
CHIMERA: Combining Ring-LWE-based Fully
Homomorphic Encryption Schemes

Christina Boura1,4, Nicolas Gama1,2, Mariya Georgieva2,3, and Dimitar
Jetchev2,3
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Abstract. This paper proposes a practical hybrid solution for combin-
ing and switching between three popular Ring-LWE-based FHE schemes:
TFHE, B/FV and HEAAN. This is achieved by first mapping the different
plaintext spaces to a common algebraic structure and then by applying
efficient switching algorithms. This approach has many practical appli-
cations. First and foremost, it becomes an integral tool for the recent
standardization initiatives of homomorphic schemes and common APIs.
Then, it can be used in many real-life scenarios where operations of dif-
ferent nature and not achievable within a single FHE scheme have to
be performed and where it is important to efficiently switch from one
scheme to another. Finally, as a byproduct of our analysis we introduce
the notion of a FHE module structure, that generalizes the notion of the
external product, but can certainly be of independent interest in future
research in FHE.
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1 Introduction

Homomorphic encryption enables computations on encrypted data without de-
crypting it. Shortly after the development of the first fully homomorphic encryp-
tion (FHE) scheme by Gentry [21], extensive research has been carried out on
the design, implementation and cryptanalysis of various other FHE schemes.

Several constructions based on the Ring-LWE problem [24] are today among
the most promising FHE candidates, each of them having particular advantages
that depend on the type of the target homomorphic operations and arithmetic.
More precisely, certain schemes are better for integer arithmetic whereas others
have advantages for performing arithmetic with real numbers; some are more
suitable for vector operations whereas others perform well in the case of se-
quential combinatorial operations on individual slots such as the evaluation of
Boolean circuits, finite state machines or lookup tables. In addition, different
constructions typically tolerate different amounts of noise and hence, homomor-
phic evaluation of circuits of different multiplicative depth.



It is thus of central importance to be able to use the optimal scheme for
each type of operation in a particular computation. This motivates the need
for building an efficient hybrid solution combining more than one scheme and
switching between these schemes during the individual operations.

This paper proposes such a practical hybrid solution based on efficient switch-
ing algorithms for three different Ring-LWE schemes, where each scheme is best
suited for certain types of operations: 1) TFHE [17, 16] particularly suitable for
combinatorial operations on individual slots and tolerating large noise and thus,
large multiplicative depth. 2) B/FV [6, 19, 12] allowing to perform large vectorial
arithmetic operations as long as the multiplicative depth of the evaluated circuit
remains small; 3) HEAAN [15, 14] - a mixed encryption scheme shown to be very
efficient for floating-point computations.

We achieve such a hybrid solution by first mapping the different plaintext
spaces of the different schemes to a common algebraic structure using certain
natural algebraic homomorphisms. Once such a uniformization of the plaintext
spaces has been achieved, we describe our scheme switching algorithms. The
main idea here is to replace the expensive bootstrapping algorithms with more
efficient key-switching operations. Recall that if S1 and S2 are two homomor-
phic encryption schemes then the concept of bootstrapping, originally introduced
by Gentry [21], is a homomorphic evaluation (under the scheme S2) of the de-
cryption function for the scheme S1. Since all Ring-LWE-based FHE decryption
functions evaluate an inner product followed by a rounding function and since
the rounding function is a step function, instead of first applying the expen-
sive bootstrapping and then evaluating a function f , one can replace the last
rounding step in the bootstrapping by a more general step function g that ap-
proximates f and use a homomorphic lookup table evaluation. This is essentially
the idea of the key-switching algorithms described in Section 2.2 that are later
used to achieve a switch between the schemes in Sections 3 and 4. Note that the
concept of functional key-switch is not new (it appeared already in the context
of TFHE [16] and implicitly in the work of Ducas and Micciancio [18]). Yet, its
application to scheme switching presented in this work is novel.

To better explain the algebraic aspects of our approach, we let Rm denote
the quotient ring (Z/mZ)[X]/(XN + 1) for some integers m and N and we let
T = R/Z be the torus. To introduce the algebraic structure of the plaintext
spaces in TFHE, we distinguish two different underlying encryption schemes (an
encryption scheme on a ring and a homomorphic one on a module over that
ring):

– TRGSW: encryption scheme on the ring R := Z[X]/(XN + 1),
– TRLWE: HE scheme on the R-module TR := (R[X]/(XN + 1))/R.

The plaintext space for the scheme TRGSW is the ring R whereas its ciphertext
space is (TN )2` for some integer ` that depends on various precision and noise
parameters (see Section 2 for details). Elseways, the plaintext space for the
scheme TRLWE is the R-module TR and the ciphertext space is (TN )2 (see
Section 2.2 for details as well as for the definition of the external product which
is the homomorphic evaluation algorithm for the ring action on the module).
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On the other hand, the plaintext space of B/FV is Rp for some integer p (a
prime, a power of 2 or a small number 1 mod 2N , depending on the functionality
that we want) and the ciphertext space is R2

q for some larger integer q. Finally,
HEAAN has for message space a ball of radius B in Rq with respect to a certain
`∞-norm defined in Section 2.4 and its ciphertext space is R2

q.

It is not too hard to verify that in the three cases listed above, the ciphertext
spaces share very similar algebraic structures. For B/FV and HEAAN this is
trivial to do; for TFHE, it suffices to identify the ciphertext space R2

q with a

subgroup of the torus (TN )2 as follows: using that R2
q ' ((Z/qZ)N )2, we simply

identify q−1Z/Z ' Z/qZ, the latter being the multiplication-by-q isomorphism
of Z-modules.

Yet, the plaintext spaces are a priori rather different. In order to apply any
key-switching technique, one thus needs to uniformize them (i.e., map them
to the same algebraic structure). In addition, this algebraic structure should
carry a specific metric allowing us to quantify and measure the noise in the
decryption function. We achieve this by using the plaintext space of TFHE,
namely R[X]/(XN +1) modulo Z (a space we introduce in Section 2 and denote
by TR throughout the paper). We then show how to map both B/FV and HEAAN
plaintexts to TR in Sections 3 and 4.

