Results 23
4.1 Locally Simulatable Garbling . 23
4.2 Succinct Garbling . 23
4.3 Adaptively Secure Garbling . 24

5 Locally Simulatable Garbling from Laconic OT 24
5.1 The LSGS Construction . 26
5.2 Strong Local Simulation . 29
5.3 Semi-Adaptive Local Simulation Security . 33

6 Succinct Garbling from IO through Locally Simulatable Garbling 33
6.1 Bounded Runtime Case . 34
6.2 Proof of Security . 36
6.3 Removing the Bounded Runtime Restriction . 42
6.4 Succinct Garbling from Functional Encryption 44

7 Adaptively Secure Garbling from Locally Simulatable Garbling 44

A Selectively Secure Laconic OT from Indistinguishability Obfuscation 50

2

1 Introduction

Garbling schemes are ubiquitous to cryptography. Their notable applications include secure
computation on the web [GHV10, HLP11], constructions of functional encryption [SS10, GVW12,
GKP+12], one-time programs [GKR08], delegation of computation [GGP10, AIK10], and gar-
bled RAMs [GHL+14, GLOS15]. In fact, there are many more applications under the umbrella of
randomized encodings, which are implied by garbling schemes. These applications include par-
allel cryptography [AIK04, AIK06], bootstrapping theorems in functional encryption and indis-
tinguishability obfuscation [ABSV15, App14a], and key-dependent message security [BHHI10,
App14b]. More recently, garbling schemes were also crucially used to solve two longstand-
ing open problems in cryptography: achieving two-round passively secure MPC [GS17, BL18,
GS18b] and identity-based encryption from weaker assumptions [DG17, BLSV18, DGHM18].

A garbling scheme allows for efficiently encoding a circuit C, represented by 〈C〉 (also referred
to as garbled circuit), and separately encoding an input x, represented by 〈x〉. We require that
given 〈C〉 and 〈x〉, it is possible to efficiently recover C(x) and moreover, the encodings should
not leak anything beyond (C,C(x))1. This notion was first introduced by Yao [Yao82, Yao86]
as a technique to solve two-party secure computation (a full proof of this application was only
given much later by Lindell and Pinkas [LP09]). More than three decades later, proposing new
constructions of garbling schemes is still an active and fascinating research direction.

While the traditional notion of garbling schemes considers encoding circuits, this notion can
be generalized for other models of computation. In particular, we consider garbling Turing
machines; this notion is often referred to as succinct garbling schemes [BGL+15, CHJV15,
KLW15]. The non-triviality in this setting is to encode both the Turing machine M and the
input x in time independent of the runtime of M . In more detail, we require that the time to
garble a Turing machine M should be polynomial in λ (security parameter) and |M | while the
time to encode an input x should be polynomial in λ and |x|. For decoding, we require that it
should only take time polynomial in λ and t to recover M(x), where t is the runtime of M on x.

Succinct garbling schemes have been used in many applications including time-lock puz-
zles [BGJ+16], concurrent zero-knowledge [CLP15], indistinguishability obfuscation for Turing
machines [BGL+15, CHJV15, KLW15] and delegation for deterministic computations [BGL+15,
CHJV15, KLW15]. In terms of constructions, the initial works of [BGL+15, CHJV15] proposed
succinct garbling schemes with the caveat that the size of the garbled Turing machine grows
with the maximum space taken by the Turing machine during its execution. Subsequently,
Koppula et al. [KLW15] showed how to get rid of this caveat and presented a construction
of succinct randomized encodings (a notion where M and x are encoded together) assuming
indistinguishability obfuscation and one-way functions.

It is worth noting that the approach taken by [BGL+15] differs substantially from the ap-
proach taken by [CHJV15, KLW15] to obtain succinct randomized encodings. The construction
of [BGL+15] is very simple to describe: they succinctly garble a Turing machine M (running in
time at most T) by outputting an obfuscated program that on input i ≤ T outputs the ith gar-
bled table of a Yao garbled circuit [Yao82, Yao86, LP09] associated to a circuit C representing
M ’s computation. One might hope that this already yields a fully succinct garbling scheme, but
the security proof of [BGL+15] requires hardwiring O(s) bits of information in the obfuscated
program when M requires space s, so this does not yield a fully succinct garbling scheme (which
[KLW15] does achieve).

While the final result has an undesirable dependence on s, the [BGL+15] approach has the
advantage of relying only on obfuscation for circuits of input length log(T) = O(log(λ)) and
hence can be proved secure assuming the existence of polynomially secure functional encryption

1In this work, we only consider the case of hiding the input x. To hide the circuit C being garbled, we can garble
an universal circuit with an encryption of C hardwired inside it and produce an input encoding of x along with the
decryption key.

3

[AJ15, BV15, LZ17, LT17]. The approach of [CHJV15, KLW15] does not share this property,
and indeed there is currently no known construction of fully succinct garbling from (poly-secure)
FE. In general, there are a few primitives (such as trapdoor permutations and non-interactive
key exchange) known to follow from FE [GPS16, GS16, GPSZ17, LZ17] while many others (such
as NIZK [SW14, BP15], deniable encryption [SW14], and long output secure function evaluation
[HW15]) we know only how to construct from IO (see [LZ17] for a more detailed discussion).
One of our main goals is to understand whether constructing succinct garbling schemes requires
the full power of IO in this sense.

Rather intriguingly, the progress on succinct randomized encodings followed a similar pattern
to progress on the problem of constructing adaptively secure circuit garbling schemes. There is
a simple transformation [BHR12] from selectively secure garbling schemes to adaptively secure
garbling schemes in which the online complexity (that is, the size of the input encoding) grows
with the circuit size. Subsequent to [BHR12], the work of [HJO+16] showed how to achieve
adaptive schemes with online complexity that only depends on the width w of the circuit (from
one-way functions) or depth d of the circuit (from 2−O(d)-secure one-way functions). Follow-
ing [HJO+16], the works of [JW16, JSW17] present additional constructions of adaptive circuit
garbling schemes. Finally, a beautiful work of Garg and Srinivasan [GS18a] showed how to
achieve adaptive garbling schemes with online complexity |x|+ poly(log(|C|, λ) assuming either
the computational Diffie-Hellman (CDH) or learning with errors (LWE) assumption.

We note that the measure of width complexity in the case of circuits is related to the measure
of space complexity in the case of Turing machines. Indeed, we can transform a Turing machine
M that requires space s on inputs of length n into a circuit of width O(n+s); similarly, a circuit
of width w can be simulated by a Turing machine which takes space at most O(w). Moreover,
there are actually major similarities between the security proofs of [HJO+16] (for their width-
dependent adaptive garbling scheme) and [BGL+15] (for their space-dependent succinct garbling
scheme). At a high level, both require opening up the [LP09] proof of security for Yao’s garbling
scheme and make use of the fact that security is argued by a gate-by-gate hybrid argument.

These similarities present the possibility of transporting some of the techniques from the
adaptive garbling literature in order to construct new and improved succinct garbling schemes.
In particular, we ask: can the ideas from [GS18a] be used to construct succinct garbling?

1.1 Our Contributions

We give a new construction of succinct garbling schemes using the ideas of [GS18a]. Unlike
the work of [KLW15]2 based on sub-exponentially secure compact functional encryption, our
construction is based on polynomially secure compact functional encryption and polynomially
secure CDH/LWE. As an added advantage, our construction is conceptually simpler. Instead of
using IO/FE to compress a Yao garbled circuit as in [BGL+15], we compress an appropriately
modified [GS18a] garbled circuit.

To prove security, we identify a property, termed as local simulation, of selectively secure
garbling schemes for circuits that when combined with other tools yields succinct garbling
schemes. To describe this property, we first recall the security experiment of garbling schemes.
To prove that a given garbling scheme is secure, one needs to exhibit a simulator with the
following property: given just the circuit C and the output C(x), it can output a simulated
garbled circuit and input encoding that is indistinguishable from an honest garbled circuit and
input encoding. Typically this indistinguishability is shown by a sequence of hybrids: in every
step, a hybrid simulator is defined to take an input C and x produces the simulated garbling
and input encoding. The first hybrid defines the honest garbling of C and the honest encoding
of x, while the final hybrid defines the simulated distribution. At a bare minimum, our notion

2We note that [KLW15] construct succinct randomized encodings scheme and not garbling schemes. However,
their construction can be adapted to get succinct garbling schemes

4

of local simulation captures a class of such hybrid arguments wherein the simulation of garbled
circuit is divided into blocks and in every hybrid, only a small Lsim-sized subset of blocks are
simulated using C and x while the rest are simulated only using C. We observe that this
seemingly artificial property is already satisfied by current known schemes [Yao86, GS18a].

To make the local simulation notion useful for applications, we need to consider strength-
enings of this notion. We formalize the above informal description of local simulation and call
this weak local simulation; correspondingly the garbling scheme will be called a weak locally
simulatable garbling scheme (weak LSGS). We consider two strengthenings: (i) strong locally
simulatable garbling schemes (strong LSGS) and (ii) semi-adaptive locally simulatable gar-
bling schemes (semi-adaptive LSGS). Both the notions of semi-adaptive LSGS and strong LSGS
imply weak LSGS and will be parameterized by (Lsim, Linp), where Linp refers to the online
complexity of the garbling scheme.

We now state our results on succinct garbling.

Succinct Garbling. We prove the following theorem.

Theorem 1. (Main Theorem) Assuming single-key compact3 public-key functional encryption
for circuits4 and X, where X ∈ {Computational Diffie-Hellman, Factoring, Learning with Errors},
there exists a succinct garbling scheme for Turing machines.

Previous constructions of succinct garbling schemes were based on indistinguishability obfus-
cation5 (implied by sub-exponentially secure compact functional encryption) and one-way func-
tions [KLW15]. This is the first work to show the feasibility of succinct garbling schemes from
falsifiable assumptions. Moreover, [KLW15] is significantly more involved whereas our con-
struction is conceptually simpler. We note that several works subsequent to [KLW15] use their
construction to achieve various primitives including garbled RAM [CH16, CCC+16, CCHR16,
ACC+16], constrained PRFs for Turing machines [DKW16], indistinguishability obfuscation
for Turing machines with constant overhead [AJS17a], patchable indistinguishability obfusca-
tion [AJS17b, GP17] and so on. We hope that our simpler construction will correspondingly
yield simpler presentation of these applications as well.

One new consequence of the above theorem is that we obtain collusion-resistant functional
encryption for Turing machines from collusion-resistant functional encryption for circuits and
standard assumptions; this follows from [AS16].

We prove Theorem 1 in two steps. First, we prove the following proposition.

Proposition 1 (Informal). Assuming strong (Lsim, Linp)-LSGS and compact functional encryp-
tion for circuits, there exists a succinct garbling scheme in which the complexity of garbling
a Turing machine M is poly(λ, |M |, Lsim) and the complexity of encoding x is Linp(λ, |x|,m),
where m is the output length of M .

Once we prove the above proposition, we show how to instantiate strong LSGS from laconic
oblivious transfer6 to obtain our result.

3From prior works [BV15, AJS15], we can replace compact public-key FE with collusion-resistant FE in the
theorem statement.

4A public-key functional encryption scheme is a public-key encryption scheme with the additional key generation
procedure that takes as input circuit C and produces a functional key for C that can be used to decrypt an encryption
of x to obtain C(x). A compact functional encryption is a functional encryption scheme where the complexity
to encrypt a message x is a fixed polynomial in (λ, |x|) and in particular, the encryption complexity grows only
with log(|C|). A functional encryption scheme is a single-key scheme if it satisfies {PK,Enc(PK, x0), skC} ∼=c

{PK,Enc(PK, x1), skC} for an adversarially chosen C and x and specifically, the adversary is only issued a signle key
in the security experiment.

5See Section 2.4 for a formal definition.
6We actually use the existentially equivalent notion of appendable laconic OT, which we define later.

5

Proposition 2 (Informal). Assuming laconic oblivious transfer, there exists a strong (Lsim, Linp)-
LSGS with Lsim = poly(λ).

Since laconic oblivious transfer can be instantiated from CDH, factoring, LWE and other as-
sumptions [CDG+17, DG17, BLSV18, DGHM18], this proves Theorem 1. In addition, we note
in Appendix A that laconic OT7 can be constructed from IO and one-way functions; combined
with the above propositions, this says that our succinct garbling scheme can also be instantiated
from IO and OWFs alone (giving an alternative construction to [KLW15]).

We note that the garbling scheme of Yao [Yao86] also yields a strong (Lsim, Linp)-LSGS with
Lsim proportional to the width of the circuit being garbled. Combining this with Proposition 1,
we get a succinct garbling scheme for small space Turing machines; this is essentially the same
scheme as that of [BGL+15].

Adaptive circuit garbling. Next, we show how to construct adaptive circuit garbling schemes
using our notion of (semi-adaptive) LSGS. First, we recall the definition of adaptive circuit gar-
bling schemes. In the adaptive security experiment, an adversary can submit the circuit C and
the input x in any order; specifically, it can choose the input as a function of the garbled circuit
or vice versa. We show,

Theorem 2 (Informal). Assuming semi-adaptive (Lsim, Linp)-LSGS and one-way functions,
there exists an adaptively secure circuit garbling scheme with online complexity Linp+poly(λ, Lsim).

This theorem can be seen as an abstraction of what the somewhere equivocal encryption-based
technique of [HJO+16] can accomplish. For example, the semi-adaptive LSGS can be instanti-
ated from laconic oblivious transfer, recovering the result of [GS18a]. The theorem below follows
from a previous work [GS18a].

Theorem 3 ([GS18a]). Assuming laconic oblivious transfer, there exists a semi-adaptive (Lsim, Linp)-
LSGS scheme with online complexity Linp(λ, n,m) = n+m+poly(λ) and Lsim = poly(λ), where
n and m denote the input and output lengths for the circuit.

We note that Yao’s garbling scheme is also a semi-adaptive (Lsim, Linp)-LSGS with Lsim being
proportional to the width of the circuit and thus, combining the above two theorems we get
an adaptively secure circuit garbling scheme with the online complexity proportional to the
width of the circuit. This construction is essentially the same as the width-based construction
of [HJO+16], with a more modular security proof.

We summarise the results in Figure 1.

1.2 Technical Overview

We first recall the garbling scheme of Yao [Yao86] and describe an overview of its security proof.
Yao’s scheme will serve as a starting point to understanding the definition of locally simulatable
garbling schemes.

Yao’s Garbling Scheme [Yao86]. Consider a boolean circuit C : {0, 1}` → {0, 1} com-
prising only of NAND gates. For ease of presentation, we assume that C is layered such that all
gates that are at the same distance from the output gate belong to the same layer. Moreover,
every intermediate wire in the circuit connects two gates in adjacent layers.

The first step in the garbling of a circuit C is to generate two wire keys K0
w and K1

w for every
wire w in the circuit. Next, associate with every gate G a garbled table consisting of four entries

(CT00,CT01,CT10,CT11). For b0, b1 ∈ {0, 1}, CTb0b1 is an encryption of K
NAND(b0,b1)
wc under the

7We can only achieve laconic OT satisfying selective security, which suffices for Proposition 2.

6

Somewhere

Equivocal Encryption
Compact Functional

Encryption

Laconic Oblivious Transfer

Adaptive Circuit

Garbling Schemes

Semi-Adaptive

Locally Simulatable

Garbling Schemes

Strong

Locally Simulatable

Garbling Schemes

Succinct

Garbling Schemes

+ +

Figure 1: Summary of results.

two keys8 Kb0
wa and Kb1

wb
. Wires wa and wb are input wires of G and wc is the output wire

of G. Finally, permute the garbled table (CT00,CT01,CT10,CT11). The garbling of C consists
of permuted garbled tables associated with every gate in the circuit. The input encoding of x
consists of keys Kxi

wi , where wi is the ith input wire of C and xi is the ith bit of x. Also part
of the input encoding is a translation table that maps 0 to K0

wout
and 1 to K1

wout
, where wout is

the output wire of C.

Selective Security of Yao’s Garbling Scheme: To show that Yao’s garbling scheme
is secure we need to demonstrate a probabilistic polynomial time simulator Sim that given
(C,C(x)) (and in particular, x is not given) outputs a simulated garbling of C and a simulated
input encoding. Sim is defined as follows: every wire w is only associated with a single key Kw.
Associated with every gate G is a garbled table consisting of (CT1,CT2,CT3,CT4), where: for a
randomly picked index i∗ ∈ [4], (i) CTi∗ is an encryption of Kwc under keys Kwa and Kwb , (ii)
for i 6= i∗, CTi is an encryption of 0 under two randomly chosen secret keys (and in particular
these two keys are not used anywhere). The simulated garbling of C consists of the simulated
garbled tables associated with every gate in the circuit. The input encoding consists of the keys
{Kw} for every input wire w. In addition, it consists of the translation table that maps C(x)
to Kwout and maps C(x) to K ′wout

, where K ′wout
is generated afresh.

The indistinguishability of the output of Sim from an honestly generated garbled circuit and
input encoding can be argued by a hybrid argument explicitly described in [HJO+16]. This
hybrid argument will be associated with a sequence of intermediate simulators Sim1, . . . ,Simq.
Except Simq, all the other simulators take as input circuit and the input; (C, x). The final
simulator Simq takes as input (C,C(x)). Sim1 computes the garbling of C and the input encoding
of x as dictated by the scheme. The final intermediate simulator Simq is identical to Sim.

The ith intermediate simulator Simi works as follows: for every wire w such that w is the
output wire of a jth layer for j ≥ i, sample two keys K0

w and K1
w. For any other wire w, sample

a single wire key Kw. The simulator consists of two components:

• Input-Dependent Simulation. This component takes as input (C, x) and simulates all

8There are many ways of realizing an encryption scheme under two different secret keys. One convenient method
is to secret share the message and encrypt the two shares using the two keys.

7

the garbled gates in the ith layer of C. For every gate G (with input wires wa, wb and
output wire wc) in the ith layer, generate a garbled table (CT1,CT2,CT3,CT4), where for

a randomly picked index i∗ ∈ [4], (i) CTi∗ is an encryption of K
val(wc)
wc under keys Kwa

and Kwb , (ii) for i 6= i∗, CTi is an encryption of 0 under two randomly chosen secret keys
(and in particular these two keys are not used anywhere). Here, val(wc) denotes the value
assigned to the wire wc during the evaluation of C on x.

• Input-Independent Simulation. This component only takes as input C and simulates
the garbled gates in all the layers except the ith layer. There are two cases:

- for a gate G in the jth layer, for j < i, the simulation of the garbled gate for G is
performed according to Sim.

- for a gate G in the jth layer, for j > i, the garbled gate for G is generated according
to the scheme.

Once the computational indistinguishability of Simi and Simi+1 is shown for every i, the security
of the scheme follows.

Complexity of Input-Dependent Simulation. Observe that the output length of the
input-dependent simulation component of every simulator Simi is only proportional to the width
of the circuit (in other words, the maximum length of any layer in C). This observation has
been crucially exploited in two lines of work:

• The work of [HJO+16] introduced the powerful tool of somewhere equivocal encryption
(SEE) and showed how to combine it with the garbling scheme of Yao to obtain adaptive
garbling schemes with online complexity that grows with the width of the circuit. In-
formally, somewhere equivocal encryption is used in conjunction with the above proof of
security for Yao’s scheme: in each step of a hybrid argument, the input-dependent simu-
lated gates are equivocated in the online phase of the adaptive security game. Since the
number of input-dependent simulated gates is bounded by the width w of the circuit, the
online complexity of this garbling scheme is proportional to w. Alternative proof strategies
for Yao’s garbling scheme can be used instead of our sketch above to obtain, for example,
the depth-based result of [HJO+16].

• The work of [BGL+15] showed how to combine indistinguishability obfuscation for circuits
and the garbling scheme of Yao to obtain a succinct garbling scheme for small-space Turing
machines. To garble a Turing machine M that has worst-case runtime T , they construct an
obfuscation of a circuit that takes as input an index i and outputs the garbled table corre-
sponding to the ith gate of C9. Security is argued by sequentially invoking the simulators
(Sim1, . . . ,Simq) of Yao’s garbling scheme. Hardwiring the entire simulator’s output in the
obfuscated circuit would ruin the encoding complexity of the succinct garbling scheme.
However, it turns out that security can be argued when only the input-dependent simu-
lation component is hardwired. This is exactly the reason why the encoding complexity
of this succinct garbling scheme grows with the maximum space complexity of the Turing
machines.

Locally Simulatable Garbling Schemes. We introduce the notion of a locally simulat-
able garbling scheme as an abstraction that connects the above proofs of adaptive security and
succinctness for garbling schemes. We give a brief overview of the security property associated

9Their actual scheme instead outputs an entire layer of garbled tables at once, but this variant has the same
efficiency and security proof.

8

with a locally simulatable garbling scheme. The security property is parameterized by an integer
Lsim and a sequence of simulators (Sim1, . . . ,Simq) for some polynomial q. Every simulator Simi

consists of an input-dependent component and an input-independent component.

• The input-dependent component of Simi takes as input circuit C and input x to be sim-
ulated. We require that this component of Simi is of size at most Lsim · poly(λ) for some
fixed polynomial poly.