Our hybrid solution has many practical applications. First and foremost, it
becomes an integral tool for the recent standardization initiatives of homomor-
phic schemes and common APIs [8], especially since TFHE, B/FV (Seal) and
HEAAN are part of this standardization process.

Then, imagine a scenario where operations on large datasets must be per-
formed and a decision must be taken on the result. The first part would be easier
via the B/FV scheme, whereas the decision function can be evaluated faster in
TFHE. Therefore, one would like an efficient method to pass from B/FV to TFHE.
Similarly, if more approximate computations have to be performed, one would
benefit from a scheme switching between HEAAN and TFHE. Another example
comes from the recent Idash’18 Track 2 [2] competition on designing homomor-
phic solutions for semi-parallel Genome Wide Association Studies (GWAS). One
of the operations needed for the challenge required to compute homomorphically
the product G−1 · S, for a small 4 × 4 symmetric matrix G and a much larger
4× 10000 matrix S. In this scenario, the bootstrapping of TFHE can be used to
compute the 10 coefficients of G−1 (via either Gaussian elimination or Cholesky
factorization), so these algorithms that include loops, inversions and have very
high multiplicative depth, benefit from fast bootstrapping on individual data.
Then, the matrix multiplication G−1 · S can be massively vectorized using the
SIMD operations of HEAAN. Similarly, different machine learning algorithms use
SIMD operations to produce an output vector and at the end, one needs to com-
pute the maximum of its coordinates. Conversely, various financial systems need
to perform small computations on an encrypted database with a potentially very
large multiplicative depth over a long period of time and at the end of the period
provide statistics on the current dataset. In this case, it is essential to operate
in bootstrapped mode as in TFHE and then perform the low-depth statistical
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calculations in B/FV or HEAAN. In such a scenario, it is important to transform
TFHE ciphertexts to B/FV or HEAAN ones.

As a byproduct of our analysis of the three above schemes from the perspec-
tive of TFHE, we propose the general definition of a FHE module structure, that
is, an external product allowing to homomorphically evaluate the action of the
ring R on the module M whenever M is equipped with an HE scheme and R
is equipped with a FHE scheme. This concept already appears in a particular
case in [16] (named as external product), but it can certainly be of independent
interest in future research in FHE. For instance, it permits to express the relin-
earization in the internal products of HEAAN and B/FV in terms of the FHE
module structure for TFHE and this without loss as it is the same algorithm.
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Fig. 1: Bridges between Ring-LWE homomorphic schemes. Plain arrows represent
bridges between the different schemes. Dotted arrows represent inclusion. Finally, the
spaces P = p and P = X − p are instantiations of P−1R/R.

2 Preliminaries

Let T = R/Z be the real torus and let R = Z[X]/(XN + 1) be the ring of
polynomials with integer coefficients modulo XN + 1. For a ring A (e.g., A =
Z,R,C), let RA := R⊗ZA = A[X]/(XN +1) be the ring of polynomials modulo
XN + 1 with coefficients in A. In particular, R = RZ, so we interchangeably
omit the index.

Let TR = RR/RZ (a.k.a R[X] mod XN + 1 mod Z) which we view as an
R-module (it has no ring structure). We often refer to the left action of R on TR
as an external multiplication with coefficients in R. Moreover, let B be the subset
of all polynomials of RZ with coefficients in {0, 1} (here, we identify RZ ' ZN
as Z-modules in the natural way). Finally, if x ∈ R, let Rx = R/xR and let
πx : R → Rx be the natural surjection.
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We use the `p-distance on the N -dimensional torus TN and write ‖x− y‖p
for the distance between two elements x, y ∈ T. Note that it satisfies ∀m ∈
Z, ‖m · x‖p ≤ |m| ‖x‖p. For an integer element a ∈ TR, consider any represen-

tative a(X) = a0 + · · · + aN−1XN−1 ∈ R[X]. We will (unambiguously) write
‖a‖p for the norm of the image of (a0, . . . , aN−1) in TN . The notion of Lipschitz
function always refers to the `∞-distance: a function f : Tm → Tn is said to be
κ-lipschitz if ‖f(x)− f(y)‖∞ ≤ κ ‖x− y‖∞ for all inputs x, y, where ‖ · ‖∞ is
the `-infinity norm.

In this work, we revisit the three scale-invariant families of HE schemes
(TFHE in Section 2, B/FV in Section 3 and HEAAN in Section 4), all of them
based on the Ring-LWE problem introduced in [24]. More precisely, we present
a slightly different interpretation of these schemes through the concept of FHE
module structure that provides a more conceptual interpretation of the corre-
sponding homomorphic evaluation of the action of a ring on a module over that
ring. More importantly, in the subsequent sections, we realize each of the plain-
text spaces of the schemes B/FV, TFHE and HEAAN as subsets of the R-module
TR which enables the scheme-switching algorithms.

2.1 The concept of FHE module structure

The definition below assumes that the decryption algorithms do not introduce
any noise in the plaintext (i.e., the decryption is exactly the original message).
Note that this allows for probabilistic encryption algorithms.

Definition 1 (Noiseless FHE Module Structure). By a noiseless FHE
module structure, we mean a 7-tuple (R,M,EncR,DecR,EncM ,DecM ,�) where

– R is a ring with an encryption scheme (EncR,DecR) on R without decryption
noise and with ciphertext space CR,

– M is an R-module with a homomorphic encryption scheme (EncM ,DecM )
without decryption noise and with ciphertext space CM ,

– � : CR × CM → CM is an operation (external product) satisfying

DecM (EncR(r) � EncM (m)) = r ·m, ∀ r ∈ R, m ∈M.

Although quite general, the above definition has several drawbacks as detailed
through the following remarks.

Remark 1. While TFHE fits exactly in this definition (with the algorithms TRGSW
and TRLWE), the scheme HEAAN falls outside of its scope, as its decryption is
noisy (i.e., no rounding is used).

Remark 2. In practice, the above definition is not sufficient to model the prop-
erties of the FHE schemes with bootstrapping where the notion of noise in the
decryption algorithm is of primary importance. The algebraic structures above
are too general to enable a proper model for the noise distributions. Without
further assumptions on M (e.g., metric properties, Gaussian distributions sup-
ported on M), this definition is incapable of:
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1. Abstracting an adequate model for the correctness of the decryption.
2. Abstracting the security properties of these schemes.