• The input-independent component of Simi takes as input only the circuit C.

We require that the output distribution of Sim1 is computationally indistinguishable from an
honest generated garbling of C and honestly generated encoding of x. The output distributions
of Simi and Simi+1 are required to be computationally indistinguishable. Finally, we require
that the final simulator Simq does not have any input-dependent component and in particular,
Simq can simulate the garbled circuit and input encoding on input (C,C(x)). We refer to this
security property as weak local simulation security.

Note that Yao’s garbling scheme, using the security proof given in our outline, is a particular
instantiation of a locally simulatable garbling scheme with Lsim set to be the width of the circuit
being garbled. The depth-based analysis of Yao’s garbling scheme given in [HJO+16] can also
be seen as an instantiation of weak local simulation, albeit with q = 2O(d) hybrids.

While the above security property captures the essence of local simulation, it does not suffice
for either the application of adaptively secure garbling schemes or the application of succinct
garbling schemes. To get around this, we strengthen the security definition in two ways, re-
sulting in notions of semi-adaptive locally simulatable garbling schemes and strong locally
simulatable garbling schemes.

Succinct Garbling from Strong LSGS. We define the notion of a strong locally sim-
ulatable garbling scheme and use it as an intermediate tool to construct a succinct garbling
scheme. To motivate our definition, we will consider a candidate succinct garbling scheme (and
proof strategy) from IO and a weak LSGS, and see what additional properties are required from
the LSGS.

Generalizing the approach of [BGL+15], our candidate succinct garbling scheme is as follows:
garbling a Turing machine M with a runtime bound T consists of computing an indistinguisha-
bility obfuscation of a circuit HM,T,MSK with hardwired values M , T and a master secret key
MSK. This circuit takes as input an index i ≤ T , constructs the ith gate of C, where C is
the circuit representing T steps of M ’s computation on inputs of length n, and then outputs
a garbling of this gate computed with respect to MSK. Encoding x consists of computing the
input encoding of x with respect to the LSGS. Decoding proceeds by evaluating the obfuscated
circuit on all indices ranging from 1 to T to obtain the different gate encodings. These encodings
are then decoded to obtain the result.

We are already implicitly assuming some properties of the underlying LSGS in order for the
above construction to make any sense at all. Specifically,

• Our candidate implicitly assumes that a garbling of C is computed in a gate-by-gate
fashion. To enable this, we introduce the notion of a local encoding of an LSGS, which
guaratees that a garbling of C consists of components that are each computed in time
independent of |C|; in particular, it must be computable from a small amount of infor-
mation about C. In fact, we further require that this information about C is efficiently
computable from M . In the case of Yao, this amounts to saying that an individual gate
of C can be computed very efficiently from M .

• A priori, the master secret key MSK could be as large as |C| = poly(T). Strictly speaking,
this means that the above candidate is not succinct. To overcome this, we think of MSK =
(sk1, . . . , skN) and define a local key generation procedure that takes as input an index j

9

and only generates the local secret key skj . Then, the program H in our scheme takes as
input an index i, determines the keys skj that are necessary to encode the ith component
of C, and then computes the ith garbled component.

• To identify the subset of keys to be locally generated for the ith component, we define a
key list generation procedure that takes as input i and outputs a list Li. This allows us to
compress the potentially large MSK using a pseudorandom function key.

• The size of the input encoding of the succinct garbling candidate is exactly the same
as the online complexity of the underlying strong LSGS scheme. Thus, in order for our
scheme to be succinct, the online complexity of the underling LSGS scheme will have to
be independent of T .

By carefully defining the above notions, we can guarantee that the program H is sufficiently
small (polynomial in λ) so that the candidate garbling scheme is succinct. What remains is to
prove security in a way such that programs H ′ that are obfuscated in the security proof are also
small. This is the most subtle step; in particular, this is the step where [BGL+15] is limited to
achieving succinctness that depends on the space of the Turing machine.

To prove the security of the above scheme, a naive approach would be to hardwire the
entire simulated garbled circuit inside the obfuscation of HM,T,MSK; however, this would violate
succinctness. Instead, we want to leverage local simulation in the following way: in each of
a sequence of hybrid circuits (H1, . . . ,Hq), only hardwire the input-dependent components of
Simi, and instead include the code of the input-independent components of Simi (which naively
contains all of MSK) inside Hi. We would then hope to argue using some combination of IO
security and LSGS security that adjacent hybrid programs in this sequence are indistinguishable.

If the size of the input-dependent portion is small, meaning polynomial in λ, then we can
hope to achieve succinctness using this proof strategy. This approach again implicitly assumes
properties of the LSGS; namely, that the input-independent local simulators each require only
a small portion of the master secret key (just as in the honest garbling case). This is required
so that the hybrid circuit Hi is still small.

Unfortunately, the security argument above is flawed. The problem is that information about
the master secret key MSK is contained within the obfuscated program H̃, so it is unclear how
to argue that the input-dependent components of Simi and Simi+1 (i.e. the components that
are hardwired) are indistinguishable. Indeed, if the above strategy is not carefully implemented
(e.g. if the program Hi actually reveals the entire MSK), they will be distinguishable.

To circumvent these issues, we require that the input-dependent portion of the garbled
circuit output by Simi is indistinguishable from the corresponding input-dependent portion of
the garbled circuit output by Simi+1 even in the presence of {skj}j∈S, where S consists of all
indices accessed by the input-independent portion of the garbled circuit. In fact, we define a
stronger property that allows the adversary to choose the keys {skj}j∈S .

In order to complete the hybrid argument, our proof strategy then works in two steps: first
switch the input-dependent components of the simulated circuit from Simi to Simi+1 (using the
above strong LSGS security), and then switch the input-independent components from Simi to
Simi+1. Since we are actually including the code of these input-independent simulators within
the obfuscated circuit, we must require that the input-independent components of Simi and
Simi+1 are functionally equivalent to invoke IO security.

To summarize, a strong LSGS must satisfy two main properties in order for the security of
our succinct garbling scheme to be proved:

• The input-dependent components of Simi and Simi+1 must be indistinguishable even given
all of the local secret keys necessary to compute the input-independent components of Simi.

• The algorithms computing the input-independent components of Simi and Simi+1 must be
functionally equivalent.

10

Indeed, the security proof of [BGL+15] can be retroactively seen as invoking the above
properties of Yao’s garbling scheme. For completeness, we sketch a proof (see Theorem 6) that
Yao’s garbling scheme satisfies this definition with Lsim proportional to the width of the circuit.

Constructing Strong LSGS from Laconic OT. In order to complete the proof of
Theorem 1, we show that the garbling scheme of [GS18a] can be adapted to satisfy our strong
LSGS notion with Lsim = poly(λ). We begin by giving a high level description of the [GS18a]
garbling scheme:

• An encoding of an input x consists of (1) a somewhere equivocal encryption secret key,
(2) a one-time pad encryption r ⊕ x of x, (3) a hash value h0 = H(r ⊕ x||0|C|−n) of an
initial memory state for the computation, (4) a signature on h0, and (5) the one-time pads
corresponding to each output gate. The hash function H is associated to a laconic OT
scheme (we omit a discussion of laconic OT from this overview).

• An encoding of a circuit C consists of s = |C| “garbled programs” maintaining the following
invariant: after executing i such programs, the evaluator will have obtained a one-time
pad encryption of the first n+ i gates of C evaluated on the input x along with a hash of
this one-time padded state and a signature on this hash value. The garbled programs are
then jointly encrypted using a somewhere equivocal encryption scheme.

• Simulation security is argued by a sequence of hybrid simulators; in a hybrid simula-
tor, each garbled program is either computed via an input-independent simulator or an
input-dependent simulator, and moreover only poly(λ) garbled programs require input-
dependent simulation. To prove adaptive security, the input-dependent simulated gates
are equivocated as part of the input encoding.

We interpret the scheme of [GS18a] – after removing the somewhere equivocal encryption
layer – as a LSGS by thinking of each garbled program above as one component of the LSGS.
Indeed, we show that each garbled program in the [GS18a] scheme only requires a small amount
of the garbling secret key and that the input-dependent components of Simi and Simi+1 are
indistinguishable even in the presence of adversarially chosen secret keys used for the other
components. In fact, all but one of the properties of a strong LSGS as defined earlier can be
demonstrated to hold for the [GS18a] scheme without modification.

The only problem with using the [GS18a] scheme as a strong LSGS is that computation of
the initial hash value H(r⊕x||0|C|−n) requires O(|C|) time. Naively, this means that computing
even the input encoding would take O(|C|) time, but [GS18a] note that if H is computed via
a Merkle tree, the computation of H(0|C|−n) can be delegated to the garbled circuit and only
H(r⊕ x) need be computed during the input encoding. However, computing H(0|C|−n) cannot
be done locally (i.e. distributed in pieces to local components of the garbled circuit), which
violates the local encoding property of a strong LSGS.

To circumvent this problem, we modify the [GS18a] scheme so that the initial hash value
h0 = H(r⊕x) is a hash of only an n-bit string, and we redesign the garbled programs so that each
step updates the one-time padded computation state by appending the next value. Instantiating
this corresponds to a new notion of appendable laconic OT, which we define and construct
generically from laconic OT. The local simulators for our new scheme remain essentially the
same, and our previous security proof carries over to this modified version. We note that the
same modification could be made to the [GS18a] adaptive garbled circuit construction, with the
advantage that the more complicated notion of updatable laconic OT is not required, and hence
the [GS18a] scheme can be somewhat simplified.

Combining this construction of strong LSGS from laconic OT with our construction of suc-
cinct garbling from FE and strong LSGS, we obtain Theorem 1.

11

Adaptive Garbling from Semi-Adaptive LSGS. In order to construct adaptive gar-
bling schemes, it turns out that the notion of strong LSGS does not capture the essence of
the adaptive security proof. We define a notion of semi-adaptive LSGS and show that a semi-
adaptive LSGS can be used to construct adaptive circuit garbling schemes. We define the notion
below.

The semi-adaptive security property is associated with a sequence of simulators (Sim1, . . . ,Simq)
for some polynomial q = q(λ). As before, the output of Simi consists of an input-dependent
component and an input-independent component. However, in this security definition, we allow
the adversary to choose the input after he receives the input-independent component of the
garbled circuit from the challenger. In particular, the adversary can choose the instance as a
function of the input-independent component.

Our transformation from semi-adaptive LSGS to adaptive garbling is inspired by the work
of [HJO+16]. In particular, our transformation abstracts out the usage of somewhere equivocal
encryption in this and other prior works. In this transformation, the size of the input-dependent
component (i.e. Lsim) determines the size of the secret key in a somewhere equivocal encryption
scheme, and hence plays a role in determining the online complexity of the adaptive garbling
scheme. The online complexity of the resulting adaptively secure garbling scheme is the sum
of poly(λ, Lsim) and the online complexity Linp of the semi-adaptive LSGS. This can be used to
recover the result of [GS18a] (as well as that of [HJO+16]).

2 Preliminaries

We denote the security parameter by λ. We assume the familiarity of the reader with standard
cryptographic notions. The output x of a probabilistic algorithm A on input y will be denoted
by x ← A(y). Consider two PPT distributions D0 and D1. If D0 and D1 are computationally
indistinguishable then we denote it by D0 ≈c D1.

We consider boolean circuits (over arbitrary boolean basis) in this work. By the size of a
circuit, we mean the number of gates in the circuit.

Turing Machines. A single-tape Turing machine is described by a 7-tuple M = (Q,Σ, δ, q0,
qacc, qrej), where Q is the set of states, Σ is the set of symbols on the tape (including input
symbols), δ : Q × Σ → Q × Σ × {+1,−1} is the transition function, q0 is the start state, qacc
is the accept state and finally, qrej is the reject state. We assume that the tape of the Turing
machine is initialized with the input and the head position points to the leftmost end of the
tape.

We define CktTransform to take as input Turing machine M running in time at most T on
inputs of length at most n and outputs an equivalent circuit C. That is C(x) = M(x), where x
is of length n and M(x) takes time at most T .

We define the algorithm FindGate that takes as input (M,n, T, i) and outputs a list of indices
such that j is in the list if and only if jth wire is incident to the ith gate of C, where C =
CktTransform(M,n, T). This algorithm proceeds as follows: first, the Turing machine is made
oblivious. In particular, the tape head moves as follows: it starts with the leftmost end of the
tape, moves to the right end of the tape just before the end symbol then moves to the leftmost
end of the tape and so on. Note that such a “strongly oblivious” TM can be achieved with
quadratic overhead.

Given a strongly oblivious TM, the position of the tape head after j steps can be computed
(as a function of j) by a circuit of size poly(log(T)). Finally, observe that a single movement of
tape head can be represented by a constant-sized circuit.

Note that the running time of FindGate(M,n, T, i) is polynomial in (|M |, n, log(T)).

12

2.1 Garbling Schemes for Circuits

We recall the definition of garbling schemes [Yao86, BHR12]. A garbling scheme Π = (Gen,Gb,
IEnc,Eval) for boolean circuits is defined by the following algorithms.

• Gen(1λ, 1s, 1n, 1m): On input security parameter λ, size s(λ) of the circuit to be garbled,
input length n, output length m, output the master secret key gsk.

• Gb(gsk, C): On input garbling key gsk, a boolean circuit C of size at most s(λ), input
length n and output length m, output the garbled circuit 〈C〉.

• IEnc(gsk, x): On input garbling key gsk, input x, output the input encoding 〈x〉.
• Eval(〈C〉 , 〈x〉): On input garbled circuit 〈C〉 and input encoding 〈x〉, output C(x).

We define the properties below.

Correctness. For every s, n,m > 0, for every s-sized circuit C of input length n and output
length m, input x ∈ {0, 1}n, we have:

Pr

[
Eval (〈C〉 , 〈x〉) = C(x) :

gsk←Gen(1λ,1s,1n,1m);
〈C〉←Gb(gsk,C);
〈x〉←IEnc(gsk,x)

]
≥ 1− negl(λ),

for some negligible function negl.

Efficiency. We require the following efficiency conditions to hold.

• Gen,Gb, IEnc,Eval are computable in time polynomial in its inputs.

• Online Complexity: Π has online (communication) complexity L if | 〈x〉 | ≤ L for
all inputs x. Π has online computational complexity L if Π.IEnc(MSK, x) runs in time
L.

Selective Security. Intuitively, we require that the garbling of a circuit C and the encoding
of an input x does not reveal information about x beyond C(x). We capture this in the following
definition.

Definition 1 (Selective Security). We say that a garbling scheme Π = (Gen,Gb, IEnc,Eval)
satisfies (selective) simulation security if there exists a PPT simulator Sim such that for every
large security parameter λ, for every s, n,m > 0, every circuit C of size at most s with input
length n and output length m, every x ∈ {0, 1}n, the following holds:{

Sim(1λ, C, C(x))
}
≈c {Gb(gsk, C), IEnc(gsk, x)} ,

where gsk← Gen(1λ, 1s, 1m).

Adaptive Security. In the selective security definition, we required that the adversary
declare the circuit C and input x of his choice in the beginning of the experiment. We can
consider a stronger notion where the adversary can submit x after receiving the simulated
garbled circuit or vice versa. Such a notion is termed as adaptive security and we define this
formally below.

We first define the following experiment parameterized by PPT adversary A (with boolean
output), PPT stateful simulator Sim = (Sim1,Sim2) and PPT challenger Ch.

ExptA,Sim,Ch(1
λ, b): The challenger Ch generates gsk ← Gen(1λ, 1s, 1n, 1m), where s(λ) is an

upper bound on the size of the circuit being garbled. Adversary A makes the following two
queries in any order:

13

• Circuit Query: A submits circuit C.

– If b = 0, generate 〈C〉 ← Sim1(1λ, C). If the adversary makes the circuit query after
making the input query x then the simulator also additionally receives as input C(x).

– If b = 1, generate 〈C〉 ← Gb(gsk, C).

Send 〈C〉 to A.

• Input Query: A submits input x.

– If b = 0, generate 〈x〉 ← Sim2(1λ, C(x)). If the adversary makes the input query
before making the circuit query, then Sim2 does not receive C(x) as input.

– If b = 1, generate 〈x〉 ← IEnc(gsk, x).

Send 〈x〉 to A.

The output of the experiment is the output of A.

We define adaptive security below.

Definition 2 (Adaptive Security). Consider a garbling scheme Π for circuits. Π is said to be
adaptively secure if for a sufficiently large λ ∈ N, for any PPT adversary A, there exists a
PPT simulator Sim such that:∣∣ Pr [0← ExptA,Sim,Ch(1

λ, 0)
]
− Pr

[
0← ExptA,Sim,Ch(1

λ, 1)
] ∣∣ ≤ negl(λ),

for some negligible function negl.

2.2 Decomposable Garbling Schemes for Circuits

A garbling scheme Π = (Gen,Gb, IEnc,Eval) is said to be decomposable if it has the following
specific form:

• Π.Gen(1λ, 1n) independently samples 2n labels lab = (labi,b)i∈[n],b∈{0,1}, where n is the

input length of the circuit C to be garbled, and outputs MSK = lab.

• Π.IEnc(MSK, x) outputs (labi,xi)i∈[n].

• Π.Sim(1|C|,
−→
lab, C(x)) is rewritten as an algorithm that takes as additional input n labels

−→
lab and outputs a simulated circuit.

In such schemes, we will use the notation lab[x] to denote the tuple (labi,xi)i∈n.

2.3 Succinct Garbling Schemes

We define the notion of succinct garbling schemes. A succinct garbling scheme SuccGC for a
class of Turing machines M consists of the following algorithms.

• Gen(1λ, 1n, 1m): On input security parameter, input length n, output length m, output
the master secret key MSK.

• TMEncode(MSK,M): On input master secret key MSK, Turing machine M , output a TM
encoding 〈M〉.

• InpEncode(MSK, x): On input master secret key MSK, input x, output an input encoding
〈x〉.

• Eval(〈M〉 , 〈x〉): On input TM encoding 〈M〉, input encoding 〈x〉, output a value y.

14

Correctness. For every n,m > 0, for every input x ∈ {0, 1}n, Turing machine M running
in time at most 2λ on x and M(x) ∈ {0, 1}m, we have:

Pr

[
Eval (〈M〉 , 〈x〉) = M(x) :

MSK←Gen(1λ,1n,1m);
〈M〉←TMEncode(MSK,M);
〈x〉←InpEncode(MSK,x)

]
≥ 1− negl(λ),

for some negligible function negl.

Efficiency. The following properties holds:

- Gen(1λ, 1n, 1m) runs in time polynomial in (λ, n,m).
- TMEncode(MSK,M) runs in time polynomial in (|MSK|, |M |).
- InpEncode(MSK, x) runs in time polynomial in (|MSK|, n).
- Eval(〈M〉 , 〈x〉) runs in time polynomial in (λ, |M |, n,m, t), where t is the time to compute
M on x.

Definition 3. A scheme SuccGC = (Gen,TMEncode, InpEncode,Eval) for a class of Turing
machines is said to be a secure succinct garbling scheme if it satisfies the correctness, efficiency
properties (defined above) and additionally satisfies the following security property: for large
enough security parameter λ, for every n,m > 0, every PPT adversary A, there exists a PPT
simulator Sim such that for every TM M , input x ∈ {0, 1}n,{

Sim
(
1λ, 1n, 1t,M,M(x)

)}
≈c {(TMEncode(MSK,M), InpEncode(MSK, x))} ,

where MSK← Gen(1λ, 1n, 1m) and t is the time to compute M on x.

We also consider a weaker notion of succinct garbling schemes, called bounded runtime succinct
garbling schemes. We give the formal definition below.

Definition 4 (Bounded Runtime SGC). A scheme SuccGC = (Gen,TMEncode, InpEncode,Eval)
for a class of Turing machines with m-bit outputs associated with a worst case time bound T is
said to be a bounded runtime succinct garbling scheme if it satisfies the correctness property
(defined above) and additionally satisfies the following:

• Gen,TMEncode and InpEncode additionally take as input a worst case time bound T (in
binary representation). The runtime of Gen,TMEncode and InpEncode grows only poly-
logarithmically in T . We allow the runtime of Eval to grow polynomially in T .

• (Security) For every large security parameter λ, every PPT adversary A, there exists a
PPT simulator Sim such that for every TM M , input x ∈ {0, 1}n,{

Sim(1λ, 1n, 1T ,M,M(x))
}
≈c {(TMEncode(MSK, T,M), InpEncode(MSK, T, x))} ,

where MSK← Gen(1λ, T, 1n, 1m). The simulator runs in time polynomial in (λ, T, |M |, n,m)
and M(x) is the output of M on x after T steps.

2.4 Indistinguishability Obfuscation

We define the notion of indistinguishability obfuscation (iO) for circuits [BGI+01, GGH+13]
below.

Definition 5 (Indistinguishability Obfuscator (iO) for Circuits). A uniform PPT algorithm
iO is called an ε-secure indistinguishability obfuscator for a circuit family {Cλ}λ∈N, where Cλ
consists of circuits C of the form C : {0, 1}n(λ) → {0, 1}, if the following holds:

• Completeness: For every λ ∈ N, every C ∈ Cλ, every input x ∈ {0, 1}n, where n is the
input length of C, we have that

Pr [C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

15

• ε-Indistinguishability: For any PPT distinguisher D, the following holds: for all suffi-
ciently large λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ such that C0(x) = C1(x) for all
inputs x ∈ {0, 1}n, we have:∣∣∣Pr [D(λ, iO(λ,C0)) = 1]− Pr[D(λ, iO(λ,C1)) = 1]

∣∣∣ ≤ ε
If ε is negligible in λ then we refer to iO as a secure indistinguishability obfuscator.

iO from compact FE. The works of [AJ15, BV15] showed how to achieve indistinguisha-

bility obfuscation for circuits of input length n from 2n
2 · negl(λ)-secure compact functional

encryption scheme. Even indistinguishability obfuscator for circuits with logarithmic-sized in-
puts can only be based on quasi-polynomially secure functional encryption. In subsequent
works [LZ17, LT17], this bound was improved and in particular, we have the following theorem.

Theorem 4. [LZ17, LT17] For every large enough security parameter λ, assuming 2n · ε-secure
compact functional encryption, there exists an ε-secure indistinguishability obfuscator for circuits
with input length n.

In particular, when n = log(λ) and ε is negligible in security parameter, iO for n-length
circuits can be based on polynomially secure compact functional encryption.

2.5 Somewhere Equivocal Encryption

We present the definition of somewhere equivocal encryption from [HJO+16].

Syntax. A somewhere equivocal encryption scheme with block-length B, message-length n
(in blocks), and equivocation-parameter t (all polynomials in the security parameter) is a tuple
of probabilistic polynomial algorithms sEQ = (KeyGen,Enc,Dec,SimEnc,SimKey) such that:

• Key Generation, KeyGen(1λ): On input λ, it outputs a key eqk. The size of the equiv-
ocation key is polynomial in (λ,B, t).

• Encryption, Enc(eqk,−→m = (m1, . . . ,mn)): On input equivocation key eqk, messages
m1, . . . ,mn with mi ∈ {0, 1}B , and outputs a ciphertext CT.

• Decryption, Dec(eqk,CT): On input key eqk, ciphertext CT, it outputs a vector of
messages m1, . . . ,mn.

• Simulated Encryption, SimEnc(1λ, I, {mi}i/∈I): On input security parameter λ, index
set I ⊆ [n], set of messages {mi}i/∈I , it outputs a ciphertext CT and state st.

• Simulated Key Generation, SimKey(st, {mi}i∈I): On input state st, set of messages
{mi}i∈I , it outputs a key eqk′.

The above algorithms are required to satisfy the following properties:

Correctness. For every−→m = (m1, . . . ,mn) ∈ {0, 1}B×n, it should hold that Dec(eqk,Enc(eqk,−→m)) =
−→m, where eqk← KeyGen(1λ).

Simulation with no holes. We require that the distribution of (CT, st)← SimEnc(1λ, ∅,−→m)
and eqk← SimKey(st, ∅) to be identical to eqk← KeyGen(1λ) and CT← Enc(eqk,−→m). In other
words, simulation when there are no holes (i.e., I = ∅) is identical to honest key generation and
key generation.

16

Security. We define the security property next.

Definition 6. We say that a somewhere equivocal encryption scheme sEQ = (KeyGen,Enc,Dec,
SimEnc,SimKey) with block-length B, message-length n (in blocks), and equivocation-parameter
t (all polynomials in the security parameter) is said to be secure if the following holds for any
PPT adversary A, sufficiently large security parameter λ ∈ N,

|Pr[ExptsEQ,A(1λ, 0) = 1]− Pr[ExptsEQ,A(1λ, 1) = 1]| ← negl(λ),

for some negligible function λ. The experiment ExptsEQ,A(1λ, b) is defined below:

ExptsEQ,A(1λ, b):

1. The adversary A on input security parameter λ, it sends two index sets I ⊆ [n] and J ⊆ [n]
such that |I ∪ J | ≤ t, messages {mi ∈ {0, 1}B}i/∈I . Denote K = I ∪ J .

2. The challenger sends CT, where CT is computed as follows:

• If b = 0, it computes (CT, st)← SimEnc(1λ, I, {mi}i/∈I).
• If b = 1, it computes CT← SimEnc(1λ, I, {mi}i/∈K).

3. The adversary then sends the rest of the messages {mi}i∈I .

4. The challenger sends eqk which is computed as follows:

• If b = 0, it computes eqk← SimKey(st, {mi}i∈I).

• If b = 1, it computes eqk← SimKey(st, {mi}i∈K).

5. The output of A is the output of the experiment.

The definition as stated in Hemenway et al. considers the case when |J | = 1. By a standard
hybrid argument, any definition that satisfies their definition also satisfies the above definition.

Theorem 5 ([HJO+16]). Assuming the existence of one-way functions, there exists a some-
where equivocal encryption scheme for any polynomial message-length n, block-length B, and
equivocation parameter t, having key size t ·B · poly(λ) and ciphertext of size n ·B bits.

3 Locally Simulatable Garbling Schemes

In this section, we describe our main conceptual contribution: the notion of a locally simulatable
garbling scheme. We refer the reader to the technical overview for an informal explanation of
this security property.

We define three notions of local simulatability, beginning with the weakest definition.

Definition 7 (Weak Lsim-Local Simulation Security). Let Π = (Gen,Gb, IEnc,Eval) denote a
garbling scheme for a class of circuits C. We say that Π satisfies weak Lsim-local sim-
ulation security with Ncomps local components if there exist PPT algorithms ({SimGtEnck,
SimInpEnck}k∈[q]) and a vector of sets (T1, . . . , Tq) ⊆ [Ncomps]

q for some polynomial q = q(λ)

such that no PPT adversary A wins the following game with non-negligible advantage over 1
2 .

• A outputs a circuit C of size s, an input x ∈ {0, 1}n, and a hybrid index 0 ≤ k ≤ q − 1.
A sends (C, x,k) to the challenger.

• The challenger samples MSK← Gen(1λ), and a bit b
$← {0, 1}.

• For every i ∈ [Ncomps], the challenger computes 〈gi〉 in one of two ways:

- If i ∈ Tk+b, compute 〈gi〉 ← SimGtEnck+b(MSK, i, C, x).

- If i /∈ Tk+b, compute 〈gi〉 ← SimGtEnck+b(MSK, i, C, C(x)).

17

The notation SimGtEnc0 is interpreted to denote a component of the honest garbling algo-
rithm.

• The challenger computes the simulated input encoding 〈x〉 ← SimInpEnck+b(MSK, C, x)

and sends
(

(〈gi〉)i∈[Ncomps]
, 〈x〉

)
to A.

• A outputs a bit b′ and wins if b′ = b.

Finally, we have the following syntactic requirements:

• The final simulator is input-independent. That is, Tq = ∅ and SimInpEncq is an
efficient function of (C,C(x)) rather than (C, x).

• Gate encodings are small. That is, the output length of SimGtEnc is at most poly(λ).

• Input-dependent simulation is local. That is, |Tk| ≤ Lsim for every k.

Remark 1. Note that weak Lsim-local simulation security implies the selective simulation se-
curity (Definition 1) of garbling schemes. In particular, the simulator Sim is defined as fol-
lows: it takes as input (1λ, C, C(x)), generates the master secret key MSK ← Gen(1λ), com-
putes the garbled circuit (〈g1〉, . . . , 〈gNcomps〉) by applying SimGtEncq(MSK, ·, C, C(x)) on every
gate in the circuit, and finally computes the input encoding using SimInpEncq(MSK, C, C(x)).
Note that we are crucially using the fact that the input-dependent simulation component of
(SimGtEncq,SimInpEncq) is empty and that SimInpEncq can be computed from (C,C(x)).

Discussion. We note that Yao’s garbling scheme [Yao86] already satisfies weak Lsim-local
simulation security, where Lsim is O(w) with w being the width of the circuit being garbled. We
refer the reader to Section 1.2 for an informal description of Yao’s garbling scheme. The gate
encodings correspond to the garbled tables associated with every gate in the circuit. As noted in
Section 1.2, the ith hybrid in the proof of security is associated with the intermediate simulator
Simi that performs the input-dependent simulation of the ith layer of the garbled circuit and
performs the input-independent simulation of the garbled gates in the other layers.

While Definition 7 captures some notion of local simulation, for applications such as adaptive
garbling and succinct garbling, it turns out that we require strengthenings of this definition.

3.1 Semi-Adaptive Local Simulation

We first give a definition that suffices to construct adaptive garbling schemes. The main differ-
ence between this scheme and the weak local simulation is that the adversary can choose the
input x after seeing the input-independent components of the garbled circuit.

In the following definition, we highlight in red the changes from the weak local simulation
security definition.

Definition 8 (Semi-Adaptive Lsim-Local Simulation Security). Let Π = (Gen,Gb, IEnc,Eval)
denote a garbling scheme for a class of circuits C. We say that Π satisfies semi-adaptive
Lsim-local simulation security with Ncomps local components if there exist PPT algorithms(
{SimGtEnck,SimInpEnck}k∈[Ncomps]

)
and a vector of sets (T1, . . . , Tq) ⊆ [Ncomps]

q for some

polynomial q = q(λ) such that no PPT adversary A wins the following game with non-negligible
advantage.

• A outputs a circuit C and hybrid index 0 ≤ k ≤ q − 1 and sends (C,k) to the challenger.

• The challenger samples MSK← Gen(1λ), and a bit b
$← {0, 1}.

18

• For every i 6∈ Tk ∪ Tk+1, the challenger computes 〈gi〉 ← SimGtEnck+b(MSK, i, C).10 The
challenger sends these garbled gates to A. When k = 0, this is interpreted to mean that
the challenger computes an honestly generated garbled circuit and sends the components
corresponding to [Ncomps]\T1.

• A selects an input x and sends it to the challenger.

• For every i ∈ Tk ∪ Tk+1, the challenger computes 〈gi〉 in one of two ways (and then sends
it to A):

- If i ∈ Tk+b, compute 〈gi〉 ← SimGtEnck+b(MSK, i, C, x).

- If i /∈ Tk+b, compute 〈gi〉 ← SimGtEnck+b(MSK, i, C, C(x)).

• The challenger computes the simulated input encoding 〈x〉 ← SimInpEnck+b(MSK, C, x)
and sends 〈x〉 to A.

• A outputs a bit b′ and wins if b′ = b.

Finally, we have the following syntactic requirements, which are identical to the syntactic re-
quirements of Definition 7:

• The final simulator is input-independent. That is, Tq = ∅ and SimInpEncq is an
efficient function of (C,C(x)) rather than (C, x).

• Gate encodings are small. That is, the output length of SimGtEnc is at most poly(λ).

• Input-dependent simulation is local. That is, |Tk| ≤ Lsim for every k.

3.2 Strong Local Simulation

We now define the notion of locally simulatable garbling scheme that suffices for the succinct
garbling application. Intuitively, we need our garbling scheme (and corresponding local simu-
lation strategy) to be decomposable into components each of whose security depends only on
a small part of the secret key. We begin by defining a “local encoding property” of a garbling
scheme Π. Roughly, speaking this property says that the garbling of a circuit C consists of many
gate encodings, each of which are “small” (polynomial in the security parameter). Moreover, the
master secret key consists of many independently generated keys such that every gate encoding
is generated as a function of a small subset of these keys.

Definition 9 (Local Encoding Property). Let Π = (Gen,Gb, IEnc,Eval) denote a garbling
scheme for a class of circuits C. We define probabilistic polynomial time algorithms (KeyListGen,
LocalKG,GateEnc) as follows.

- Key List Generation: KeyListGen(C, i) takes as input a circuit C of size s, an index
i ∈ [Ncomps = poly(s)] and outputs a list Li ⊆ [Nkeys = poly(s)] along with a state
sti ∈ {0, 1}poly(log(s)).

- Local Key Generation: LocalKG(1λ, j) takes as input the security parameter and an
index j ∈ [Nkeys], and it outputs a local secret key skj.

- Gate Encoding: GateEnc (st, (skj)j∈L) takes as input a state st and a tuple of local secret
keys (skj)j∈L. It outputs an encoding 〈g〉.

We say that Π has local encoding (KeyListGen, LocalKG,GateEnc) with Ncomps components if
the algorithms Gen, Gb, and IEnc have the following specific form:

(i) Gen(1λ, 1s), on input security parameter λ and an upper bound on the circuit size s, outputs
the master secret key MSK = (sk1, . . . , skNkeys

), where skj ← LocalKG(1λ, j) for j ∈ [Nkeys]

10Note that this simulator does not receive the output C(x), unlike the weak local simulatability definition.

19

(ii) Gb(MSK, C), on input master secret key MSK and a circuit C, first computes KeyListGen(C, i)
for every i ∈ [Ncomps] to obtain lists Li and states sti. It then computes GateEnc(sti, (skj)j∈Li)
to obtain 〈gi〉 for every i ∈ [s] and outputs 〈C〉 = (〈g1〉, . . . , 〈gN 〉).

(iii) IEnc(MSK, x) only depends on SKInp := (skj)j∈I for some fixed set I ⊂ [Nkeys] of size
poly(n, λ), rather than the entire master secret key. This set I should be an efficiently
computable function of (n, s).

Moreover, we require that KeyListGen(C, i) runs in polynomial time poly(|M |, log(s)) if C
can be represented by a Turing machine M . In this case, we re-define KeyListGen to take as
input (M,T, n, i).

In the following definition, we highlight in red the changes from the weak simulation security
definition.

Definition 10 (Strong Lsim-Local Simulation Security). Let Π = (Gen,Gb, IEnc,Eval) denote
a garbling scheme for a class of circuits C with local encoding (KeyListGen, LocalKG,GateEnc).
We say that it satisfies strong Lsim-local simulation security if there exist PPT algorithms(
{SimKeyListGenk,SimGtEnck,SimInpEnck}k∈[q]

)
and a vector of sets (T1, . . . , Tq) ⊆ [s]q for

some polynomial q = q(λ) such that no PPT adversary A wins the following game with non-
negligible advantage over 1

2 .

• A chooses a circuit C, input x, and hybrid index 0 ≤ k ≤ q − 1. A sends (C, x,k) to the
challenger.

• For every i ∈ [Ncomps], the challenger evaluates SimKeyListGenk(C, i) to obtain L
(k)
i ⊆

[Nkeys] and st
(k)
i ∈ {0, 1}poly(log(s)).

• Define listrandk =
⋃
i∈Tk∪Tk+1

L
(k)
i and listpublick =

⋃
i/∈Tk∪Tk+1

L
(k)
i .

• A selects secret keys {skj}j 6∈listrandk
and sends them to the challenger.

• For every j ∈ listrandk , the challenger samples skj ← LocalKG(1λ, j) and sets MSK =
(skj)j∈[Ncomps].

• The challenger now samples a uniformly random bit b, samples from the distribution
Db(MSK), and sends the output to A. Sampling from the distribution Db(MSK) is de-
fined as follows:

– For every i ∈ Tk ∪ Tk+1, sample 〈gi〉 in one of two ways:

- If i ∈ Tk+b, compute 〈gi〉 ← SimGtEnck+b(MSK, i, C, x).

- If i /∈ Tk+b, compute 〈gi〉 ← SimGtEnck+b(st
(k+b)
i , (skj)j∈L(k+b)

i
, C(x)), where

(st
(k+b)
i ,L

(k+b)
i) = SimKeyListGenk+b(C, i).

– Sample 〈x〉 ← SimInpEnck+b(MSK, C, x).

– Output

({
〈gi〉

}
i∈Tk∪Tk+1

, 〈x〉 ,
{
skj

}
j∈listpublick

)
.

• The adversary outputs a bit b′ and wins if b′ = b.

Finally, we have the following syntactic requirements, which subsume the syntactic requirements
of Definition 7:

• The final simulator is input-independent. That is, Tq = ∅ and SimInpEncq is an
efficient function of (C,C(x)) rather than (C, x).

• Neighbor lists and states are small and efficiently computable.11 That is,
∣∣∣L(k)
i

∣∣∣ =

poly(log(s)) and
∣∣∣st(k)i

∣∣∣ = poly(log(s)) for every i and every k. As in the case of KeyListGen,

11Note that this implies that gate encodings are small and efficiently computable.

20

we require that SimKeyListGen(C, i) runs in time polynomial in (|M |, log(s)) if C can be
represented by a Turing machine M running in time at most T on inputs of length n; we
then use the notation SimKeyListGen(M,T, n, i).

• Input-dependent simulation is local. That is, |Tk| ≤ Lsim for every k.

• Input-independent hybrid simulators are functionally equivalent. That is, for
every k ∈ [q−1], we require that SimGtEnck(sti, ·) and SimGtEnck+1(sti, ·) are functionally
equivalent and SimKeyListGenk(·, i) and SimKeyListGenk+1(·, i) are functionally equivalent
for every i /∈ Tk ∪ Tk+1.

The main differences to note about strong local simulation security are that the input-
independent simulator only takes the local secret keys as input rather than the master secret
key, and that local indistinguishability is required to hold even when the “non-local keys” (i.e.
the keys used to garble any gate not in Tk ∪Tk+1) are given to the adversary. Finally, note that
the input-independent simulator does not receive the full circuit C as input, so all dependence
on C for the (simulated and real) gate encoding must be controlled by the KeyListGen algorithm.

We claim that Yao’s garbling scheme (see Section 1.2 for an informal description of the
scheme) is an instantiation of a garbling scheme satisfying strong local simulation security.

Theorem 6. Yao’s garbling scheme [Yao86] for circuits satisfies strong Lsim-local simulation
security, where Lsim = w · poly(λ), λ is the security parameter and w is the width of the circuit
garbled.

Proof Sketch. We first observe that Yao’s garbling scheme satisfies the local encoding property.
Without loss of generality, we assume that the class of circuits associated with the Yao’s garbling
scheme consists only of layered circuits where all the wires in one layer input wires to the next
layer. Moreover, we assume that every layer has the same number of gates. To prove the local
encoding property, we define the following algorithms:

• KeyListGen(C, i): It takes as input circuit C of size s, index i ∈ [s] (that is, Ncomps is set to
be s), outputs a list Li ⊆ [Nkeys], where Nkeys is set to be the number of wires in C, such
that index j belongs to Li if and only if jth wire is incident to the ith gate and sti = (i,Li).

Recall that local encoding (Definition 9) must satisfy the property that KeyListGen(M,T, n, i)
can be computed in time poly(|M |, log(T), log(n)) when M is a Turing machine. To achieve
this, we compute FindGate(M,n, T, i) (defined in Section 2) to get Li. Then output (i,Li),
as before.

• LocalKG(1λ, j): It takes as input security parameter λ, index j ∈ [Nkeys] and outputs the

local key skj = (Kj
0 ,K

j
1) corresponding to the jth wire. The label Kj

0 is associated with

bit 0 and the label Kj
1 is associated with bit 1.

• GateEnc(st, (skj)j∈Li): It takes as input st = (i,Li), the set of wire labels (skj)j∈Li and
computes a garbled table of the ith gate in C. To compute this garbled table, the labels
of the wires incident to the ith gate are required and this is exactly the list (skj)j∈Li .

To prove the strong local simulation property, we describe all the intermediate simulators. The
computational indistinguishability of the output distributions of these simulators follow essen-
tially from the proof of security of Yao’s garbling scheme and thus we omit the details. Formally,

we define
(
{SimKeyListGenk,SimGtEnck,SimInpEnck}k∈[q]

)
and a vector of sets (T1, . . . , Tq). We

set q = 2d− 1, where d is the number of layers in the circuit being garbled.

• Tk consists of the indices corresponding to all the gates in the k
2

th
and (k

2 +1)th layers if k

is even, otherwise it consists of the indices corresponding to all the gates in the (bk2 c+1)th

layer if k is odd.

• SimKeyListGenk(C, i): This is the same as KeyListGen.

21

• SimGtEnck(Arg): We consider the following two cases depending on Arg. Before that, we
define some rules that dictate how the garbled gate is generated. We say that a garbled
table of an ith gate is generated according to white rule if the garbled table of the ith gate
is computed honestly. We say that a garbled table of an ith gate is generated according
to grey rule if every entry in the garbled table of the ith gate encrypts only Kj

b , where jth

wire is the output wire of the ith gate and b is the value carried by the ith gate during the
computation of C on x. We say that a garbled table of an ith gate is generated according
to black rule if the jth wire is assigned two lables Kj

0 and Kj
1 , where jth wire is the output

wire of the ith gate, and every entry in the garbled table of the ith gate encrypts only Kj
b

with bit b randomly sampled.

We now describe the following two cases.

- (Input-dependent Simulation) If Arg = (MSK, i, C, x): the garbled table of the ith

gate is generated according to the grey rule.

- (Input-independent Simulation) If Arg = (st, (skj)j∈Lk
i
, C(x)): we consider the fol-

lowing cases.

∗ If k is odd and the ith gate is in a layer below the (bk2 + 1c)th layer of C: the
garbled table of the ith gate is generated according to the black rule.

∗ If k is odd and the ith gate is in a layer above the (bk2 c+ 1)th layer of C: in this
case, the garbled table of the ith gate is generated according to the white rule.