To address these two major questions, the pure probabilistic approach seems
insufficient. In the next section, we will restrict the above definition to M = TR
and use the metric properties of the torus to define a noisy version that would
address points 1. and 2. above.

2.2 TFHE

Here, we revisit the TFHE scheme using the definition of the FHE module struc-
ture. In practice, the definition of the FHE module structure does not directly
apply to TFHE. One needs here a leveled version of this definition (i.e., after
each operation, the standard deviation or the noise in the decryption increases
until it is impossible to decrypt by rounding).

TFHE consists of three major encryption/decryption schemes, each repre-
sented by a different plaintext space. First, the scheme TLWE encrypts messages
over the entire torus T and produces ciphertexts in TN+1. The other two schemes
are:

– TRGSW encrypts elements of the ringRZ (integer polynomials) with bounded
`∞-norms (of the corresponding vectors in ZN under the natural identifica-
tion R ' ZN ).

– TRLWE encrypts elements µ of the RZ-module TR that can also be viewed
as elements of TN via the natural bijection TR ' TN .

There is an external product �α depending on a noise parameter α [16, Cor.
3.14] that we recall in detail in Theorem 1 below. This theorem yields a FHE
module structure on the schemes TRGSW and TRLWE.

In TFHE, TLWE ciphertexts of a message µ ∈ T have the form (a, b = 〈s, a〉+
µ+ e) ∈ TN+1 where s ∈ {0, 1}N is the secret key, a ∈ TN is uniformly random
and e ∈ T is sampled according to a noise distribution centered at zero. Similarly,
for TRLWE, ciphertexts of µ ∈ TR are of the form (a, b = s · a+µ+ e)T2

R where
s ∈ B, a ∈ TR is uniformly random and e ∈ TR.

The decryption in TLWE (resp. TRLWE) uses a secret κ-Lipschitz function
(here, κ > 0 is small and we mean ”with respect to the `∞-norm on the torus”)
ϕs : TN × T → T (resp. ϕs : TR × TR → TR) called phase parametrized by
a small (often binary) secret key s ∈ {0, 1}N (resp. s ∈ B) and defined by
(a, b) ∈ TN × T 7→ b − 〈s, a〉 (resp. (a, b) 7→ b − s · a). The fact that the phase
is a κ-Lipschitz function for small κ ≤ N + 1 makes the decryption tolerant to
errors and allows working with approximated numbers.

Ciphertexts are either fresh (i.e., generated by directly encrypting a plain-
text) or they are produced by a sequence of homomorphic operations. In both
cases, one views the ciphertext as a random variable depending on the random
coins used to generate a and e as well as all random coins used in all these
homomorphic operations.
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Since ϕs(a, b) = b− s ·a = µ+ e, the decryption µ and the noise parameter α
are the mean and the standard deviation of the phase function ϕs(a, b), respec-
tively (here, the mean and standard deviation are computed over the random
coins in the encryption algorithm). The expectation, variance and standard de-
viation on the torus are well defined only for concentrated distributions (defined
in [16, 2.1]) whose support is included in a ball of radius 1/4 (up to negligible
tails). This is the case of the error distribution of T(R)LWE. More information
on the definition of expectation and standard deviation for concentrated distri-
butions on the torus can be found in [17, 16]. The benefit of the definition of the
message as the expectation of the phase is that it is valid with infinite precision
on any (discrete or non-discrete) subset of TR . Note that this definition is only
useful for analysis (e.g., proving the correctness of the cryptosystem) and cannot
be used for decryption since the expectation of the phase cannot be computed
in practice from a single sample of the distribution.

Below, we describe the parameters and the algorithms that are used for TFHE
with the TRLWE encryption scheme.

Parameters: A security parameter λ and a minimal noise parameter α. These
parameters implicitly define a minimal key size N . For more details see the
FHE standardization workshop security document [3].

KeyGen/Phase: A uniformly random binary key s ∈ B. This key implicitly
defines the secret phase function

ϕs : T2
R → TR, (a, b) 7→ (b− s · a).

Encrypt (µ, s, α): To encrypt a message µ ∈ TR, choose a uniformly random
a ∈ TR and a small Gaussian error e← DTR,α, and return

Encrypt(µ, s, α) =
def

(a, s · a+ µ+ e).

DecryptApprox(c, s): (approx) Return ϕs(c) which is close to the actual
message.

Decrypt(c, s,M): (rounded) Round ϕs(c) to the nearest point in M. Here,
M⊂ TR is subset of plaintext messages and the nearest point is with respect
to the distance function on TR ' TN .

Messages(c): (probabilistic) This is the expectation of ϕs(c) (with respect to
the random coins used in the noise). It can be viewed as a perfect decryption
algorithm with infinite precision.

Public linear combination over RZ: return

k∑

i=1

ai · ci, where ci ∈ T2
R and

ai ∈ RZ for i = 1, . . . , k.
External product: Given a TRGSW ciphertext A encrypting a message µA ∈
RZ and a TRLWE ciphertext b of a message µb ∈ TR, compute A �α b at
precision α > 0, which encrypts µA · µb ∈ TR (see [16] and Theorem 1)

�α : TRGSW × TRLWE −→ TRLWE.
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Apply a Z-module morphism f : use a key-switch algorithm (Theorem 2 and
described in Algorithm 2 in [16]).

SampleExtracti(c) Given a TRLWE ciphertext c of a message µ ∈ RZ, extract
from c the TLWE sample that encrypts the ith coefficient µi with at most
the same noise variance or amplitude as c (see [16] Section 4.2), defined as:

SampleExtracti(c) =
def

((ai, ai−1, . . . , ai−N+1), bi).

To ease the reading of this paper, we specify only one particular instantia-
tion of TFHE5, all bit-decompositions are binary. We present all theorems with
decomposition in base 2 (for bootstrapping, key-switch, external product and
bitdecomp) to minimize the number of parameters in the formulas. To perform
an operation at precision α � 1 (i.e. noise standard deviation α during the
operation), we always use ` = − log2(α) terms in every bit decomposition.