∗ If k is even and the ith gate is in a layer below (k
2)th layer of C: the garbled table

of the ith gate is generated according to the black rule.

∗ If k is even and the ith gate is in a layer above (k
2 + 1)th layer of C: in this case,

the garbled table of the ith gate is generated according to the white rule.

• SimInpEnck(MSK(k), C, x): Suppose the labels of the input wires are (Kj1
0 ,K

j1
1 , . . . ,K

jn
0 ,Kjn

1).

Generate the input wire labels to be KI = (Kj1
b1
, . . . ,Kjn

bn
), where the bits b1, . . . , bn are

randomly sampled. To generate the translation table, we consider two cases. If k < q then
the translation table is generated honestly, otherwise the translation table is generated as
follows: suppose the garbled table of the ith output gate encrypts the label K then include

in the translation table
(
i;K → (C(x))i;K

′ → (C(x))i

)
with K ′ uniformly sampled inde-

pendent of all the labels sampled in the garbled circuit. The notation K → b means the
label K represents bit b and (C(x))i denotes the ith output bit of C(x).

We omit the proof of indistinguishability of the consecutive simulated distributions since it
essentially follows from the proof of security of Yao’s garbling scheme (see [HJO+16] for a more
modular proof).

3.3 Locally Simulatable Garbling Schemes

We conclude the section by giving a full definition of locally simulatable garbling.

Definition 11 ((Weak; Semi-Adaptive; Strong) (Lsim, Linp)-Locally Simulatable Garbling Schemes).
A scheme consisting of algorithms Π = (Gen,Gb, IEnc,Eval,KeyListGen, LocalKG,GateEnc) is
said to be a (Lsim, Linp)-locally simulatable garbling scheme with Ncomps components if
(Gen,Gb, IEnc,Eval) is a garbling scheme (Section 2.1) and additionally, the following holds:

• Local encoding: In the “strong” case, (KeyListGen, LocalKG,GateEnc) is a local encoding
for Π with Ncomps components.

• Online computational complexity: The evaluation of Π.IEnc(SKInp, x) runs in time
Linp = Linp(λ, |x|,m).

• Lsim-simulation security: Π satisfies (weak; semi-adaptive; strong) Lsim-simulation se-
curity with Ncomps components.

22

4 Statements of Our Results

In this section, we summarize our main results for reference throughout the paper.

4.1 Locally Simulatable Garbling

Our results on the existence of locally simulatable garbling schemes, proved in Section 5, are as
follows.

Theorem 7 (Construction of Strong Locally Simulatable Garbling). Assuming the existence of
selectively secure laconic oblivious transfer (Definition 12), there exists a strong locally simulat-
able garbling scheme (Definition 10) for s-sized circuits with input length n and output length
m with the following parameters:

• The online computational complexity is given by Linp(λ, |x|,m) = n · poly(λ, log(s)) +m.

• The online communication complexity is given by n+m+ poly(λ, log(s)).

• For every s-sized C, the simulation locality is given by Lsim(λ,C) = poly(λ, log(s)).

Corollary 1. The conclusion of Theorem 7 holds under either the CDH assumption or the LWE
assumption.

Remark 2. The online computational complexity of the CDH-based scheme in Theorem 7 is
O(n) +m+ poly(λ, log(s)).

Theorem 8 (Construction of Semi-Adaptive Locally Simulatable Garbling (informal)). Assum-
ing the existence of adaptively secure laconic oblivious transfer (Definition 12), there exists a
semi-adaptive locally simulatable garbling scheme (Definition 8) with the parameters of Theo-
rem 7.

4.2 Succinct Garbling

Our results on the existence of succinct garbling schemes, proved in Section 6, are as follows.

Theorem 9 (Construction of Succinct Garbling). Suppose that the following objects exist:

• A strong (Lsim, Linp)-locally simulatable garbling scheme ΠLGC for all circuits.

• Indistinguishability obfuscation for C where the runtime of the obfuscation is a fixed poly-
nomial in s and λ. The circuit class C =

⋃
k∈N Ck, where Ck consists of all s-sized circuits

with input length k · log(λ).

• A family of one-way functions.

Then, there exists a bounded-runtime succinct garbling scheme (Definition 4) SuccGC for Turing
machines with polynomial runtime T (|x|), input length n and output length m, where:

• The size of an encoded Turing machine 〈M〉 (and runtime of TMEncode(MSK,M)) is
poly(λ, Lsim(λ,C), |M |, log(T)), where C = CktTransform(M,n, T).

• The runtime of InpEncode(MSK, x) is Linp(λ, n,m), and the online communication com-
plexity of SuccGC matches that of ΠLGC.

Moreover, there exists a succinct garbling scheme for Turing machines with unbounded polyno-
mial runtime, bounded input length n and bounded output length m, where:

• The size of an encoded Turing machine 〈M〉 (and runtime of TMEncode(MSK,M)) is
poly(λ, Lsim(λ,C), |M |), where C = CktTransform(M,n, 2λ).

23

• The runtime of InpEncode(MSK, x) is poly(λ) ·Linp(λ, n,m) and the online communication
complexity matches that of ΠLGC up to a factor of λ.

An immediate consequence of the above theorem is the following.

Theorem 10. A succinct garbling scheme exists under either of the following assumptions (all
with polynomial security):

• Compact functional encryption for P/poly and one of {CDH,LWE }.
• Indistinguishability obfuscation for P/poly and one-way functions.

The second of these two statements follows from Appendix A.

4.3 Adaptively Secure Garbling

Our result on adaptively secure garbling schemes, proved in Section 7, is as follows.

Theorem 11 (Construction of Adaptively Secure Garbling). Suppose that the following objects
exist:

• A semi-adaptive (Lsim, Linp)-locally simulatable garbling scheme ΠLGC for P/poly.

• A family of one-way functions.

Then, there exists an adaptively secure garbling scheme ΠAda for P/poly (with bounded output
length m) with online communication complexity Linp(λ, |x|,m) + Lsim · poly(λ).

We now proceed to prove the above results.

5 Locally Simulatable Garbling from Laconic OT

In this section, we prove Theorem 7; that is, we give a construction of a garbling scheme satisfying
strong local simulation security with Lsim = poly(λ, log(s)), Linp(λ, |x|,m) = m+n ·poly(λ), and
Ncomps = s. This construction assumes the existence of appendable laconic oblivious transfer
(lacOT), which is a modification of laconic OT [CDG+17] that we define below. Our construction
follows the [GS18a] construction of adaptively secure garbled circuits from lacOT, with the
following differences:

• We do not make use of somewhere equivocal encryption.

• The natural adaptation of [GS18a] requires a long preprocessing step12; we make use of
appendable laconic OT rather than updatable laconic OT to avoid this problem (and
simplify the construction).

• We make some minor additional changes for ease of presentation.

The [GS18a] result is easily recovered by combining this construction with the generic trans-
formation of Section 7.

We begin by recalling the definition of laconic oblivious transfer, which is taken from
[CDG+17, GS18a].

Definition 12 (Laconic Oblivious Transfer). A laconic oblivious transfer scheme lacOT is spec-
ified by four algorithms (Gen,H,Send,Receive) with the following syntax.

• Gen(1λ) takes as input the security parameter and outputs a common reference string crs.

12For those familiar with [GS18a], the preprocessing corresponds to computing the initial hash value H(crs, 0s).

24

• H(crs, D) is a deterministic algorithm that takes as input the CRS as well as a database
D ∈ {0, 1}∗ and ouputs a hash value h and a state D̂.

• Send(crs, h, i,m0,m1) takes as input the CRS, hash value h, a pair of messages (m0,m1)
and an index i ∈ N. It outputs a ciphertext c.

• ReceiveD̂(crs, c, i) is an algorithm with random access to D̂ that takes as input the CRS, a
ciphertext c, and an index i ∈ N. It outputs a message m.

The scheme lacOT must satisfy the following correctness and security properties:

• Correctness: For all D ∈ {0, 1}∗, all i ∈ N, and all (m0,m1) ∈ {0, 1}2, we have that

ReceiveD̂(crs,Send(crs, h, i,m0,m1), i) = mDi

with probability 1, where crs← Gen(1λ) and (h, D̂)← H(crs, D).

• Sender Privacy: For all D ∈ {0, 1}∗, all i ∈ N, and all (m0,m1) ∈ {0, 1}2, we have that(
crs, h, D̂,Send(crs, h, i,m0,m1)

)
∼=c

(
crs, h, D̂,Send(crs, h, i,mDi ,mDi)

)
where crs← Gen(1λ) and (h, D̂) = H(crs, D).

Adaptive Security of Laconic OT. The above security notion is selective in the sense
that the database D must be specified independently of the CRS. In order to obtain a locally
simulatable garbling scheme satsifying semi-adaptive security, we require that the underlying
laconic OT scheme satisfies adaptive security, meaning that the computational indistinguisha-
bility holds even for (D, i) chosen by an adversary given the CRS in advance. However, strong
local simulation security of our garbling scheme will follow from the selective security of the
underlying laconic OT scheme.

On the Existence of Laconic OT. By [CDG+17, DG17, BLSV18, DGHM18], we know
that laconic OT can be constructed from either the CDH assumption, the LWE assumption, or
the LPN assumption with noise rate log2(n)/n.

Appendability In the construction below, we will make use of a laconic OT scheme with
an additional functionality: the ability of the sender and receiver to update their hash value h
and state D̂, respectively, in a way that corresponds to appending a bit b to the database. We
require that this update procedure is entirely non-interactive once they have agreed on the bit
b.

Definition 13 (Appendable Laconic Oblivious Transfer). A laconic OT scheme lacOT =
(Gen,H,Send,Receive) is called appendable if it supports the following two additional (deter-
ministic) algorithms.

• HashAppend(crs, h, b) takes as input the CRS, hash value h, and a bit b. It outputs an
updated hash value h′.

• AppendD̂(crs, b) is an algorithm with random access to D̂ that takes as input the CRS and
a bit b. It updates the state D̂ → D̂′.

The correctness property that we require is that for all N ∈ N and all D ∈ {0, 1}N , we have that

(HashAppend(crs, h, b),AppendD̂(crs, b)) = H(crs, D′)

with probability 1, where crs← Gen(1λ), (h, D̂) = H(crs, D), and D′ ∈ {0, 1}N+1 is the database
satisfying D′N+1 = b and D′i = Di for all i ≤ N . We require no additional security property.

25

Obtaining Appendable Laconic OT We first note that appendable laconic OT can be
constructed generically from any laconic OT. The construction is as follows. We start with a
laconic OT scheme lacOT = (lacOT.Gen, lacOT.H, lacOT.Send, lacOT.Receive), and we assume
that lacOT.H(crs, D) is computed via a Merkle tree that iteratively computes H(crs, ·) for some
hash function H mapping 2λ bits to λ bits (and that the resulting state D̂ is simply the Merkle
tree). By [CDG+17], this assumption is without loss of generality.13

Given such a laconic OT scheme, one can define an appendable laconic OT scheme as follows.

• Gen(1λ) calls and outputs crs← lacOT.Gen(1λ).

• H(crs, D) is defined as follows: for D ∈ {0, 1}λN+n, let N =
∑λ
i=0Ni2

i be the binary

representation of N .14 Then, let N (j) =
∑log(N)
`=log(N)−j N`2

` be the jth (reverse) truncation

of N , let D(j) = D[λN (j−1) : λN (j) − 1] (this will be the empty string by definition
when Nlog(N)−j = 0), and let (h(j), D̂(j)) = lacOT.H(crs, D(j)) (again interpreted to be
the empty string if Nlog(N)−j = 0). Finally, let d = D[λN, λN + n − 1] and output

h = λN + n||h(0)||h(1)|| . . . ||h(log(N))||d and D̂ = (λN + n, D̂(0), D̂(1), . . . , D̂(log(N)), d).

• Send(crs, h, i,m0,m1) interprets h = λN + n||h(0)||h(1)|| . . . ||h(log(N))||d and does the fol-
lowing: if i ≥ λN , output mdi−λN . Otherwise, output lacOT.Send(crs, h(j), i′), where

j ∈ [log(N)] is the unique index such that i ∈ [λN (j−1), λN (j) − 1] and i′ = i− λN (j−1).

• ReceiveD̂(crs, c, i) outputs c if i ≥ λN , and otherwise calls lacOT.ReceiveD̂
(j)

(crs, c, i′) for
(j, i′) as above.

• HashAppend(crs, h, b) interprets h = λN + n||h(0)|| . . . ||h(log(N))||d and does the follow-
ing. If n 6= λ − 1, simply append b to the end of h. Otherwise, let j∗ be such that
Nj = 1 for all j < j∗ and Nj∗ = 0. Then, let h′log(N) = d||b and repeatedly com-

pute h′`−1 = lacOT.H(crs, h`||h′`) for log(N) ≥ ` ≥ log(N) − j∗ + 1. Finally, output

λ(N + 1)||h(0)||h(1)|| . . . ||h(log(N)−j∗−1)||h′(log(N)−j∗).

• AppendD̂(crs, b) computes the hash value h associated to the databaseD, executes HashAppend(
crs, h, b), and updates (i.e. merges) the corresponding Merkle trees D̂(0), . . . , D̂(log(N)) as
dictated by the new hashing.

The correctness and security properties of our new laconic OT scheme are immediately inherited
from the correctness and security of lacOT. The only other property that needs to be verified
is correctness of appending, which follows immediately from the fact that lacOT.H is computed
via a Merkle tree.

5.1 The LSGS Construction

Let lacOT = (lacOT.Gen, lacOT.H, lacOT.Send, lacOT.Receive, lacOT.HashAppend, lacOT.Append)
be an appendable laconic OT scheme. Let Π = (Gen,Gb,Eval) be a decomposable garbling
scheme (Section 2.2) with simulation security hiding both the circuit and input.15

We construct a locally simulatable garbling scheme ΠLGC for circuits of size s, input length
n, and output length m by first specifying a local encoding (Definition 9) with Ncomps = s

13Technically, this is only possible when we start with laconic OT satisfying adaptive security. The [CDG+17]
construction can be modified to the setting of selective security using a Merkle tree with a new, independently
sampled crsj for each depth j of the tree, and the generic transformation of [CDG+17] can easily be adapted to this
setting as well.

14We assume that N ≤ 2λ.
15By this, we mean that the simulator takes as input only 1|C|, n input labels

−→
lab, and the output C(x). This

definition can be achieved generically from the version stated in Section 2.2 by garbling a universal circuit with the
particular circuit C hard-coded as input.

26

components and then proving that the associated garbling scheme satisfies strong Lsim-local
simulation security (Definition 10) for Lsim = O(log(s)).

To give intuition for our local encoding, we first give an informal description of the local
secret keys in the scheme. The local secret keys are as follows:

• The common key sk⊥, which will be the common reference string of a laconic OT scheme.

• Local labels ski,labels for every i ∈ [s], which are input labels for instances of Π.

• Local one-time pads ski,pad for every i ∈ [s].

We accordingly identify the set [Nkeys] with the set {⊥}∪{(i, labels)}i∈[s]∪{(i,pad)}i∈[s]. More-
over, we define I := {⊥, (1, labels)} ∪ {(i, pad)}ni=1 ∪ {(i, pad)}si=s−m+1

We now formally define the local encoding for ΠLGC.

ΠLGC.KeyListGen(C, i): On input a circuit C and index i ∈ [Ncomps = s], compute the gates
a, b ∈ [s] that are the children of the ith gate of C under some canonical ordering. Output
Li = {⊥, (i, labels), (i,pad), (i+ 1, labels), (a,pad), (b,pad)} and sti = (i, a, b).

Implementing ΠLGC.KeyListGen for Turing Machines Recall that a local encod-
ing (Definition 9) must satisfy the property that KeyListGen(M,T, n, i) can be computed in
time poly(|M |, log(T), log(n)) when M is a Turing machine. Indeed, it is easy to see that
KeyListGen(M,T, n, i) can be implemented via a single call to FindGate(M,n, T, i) (as defined
in Section 2), which gives the result.

ΠLGC.LocalKG(1λ, j): There are three cases describing local key generation.

• If j = ⊥, compute crs← lacOT.Gen(1λ) and output sk⊥ = crs.

• If j = (i,pad), sample a uniformly random bit ri and output ski,pad = ri.

• If j = (i, labels), sample two sets of input labels: lab
R,i ← Π.Gen(1λ, 1λ)16, and lab

W,i
:=(

hlab
W,i
, alab

W,i
, blab

W,i
)
← Π.Gen(1λ, 1λ+2). Then output ski,labels =

(
lab

R,i
, lab

W,i
)

.

ΠLGC.GateEnc(st, (skj)j∈L):

• Parse st = (i, a, b).

• Parse the local secret keys (skj)j∈L as follows: sk⊥ = crs, ski,labels =
(
lab

R,i
, lab

Wi
)

,

ski,pad = ri, ski+1,labels =
(
lab

R,i+1
, lab

Wi+1
)

, ska,pad = ra, skb,pad = rb.

• Define circuits R and W as in Figure 2 and Figure 3, respectively.

• Compute R̃i ← Π.Gb
(

Π.MSK := lab
R,i
, R[crs, lab

W,i
, a, b]

)
.

• Compute W̃i ← Π.Gb
(

Π.MSK := lab
W,i
,W [crs, ra, rb, ri, lab

R,i+1
, i]
)

.

• Output
(
R̃i, W̃i

)
.

ΠLGC.IEnc(MSK, x): Output
(
crs, labR,1[h0], D0, (r`)

s
`=s−m+1

)
, where (h0, D̂0) = lacOT.H(crs, D0)

and D0 = (x1 ⊕ r1)|| . . . ||(xn ⊕ rn). Note that this is a function of SKInp := (skj)j∈I.

ΠLGC.Eval(〈C〉, 〈x〉): First, compute (h0, D̂0) = lacOT.H(crs, D0) (in order to compute D̂0).
Then, for each i = (a, b) ∈ [s], do the following:

16Recall that Π.Gen is defined as follows: it takes as input (1λ, 1n) and outputs 2n input labels, each of length λ.

27

Input: hash value h

Hardwired Values: keys crs, lab
W,i

; indices a, b

• Compute CTa ← lacOT.Send(crs, h, a, alabW,i0 , alabW,i1)

• Compute CTb ← lacOT.Send(crs, h, b, blabW,i0 , blabW,i1).

• Output hlabW,i[h],CTa,CTb.

Figure 2: Description of the Read Circuit R.

Input: hash value h, bits va, vb

Hardwired Values: keys crs, ra, rb, ri, lab
R,i+1

, index i

• Compute vi := ri ⊕ ((va ⊕ ra) NAND (vb ⊕ rb)).
• Compute h′ = lacOT.HashAppend(crs, h, vi).

• Output vi, lab
R,i+1[h′].

Figure 3: Description of the Write Circuit W .

• Compute
(
hlabW,i[hi−1],CTa,CTb

)
= Π.Eval(R̃i, lab

R,i[hi−1]).

• Compute alabW,iva = lacOT.ReceiveD̂i−1(crs,CTa, a) and blabW,ivb
= lacOT.ReceiveD̂i−1(crs,CTb, b).

• Compute vi||labR,i+1[hi] = Π.Eval(W̃i, lab
W,i[hi−1||va||vb]).

• Execute lacOT.AppendD̂i−1(crs, vi) and obtain updated database state D̂i.

Finally, output (rj ⊕Ds[j])
s
j=s−|y|.

Correctness. This garbling scheme is proven correct by an inductive argument that for
each i ∈ [s− n], (hi, D̂i) = lacOT.H(crs, Di), where Di is the database of length i+ n satisfying
Di[`] = r` ⊕ val`(C, x) for all ` ∈ [i + n], and val`(C, x) is the value of the `th gate of C when
evaluated on input x.

We argue as follows. By definition (h0, D̂0) = lacOT.H(crs, D0). For the inductive step,
suppose that (hi−1, D̂i−1) = lacOT.H(crs, Di−1). Then, by the correctness of Π, we have that

the (2i − 1)th execution of Π.Eval outputs
(
hlabW,i[hi−1],CTa,CTb

)
(where CTa and CTb are

lacOT ciphertexts using hash value hi−1). By the correctness of lacOT, we then have that the
ith pair of executions of lacOT.Receive output alabW,iva and blabW,ivb

. Thus, by the correctness

of Π, the 2ith execution of Π.Eval outputs (hi, vi), where (hi, D̂i) = lacOT.H(crs, Di) by the
correctness of lacOT.HashAppend. Finally, we conclude that the ith execution of lacOT.Append
correctly outputs D̂i by the correctness of lacOT.Append. This completes the induction.

28

Online Complexity. We note that by construction, the size of an input encoding of x ∈
{0, 1}n is n + m + poly(λ).17 In addition, the online computational complexity of this scheme
is n · poly(λ) + m; the only work done in the execution of ΠLGC.IEnc is hashing the input x.
More precisely, the online computational complexity is n

λ · Time(lacOT.H) + m + poly(λ), so if
lacOT.H runs in linear time (as is the case for the CDH-based laconic OT of [DG17]), then the
online computational complexity is O(n) +m+ poly(λ).

5.2 Strong Local Simulation

We now write down the associated SimKeyListGenk, SimGtEnck and SimInpEnck algorithms for
k ∈ [q = poly(λ, s)] that satisfy strong Lsim-local simulation security for Lsim = log(s). Our
proof of security follows that of [GS18a]. In order to prove local simulatability, we will define
three local simulator algorithms – SimGtEncWhite, SimGtEncGrey, and SimGtEncBlack – and then
define (SimKeyListGenk, SimGtEnck,SimInpEnck) where each hybrid k corresponds to a “pebble

configuration” mode(k) ∈ {White,Grey,Black}s. Our simulators are defined as follows.

SimGtEncWhite(i, a, b, crs, lab
R,i
, lab

W,i
, ri, lab

R,i+1
, ra, rb): This algorithm is identical to the hon-

est GateEnc algorithm (with unused inputs removed for convenience).

SimGtEncGrey(MSK, i, a, b, hi−1, hi, va, vb, vi): This algorithm controls our input-dependent sim-

ulation; it takes as additional input hash values (hi−1, hi) and bits (va, vb, vi). It operates as
follows.

• Compute ciphertexts CTa ← lacOT.Send(crs, hi−1, a,
(
alabW,iva , alab

W,i
va

)
), CTb ← lacOT.Send(crs,

hi−1, b,
(
blabW,ivb

, blabW,ivb

)
).

• Compute simulated garbled circuits R̃i ← Π.Sim
(

1|R|, labR,i[hi−1],
(
hlabW,i[hi−1],CTa,CTb

))
as well as W̃i ← Π.Sim

(
1|W |, labW,i[hi−1||va||vb], vi||labR,i+1[hi]

)
.

• Output
(
R̃i, W̃i

)
.

SimGtEncBlack(i, a, b, crs, lab
R,i
, lab

W,i
, ri, lab

R,i+1
): This algorithm crucially does not require

ra or rb as input. It computes R̃i exactly as in GateEnc, and computes W̃ ′i ← Π.Gb(MSK :=

lab
W,i
,W ′[crs, ri, lab

R,i+1, i]), where the fake write circuit W ′ is defined in Fig. 4. Finally, it

outputs
(
R̃i, W̃

′
i

)
.

We now define (SimKeyListGenk, SimGtEnck,SimInpEnck), where each k is associated to a

configuration mode(k) ∈ {white, grey,black}s. The configuration mode(k) is specified by the
pebbling game defined in [GS18a], which we will describe later.

The set Tk is defined to be the set of all i such that mode
(k)
i = Grey.

SimKeyListGenk(C, i) outputs L
(k)
i = {⊥, (i, labels), (i,pad), (i+1, labels), (a,pad), (b,pad)} – as

computed by KeyListGen(C, i) – if mode
(k)
i ∈ {White,Grey}, and outputs L

(k)
i = {⊥, (i, labels),

(i,pad), (i+ 1, labels)} if mode(k) = Black. It also always outputs st
(k)
i = (i, a, b).

17If we only care about obtaining strong local simulatability and not semi-adaptive security, the output dependence
can be moved to the circuit/TM encoding instead of the input encoding.

29

Input: hash value h, bits va, vb

Hardwired Values: index i, keys crs, ri, lab
R,i+1

• Set vi := ri.

• Compute h′ = lacOT.HashAppend(crs, h, vi).

• Output vi, lab
R,i+1[h′].

Figure 4: Description of the Fake Write Circuit W ′.

SimGtEnck: To define this algorithm, we must describe both the input-dependent and input-
independent simulation.

The input-dependent simulation algorithm receives as input (MSK, i, C, x) and does the
following:

• Compute the children (a, b) of i in C (as in KeyListGen).

• For every gate g, set vg to be rg ⊕ valg(C, x), where valg(C, x) is the value of the gate g of
C on input x.

• Compute hi−1 = lacOT.H(crs, Di−1), where Di−1 = v1|| . . . ||vi−1, and similarly compute
hi = lacOT.H(crs, Di)

• Call SimGtEncGrey(MSK, i, a, b, hi−1, hi, va, vb, vi) for i = (a, b).

The input-independent simulation algorithm receives as input (st, (skj)j∈L, C(x)) and calls
SimGtEnc

mode
(k)
i

(st, (skj)).
18

SimInpEnck(MSK, C, x): For all output gates ` > s −m, set r′` = r` ⊕ C(x)`−s+m if mode
(k)
` =

black; otherwise, set r′` = r`. If mode(k)g = Black for every g > n, then set vi = ri for all i ∈ [n];

otherwise, set vi = ri ⊕ xi for all i ∈ [n]. Output
(
crs, labR,1[h0], (vi)

|x|
i=1, (r

′
j)
s
j=s−|y|+1

)
, where

h0 = lacOT.H(crs, v1|| . . . ||vn).

To finish our description of the local simulation strategy, we must describe the configurations
mode(k) ∈ {White,Grey,Black}s. We say that a pair of modes (mode,mode′) is a valid tran-
sition if mode and mode′ differ on a single index i ∈ [s], and one of the following two conditions
holds.

• Grey Rule: {modei,mode′i} = {Grey,White} and modei−1 = Grey (or i = 1).

• Black Rule: {modei,mode′i} = {Grey,Black}, modei−1 = Grey (or i = 1), and mode` =
Black for all ` > i.

Our sequence of modes mode(1), . . . ,mode(q) is then defined by a pebbling strategy.

Lemma 1 ([GS18a] Lemma 5.2). There exists a sequence of modes (mode(1), . . . ,mode(q)) with
q = poly(s) satisfying the following properties.

• mode(1) is the “all White” mode.

• mode(q) is the “all Black” mode.

18The gate number i is always part of st, so this is well-defined and efficient.

30

• (mode(k),mode(k+1)) is a valid transition for each k.

• For every k, at most log(s) indices i satisfy mode
(k)
i = Grey.

This completes our description of the locally simulatable garbling scheme and its simulation
strategy. We first observe that the syntactic properties of strong local simulation are satisfied:

• The final simulator is input-independent. Namely, Tq = ∅ and SimInpEncq is an

efficient function of (C,C(x)) rather than (C, x) because mode
(q)
i = Black for all i.

• Neighbor lists and states are small and efficiently computable. In particular,∣∣∣L(k)
i

∣∣∣ ≤ 6 and
∣∣∣st(k)i

∣∣∣ = 3 log(s) for all (i,k).

• Input-dependent simulation is local. By Lemma 1, |Tk| ≤ log(s) for every k.

• Input-independent hybrid simulators are functionally equivalent. Indeed, the
input-independent simulation algorithms and simulated neighbor algorithms in hybrid k
and hybrid k + 1 are functionally equivalent, as on input i they are a fixed function of

mode
(k)
i = mode

(k+1)
i .

Thus, all of the auxiliary requirements (as per Definition 10) of our simulation strategy
are satisfied, so all that remains to be verified is the indistinguishability condition. Recall
the indistinguishability condition: for every C, x, k, and adversarially chosen local secret keys
{skj}j 6∈listrandk

, we want to show that D0(MSK) ≈c D1(MSK), where Db(MSK) is sampled in the
following way:

• For every i ∈ Tk ∪ Tk+1, sample 〈gi〉 in one of two ways:

- If i ∈ Tk+b, compute 〈gi〉 ← SimGtEnck+b(MSK, i, C, x).

- If i /∈ Tk+b, compute 〈gi〉 ← SimGtEnck+b(st
(k+b)
i , (skj)j∈L(k+b)

i
, C(x)), where (st

(k+b)
i ,L

(k+b)
i) =

SimKeyListGenk+b(C, i).

• Sample 〈x〉 ← SimInpEnck+b(MSK, C, x).

• Output

({
〈gi〉

}
i∈Tk∪Tk+1

, 〈x〉 ,
{
skj

}
j∈listpublick

)
.

We are guaranteed by Lemma 1 that (mode(k),mode(k+1)) is a valid transition for every k. Let

i∗ be the unique index for which mode
(k)
i∗ 6= mode

(k+1)
i∗ . We will prove the indistinguishability

condition by considering two cases.

Case 1: (mode(k),mode(k+1)) satisfies the “Grey Rule.” This case follows from
the argument [GS18a] Lemma 5.3, with the caveat of keeping track of which secret keys are
random vs. adversarially generated, and which keys are given to the adversary. In addition,
because we are only proving a form of selective security, we can rely on the selective security
of the underlying Laconic OT scheme (along with the simulation security of the underlying
decomposable garbling scheme).

We sketch a sequence of (sub)hybrids proving indistinguishability in this case. We assume

that i∗ 6= 1 (the i∗ = 1 case follows similarly), and we assume that mode
(k)
i∗ = White (the other

case is symmetric). In each hybrid, we only change how the i∗th gate encoding is sampled.

• Hyb0 : This is the original distributionD0(MSK) =
{({
〈gi〉(k)

}
i∈Tk∪Tk+1

, 〈x〉(k) , {skj}j∈listpublick

)}
.

• Hyb1 : This matches the original distribution, except that the first half of 〈gi∗〉 (the garbled

“Read” circuit) is instead generated by computing ciphertexts CTa ← lacOT.Send
(
crs, hi∗−1, a, alab

W,i∗
)

,

31

CTb ← lacOT.Send
(
crs, hi∗−1, b, blab

W,i∗
)

, and sampling

R̃i∗ ← Π.Sim
(

1|R|, labR,i
∗
[hi∗−1],

(
hlabW,i

∗
[hi∗−1],CTa,CTb

))
.

Indistinguishability between Hyb0 and Hyb1 follows from the simulation security of Π,

where we make use of the fact that (i∗, labels) ∈ listrandk and (i∗, labels) 6∈ listpublick (the

latter is true because the previous gate is in “Grey” mode), so the labels lab
R,i∗

[1λ⊕hi∗−1]
do not appear elsewhere in the hybrid random variables (again because the previous gate
is in “Grey” mode).

• Hyb2 : This matches Hyb1, except that the ciphertexts CTa and CTb are instead sampled

as CTa ← lacOT.Send(crs, hi∗−1, a,
(
alabW,i

∗

va , alabW,i
∗

va

)
), CTb ← lacOT.Send(crs, hi∗−1, b,(

blabW,i
∗

vb
, blabW,i

∗

vb

)
).

Indistinguishability between Hyb1 and Hyb2 follows from the sender privacy of lacOT. This
follows from the fact that crs is sampled uniformly at random (i.e., ⊥ ∈ listrandk) – all other
parameters may be chosen adversarially (and publicly) in the reduction to lacOT.Send
security (as long as the database D is chosen independently of crs, which is the case here).

• Hyb3: This is the distributionD1(MSK) =
{({
〈gi〉(k+1)

}
i∈Tk∪Tk+1

, 〈x〉(k+1)
, {skj}j∈listpublick

)}
.

More specifically, this matches Hyb2, except that the second half of 〈gi∗〉 (the garbled

“Write” circuit) is instead generated by sampling W̃i∗ ← Π.Sim
(

1|W |, labW,i
∗
[hi∗−1], hi∗ ||labR,i

∗+1[hi∗]
)

.

Indistinguishability between Hyb2 and Hyb3 follows from the simulation security of Π,

where we make use of the fact that that (i∗, labels) ∈ listrandk and (i∗, labels) 6∈ listpublick

(the latter is true because the previous gate is in “Grey” mode), so the labels lab
W,i∗

[1λ⊕
(hi∗−1||va||vb)] do not appear elsewhere in the hybrid random variables (this additionally

uses the fact that R̃i∗ is already simulated).

Case 2: (mode(k),mode(k+1)) satisfies the “Black Rule.” This case follows from the
argument [GS18a] Lemma 5.4, with the caveat of keeping track of which secret keys are random
vs. adversarially generated, and which keys are given to the adversary.

We describe a sequence of (sub)hybrids proving indistinguishability in this case. We assume

that i∗ 6= 1 (the i∗ = 1 case follows similarly), and we assume that mode
(k)
i∗ = Black (the other

case is symmetric). In each hybrid, we only change how the i∗th gate encoding is sampled (and
possibly the input encoding).

• Hyb0 : This is the original distributionD0(MSK) =
{({
〈gi〉(k)

}
i∈Tk∪Tk+1

, 〈x〉(k) , {skj}j∈listpublick

)}
.

• Hyb1 : This matches the original distribution, except that the first half of 〈gi∗〉 is instead

generated by computing ciphertexts CTa ← lacOT.Send
(
crs, hi∗−1, a, alab

W,i∗
)

, CTb ←

lacOT.Send
(
crs, hi∗−1, b, blab

W,i∗
)

, and sampling

R̃i∗ ← Π.Sim
(

1|R|, labR,i
∗
[hi∗−1],

(
hlabW,i

∗
[hi∗−1],CTa,CTb

))
.

Indistinguishability between Hyb0 and Hyb1 follows from the simulation security of Π,

where we make use of the fact that (i∗, labels) ∈ listrandk and (i∗, labels) 6∈ listpublick (the

latter is true because the previous gate is in “Grey” mode), so the labels lab
R,i∗

[1λ⊕hi∗−1]
do not appear elsewhere in the hybrid random variables (again because the previous gate
is in “Grey” mode).

32

• Hyb2 : This matches Hyb1, except that the ciphertexts CTa and CTb are instead sampled

as CTa ← lacOT.Send(crs, hi∗−1, a,
(
alabW,i

∗

va , alabW,i
∗

va

)
), CTb ← lacOT.Send(crs, hi∗−1, b,(

blabW,i
∗

vb
, blabW,i

∗

vb

)
).

Indistinguishability between Hyb1 and Hyb2 follows from the sender privacy of lacOT. This
follows from the fact that crs is sampled uniformly at random (i.e., ⊥ ∈ listrandk) – all other
parameters may be chosen adversarially (and publicly) in the reduction to lacOT.Send
security.

• Hyb3: This matches Hyb2, except that the second half of 〈gi∗〉 is instead generated by

sampling W̃i∗ ← Π.Sim
(

1|W |, labW,i
∗
[hi∗−1], vi∗ ||labR,i

∗+1[hi∗]
)
19.

Indistinguishability between Hyb2 and Hyb3 follows from the simulation security of Π,

where we make use of the fact that that (i∗, labels) ∈ listrandk and (i∗, labels) 6∈ listpublick

(the latter is true because the previous gate is in “Grey” mode), so the labels lab
W,i∗

[1λ⊕
(hi∗−1||va||vb)] do not appear elsewhere in the hybrid random variables (this additionally

uses the fact that R̃i∗ is already simulated).

• Hyb4: This is the distributionD1(MSK) =
{({
〈gi〉(k+1)

}
i∈Tk∪Tk+1

, 〈x〉(k+1)
, {skj}j∈listpublick

)}
.

More specifically, the difference between Hyb3 and Hyb4 is that in Hyb3, we define vi∗ = ri∗

while in Hyb4, we define vi∗ = ri∗ ⊕ vali∗(C, x), and if i∗ is an output gate, then one bit of
〈x〉 changes from r′i∗ = ri∗ ⊕ vali∗(C, x) to r′i∗ = ri∗ .

We claim that Hyb3 and Hyb4 produce identical distributions. This follows from the fact

that (i∗,pad) ∈ listrandk and (i∗,pad) 6∈ listpublick ; the latter fact crucially requires that all
gates g > i∗ are already in Black mode, so that (i∗,pad) is no longer in the neighbor list
for any other gate.

Having analyzed the two cases, we have completed the proof of strong local simulation security.

5.3 Semi-Adaptive Local Simulation Security

In the previous section, we proved that the scheme ΠLGC satisfies strong local simulation security.
It also satisfies semi-adaptive local simulation security (with the same Linp and Lsim) assuming
that the underlying laconic OT scheme is adaptively secure. This follows by the same hybrid
arguments desribed in the previous section, with the following minor differences:

• We make use of the fact that SimGtEncWhite and SimGtEncBlack do not require the output
C(x) as input (so that input-independent simulated gates can be provided in the semi-
adaptive security game).

• The indistinguishability of Hyb1 and Hyb2 (in both of the cases above) follows by a reduc-
tion from the adaptive security of the laconic OT scheme; this is necessary because in the
semi-adaptive security game, the input x (and hence the database D) can depend on the
input-independent simulated gates (and hence on the crs of the laconic OT scheme).

6 Succinct Garbling from IO through Locally Simulatable
Garbling

In this section, we prove Theorem 9; that is, we construct a succinct garbling scheme (Defini-
tion 3) from indistinguishability obfuscation and a strong locally simulatable garbling scheme
(Definition 10).

19Recall that vi∗ = ri∗ is not sampled honestly at this point (since we started in Black mode), but vg is sampled
honestly for every g < i∗.

33

Input: index i ≤ T
Hardwired Values: TM M , input length n, time bound T , puncturable PRF keys K1,
K2.

• Compute KeyListGen(M,T, n, i) to obtain (Li, sti).

• For every j ∈ Li, compute skj ← LocalKG(1λ, j;PRF(K1, j)).

• Compute 〈gi〉 ← GateEnc (sti, {skj}j∈Li ;PRF(K2, i)).

• Output 〈gi〉.

Figure 5: Description of H.

To construct a succinct garbling scheme, we first construct the weaker notion of bounded
runtime succinct garbling scheme (Definition 4) and then show how to generically transform it
into a succinct garbling scheme without any restriction on the upper bound on the runtime of
the Turing machines.

6.1 Bounded Runtime Case

We show how to construct a bounded runtime succinct garbling scheme from a (Lsim, Linp)-
strong locally simulatable garbling scheme ΠLGC = (ΠLGC.Gen,ΠLGC.Gb,ΠLGC.IEnc,ΠLGC.Eval)
with local encoding algorithms (KeyListGen, LocalKG,GateEnc). The size of the succinct garbling
depends on the parameters Lsim and Linp.

We use the following two additional tools in this transformation.

• A puncturable pseudorandom function family PRF.

• An indistinguishability obfuscator iO for polynomial-sized circuits of input length log(T)
and size poly(λ, log(T)), where T is a time bound on the running time of the Turing
machines.

We denote the bounded runtime succinct garbling scheme by SuccGC = (Gen,TMEncode, InpEncode,
Eval) for a set M.

Setup(1λ, T, 1n, 1m): On input security parameter λ, time bound T , input n and output length
m, sample a pseudorandom function key K1. Output MSK = (K1,m, n).

TMEncode(MSK, T,M): On input master secret key MSK, time bound T , and Turing machine

M , sample a PRF key K2. Compute H̃ ← iO(1λ, H), where H is defined in Figure 5. The
circuit H will be suitably padded, as is standard in iO constructions, such that the circuits
H, Hk (Figure 6) and Hyb.Hk (Figure 7) have the same sizes, for every k ∈ [q]. Set the TM

encoding 〈M〉 to be (T, H̃).

InpEncode(MSK, T, x): On input master secret key MSK, time bound T and input x, compute

skj ← LocalKG(1λ, j;PRF(K1, j)) for every j ∈ [I], where I is the set associated with ΠLGC.IEnc
and T,m (see Definition 9). Set SKInp = (skj)j∈[I]. Output 〈x〉 ← ΠLGC.IEnc (SKInp, x).

34

Eval(〈M〉 , 〈x〉): It takes as input TM encoding 〈M〉 and input encoding 〈x〉. Parse 〈M〉 =

(T, H̃). For every i ∈ [T], compute 〈gi〉 = H̃(i). Output y := ΠLGC.Eval(〈C〉 , 〈x〉), where
〈C〉 = (〈g1〉, . . . , 〈gT 〉).

Correctness. Consider input x and M ∈M. Let C be the output of CktTransform(M, |x|, T)
(defined in Section 2). Let 〈M〉 ← TMEncode(MSK, T,M) and 〈x〉 ← InpEncode(MSK, T, x),

where MSK← Setup(1λ). As in Eval, parse 〈M〉 as (T, H̃).

Observe that (H̃(1), . . . , H̃(T)) is computationally indistinguishable from (〈g1〉, . . . , 〈gT 〉)←
ΠLGC.Gb(MSK, C) by the security of pseudorandom functions. This means that the output distri-
butions of Eval(〈M〉 , 〈x〉) and ΠLGC.Eval ((〈g1〉, . . . , 〈gT 〉), 〈x〉) are computationally indistinguish-
able. By the correctness and local encoding property of ΠLGC, we have that ΠLGC.Eval((〈g1〉, . . . , 〈gT 〉),
〈x〉) = C(x) (which is nothing but M(x)) with overwhelming probability. Thus, with overwhelm-
ing probability, we have Eval(〈M〉 , 〈x〉) = M(x).

If ΠLGC satisfied perfect correctness then SuccGC will (unconditionally) satisfy perfect cor-
rectness.

Efficiency. Suppose that ΠLGC is a (Lsim, Linp)-strong locally simulatable garbling scheme,
and in particular has a (Lsim, Linp)-local encoding algorithm. Then, our scheme SuccGC has
online computational complexity Linp(λ, |x|,m) · poly(λ)20.

The time to compute H̃ is poly (λ,max{|H|, |Hk|, |Hyb.Hk|}). We calculate |H|, |Hk|, |Hyb.Hk|
below.