The primary definition of α is the noise’s standard deviation during the
current operation: α is thus not a static parameter of the framework. Then, the
notions of noise rate, precision and approximate decomposition error, key-switch
noise and bootstrapping noises are equal to α or proportional to it.

Any TLWE, TRLWE, TRGSW ciphertext, bootstrapping key or key-switching
key given at a higher precision, can always be rounded and truncated to match
the current precision α. Working with precision α implies a minimal size for
the current binary key (as a simple rule of thumb, the minimal key size N
that provides 128-bit of security is roughly the smallest power of two larger
than max(256, 40| log2 α|). The actual key size should be determined either from
the standardization document [3] or from the LWE estimator by Albrecht et
al. [4]. Whenever α varies (e.g. increases after each multiplication, or decreases
after a bootstrapping), we always use the last key-switching and bootstrapping
operation to switch to the smallest possible key that matches from the security
estimates.

External product. There is a compatibility between the ciphertexts of TRGSW
and TRLWE that can be expressed algebraically in the following manner: observe
that the plaintext space for TRGSW is the ring R and the plaintext space for
TRLWE is the R-module TR. In this case, one can define the following external
product (a homomorphic action) (first introduced in [7] and formalized on the
torus in [17]) of R on TR:

Theorem 1. (External product [16, Cor. 3.14]) Let cr be a TRGSW ciphertext
of a message r ∈ RZ and let cm be a TRLWE ciphertext of a message m ∈ TR
such that cm is independent of the random coins used for cr. There exists a
homomorphic external product algorithm (described explicitly in [16, Sec. 3.3])

5 With this choice, the parameters from [16] correspond to: k = 1, β = 1, Bg = 2,
` = − log(α), t = `, n = N , V KS = V BK = α2, which implies ε = α/2. As usual, a
non binary decomposition is possible and gives small poly-logarithmic improvements.
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and denoted by cr�αcm such that Messages(cr�αcm) = r ·m with noise standard
deviation α > 0 and

Var(Err(cr �α cm)) ≤ 2`NVar(Err(cr)) +
1 +N

4
‖r‖22 α2 + ‖r‖22 Var(Err(cm)).

In general, this theorem will be used to multiply a TRLWE ciphertext cm by
a precomputed TRGSW ciphertext cr (e.g., a ciphertext of the binary secret key
in the case of bootstrapping): in this case, we can choose Var(Err(cr)) = α2, and

we have ‖r‖22 ≤ N (or even ‖r‖22 = 1 if TRGSW ciphertexts encrypt only single
bits, as in [17] and [16]). In this case, the working precision α equals the targeted
output precision divided by N , so that the first two error terms in the theorem
remain negligible.

Key-switching. In order to switch between the scalar and polynomial message
spaces T and TR, the authors of [16] generalized the notions of sample extraction
and key-switching. On one side, a PubKS(f,KS, c1, . . . , cn) algorithm homomor-
phically evaluates linear morphisms f from any Z-module Tn to TN [X] using the
functional key-switching key KS. It is possible to evaluate also a private linear
morphism, but the algorithm is slower.

Theorem 2. (Functional key-switch adapted from [16, Thm. 4.2]) Given r TLWE
ciphertexts ci ∈ TLWES(µi), a public κ-Lipschitz Z-module homomorphism

f : Tr → TR

and KSi,j ∈ T(R)LWEK,α(Si

2j ) with standard deviation α and Si the i-th coef-
ficient of the key S, Algorithm 2 described in [16] outputs a T(R)LWE sample
c ∈ T(R)LWEK(f(µ1, . . . , µr)) such that

Var(Err(c)) ≤ κ2 max(Var(Err(ci))) + α2(`N2 +
N

4
).

.

Non-linear functions. In TFHE, a negacyclic function f : T → T (i.e. f(x +
1/2) = −f(x)) can be homomorphically applied to the phase of an individual
TLWE ciphertext c ∈ Tn+1 with a n-bit key K where each individual coefficient
is rounded to the nearest multiple of 1/2N . More precisely, given the values
f(i/2N) for i = 0, 1, . . . , 2N − 1, [16, Alg.4] outputs a ciphertext c′ ∈ TN+1 of
the plaintext f(bϕK(c)e) encrypted with key S ∈ {0, 1}N .

Theorem 3. (Functional bootstrap adapted from [16, Thm. 4.3]) Given a TLWE
ciphertext c ∈ Tn+1 encrypted with an n-bit key K ∈ {0, 1}n where each in-
dividual coefficient of c is rounded to the nearest multiple of 1/2N , a nega-
cyclic function f : T→ T restricted to (2N)−1Z/Z ⊂ T and a bootstrapping key
BK = TRGSWS(Ki) with standard deviation α, Algorithm 4 described in [16]
outputs a TLWE sample c′ ∈ TN+1 encrypting f(ϕK(c)) with key S ∈ {0, 1}N
such that:

Var(Err(c′)) ≤ α2n(2`N +N +
5

4
+ `).
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Until now, the most frequent non-linear function used in bootstrapping is the
rounding function, since rounding the phase of a ciphertext is equivalent to de-
crypting it, and homomorphic decryption is the noise-reduction method proposed
by Gentry in 2009 [21].

2.3 B/FV (Brakerski, Fan–Vercauteren, and Seal).

In this scheme, the message space is the finite ring Rp = (Z/pZ)[X]/(XN+1) for
some integer p (typically a power of 2 or a prime number). A message µ ∈ Rp
is encrypted on a quotient ring Rq (for a larger modulus q) as a ciphertext
(a, b) ∈ R2

q where a ∈ Rq is chosen uniformly at random and b is sampled
from DRq,σ,s·a+ p

q µ
. Here, DRq,σ,µ is the discrete Gaussian distribution over Rq

centered at µ with standard deviation σ (discrete means that the values are
integers only). In addition, s ∈ B is the secret key.

Homomorphic addition of two ciphertexts (a1, b1) and (a2, b2) is achieved by
component-wise addition. The idea behind the homomorphic multiplication of
two ciphertexts (a1, b1) and (a2, b2) is a technique referred to as relinearization:

one first lifts (ai, bi) ∈ R2
q to (ãi, b̃i) ∈ R2 where each coefficient is lifted to

[−q/2, q/2) and then view of µi as being expressed as a linear polynomial on

s (i.e., µi ∼
p

q
(bi + s · ai)). One then computes the quadratic polynomial cor-

responding to the product, namely
p

q
(b1 + s · a1) · p

q
(b2 + s · a2), and uses the

relinearization described in [19, p.7–9] to write this product as
p

q
(b+ s · a) and

determine the coefficients (a, b) ∈ Rq.
The noise amplitude grows by a small factor O(N) on average after each

multiplication, so it is a common practice to perform a modulus-rescaling step,
that divides and rounds each coefficient as well as the modulus q by the same
scalar in order to bring the noise amplitude back to O(1) so that the subse-
quent operations continue on smaller ciphertexts. For more details and formal
definitions see [6, 19].

We will show in Section 3 how to embed the plaintext space of B/FV in TR
and how to then use the TFHE module structure to evaluate the above B/FV
homomorphic product in a natural way.

2.4 HEAAN

In this scheme, the message space is the subset of Rq containing all elements of
norm ≤ B for some bound B, where the norm of an element x ∈ Rq is defined as
‖x̃‖∞. Here x̃ ∈ RR is the minimal lift of x, i.e., coefficients lifted to [−q/2, q/2).
The message is decrypted up to a constant number of least significant bits which
are considered as noise. A HEAAN ciphertext is also a Ring-LWE pair (a, b) ∈ R2

q

where a ∈ Rq is uniformly random and b is equal to s · a+ µ up to a Gaussian
error of small standard deviation. This time, plaintexts and ciphertexts share the
same space, so no rescaling factor p/q is used. Multiplication of two messages uses
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the same formula as in B/FV including relinearization: if both input messages
are bounded by B with O(1) noise, the product is a message bounded by B2

with noise O(B), so it is a common practice at this point to perform a modulus-
rescaling step that divides everything by B to bring the noise back to O(1) (see
[15]). Unlike B/FV, this division in the modulus switching scales not only the
ciphertext but also the plaintext by B. This can be fixed by adding a (public)
tag to the ciphertext to track the number of divisions by B performed (see more
details in Section 4).

2.5 TR as the common plaintext algebraic structure

As mentioned earlier, the three homomorphic schemes use nearly the same ci-
phertext space (up to rescaling by a factor q). In addition, all decryption methods
make use of the phase function up to minor differences: b − sa versus b + sa in

B/FV or

m∑

i=0

si · ai, s ∈ R, ai ∈ TR for various values of m in Seal [12]. Yet, the

plaintext spaces are à priori different as they are based on different mathematical
structures (groups, rings, intervals, random sets).

In order to exploit the advantages of each scheme, we need to be able to
homomorphically switch between the different plaintext spaces, and most im-
portantly, to give a meaningful semantic to these transformations.

The main idea that enables us to give a meaningful semantic to the scheme
switching transformation is to interpret all the plaintext spaces as being em-
bedded in the same module TR as shown in Figure 2 and to use the distance
function on the torus to quantify the transformation error. In this setting, all
schemes use the same ciphertext space T2

R, the same key space B and the same
phase function ϕs(a, b) = b−s ·a. Thus, the probabilistic characterization of the
message and error as the expectation and the standard deviation of the TFHE
phase, respectively, are automatically extended to all schemes.

TR
+

noise?

Ciphertext

(a, b)

Integers (B/FV)

(Z/pZ)n

Fixed point (HEAAN)

C

Circuits (TFHE)

B = (0, 1)

Fig. 2: Representation of the plaintext space over the TR
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2.6 Real and complex slots for B/FV, TFHE and HEAAN

In this section we recall the representations of the plaintext spaces of the three
schemes via the user slots. This is indeed the representation used in the current
implementations.

B/FV. In B/FV, homomorphic operations are performed either on N SIMD slots
modulo a medium-size integer p [19, 12], or more recently, on a single big-number
slot modulo pN + 1 [13]. In both cases, the set of these slots has a ring structure
and is isomorphic to a quotient of RZ by a principal ideal (the native plaintext
in [13]).

HEAAN. In HEAAN, homomorphic operations are performed on N/2 SIMD slots
containing complex numbers in fixed-point representation with the same public
exponent and the same precision. By interpolating the complex roots of XN +1,
the native plaintext can be mapped to small polynomials of TR (i.e., a zero-
centered ball of small fixed radius) since the complex DFT matrix is Hermitian.
We achieve this in Section 4.

TFHE. Finally, in TFHE, the message space is an arbitrary subset of TR, without
any particular structure.

Preserving the user slots. In order to introduce the notion of slots (real or
complex), we use the following two isomorphisms of R-vector spaces:

RR ' RN , f = a0 + · · ·+ aN−1X
N−1 7→ (a0, . . . , aN ), (1)

and
RR ' CN/2, f 7→ (f(ζ), f(ζ3), . . . , f(ζN−1)). (2)

Here ζ = eπi/N is a primitive root of XN + 1. Representation (1) corresponds
to what is called the coefficient packing and representation (2) corresponds to
what is called the slot packing.

The unified native plaintext spaces and the correspondence with the user-
space slots are shown in Figure 3.

3 A general abstraction of B/FV over the torus

The B/FV scheme is very efficient in evaluating arithmetic circuits (i.e. poly-
nomials on the plaintext). Yet, huge slowdowns are observed when evaluating
comparisons, the sign function or other non-linear decision diagrams that do
not correspond to sparse low-degree polynomials. Here, we propose an alterna-
tive approach that switches to a different scheme, and for instance, executes
the non-arithmetic operation via TFHE’s gate bootstrapping. We explain how
to represent the plaintext spaces in order to enable this conversion.