• From Definition 9, KeyListGen runs in time at most poly(|M |, log(T)). LocalKG runs in
time polynomial in the size of its inputs, i.e., poly(λ, log(poly(T))). The input to GateEnc
is |L| number of secret keys, each of size poly(λ), where |L| is the length of output of
KeyListGen(M, i), for any i ≤ T . From Definition 10, we have that |L| is upper bounded
by poly(λ, log(T)). Thus, GateEnc can be computed in time at most poly(λ, |M |, log(T)).
Thus, the size of H is at most poly(λ, |M |, log(T)).

• From Definition 10, we have |Tk| ≤ Lsim and thus, membership in Tk can be decided by
a circuit of size at most poly(λ, Lsim). We have that SimKeyListGenk(·) runs in time at
most polynomial in (|M |, log(T)). As before, LocalKG can be computed in time at most
poly(λ, log(T)). Note that the input-independent simulator SimGateEnck runs in time
polynomial in λ, |st|, |L|. From Definition 10, we have both |st| and |L| upper bounded
by poly(λ, log(T)). Hence, SimGateEnc runs in time at most poly(λ, log(T)). Using these
calculations, we can upper bound |Hk| to be poly(λ, Lsim, |M |, log(T)).

• From Definition 10, we have |Tk|, |Tk+1| ≤ Lsim and thus the membership in Tk ∪ Tk+1

can be determined by a circuit of size poly(λ, Lsim). As before, KeyListGen and LocalKG
can be computed in time at most poly(λ, |M |, log(T)). Also, as before, input-independent
simulator SimGateEnc can be computed in time at most poly(λ, log(|C|)). Thus, we can
upper bound |Hyb.Hk| to be poly(λ, Lsim, |M |, log(T)).

Using the above bounds, we conclude that |H̃| = poly(λ, Lsim, |M |, log(T)).
In Section 5, we show the existence of a strong locally simulatable garbling scheme with

Lsim upper bounded by polynomial in λ. Using this, we obtain a succinct garbling scheme with
succinctness poly(λ, |M |, log(T)). If we instead implement the strong locally simulatable garbing
schemes using Yao’s garbling scheme, we obtain a succinct garbling scheme with succinctness
poly(λ, |M |, S), where S denotes a bound on the space of the Turing machine to be garbled;
this scheme is exactly the scheme of [BGL+15].

20Note that the computation of SKInp can be performed in the setup phase and in this case, the online computational
complexity of SuccGC is Linp(λ, |x|,m).

35

6.2 Proof of Security

To prove the security of SuccGC, we invoke the strong local simulation security of ΠLGC. ΠLGC

is associated with a set of local simulators ({SimKeyListGenk,SimGtEnck,SimInpEnck}k∈[q]) and
a vector of sets {Tk}k∈[q] that satisfies strong local simulation security. We prove the following
lemma.

Lemma 2. SuccGC satisfies the security property of a succinct garbling scheme (Definition 4).

We crucially employ the local simulation strategy of ΠLGC to prove the above lemma. Namely,
for a fixed (adversarially chosen) TM, input and time bound (M,x, T), we define the hybrid
simulators (SimTMEncodek,SimInpEncodek), for k ∈ [q].

Informally, SimTMEncodek outputs an obfuscated circuit, which has hardwired inside it the
input-dependent simulated gate encodings along with a small subset of secret keys and the input-
independent gate encodings and the other secret keys are generated “on-the-fly” (i.e. within
the circuit) using a PRF key.

SimTMEncodek(MSK, 1T ,M, x, y): On input master secret key MSK, time bound T , Turing
machine M , input x, output y = M(x), do the following:

• Compute C = CktTransform(M, |x|, T).

• For every i∗ ∈ [Ncomps], compute SimKeyListGenk(M,T, n, i∗) to obtain Lk
i∗ and stki∗ .

• Let L̂ =
(⋃

i∗∈Tk
Lk
i∗
)⋂ (⋃

i∗ /∈Tk
Lk
i∗
)
.

• For every j∗ ∈
⋃
i∗∈Tk

Lk
i∗ , sample sk

(k)
j∗ ← LocalKG(1λ, j∗). For every j∗ /∈

⋃
i∗∈Tk

Lk
i∗ ,

sample sk
(k)
j∗ ← LocalKG(1λ, j∗;PRF(K1, j

∗)). That is, all the keys indexed by
⋃
i∗∈Tk

Lk
i∗

are sampled using fresh randomness and the other keys are sampled using randomness

drawn from a PRF. Set MSK(k) =
(
sk

(k)
1 , . . . , sk

(k)
Nkeys

)
.

• For every i∗ ∈ Tk, sample 〈g̃i∗〉(k) ← SimGtEnck
(
MSK(k), i∗, C, x

)
.

• Compute H̃k ← iO(1λ, Hk), where Hk is defined in Figure 6. Set the TM encoding 〈M〉
to be (T, H̃k).

Note: The running time of SimTMEncodek is polynomial in (λ, T, |M |, |x|, |M(x)|).

SimInpEncodek(MSK, 1T ,M, x): Output 〈x〉 = ΠLGC.SimInpEnck(MSK, C, x), where C = CktTransform(
M, |x|, T).

We then define the simulator SuccGC.Sim that on input (1λ, 1n, 1T ,M,M(x)) it first gener-
ates MSK ← ΠLGC.Gen(1λ, T, 1n, 1m), then computes SimTMEncodeq(MSK, 1n, 1T ,M,M(x))
and SimInpEncodeq(MSK, 1n, 1T ,M,M(x))). Note that SimTMEncodeq and SimInpEncodeq only

require (MSK, 1n, 1T ,M,M(x)) as input rather than (MSK, 1T ,M, x) since the algorithms (
SimKeyListGenq,SimGtEncq,SimInpEncq) associated with ΠLGC only require (M,M(x)) rather
than (M,x) (we crucially use the fact that Tq = ∅).

We now prove that for every Turing machine M and input x, the pairs of distributions Dk

and Dk+1 are negl(λ)-computationally indistinguishable, where

Dk :=
{(

SimTMEncodek(MSK, 1T ,M, x),SimInpEncodek(MSK, 1T ,M, x)
)}
.

Once we have done so, we will have proved Lemma 2.

Lemma 3. Assuming that ΠLGC is a ε-secure strong locally simulatable garbling scheme, PRF
is a ε′-secure puncturable PRF and iO is a ε′′-secure indistinguishability obfuscator, we have Dk

and Dk+1 are 7(ε+ ε′ + ε′′)-computationally indistinguishable, for every k ∈ [q].

36

Input: index i ≤ T
Hardwired Values: TM M , input length n, time bound T , value y, set Tk, set L̂, secret
keys {skj∗}j∗∈L(k) , simulated gates {〈g̃i∗〉(k)}i∗∈Tk , PRF keys K1, K2.

• If i ∈ Tk, output 〈g̃i〉(k).
• Otherwise:

– Compute SimKeyListGenk(M,T, n, i) to obtain (Lk
i , st

k
i).

– For every j ∈ Lk
i \L̂, compute skj = LocalKG(1λ, j;PRF(K1, j)).

– Compute 〈gi〉(k) = SimGtEnck

(
sti, {skj}j∈Lk

i
, y;PRF(K2, i)

)
.

– Output 〈gi〉(k).

Figure 6: Description of Hk.

Proof. We state the following hybrids.

Hyb1: Dk. The output distribution of this hybrid is identical to Dk.

Hyb2: Hardwire Gate Encodings and Keys with respect to Tk+1. In this hybrid,
the gate encodings with respect to Tk+1 are hardwired. In addition, the keys indexed by the
set (∪i∈Tk∪Tk+1

Lk
i) ∩ (∪i/∈Tk∪Tk+1

Lk
i) are hardwired inside the obfuscated circuit. Recall that

in the previous hybrid, the keys indexed by the set ∪i∈Tk
Lk
i are hardwired in the obfuscated

circuit. We describe the formal details below.
The garbling of M is computed as follows: On input master secret key MSK, time bound T ,

Turing machine M , and input x, perform the following operations.

• Compute C = CktTransform(M, |x|, T).

• For every i∗ ∈ [Ncomps], compute SimKeyListGenk(M,T, n, i∗) to obtain (Lk
i∗ , st

k
i∗).

• Set L̂ =
(⋃

i∗∈Tk∪Tk+1
Lk
i

)⋂(⋃
i∗ /∈Tk∪Tk+1

Lk
i

)
.

• For every j∗ ∈
⋃
i∗∈Tk

Lk
i∗ , sample sk

(k)
j∗ ← LocalKG(1λ, j∗). For every j∗ /∈

⋃
i∗∈Tk

Lk
i∗ ,

sample sk
(k)
j∗ ← LocalKG(1λ, j∗;PRF(K1, j

∗)). That is, all the keys indexed by
⋃
i∗∈Tk

Lk
i∗

are sampled using fresh randomness and the other keys are sampled using randomness

drawn from a PRF. Set MSK(k) = (sk
(k)
1 , . . . , sk

(k)
q).

• For every i∗ ∈ Tk, sample 〈g̃i∗〉(k) ← SimGtEnck(MSK(k), i∗, C, x).

• For every i∗ ∈ Tk+1\Tk, sample 〈g̃i∗〉(k) ← SimGtEnck(sti∗ , (sk
(k)
j)j∈Lk

i∗
, y;PRF(K2, i

∗)).

Note that the simulated gate encodings are still computed according to (ΠLGC.SimKeyListGenk,
ΠLGC.SimGtEnck,ΠLGC.SimInpEnck).

• Puncture K1 at
⋃
i∗∈Tk∪Tk+1

Lk
i to obtain the key K∗1 . Puncture K2 at Tk∪Tk+1 to obtain

the key K∗2 .

• Compute H̃yb.Hk ← iO(1λ,Hyb.Hk), where Hyb.Hk is defined in Figure 7. Set the TM

encoding 〈M〉 to be (T, H̃yb.Hk).

37

Input: index i ≤ T
Hardwired Values: TM M , value y, set Tk, set L̂, secret keys {skj∗}j∗∈L̂, simulated

gates {〈g̃i∗〉(k)}i∗∈Tk∪Tk+1
, punctured PRF keys K∗1 , K∗2 .

• If i ∈ Tk ∪ Tk+1, output 〈g̃i〉(k).
• Otherwise:

– Compute SimKeyListGenk(M,T, n, i) to obtain (Lk
i , st

k
i).

– For every j ∈ Lk
i \L̂, compute skj = LocalKG(1λ, j;PRF(K∗1 , j)).

– Compute 〈gi〉(k) = SimGtEnck(stki , {skj}j∈Lk
i
, y;PRF(K∗2 , i)).

– Output 〈gi〉(k).

Figure 7: Description of Hyb.Hk.

The encoding of x is still computed using SimInpEnck as in the previous hybrid. The output of
this hybrid is the garbling of M (as computed above) and the input encoding of x.

Note that the circuits Hk and Hyb.Hk are equivalent; the only difference between the de-
scriptions of Hk and Hyb.Hk is that for the indices corresponding to Tk+1, the outputs are
pre-computed (according to Hk) and hardwired in Hyb.Hk. By the security of iO, it follows that
the output distributions of Hyb1 and Hyb2 are computationally indistinguishable.

Hyb3: Fresh randomness used for Tk+1. The secret keys {skj}j∈⋃i∗∈Tk∪Tk+1
Li∗ are

generated using fresh randomness (instead of PRF(K1, ·)); that is, generate skj ← LocalKG(1λ, j)
for every j ∈

⋃
i∗∈Tk∪Tk+1

Li∗ . Recall that in the previous hybrid only the secret keys indexed

by
⋃
i∗∈Tk

Li∗ are generated using fresh randomness. Also, for every i∗ ∈ Tk+1\Tk, compute

〈g̃i∗〉(k) ← SimGtEnck(sti∗ , (sk
(k)
j)j∈Li∗ , y) (freshly sampled randomness is used). The rest of

the steps of the garbling procedure is as described in the previous hybrid.
By the security of puncturable PRFs (recall that the PRF keyK1 is punctured at

⋃
i∗∈Tk∪Tk+1

Li
and PRF key K2 is punctured at Tk ∪ Tk+1), the output distributions of Hyb2 and Hyb3 are
computationally indistinguishable21.

Hyb4: Switch Hardwired Gate Encodings from SimGtEnck to SimGtEnck+1. In
this hybrid, the simulated gates hardwired in Figure 7 are instead generated using (SimKeyListGenk+1,
SimGtEnck+1) and the simulated input encoding is computed according to SimInpEnck+1. That
is,

• Compute C = CktTransform(M, |x|, T).

• For every i∗ ∈ [Ncomps], compute SimKeyListGenk(M,T, n, i∗) to obtain (Lk
i∗ , st

k
i∗).

• For every i∗ ∈ [Ncomps], also compute SimKeyListGenk+1(M,T, n, i∗) to obtain (Lk+1
i∗ , stk+1

i∗).

• Set L̂ =
(⋃

i∗∈Tk∪Tk+1
Lk
i

)⋂(⋃
i∗ /∈Tk∪Tk+1

Lk
i

)
.

21Note that the security of puncturable PRFs is invoked twice (for K∗1 and K∗2) to argue indistinguishability of
Hyb2 and Hyb3.

38

• For every j∗ ∈
⋃
i∗∈Tk∪Tk+1

Lk
i∗ , sample sk

(k)
j∗ ← LocalKG(1λ, j∗). For every j∗ /∈

⋃
i∗∈Tk∪Tk+1

Lk
i∗ ,

sample sk
(k)
j∗ ← LocalKG(1λ, j∗;PRF(K1, j

∗)). That is, all the keys indexed by
⋃
i∗∈Tk∪Tk+1

Lk
i∗

are sampled using fresh randomness and the other keys are sampled using randomness

drawn from a PRF. Set MSK(k) = (sk
(k)
1 , . . . , sk

(k)
q).

• For every i∗ ∈ Tk+1, sample 〈g̃i∗〉(k+1) ← SimGtEnck+1(MSK(k), i∗, C, x).

• For every i∗ ∈ Tk\Tk+1, sample 〈g̃i∗〉(k+1) ← SimGtEnck+1(st
(k+1)
i∗ , (sk

(k+1)
j)j∈Lk+1

i∗
, y).

• Puncture K1 at
(⋃

i∗∈Tk∪Tk+1
Lk
i∗

)
to obtain the key K∗1 . Puncture K2 at Tk ∪ Tk+1 to

obtain the key K∗2 .

• Compute H̃yb.Hk ← iO(1λ,Hyb.Hk), where Hyb.Hk is defined in Figure 7. Note that the
gate encodings {〈g̃i∗〉(k+1)}i∗∈Tk∪Tk+1

are hardwired inside the circuit Hyb.Hk (instead

of {〈g̃i∗〉(k)}i∗∈Tk∪Tk+1
). We want to emphasize that the secret keys indexed by the list

L̂ (computed with respect to SimKeyListGenk(·)) are hardwired in the circuit, just like
the previous hybrids. Moreover, SimKeyListGenk(·) and SimGtEnck(·) are still used in the
circuit to generate the ith gate encodings for i /∈ Tk ∪ Tk+1. Set the TM encoding 〈M〉 to

be (T, H̃yb.Hk).

The input encoding is generated as follows: compute 〈x〉 ← SimInpEnck+1(MSK, 1T ,M, x). We
prove the following claim.

Claim 1. The strong local simulation security property of ΠLGC implies that the output distri-
butions of hybrids Hyb3 and Hyb4 are computationally indistinguishable.

Proof. Suppose the output distributions of Hyb3 and Hyb4 are distinguishable, we violate the
security of ΠLGC. Let A distinguish the output distributions of Hyb3 and Hyb4.

We construct adversary B as follows: let listpublick =
⋃
i∗ /∈Tk∪Tk+1

L
(k)
i∗ and listrandk =

⋃
i∗∈Tk∪Tk+1

L
(k)
i∗ ,

where (L
(k)
i∗ , sti∗) = SimKeyListGenk(M,T, n, i∗). For every j /∈ listrandk , B computes sk

(k)
j =

PRF(K∗1 , j), where K∗1 is the PRF key K1 punctured at
⋃
i∗∈Tk∪Tk+1

Li∗ . It sends {sk(k)j }j /∈listrandk

to the challenger of ΠLGC. B receives gate encodings {〈gi〉}i∈Tk∪Tk+1
, input encoding 〈x〉, secret

keys {skj}j∈listpublick
and then constructs the circuit Hyb.Hk (Figure 7); denote H̃yb.Hk to be the

output of iO(1λ,Hyb.Hk). B sets M̂ = (T, H̃yb.Hk). It then sends (M̂, 〈x〉) to A.
If the challenger of ΠLGC computed the gate encodings according to (SimKeyListGenk,SimGtEnck)

then the distribution of (M̂, 〈x〉) sent toA corresponds to Hyb3, otherwise we are in Hyb4. Hence,
if A can distinguish Hyb3 and Hyb4 then B can break the strong local simulation security of
ΠLGC with the same advantage. This proves the claim.

Hyb5: Hardwire lists Lk+1
i for i ∈ Tk+1. In this hybrid, the local keys corresponding

to Lk+1
i are additionally hardwired. Note that the list Lk+1

i is computed by SimKeyListGenk+1.

Also, K1 is punctured at the list
(⋃

i∗∈Tk∪Tk+1
Lk
i∗

)
∪
(⋃

i∗∈Tk+1
Lk+1
i∗

)
. The rest of the hy-

brid remains the same. In particular, the input encoding is still encoded with respect to
SimInpEncodek+1.

We elaborate on the TM encoding below.

• Compute C = CktTransform(M, |x|, T).

• For every i∗ ∈ [Ncomps], compute SimKeyListGenk(M,T, n, i∗) to obtain (Lk
i∗ , st

k
i∗).

• For every i∗ ∈ [Ncomps], also compute SimKeyListGenk+1(M,T, n, i∗) to obtain (Lk+1
i∗ , stk+1

i∗).

• Set L̂ =
(⋃

i∗∈Tk∪Tk+1
Lk
i∗

)
∪
(⋃

i∗∈Tk+1
Lk+1
i∗

)
.

39

• For every j∗ ∈
⋃
i∗∈Tk∪Tk+1

Lk
i∗ , sample sk

(k)
j∗ ← LocalKG(1λ, j∗). For every j∗ /∈

⋃
i∗∈Tk∪Tk+1

Lk
i∗ ,

sample sk
(k)
j∗ ← LocalKG(1λ, j∗;PRF(K1, j

∗)). That is, all the keys indexed by
⋃
i∗∈Tk∪Tk+1

Lk
i∗

are sampled using fresh randomness and the other keys are sampled using randomness

drawn from a PRF. Set MSK(k) = (sk
(k)
1 , . . . , sk

(k)
q).

• For every i∗ ∈ Tk+1, sample 〈g̃i∗〉(k+1) ← SimGtEnck+1(MSK(k), i∗, C, x).

• For every i∗ ∈ Tk\Tk+1, sample 〈g̃i∗〉(k+1) ← SimGtEnck+1(st
(k+1)
i∗ , (sk

(k+1)
j)j∈Lk+1

i∗
, y).

• Puncture K1 at
(⋃

i∗∈Tk∪Tk+1
Lk
i∗

)
∪
(⋃

i∗∈Tk+1
Lk+1
i∗

)
to obtain the key K∗1 . Puncture

K2 at Tk ∪ Tk+1 to obtain the key K∗2 .

• Compute H̃yb.Hk ← iO(1λ,Hyb.Hk), where Hyb.Hk is defined in Figure 7. Set the TM

encoding 〈M〉 to be (T, H̃yb.Hk).

The indistinguishability of Hyb4 and Hyb5 follows from the security of iO.

Hyb6: Pseudorandomness used for Tk and Randomness for Tk+1. Recall that

in the previous hybrid, the secret keys corresponding to indices in the set
⋃
i∈Tk∪Tk+1

L
(k)
i are

generated using uniformly sampled randomness. Similarly, the simulated gates corresponding
to the indices in the set Tk ∪ Tk+1 are also generated using uniformly sampled randomness. In
this hybrid, we instead generate the TM garbling as follows.

• Compute C = CktTransform(M, |x|, T).

• For every i∗ ∈ [Ncomps], compute SimKeyListGenk(M,T, n, i∗) to obtain (Lk
i∗ , st

k
i∗).

• For every i∗ ∈ [Ncomps], also compute SimKeyListGenk+1(M,T, n, i∗) to obtain (Lk+1
i∗ , stk+1

i∗).

• Set L̂ =
(⋃

i∗∈Tk∪Tk+1
Lk
i∗

)
∪
(⋃

i∗∈Tk+1
Lk+1
i∗

)
.

• For every j∗ ∈
⋃
i∗∈Tk+1

Lk+1
i∗ , sample sk

(k+1)
j∗ ← LocalKG(1λ, j∗). For every j∗ /∈

⋃
i∗∈Tk+1

Lk+1
i∗ ,

sample sk
(k+1)
j∗ ← LocalKG(1λ, j∗;PRF(K1, j

∗)). That is, all the keys indexed by
⋃
i∗∈Tk+1

Lk+1
i∗

are sampled using fresh randomness and the other keys are sampled using randomness

drawn from a PRF. Set MSK(k+1) = (sk
(k+1)
1 , . . . , sk

(k+1)
q).