Originally, the construction of B/FV uses Rp as the plaintext space, where
p ≥ 2 is a plaintext modulus. For more flexibility (see, e.g., the B/FV with big
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Ciphertext Phase Native Message User Slots

(a, b)
b− s · a

any M⊆ TR

small continuous interval

principal ideal lattice

local stability of homomorphic ops

Arbitrary subset

P (X) = p, N SIMD slots modulo p

P (X) = X-p, 1 bignum slot modulo pN+1

N/2 fixed point SIMD slots over C

fast operations on individual slots

N independent coeffs over T

P (X) =
∏

(X-pi) SIMD slots, each mod pNi +1

T2
R TR M⊆ TR

(TFHE)

(B/FV)

(HEAAN)

M = P−1RZ/RZ

coeffs∈ [− 1
2`
, 1
2`

]

=
µ+ e

Fig. 3: Unifying the plaintext space in RLWE-schemes. See the following sections for
the definition of the notation.

numbers below), one can use an arbitrary element P ∈ R and take RZ/PRZ
as the plaintext space. Following the ideas of [20, 13], given an element P ∈ RZ
that is invertible in RR, let L(P ) and L(P−1) be the real lattices generated
by the rows of the matrices associated to P and P−1, respectively. Recall that
these are the matrices (with respect to the standard basis {1, X, . . . ,XN−1})
corresponding to the linear transformation of the R-vector space RR that is
multiplication by P . The native plaintext space M is precisely the subgroup
P−1RZ/RZ ⊂ RR/RZ = TR. We then have

P−1RZ/RZ ' RP := RZ/PRZ,

where the isomorphism is induced by u 7→ P · u for u ∈ P−1RZ/RZ. Thus,
M ' RP . Geometrically, M can be thought of as the vectors in the lattice
L(P−1) whose coordinates are taken modulo Z. Algebraically,M is the P -torsion
of the TR.

Via this isomorphism, the native plaintext space M is equipped with the
following internal Mongomery-type product:

Definition 2 (Native plaintext product). Given an element P ∈ RZ as
above, we define a product �P : M×M→M by µ1 �P µ2 := P · µ1 · µ2. Here,
the product P · µ1 · µ2 is defined in RR by choosing arbitrary lifts of µ1, µ2 to
P−1RZ. Notice that this definition is independent of the choices of these lifts.

Multiplication in B/FV. We will now deploy our definition of an FHE module
structure to recover the internal homomorphic product of B/FV in terms of the
external product. We view the plaintext space M := RP as an R := RZ-module
and let s ∈ B ⊂ RZ be the key.

Given a TRLWE ciphertext c = (a, b) ∈ T2
R, we denote by (ã, b̃) ∈ R2

Z the
optimal lift of c to R2

R, that is the pair of the unique lifts of c for which all

coefficients of ã and b̃ are in [−1/2, 1/2). Let (a1, b1), (a2, b2) ∈ T2
R be two

ciphertexts of plaintexts µ1, µ2 ∈ M ⊂ TR. We are searching for a ciphertext

13



(a, b) that is a valid encryption of the product µ1 �P µ2. Since µi = bi − s · ai
for i = 1, 2, we can write

µ1 �P µ2 = P
(
b̃1b̃2 − s · (ã1b̃2 + d2b̃1) + s2ã1ã2

)
.

We would like to define the internal product (a1, b1) �P (a2, b2) as a pair (a, b)
with the property that

DecM (a, b) = P
(
b̃1b̃2 − s · (ã1b̃2 + ã2b̃1) + s2ã1ã2

)

The important point here is that we would like to find a, b ∈ TR such that

a− s · b = P
(
b̃1b̃2 − s · (ã1b̃2 + ã2b̃1) + s2ã1ã2

)
.

This would have been trivial without the s2 term. To deal with the latter, we
use an encryption EncR(s) =: RK (the relinearization key) and the definition of
an FHE module structure to deduce that

s2ã1ã2 = DecM (EncR(s) � EncM (sã1ã2)).

To summarize, we get

(a, b) = (ã1b̃2 + ã2b̃1, b̃1b̃2) + RK� (ã1ã2, 0).

Alternatively, the term s2ã1ã2 can also be computed as RK′�EncM (ã1ã2) where
RK′ = EncR(s2).

Letting RK be a relinearization key as above, that is a TRGSW encryption
of s with key s (denoted by TRGSWs(s)), this analysis in the noiseless setting
motivates the following definition of a B/FV internal homomorphic product in
the presence of noise:

Definition 3 (Internal homomorphic product). We define the internal ho-
momorphic product between two ciphertexts c1, c2 ∈ (TR)2 as c1 �P,α c2 as fol-
lows:

c1 �P,α c2 = (C1, C0)−RK �α (C2, 0), (3)

where C0 = P · b̃1 · b̃2, C1 = P · (ã1 · b̃2 + ã2 · b̃1) and C2 = P · ã1 · ã2.

Note that this definition of the internal homomorphic B/FV product relies on
a precomputed TRGSW external product, or homomorphic action, which is faster
than the internal product. The relation between the two products is possible
thanks to the common plaintext space for B/FV and TFHE. A formulation closer
to the original B/FV relinearization presented in [6], [19] would rather take RK′

an encryption of s2 and compute (C1, C0) + RK′ �α (0, C2).
Yet, this approach generates more noise than using directly the encryption

of s since the propagation depends on the norm of the plaintext in TRGSW.
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Proposition 1 (B/FV noise propagation). Let RK be a relinearization key,
let c1, c2 be two TRLWE ciphertexts of µ1, µ2 ∈ M = P−1RZ/RZ, respectively,
with the same key s ∈ B as in Definition 3. The internal homomorphic product
c1 �P,α c2 is then an encryption of µ1 �P µ2 and the noise variance satisfies

Var(Err(c1 �P,α c2)) ≤ 1+N+N2

2
‖P‖22 max(Var(Err(ci)) +

(
2`N +

N2+N

4

)
α2. (4)

Proof. Let µ1, µ2, e1, e2 ∈ RR be the smallest representatives of the message
and error of c1 and c2, respectively. By definition, for each i = 1, 2, we have
bi − s · ai = µi + ei + Ii where Ii is an integer and the variance of Ii is ≤ N .