• For every i∗ ∈ Tk+1, sample 〈g̃i∗〉(k+1) ← SimGtEnck+1(MSK(k+1), i∗, C, x).

• For every i∗ ∈ Tk\Tk+1, sample 〈g̃i∗〉(k+1) ← SimGtEnck+1(st
(k+1)
i∗ , (sk

(k+1)
j)j∈Lk+1

i∗
, y;PRF(K2,

i∗)).

• Puncture K1 at
(⋃

i∗∈Tk∪Tk+1
Lk
i∗

)
∪
(⋃

i∗∈Tk+1
Lk+1
i∗

)
to obtain the key K∗1 . Puncture

K2 at Tk ∪ Tk+1 to obtain the key K∗2 .

• Compute H̃yb.Hk ← iO(1λ,Hyb.Hk), where Hyb.Hk is defined in Figure 7. Set the TM

encoding 〈M〉 to be (T, H̃yb.Hk).

From the security of puncturable pseudorandom functions, the output distributions of Hyb5
and Hyb6 are computationally indistinguishable.

Hyb7: Dk+1. The output distribution of this hybrid is identical to the distribution Dk+1.
The circuits obfuscated in Hyb6, namely Hyb.Hk, and Hyb7, namely Hk+1, have the following

differences:

• The hardwired keys in Hyb6 are indexed by the set
(⋃

i∗∈Tk∪Tk+1
Lk
i∗

)
∪
(⋃

i∗∈Tk+1
Lk+1
i∗

)
,

while the hardwired keys in Hyb7 are indexed by the set
⋃
i∗∈Tk+1

Lk+1
i∗ .

40

• In Hyb6, SimKeyListGenk(·) is used in Hyb.Hk. However, in Hyb7, SimKeyListGenk+1(·) is
used in Hyb.Hk.

• In Hyb6, SimGtEnck(·) is used in Hyb.Hk. However, in Hyb7, SimGtEnck+1(·) is used in
Hyb.Hk.

We argue that Hyb.Hk and Hk+1 are functionally equivalent. To argue this, we prove that the
outputs of the two circuits are the same on all inputs. We consider the following cases.

• Case i ∈ Tk+1. The output of Hyb.Hk is a gate encoding 〈gi〉(k) that is hardwired in the

circuit. It is computed as 〈gi〉(k+1) = SimGtEnck+1

(
MSK(k+1), i∗, C, x

)
and in particular,

the gate encoding is computed using fresh randomness. Observe that this is identical to
the output of Hk+1 on i.

• Case i ∈ Tk\Tk+1. The output of Hyb.Hk is a gate encoding 〈gi〉(k+1) = SimGtEnck+1(st
(k+1)
i∗ ,

(sk
(k+1)
j)j∈Li∗ , y;PRF(K2, i

∗)). Observe that this is identical to the output of Hk+1 on i
and in particular, even in Hk+1, the gate encoding is computed using a PRF. Note that
unlike Hyb.Hk, the gate encodings indexed by Tk\Tk+1 are not hardwired in Hk+1.

• Case i /∈ Tk ∪ Tk+1. In Hyb.Hk, the gate encoding 〈gi〉(k) is generated as 〈gi〉(k) =
SimGtEnck(stki , {skj}j∈Lk

i
, y;PRF(K∗2 , i)); that is, the kth simulator (SimKeyListGenk,SimGtEnck)

is still used to generate the gate encodings. However, in Hk+1, 〈gi〉(k+1) is generated as
〈gi〉(k+1) = SimGtEnck+1(stk+1

i , {skj}j∈Lk+1
i

, y;PRF(K∗2 , i)) and in particular, (SimKeyListGenk+1,

SimGtEnck+1) is used to generate the gate encodings. The local secret keys are generated
identically in both Hyb6 and Hyb7. That is, all the secret keys indexed by

⋃
i∗∈Tk+1

Lk+1
i∗ are

generated using uniform randomness, while all the secret keys indexed by
⋃
i∗ /∈Tk+1

Lk+1
i∗

are generated using PRF key K1.

From Definition 10, it follows that for every i /∈ Tk ∪ Tk+1, SimKeyListGenk(·) and
SimKeyListGenk+1(·) are functionally equivalent and also, SimGtEnck(·) and SimGtEnck+1(·)
are functionally equivalent. Using this, it follows that the output of Hk+1 and Hyb.Hk are
identical on every i /∈ Tk ∪ Tk+1.

This proves that the circuits Hyb.Hk and Hk+1 are functionally equivalent. Assuming the
security of iO, the output distribution of Hyb6 is computationally indistinguishable from the
output distribution of Hyb7.

From the above lemma, we have the following.

Lemma 4. Assuming that there exists an ε-secure strong locally simulatable garbling scheme,
an ε′-secure puncturable PRF and an ε′′-secure indistinguishability obfuscation scheme, then
there exists an 7T (ε + ε′ + ε′′)-secure bounded runtime succinct garbling scheme with T being
an upper bound on the runtime of the Turing machines.

Combining the above lemma with Theorem 4, we have the following lemma.

Lemma 5. Let λ be the security parameter. Assuming that there exists an ε-secure locally
simulatable garbling scheme, an ε′-secure puncturable PRF and an ε′′-secure compact functional
encryption scheme, then there exists an 7T

(
ε+ ε′ + 2log(T)ε′′

)
-secure bounded runtime succinct

garbling scheme with T being an upper bound on the runtime of the Turing machines.
In particular, if ε and ε′′ are any negligible functions in the security parameter and T is

any polynomial in security parameter then the bounded runtime succinct garbling scheme is
polynomially secure assuming any polynomially secure compact functional encryption scheme
and any polynomially secure strong locally simulatable garbling scheme.

41

6.3 Removing the Bounded Runtime Restriction

We now show how to transform a bounded runtime succinct garbling scheme (Definition 4) into
a (standard) succinct garbling scheme (Definition 3). We denote the bounded runtime succinct
garbling scheme to be SuccGCBR = (Setup,TMEncode, InpEncode,Eval) and the (standard) suc-
cinct garbling scheme to be SuccGC∗ = (Setup,TMEncode, InpEncode,Eval). As an intermediate
tool, we use a secret key encryption scheme (Setup,E,D).

We describe SuccGC∗ below.

• Gen(1λ, 1n, 1m): On input security parameter λ, input length n and output length m,

- For i ∈ [λ], compute Ki ← Setup(1λ).
- For i ∈ [λ], compute SuccGCBR.MSKi ← SuccGCBR.Gen(1λ, 2i, 1n, 1m).

Output MSK =
(
{Ki}i∈[λ] , {SuccGCBR.MSKi}i∈[λ]

)
.

• TMEncode(MSK,M): On input master secret key MSK, Turing machine M ,

- For i ∈ [λ], compute SuccGCBR. 〈Mi〉 ← SuccGCBR.TMEncode (SuccGCBR.MSKi,Mi),
where Mi is defined as follows: on input x, it executes M for 2i steps and if the compu-
tation terminates then it outputs (1||M(x)), otherwise it outputs (0||Ki+1||0m−|Ki+1|−1)
(let Kλ+1 = ⊥).

- For i ∈ [λ], compute CTtmi ← E (Ki,SuccGCBR. 〈Mi〉).

Output 〈M〉 =
(
K1,

{
CTtmi

}
i∈[λ]

)
.

• InpEncode(MSK, x)

- For i ∈ [λ], SuccGCBR. 〈x〉i ← SuccGCBR.InpEncode(SuccGCBR.MSKi, x).

- For i ∈ [λ], compute CTinpi ← E (Ki,SuccGCBR. 〈x〉i).

Output 〈x〉 =

({
CTinpi

}
i∈[λ]

)
.

• Eval(〈M〉 , 〈x〉): On input TM encoding 〈M〉, input encoding 〈x〉, do the following for
i = 1, . . . , λ:

- Compute SuccGCBR. 〈Mi〉 ← D(Ki,CT
tm
i).

- Compute SuccGCBR. 〈x〉i ← D(Ki,CT
inp
i).

- Compute y ← SuccGCBR.Eval(SuccGCBR. 〈Mi〉 ,SuccGCBR. 〈x〉i)
- If y is of the form (1||y′) then output y′. Else, if y is of the form (0||y′||0m−|Ki+1|−1)

then set Ki+1 = y′ and continue the process.

We now prove the properties of SuccGC.

Correctness. Consider an input x and TM M running in time at most t ≤ 2λ on x. For
simplicity, let t be a power of two; the analysis goes through even if that is not the case. For every
i < log(t), from the correctness of SuccGCBR and the correctness of secret key encryption scheme,
it follows that the output of SuccGCBR.Eval(〈Mi〉 , 〈x〉i) is (0||Ki+1||0m−|Ki+1|−1). Finally for
i = log(t) it follows that the output of SuccGCBR.Eval(〈Mi〉 , 〈x〉i) is M(x).

Efficiency. Consider an input x and TM M running in time at most t ≤ 2λ on x and as
before, we assume that t is a power of two. The running time of Gen(1λ, 1n, 1m) is polynomial
in λ. The running time of TMEncode(MSK,M) is polynomial in (λ, |M |). The running time of
InpEncode(MSK, x) is polynomial in (λ, n). We now focus on the running time of Eval(〈M〉 , 〈x〉):
note that the for loop is executed only for at most log(t) number of iterations. The running
time of every iteration is upper bounded by poly(λ, t, |M |, n,m), by the efficiency property of
SuccGCBR. This proves that the running time of Eval is upper bounded by poly(λ, t, |M |, n,m).

42

Security. We prove the following lemma.

Lemma 6. Assuming that SuccGCBR is an ε-secure bounded runtime succinct garbling scheme
and (Setup,E,D) is an ε′-secure secret key encryption scheme, SuccGC is a λ · (ε + ε′)-secure
succinct garbling scheme.

Proof. Let SuccGCBR.Sim be the simulator of SuccGCBR.Sim. We describe the simulator Sim
of SuccGC. It takes as input (1λ, 1n, t,M, y) and performs the following operations.

• For every i ∈ [λ], execute Ki ← Setup(1λ).

• For every positive integer i < log(t), do the following: generate (〈Mi〉 , 〈⊥〉i)← SuccGCBR.Sim(1λ,

1n, 2i,Mi,Ki+1). Compute CTtmi ← E(Ki,SuccGCBR. 〈Mi〉). Compute CTinpi ← E(Ki,
SuccGCBR. 〈⊥〉i).

• For i = dlog(t)e, do the following: generate (SuccGCBR. 〈Mi〉 ,SuccGCBR. 〈⊥〉i)← SuccGCBR.Sim(

1λ, 1n, 2i,Mi, y). Compute CTtmi ← E(Ki,SuccGCBR. 〈Mi〉). Compute CTinpi ← E(Ki,
SuccGCBR. 〈⊥〉i).

• For λ ≥ i > dlog(t)e, do the following: generate CTtmi ← E(Ki, 0
Li), where Li is the

size of the simulated TM encoding output by SuccGCBR.Sim(1λ, 1n, 2i,M, y). Generate
CTinpi ← E(Ki, 0

L′i), where L′i is the size of the simulated input encoding output by
SuccGCBR.Sim(1λ, 1n, 2i,M, y).

Output

(
〈M〉 =

(
K1,

{
CTtmi

}
i∈[λ]

)
, 〈x〉 =

({
CTinpi

}
i∈[λ]

))
.

Observe that the running time of Sim is poly(λ, t, n, |M |, |y|). We argue this step by step.
In the first bullet, the runtime is polynomial in λ. In the second bullet, the runtime of
SuccGCBR.Sim is poly(λ, 2i, n, |M |, y) ≤ poly(λ, t, n, |M |, y) and moreover, SuccGCBR.Sim is
executed at most dlog(t)e number of times. In the third bullet, runtime of SuccGCBR.Sim is
poly(λ, t, n, |M |, y). To argue about the runtime of the simulator in the last bullet, it suf-
fices to argue about the length of Li and L′i, for every λ ≥ i > dlog(t)e. This is because
the runtime of the simulator in the final bullet is polynomial in (λ,

∑
λ≥i>dlog(t)e |Li| + |L′i|).

Since the output length of SuccGCBR.Sim(1λ, 1n, 2i,M, y) is poly(λ, n, i, |M |, y), it follows that
|Li| + |L′i| = poly(λ, n, i, |M |, y). Combining all these observations, it follows that the runtime
of Sim is poly(λ, n, t, |M |, |y|).

Consider an input x ∈ {0, 1}n, TM M running in time at most 2λ and |M(x)| = m. We describe
the hybrids below.

Hyb1: the output of this hybrid is (〈M〉 , 〈x〉), where: (i) MSK ← Gen(1λ, 1n, 1m), (ii) 〈M〉 ←
TMEncode(MSK,M) and, (iii) 〈x〉 ← InpEncode(MSK, x).

Hyb2.i, for i < blog(t)c: for every i′ ≤ i, generate (〈Mi′〉 , 〈⊥〉i′) ← SuccGCBR.Sim(1λ, 1n, 2i
′
,

Mi′ ,Ki′+1). For every i < i′ < λ, generate SuccGCBR. 〈Mi′〉 ← SuccGCBR.TMEncode(SuccGCBR.MSKi′ ,
Mi′) and SuccGCBR. 〈x〉i′ ← SuccGCBR.InpEncode(SuccGCBR.MSKi′ , x). The rest of the steps
is as in the previous hybrid.

From the security of SuccGCBR, it follows that the output distributions of Hyb1 and Hyb2.1
and the output distributions of Hyb2.i and Hyb2.i+1 are computationally indistinguishable.

Hyb2.dlog(t)e: for every i′ < dlog(t)e, generate (〈Mi′〉 , 〈⊥〉i′)← SuccGCBR.Sim(1λ, 1n, 2i
′
,Mi′ ,Ki′+1).

Generate (
〈
Mdlog(t)e

〉
, 〈x〉dlog(t)e) ← SuccGCBR.Sim(1λ, 1n, 2dlog(t)e,Mdlog(t)e,M(x)). For every

dlog(t)e < i′ < λ, generate SuccGCBR. 〈Mi′〉 ← SuccGCBR.TMEncode(SuccGCBR.MSKi′ ,Mi′)
and SuccGCBR. 〈x〉i′ ← SuccGCBR.InpEncode(SuccGCBR.MSKi′ , x). The rest of the steps is as
in the previous hybrid.

43

From the security of SuccGCBR, it follows that the output distributions of the previous hy-
brid and Hyb2.dlog(t)e are computationally indistinguishable.

Hyb3.i, for dlog(t)e < i ≤ λ: for every dlog(t)e < i′ ≤ i, generate CTtmi′ and CTinpi as encryptions
of zeroes. The rest of the steps are as in the previous hybrid.

From the security of (Setup,E,D), it follows that the output distributions of Hyb2.dlog(t)e
and Hyb3.dlog(t)e+1 and the output distributions of Hyb3.i and Hyb3.i+1 are computationally in-
distinguishable. We crucially use the fact that the key Ki+1 is not used in Hyb3.i.

The output distributions of Hyb3.λ and Sim are identical.

6.4 Succinct Garbling from Functional Encryption

Combining Lemmas 5 and 6, we have the following lemma.

Lemma 7. Let λ be the security parameter. Assuming that exists an ε1-secure strong locally
simulatable garbling scheme, ε2-secure puncturable PRF scheme, ε3-secure symmetric encryption
scheme and an ε4-secure compact functional encryption scheme, then there exists an λ(7t(ε1 +
ε2+2log(t)ε4)+ε3)-secure bounded runtime succinct garbling scheme for Turing machines running
in time at most t.

In particular, if ε4 is any negligible function in the security parameter and t is any polyno-
mial in the security parameter then there exists a polynomially secure succinct garbling scheme
assuming any polynomially secure compact functional encryption scheme.

By combining Theorem 4 and the above lemma, we get the following result.

Theorem 12. Assuming polynomial hardness of compact functional encryption and polynomial
hardness of computational DH (or factoring or LWE), there exists a succinct garbling scheme
for Turing machines that run in time (arbitrary) polynomial in its input.

7 Adaptively Secure Garbling from Locally Simulatable
Garbling

In this section, we prove Theorem 11. That is, we show how to construct an adaptive gar-
bling scheme starting from a semi-adaptive (Lsim, Linp)-locally simulatable garbling scheme, de-
noted by ΠLGC = (ΠLGC.Gen,ΠLGC.Gb,ΠLGC.IEnc,ΠLGC.Eval), equipped with simulation strategy
({Tk,SimGtEnck,SimInpEnck})k∈[q]. Combining our transformation with Yao’s garbled circuits

yields the [HJO+16] construction of adaptive garbled circuits with online complexity poly(λ,w)
(where w denotes the width of the circuit), while combining our transformation with Section 5
yields the [GS18a] construction of adaptive garbled circuits with optimal online complexity.

In our transformation, we use the tool of somewhere equivocal encryption (Section 2.5),
denoted by sEQ = (KeyGen,Enc,Dec,SimEnc,SimKey) with equivocation parameter t = 2Lsim

and block-length B = poly(λ)22. We denote the resulting adaptive garbling scheme to be
ΠAda = (Gen,Gb, IEnc,Eval).

Gen(1λ, 1s, 1n, 1m): On input security parameter λ and maximum circuit size s, input length n,
output length m, it computes:

• ΠLGC.gsk← ΠLGC.Gen(1λ, 1s, 1n, 1m).

• eqk← KeyGen(1λ)

22We set B to be the size of a single (simulated) gate encoding, which is guaranteed to have size poly(λ) by the
efficiency requirements of a locally simulatable garbling scheme.

44

Output the garbling key of adaptively secure garbling scheme as gsk = (eqk,ΠLGC.gsk).

Gb(gsk, C): On input garbling key gsk = (eqk,ΠLGC.gsk) and circuit C ∈ C, it computes
ΠLGC. 〈C〉 ← ΠLGC.Gb(ΠLGC.gsk, C). Parse ΠLGC. 〈C〉 as a sequence of blocks (〈g1〉, . . . , 〈gs〉)
with block-length B. Compute CT ← sEQ.Enc (eqk,ΠLGC. 〈C〉) for i ∈ [Nkeys], and output
〈C〉 = CT.

IEnc(gsk, x): On input garbling key gsk = (eqk,ΠLGC.gsk) and input x, it computes ΠLGC. 〈x〉 ←
ΠLGC.IEnc(gsk, x). It outputs this encoding along with the decryption key of sEQ. That is, it
outputs 〈x〉 = (ΠLGC. 〈x〉 , eqk).

Eval(〈C〉 , 〈x〉): On input garbled circuit 〈C〉 = CT and input encoding 〈x〉 = (ΠLGC. 〈x〉 , eqk),
it computes:

• ΠLGC. 〈C〉 ← sEQ.Dec(eqk,CT)

• out← ΠLGC.Eval(ΠLGC. 〈C〉 ,ΠLGC. 〈x〉).
Output out.

The correctness follows from the correctness of ΠLGC and the somewhere equivocal encryption
scheme.

Efficiency. The size of 〈x〉, generated by IEnc(gsk, x), is calculated as follows:

| 〈x〉 | = |ΠLGC. 〈x〉 |+ |eqk|
= Linp +B · Lsim · poly(λ)

= Linp(λ, |x|, |C(x)|) + Lsim · poly(λ),

In particular, we have that |eqk| ≤ B · Lsim · poly(λ) by Theorem 5.

The Simulator. We prove the following theorem.

Theorem 13. Assuming that sEQ is secure and that ΠLGC satisfies semi-adaptive Lsim-local
simulation security, the scheme ΠAda is an adaptively secure garbling scheme.

Let ({Tk,SimGtEnck,SimInpEnck})k∈[q] denote the simulation strategy associated to ΠLGC.
We first present the simulator of ΠAda, denoted by SimAdGC and then prove that the indistin-
guishability of simulated distribution and the real distribution.

SimAdGC: Upon receiving the security parameter λ and circuit C23, it samples ΠLGC.gsk ←
ΠLGC.Gen(1λ, 1s, 1n, 1m) and first computes ΠLGC. 〈C〉(q) = (〈g1〉(q), . . . , 〈gs〉(q)) by sampling
〈gi〉(q) ← SimGtEncq(ΠLGC.gsk, i, C). In addition, it samples eqk ← KeyGen(1λ). It then

computes a ciphertext CT ← Enc(eqk,ΠLGC. 〈C〉(q)). Finally, it outputs (〈C〉 = CT, st =
(ΠLGC.gsk, eqk)).

Upon receiving the input x, the simulator computes 〈x〉(q) ← ΠLGC.SimInpEnc(ΠLGC.gsk, C, y =

C(x)) and outputs (eqk, 〈x〉(q)).

Proof of Security. We now present the hybrids that prove that ΠLGC is adaptively secure
with simulator SimAdGC. We consider the following hybrid security games.

23Recall that without loss of generality, we only attempt to hide the input in this construction.

45

• Hyb0: This corresponds to the real experiment. The adversary adaptively queries circuit
C and input x and in turn receives 〈C〉 and 〈x〉. Both the garbled circuit and the input
encoding are generated honestly.

• Hybk: for each k ∈ [q] within the simulation strategy of ΠLGC, we define a corresponding
hybrid security game. In this game, the circuit encoding 〈C〉 is computed in the following
way:

– Sample ΠLGC.gsk ← ΠLGC.Gen(1λ, 1s, 1n, 1m) and first compute (〈gi〉(k))i6∈Tk
by sam-

pling 〈gi〉(k) ← SimGtEnck(ΠLGC.gsk, i, C).

– Sample (CT, st0)← SimEnc(1λ, Tk, (〈gi〉(k))i6∈Tk
).

– Output (〈C〉 = CT, st = (ΠLGC.gsk, st0)).

Upon receiving the input x, the input encoding is then computed in the following way

– Compute 〈x〉(k) ← SimInpEnck(ΠLGC.gsk, C, x).

– For each i ∈ Tk, sample 〈gi〉(k) ← SimGtEnck(ΠLGC.gsk, i, C, x).

– Compute eqk′ ← SimKey(st0, {〈gi〉(k)}i∈Tk
).

– Output (eqk′, 〈x〉(k)).

By construction, Hybq is exactly the simulated distribution, so it suffices to show that Hybk is
computationally indistingushable from Hybk+1 for every k ∈ [q]. We do this using two additional
intermediate hybrids.

• Hybk,1: In this game, the circuit encoding 〈C〉 is computed in the following way:

– Sample ΠLGC.gsk ← ΠLGC.Gen(1λ, 1s, 1n, 1m) and first compute (〈gi〉(k))i 6∈Tk∪Tk+1
by

sampling 〈gi〉(k) ← SimGtEnck(ΠLGC.gsk, i, C).

– Sample (CT, st0)← SimEnc(1λ, Tk ∪ Tk+1, (〈gi〉(k))i6∈Tk∪Tk+1
).

– Output (〈C〉 = CT, st = (ΠLGC.gsk, st0)).

Upon receiving the input x, the input encoding is then computed in the following way

– Compute 〈x〉(k) ← SimInpEnck(ΠLGC.gsk, C, x).

– For each i ∈ Tk, sample 〈gi〉(k) ← SimGtEnck(ΠLGC.gsk, i, C, x).

– For each i ∈ Tk+1\Tk, sample 〈gi〉(k) ← SimGtEnck(ΠLGC.gsk, i, C).

– Compute eqk′ ← SimKey(st0, {〈gi〉(k)}i∈Tk∪Tk+1
).

– Output (eqk′, 〈x〉(k)).
• Hybk,2: In this game, the circuit encoding 〈C〉 is computed in the following way:

– Sample ΠLGC.gsk ← ΠLGC.Gen(1λ, 1s, 1n, 1m) and first compute (〈gi〉(k+1))i6∈Tk∪Tk+1

by sampling 〈gi〉(k+1) ← SimGtEnck+1(ΠLGC.gsk, i, C).

– Sample (CT, st0)← SimEnc(1λ, Tk ∪ Tk+1, (〈gi〉(k+1))i 6∈Tk∪Tk+1
).

– Output (〈C〉 = CT, st = (ΠLGC.gsk, st0)).

Upon receiving the input x, the input encoding is then computed in the following way

– Compute 〈x〉(k+1) ← SimInpEnck+1(ΠLGC.gsk, C, x).

– For each i ∈ Tk+1, sample 〈gi〉(k+1) ← SimGtEnck+1(ΠLGC.gsk, i, C, x).

– For each i ∈ Tk\Tk+1, sample 〈gi〉(k+1) ← SimGtEnck+1(gsk, i, C).

– Compute eqk′ ← SimKey(st0, {〈gi〉(k+1)}i∈Tk∪Tk+1
).

– Output (eqk′, 〈x〉(k)).

The indistinguishability of Hybk
∼=c Hybk,1 follows directly from the security of sEQ. The

indistinguishability of Hybk,1
∼=c Hybk,2 follows directly from the semi-adaptive security of

ΠLGC. Finally, the indistinguiahbility of Hybk,2
∼=c Hybk+1 follows directly from the security of

sEQ. This completes the proof of security.

46

Acknowledgements

We thank Vinod Vaikuntanathan for useful discussions.

References

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From
selective to adaptive security in functional encryption. In Annual Cryptology Con-
ference, pages 657–677. Springer, 2015.

[ACC+16] Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung, Huijia Lin, and Wei-Kai Lin.
Delegating ram computations with adaptive soundness and privacy. In Theory of
Cryptography Conference, pages 3–30. Springer, 2016.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in nc0. In
45th Symposium on Foundations of Computer Science (FOCS 2004), 17-19 October
2004, Rome, Italy, Proceedings, pages 166–175, 2004.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private ran-
domizing polynomials and their applications. Computational Complexity, 15(2):115–
162, 2006.

[AIK10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness:
Efficient verification via secure computation. In International Colloquium on Au-
tomata, Languages, and Programming, pages 152–163. Springer, 2010.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from com-
pact functional encryption. In Annual Cryptology Conference, pages 308–326.
Springer, 2015.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfusca-
tion from functional encryption for simple functions. Eprint, 730:2015, 2015.

[AJS17a] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfus-
cation for turing machines: Constant overhead and amortization. In Advances in
Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II, pages 252–
279, 2017.

[AJS17b] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Patchable indistinguishabil-
ity obfuscation: io for evolving software. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 127–155. Springer,
2017.

[App14a] Benny Applebaum. Bootstrapping obfuscators via fast pseudorandom functions. In
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, pages 162–172. Springer, 2014.

[App14b] Benny Applebaum. Key-dependent message security: Generic amplification and
completeness. Journal of Cryptology, 27(3):429–451, 2014.

[AS16] Prabhanjan Ananth and Amit Sahai. Functional encryption for turing machines.
In Theory of Cryptography Conference, pages 125–153. Springer, 2016.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs.
In Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001, 21st Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, August 19-23,
2001, Proceedings, volume 2139 of Lecture Notes in Computer Science, pages 1–18.
Springer, 2001.

47

[BGJ+16] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikun-
tanathan, and Brent Waters. Time-lock puzzles from randomized encodings. In
Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer
Science, pages 345–356. ACM, 2016.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Siddartha Telang. Succinct
randomized encodings and their applications. In STOC, 2015.

[BHHI10] Boaz Barak, Iftach Haitner, Dennis Hofheinz, and Yuval Ishai. Bounded key-
dependent message security. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 423–444. Springer, 2010.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled cir-
cuits. In Proceedings of the 2012 ACM conference on Computer and communications
security, pages 784–796. ACM, 2012.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-
round oblivious transfer via garbled interactive circuits. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 500–
532. Springer, 2018.

[BLSV18] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan. Anony-
mous ibe, leakage resilience and circular security from new assumptions. In Advances
in Cryptology - EUROCRYPT 2018, 2018.

[BP15] Nir Bitansky and Omer Paneth. Zaps and non-interactive witness indistinguisha-
bility from indistinguishability obfuscation. In Theory of Cryptography Conference,
pages 401–427. Springer, 2015.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. In Foundations of Computer Science (FOCS), 2015 IEEE
56th Annual Symposium on, pages 171–190. IEEE, 2015.

[CCC+16] Yu-Chi Chen, Sherman SM Chow, Kai-Min Chung, Russell WF Lai, Wei-Kai Lin,
and Hong-Sheng Zhou. Cryptography for parallel ram from indistinguishability ob-
fuscation. In Proceedings of the 2016 ACM Conference on Innovations in Theoretical
Computer Science, pages 179–190. ACM, 2016.

[CCHR16] Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova. Adaptive suc-
cinct garbled ram or: How to delegate your database. In Theory of Cryptography
Conference, pages 61–90. Springer, 2016.

[CDG+17] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and
Antigoni Polychroniadou. Laconic oblivious transfer and its applications. In Annual
International Cryptology Conference, pages 33–65. Springer, 2017.

[CH16] Ran Canetti and Justin Holmgren. Fully succinct garbled ram. In Proceedings of
the 2016 ACM Conference on Innovations in Theoretical Computer Science, pages
169–178. ACM, 2016.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. In-
distinguishability obfuscation of iterated circuits and RAM programs. In STOC,
2015.

[CLP15] Kai-Min Chung, Huijia Lin, and Rafael Pass. Constant-round concurrent zero-
knowledge from indistinguishability obfuscation. In Annual Cryptology Conference,
pages 287–307. Springer, 2015.

[DG17] Nico Döttling and Sanjam Garg. Identity-based encryption from the diffie-hellman
assumption. In Annual International Cryptology Conference, pages 537–569.
Springer, 2017.

48

[DGHM18] Nico Döttling, Sanjam Garg, Mohammad Hajiabadi, and Daniel Masny. New con-
structions of identity-based and key-dependent message secure encryption schemes.
In IACR International Workshop on Public Key Cryptography. Springer, 2018.

[DKW16] Apoorvaa Deshpande, Venkata Koppula, and Brent Waters. Constrained pseudo-
random functions for unconstrained inputs. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 124–153. Springer,
2016.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In 54th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 40–49. IEEE
Computer Society, 2013.

[GGP10] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers. In Annual Cryptology Con-
ference, pages 465–482. Springer, 2010.

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel
Wichs. Garbled ram revisited. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 405–422. Springer, 2014.

[GHV10] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. i-hop homomorphic en-
cryption and rerandomizable yao circuits. In Annual Cryptology Conference, pages
155–172. Springer, 2010.

[GKP+12] Shafi Goldwasser, Yael Tauman Kalai, Raluca A Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. Succinct functional encryption and applications: Reusable
garbled circuits and beyond. IACR Cryptology ePrint Archive, 2012:733, 2012.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. One-time programs.
In Annual International Cryptology Conference, pages 39–56. Springer, 2008.

[GLOS15] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled ram
from one-way functions. In Proceedings of the Forty-Seventh Annual ACM on Sym-
posium on Theory of Computing, pages 449–458. ACM, 2015.

[GP17] Sanjam Garg and Omkant Pandey. Incremental program obfuscation. In Annual
International Cryptology Conference, pages 193–223. Springer, 2017.

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the crypto-
graphic hardness of finding a nash equilibrium. In Annual Cryptology Conference,
pages 579–604. Springer, 2016.

[GPSZ17] Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry. Break-
ing the sub-exponential barrier in obfustopia. In Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, pages 156–181.
Springer, 2017.

[GS16] Sanjam Garg and Akshayaram Srinivasan. Single-key to multi-key functional en-
cryption with polynomial loss. In Theory of Cryptography Conference, pages 419–
442. Springer, 2016.

[GS17] Sanjam Garg and Akshayaram Srinivasan. Garbled protocols and two-round mpc
from bilinear maps. FOCS 2017, 2017.

[GS18a] Sanjam Garg and Akshayaram Srinivasan. Adaptively secure garbling with near
optimal online complexity. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 535–565. Springer, 2018.

49

[GS18b] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computa-
tion from minimal assumptions. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 468–499. Springer, 2018.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In Advances in Cryptology -
CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings, pages 162–179, 2012.

[HJO+16] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro, and
Daniel Wichs. Adaptively secure garbled circuits from one-way functions. In
CRYPTO, 2016.

[HLP11] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the web:
Computing without simultaneous interaction. In Annual Cryptology Conference,
pages 132–150. Springer, 2011.

[HW15] Pavel Hubacek and Daniel Wichs. On the communication complexity of secure
function evaluation with long output. In Proceedings of the 2015 Conference on
Innovations in Theoretical Computer Science, pages 163–172. ACM, 2015.

[JSW17] Zahra Jafargholi, Alessandra Scafuro, and Daniel Wichs. Adaptively indistinguish-
able garbled circuits. In Theory of Cryptography Conference, pages 40–71. Springer,
2017.

[JW16] Zahra Jafargholi and Daniel Wichs. Adaptive security of yao’s garbled circuits. In
TCC, 2016.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability
obfuscation for turing machines with unbounded memory. In STOC, 2015.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, 2009.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps
and block-wise local prgs. In Annual International Cryptology Conference, pages
630–660. Springer, 2017.

[LZ17] Qipeng Liu and Mark Zhandry. Exploding obfuscation: A framework for building
applications of obfuscation from polynomial hardness. IACR Cryptology ePrint
Archive, 2017:209, 2017.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption
with public keys. In Proceedings of the 17th ACM conference on Computer and
communications security, pages 463–472. ACM, 2010.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: de-
niable encryption, and more. In David B. Shmoys, editor, Symposium on Theory
of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
475–484. ACM, 2014.

[Yao82] Andrew C Yao. Protocols for secure computations. In Foundations of Computer
Science, 1982. SFCS’08. 23rd Annual Symposium on, pages 160–164. IEEE, 1982.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In FOCS, pages 162–167, 1986.

A Selectively Secure Laconic OT from Indistinguishability
Obfuscation

In this section, we give a construction of (selectively secure) laconic OT from IO and one-
way functions. This provides, for the sake of completeness, a construction of succinct garbling

50

schemes from IO and OWFs without additional assumptions. Before the construction, we make
two remarks on barriers to improving the results.

• The construction in this section cannot obviously be modified to rely on the polynomial
security of compact functional encryption. Indeed, we are not even aware of any construc-
tion of oblivious transfer (a primitive that is implied by laconic OT using the techniques
of [BLSV18]) from poly-secure FE.

• We are inherently limited to constructing selectively secure laconic OT; in particular, in
an adaptively secure scheme, the hash function lacOT.H(crs, ·) is a collision-resistant hash
function, and there are substantial barriers [AS16] to constructing CRHFs from IO and
OWFs.

We now proceed with the construction, which is a modification of the [CDG+17] construction of
laconic OT from witness encryption and somewhere statistically binding (SSB) hash functions.
SSB hash functions are in particular collision-resistant, but we note that to obtain selective
security it suffices to start with a weaker notion of input-dependent SSB hash functions, which
we define below.

Definition 14 (Input-dependent SSB Hash Functions). A family of input-dependent somewhere
statistically binding hash functions SSB = (Gen,H,BindingGen) (with factor 2 compression) is
specified by three algorithms.

• Gen(1λ) is a randomized algorithm that samples a hash key k.

• H(k, x) is a deterministic algorithm that takes as input a hash key k and an input x ∈
{0, 1}2λ. It outputs a hash value h ∈ {0, 1}λ.

• BindingGen(1λ, x∗, i∗) is a randomized algorithm that takes as input a string x∗ ∈ {0, 1}2λ
and an index i∗ ∈ [2λ]. It samples a hash key k.

Such a scheme must satisfy the following correctness and security properties.

• Correctness (Binding): For all λ ∈ N, all x∗ ∈ {0, 1}2λ, and all i∗ ∈ [2λ], with all but
negligible probabaility over the randomness of k ← BindingGen(1λ, x∗, i∗), there exists no
x ∈ {0, 1}2λ such that H(k, x) = H(k, x∗) and xi 6= x∗i .

• Security: There is a negligible function µ(·) such that for all λ ∈ N, all x∗ ∈ {0, 1}2λ, and
all i∗ ∈ [2λ], we have that the distributions {k ← Gen(1λ)} and {k ← BindingGen(1λ, x∗, i∗)}
are µ(λ)-indistinguishable.

We first note that input-dependent SSB hash functions can be constructed from IO and
one-way functions via a standard puncturing arugment.

Lemma 8. If indistinguishability obfuscation and one-way functions exist, then so do input-
dependent SSB hash functions.

Proof. Let iO denote an IO scheme, let G : {0, 1}λ/2 → {0, 1}λ denote a PRG, and let PRF
denote a puncturable PRF family with domain {0, 1}2λ and range {0, 1}λ/2. We define our hash
family SSB = (SSB.Gen,SSB.H,SSB.BindingGen) as follows.

• SSB.Gen(1λ) samples a PRF keyK and outputs an obfuscation P̃ ← iO(PK) of the program
PK defined in Fig. 8.

• SSB.H(k, x) interprets k as an obfuscated program and evaluates k on input x.

• SSB.BindingGen(1λ, x∗, i∗) samples a PRF key K and punctured key K{x∗}, samples a
string r ← {0, 1}λ uniformly at random, and outputs an obfuscation P̃x∗,r ← iO(PK{x∗},x∗,r)
of the program PK{x∗},x∗,r defined in Fig. 9.

51

Input: string x ∈ {0, 1}2λ
Hardwired: PRF key K

• Output G(PRF(K,x)).

Figure 8: Description of PK .

Input: string x ∈ {0, 1}2λ
Hardwired: Punctured key K{x∗}, input x∗, output r

• If x = x∗, output r.

• If x 6= x∗, output G(PRF(K{x∗}, x)).

Figure 9: Description of PK{x∗},x∗,r.

The scheme satisfies binding because with all but negligible probability over the choice of
r ← {0, 1}λ, r is not in the range of the PRG G, and hence no input x other than x∗ will satisfy
H(k, x) = H(k, x∗) for k = iO(PK{x∗},x∗,r).

The scheme is secure by a standard puncturing argument; namely, an obfuscation of PK
is computationally indistinguishable from an obfuscation of the program PK{x∗},x∗,G(PRF(K,x∗))

(by the security of iO), which is in turn computationally indistinguishable from an obfuscation
of PK{x∗},x∗,r for uniformly random r (by the security of the puncturable PRF family and the
PRG).

Next, we see that the [CDG+17] construction carries over to our setting, yielding a construc-
tion of selectively secure laconic OT with factor 2 compression from witness encryption and
input-dependent SSB hash functions.

Lemma 9. If witness encryption and input-dependent SSB hash functions exist, then so does
laconic OT with factor 2 compression.

Proof. Given witness encryption scheme WE = (WE.Enc,WE.Dec) and input-dependent SSB
hash family SSB = (SSB.Gen,SSB.H), we construct laconic OT with factor 2 compression as
follows.

• lacOT.Gen(1λ) samples crs← SSB.Gen(1λ) and outputs crs.

• lacOT.H(crs, D) computes h = SSB.H(crs, D) and outputs (h,D).

• lacOT.Send(crs, h, i,m0,m1) outputs two ciphertexts: CT0 ← WE.Enc(R, (crs, h, i, 0),m0)
and CT1 ←WE.Enc(R, (crs, h, i, 1),m1), whereR is the relation with instance x = (crs, h, i, b),
witness w, and satisfies R(x,w) = 1 if and only if SSB.H(crs, w) = h and wi = b.

• lacOT.Receive(crs, D,CT0,CT1) calls m = WE.Dec(R, D,CTD[i]) and outputs m.

Correctness of the above scheme follows from the correctness of the underlying witness
encryption scheme.

52

The proof of sender privacy is as follows: by the security of SSB, we know that for every
D ∈ {0, 1}2λ, i ∈ [λ], and pair of messages (m0,m1),

(crs, h,D, lacOT.Send(crs, h, i,m0,m1)) ∼=c

(
c̃rs, h̃, D, lacOT.Send(c̃rs, h̃, i,m0,m1)

)
,

where crs ← SSB.Gen(1λ), h = lacOT.H(crs, D), c̃rs ← SSB.BindingGen(1λ, D, i), and h̃ =
lacOT.H(c̃rs, D), by the security of SSB. Moreover, we have that

(
c̃rs, h̃, D, lacOT.Send(c̃rs, h̃, i,m0,m1)

)
∼=c

(
c̃rs, h̃, D, lacOT.Send(c̃rs, h̃, i,mDi ,mDi)

)
by the security of the witness encryption scheme. This is because by the binding property of
SSB, we know that with probability 1− negl(λ), there exists no D′ such that SSB.H(c̃rs, D′) =
SSB.H(c̃rs, D) and D′i = Di ⊕ 1, so the WE ciphertext corresponding to mDi⊕1 hides mDi⊕1.
Finally, we have that(

c̃rs, h̃, D, lacOT.Send(c̃rs, h̃, i,mDi ,mDi)
)
∼=c (crs, h,D, lacOT.Send(crs, h, i,mDi ,mDi))

by the security of SSB, completing the proof of sender privacy for lacOT.

Finally, we note that the boostrapping theorem of [CDG+17] applies to the setting of se-
lectively secure laconic OT as well, if an independently sampled laconic OT CRS is sampled
for each level of the Merkle tree (rather than re-using the same hash key over and over again).
This yields a selectively secure laconic OT scheme with arbitrary compression, completing the
construction of laconic OT from IO and one-way functions.

53

	Introduction
	Our Contributions
	Technical Overview

	Preliminaries
	Garbling Schemes for Circuits
	Decomposable Garbling Schemes for Circuits
	Succinct Garbling Schemes
	Indistinguishability Obfuscation
	Somewhere Equivocal Encryption

	Locally Simulatable Garbling Schemes
	Semi-Adaptive Local Simulation
	Strong Local Simulation
	Locally Simulatable Garbling Schemes

	Statements of Our Results
	Locally Simulatable Garbling
	Succinct Garbling
	Adaptively Secure Garbling

	Locally Simulatable Garbling from Laconic OT
	The LSGS Construction
	Strong Local Simulation
	Semi-Adaptive Local Simulation Security

	Succinct Garbling from IO through Locally Simulatable Garbling
	Bounded Runtime Case
	Proof of Security
	Removing the Bounded Runtime Restriction
	Succinct Garbling from Functional Encryption

	Adaptively Secure Garbling from Locally Simulatable Garbling
	Selectively Secure Laconic OT from Indistinguishability Obfuscation