ϕs(c1 �P,α c2) = C0 + s · C1 + s2 · C2 + Err(RK �α (0, C2)) mod Z
= (b1 − sa1)(b2 − sa2)P + Err(RK �α (0, C2)) mod Z
= (µ1 + e1 + I1)(µ2 + e2 + I2)P + Err(RK �α (C2, 0)) mod Z
= µ1µ2P + e1µ2P + e2µ1P + e1e2P + e1I2P + e2I1P

+ Err(RK �α (C2, 0)) mod Z
= µ1 �P µ2 + e1µ2P + e2µ1P + e1e2P + e1I2P + e2I1P

+ Err(RK �α (C2, 0)) mod Z

Taking the expectation, since all multiples of ei as well as Err(RK � (0, C2))
have a null expectation, the message of c1 �P,α c2 is µ1 �P µ2. By bounding the
variance of each error term, we prove Eq. (4). ut

The working precision α of the input ciphertexts is set in a way that the term
in α2 remains negligible compared to the first one in (4). Thus, the noise standard
deviation multiplicative overhead is bounded by O(N ||P ||2) in the average case.

3.1 Bridging B/FV slots with TFHE

In the classical description of B/FV or Seal, P (X) is usually chosen as a constant
integer p. In this case, the plaintext space M consists in all the multiples of
P−1 = p−1 mod (XN + 1) mod Z, which is a rescaling of the classical plaintext
space description Rp (as shown in Figure 4). In particular, if XN + 1 has N
roots modulo p,M is isomorphic to N independent integer slots modulo p (else,
there are less slots, in extension rings or fields). From a lattice perspective,M is
viewed as the orthogonal lattice generated by 1/pIN (IN is the N ×N identity
matrices). The packing radius ofM is 1/2p which is the maximal error tolerable
by the phase. Rounding an element to M consists of rounding each coordinate
independently to the nearest multiple of 1/p.

In the literature, the isomorphism used to obtain the slot representation is

p−1RZ/RZ ' Rp ' (Z/pZ)N , µ 7→ (µ(r0), . . . , µ(rN−1)). (5)

Here, one assumes that the polynomial XN +1 mod p factorizes into distinct
linear factors X − r0, . . . , X − rN−1 (i.e., it has N distinct roots r0, . . . , rN−1
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Fig. 4: The B/FV plaintext space over the TR

mod p). This isomorphism allows to manipulate N independent slots in parallel.
Typical values are N = 215 and p = 216+1 (allowing a very small noise α ≈ 2−886

according to [8], so a multiplicative depth of ≈ 28 without key-switch according
to the propagation of Lemma 1).

If we identify a polynomial in Rp with its coefficient vector in (Z/pZ)N , the
bijection between the coefficients and the slot then corresponds to the Vander-
monde matrix of (r0, . . . , rN−1) mod p

VDM =




1 r10 · · · rN−10

1 r11 · · · rN−11
...

... · · ·
...

1 r1N−1 · · · rN−1N−1


 mod p. (6)

B/FV → TFHE. In this section we show how B/FV ciphertexts, interpreted
as TRLWE ciphertexts with plaintext (slots in) Rp, can be transformed into k
independent TLWE ciphertexts.

Let z = (z0, . . . , zN−1) ∈ (Z/pZ)N be a B/FV plaintext and, as in the
previous section, let p−1RZ/RZ ' (Z/pZ)N be the identification (5) and let
µ ∈ p−1RZ/RZ ⊂ TR be the preimage of z. More generally, suppose that we
start with a Z-module homomorphism f : (Z/pZ)N → (Z/pZ)N with a ma-
trix F ∈ MN (Z), where MN (Z) is the class of integer N × N matrices (this
could arise in practice as either a projection, extraction or permutation of the
slots) and get the output f(z) as a polynomial

∑N−1
i=0 µ′iX

i ∈ p−1RZ/RZ where6

µ′ := (µ′0, . . . , µ
′
N−1) =

1

p
f(z0, . . . , zN−1) mod Z.

Then, by definition, we have µ′ = (F ·VDM)µ mod Z, where F ·VDM can be
any integer representative of F ·VDM mod p. In particular, we can always take
the representative with all coefficients in [−p/2, p/2). This is a (Np/2)-Lipschitz
Z-module homomorphism, and can be evaluated via the functional key-switch

6 A priori f(z) ∈ (Z/pZ)N is identified with an element of Rp which is then identified
with p−1RZ/RZ; the coefficient vector µ′ = (µ′0, . . . , µ

′
N−1) ∈ (p−1Z/Z)N ⊂ TN

yields the output.
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of Theorem 2 (see Algorithm 1). Coefficients can then be homomorphically ex-
tracted as individual TLWE ciphertexts with the SampleExtract of TFHE.

Algorithm 1 Public Functional Switching B/FV to TFHE

Input: TRLWE ciphertext c(X) = (a(X), b(X)) encoding N slots (z0, . . . , zN−1)
mod p with key K ∈ B, a public Z-module homomorphism f : (Z/pZ)N → (Z/pZ)N

with matrix F ∈MN (Z), and key switch key KSi,j ∈ TLWES(Ki
2j

), where S ∈ B.
Output: a TRLWE ciphertext c′ ∈ TR encrypted with key S ∈ B whose message is∑N−1

i=0 µ′iX
i where (µ′0, . . . , µ

′
N−1) = 1

p
f(z0, . . . , zN−1)

1: F ′ = F · V DM mod p
2: Compute B = F ′(b(X)) ∈ Tk
3: for i ∈ 0→ N − 1 do
4: Compute Ai = F ′(Xia(X)) = A ∈ Tk
5: Decompose Ai =

∑l
j=0Ai,j · 2

−j with Ai,j ∈ Bp
6: end for
7: return (0, B)−

∑N−1
i=0

∑l
j=0Ai,j ·KSi,j

Proposition 2 (B/FV slots→ TFHE). Let c = (a, b) ∈ T2
R be a TRLWE cipher-

text encrypting N slots (z0, . . . , zN−1) mod p with key K ∈ B,
let f : (Z/pZ)N → (Z/pZ)N be a public Z-module homomorphism with matrix
F ∈ MN (Z). Let KSi,j ∈ TRLWES,α(Ki/2

j) be a key switching key (0 ≤ i < N ,
1 ≤ j < log2 α) and Ki is the i-th coefficient of K. By applying the functional
key-switch of Theorem 2 using the integer transformation F ·VDM mod p whose
coefficients are between [−p/2, p/2) and we obtain a TRLWE ciphertext c′ ∈ TR
encrypted with key S ∈ B whose message is

∑N−1
i=0 µ′iX

i where (µ′0, . . . , µ
′
N−1) =

1
pf(z0, . . . , zN−1). The noise variance satisfies

Var(Err(c′)) ≤
(
Np

2

)2

Var(Err(c)) + α2

(
`N2 +

N

4

)
.

TFHE → B/FV. Conversely, we would like to transform k independent TLWE
ciphertexts (encryptions of messages (µ0, . . . , µk−1) ∈ Tk) into a TRLWE cipher-
text with slots in Z/pZ. Again, we will need to define a Lipschitz Z-module
homomorphism g : Tk → (Z/pZ)N . Unfortunately, since for all x ∈ Tk there
exists y ∈ T such that x = p · y, we have g(x) = p · g(y) = 0 in (Z/pZ)N and this
implies that g is zero everywhere, which is of limited interest.

Therefore, we need to restrict the message space only to multiples of 1/p
(this prevents division by p). Such a plaintext space restriction may imply that
input TLWE ciphertexts must be bootstrapped before exporting them as B/FV
slots using gate bootstrapping from Theorem 3. Note that B/FV manages with
a noise that is smaller than in the TFHE. Therefore for this transformation,
it is not enough to only switch between different ciphertexts types, but also
to decrease the noise. Also the bootstrapping of the input permits to map the
plaintext space to space composed to exact multiplies of 1/p.
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Then, let g : (Z/pZ)k → (Z/pZ)N be a Z-linear map whose matrix G is in
MN,k(Z). To obtain a B/FV ciphertext whose slots are g(pµ0 mod p, . . . , pµk−1
mod p), the actual transformation to apply is VDM−1 ·G mod p (see Algorithm
2). Again, we can choose the representative with coefficients in [−p/2, p/2) which
is (Np/2)-Lipschitz.

Algorithm 2 Public Functional Switching TFHE to B/FV

Input: k < N TLWE ciphertexts (ai, bi) encoding µi ∈ MN,k(Z) with key S ∈ B,
a public (Np/2)-Lipschitz Z-module morphism g : (Z/pZ)k → (Z/pZ)N , whose
matrix G ∈MN,k(Z) and KSi = TRGSWK(Si).

Output: a B/FV ciphertext (a(X), b(X)) encoding a plaintext with slots are g(pµ0

mod p, . . . , pµk−1 mod p), with key K ∈ B
1: G′ = V DM−1 ×G mod p
2: Compute B = G′(b0, ..., bk) ∈ TR
3: for i ∈ 0→ N − 1 do
4: Compute A[i] = G′(a0[i], ..., ak[i]) ∈ TR
5: end for
6: return (0, B′)−

∑N−1
i=0 KSi � (0, A′[i])

Bootstrapping in B/FV. If we want to decrease the noise of the output, different
possibilities for the algorithm of bootstrapping exist in the literature [11, 19]. The
first one is the naive bootstrapping, where we evaluate the rounding function.
In this case for p > 2N + 1 prime (p = 1 mod N), we need O(

√
p) internal

products for the evaluation and we preserve the N slots. The second one is the
bootstrapping proposed in [11], where p = re is a power of a prime number, and
we need only (e− 1)(r − 1) multiplications, but the number of slots is reduced.

Non-linear functions in B/FV. In B/FV, an arbitrary function f : Z/pZ→ Z/pZ,
for a prime p, can be interpolated by a polynomial of degree ≤ p−1 (by Lagrange
interpolation) and can thus be evaluated as an arithmetic circuit of multiplicative
depth 2 log2 p. The evaluation of the polynomial is performed simultaneously on
the N slots. If the function f is viewed as a function f : T→ T, both the domain
and the range are in this case rounded to exact multiples of 1/p. Compared to
TFHE, the output is constrained in the subset p−1Z/Z (e.g., only to multiples
of 1/p), but on the other hand, there is no negacyclic constraint on the input,
so the graph of the non-linear function can be arbitrary everywhere. However,
except in very special circumstances, the polynomial to evaluate is dense, so the
number of homomorphic operations is Θ(p) which is impractical for large p’s and
thus, the method does not apply to big-number slots. One notable exception to
this rule is the bootstrapping in [11] modulo pk, which proves that the rounding
function is the composition of sparse polynomials.
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3.2 Scheme-switching between B/FV-big-number and TFHE.

In the case of [13], using the NTRU trick [23], the plaintext space is R/(X −
p)R ' Z/(1+pN )Z. Usually, p is small, but pN+1 is large, so a slot corresponding
to Z/(1 + pN )Z allows us to perform arithmetic operations on big numbers. If
P = X − p then the native plaintext space M is P−1RZ/RZ with

P−1 = − 1

pN + 1

N−1∑

i=0

pN−1−iXi.

Interestingly, since the leading coefficient of the polynomial P−1 is 1/(pN+1), the
isomorphismM' 1

pN+1
Z/Z corresponds to extracting the coefficient in XN −1

(i.e. the map µ =
∑N−1
i=0 µiX

i 7→ µN−1 mod Z). On this native plaintext space,
the näıve rounding algorithm computing µ = P−1 · bϕs(c) · P e can solve the
BDD problem up to a distance ≈ 1/2p (which is the packing radius of the lattice
M; note that the vector P ∈ RZ is a short vector). Here, by ϕs(c), we mean an
arbitrary lift in RR. This allows to operate on ciphertexts with very large noise
≈ 1/2

√
Np.

B/FV-big-number → msb-TFHE. Given a TRLWE ciphertext c = (a, b) ∈ T2
R

encrypting µ ∈ TN with a key K, to obtain the TLWE encryption of the most sig-
nificant bit of µ with key K, it is enough to extract cN−1 = SampleExtractN−1(c).

TFHE → B/FV-big-number. Conversely, to transform k < N TLWE indepen-
dent ciphertexts c0, . . . , ck−1 encrypting µi = xi/p ∈ p−1Z/Z (for xi ∈ [0, p−1])
with key S ∈ BN into a TRLWE ciphertext encrypting the big-number R =∑k−1
i=0 xip

N−1−i mod pN + 1 with key K ∈ B, we can return an encryption

of (µ0, . . . , µk−1) → ∑k−1
i=0 µiX

N−1−i ∈ p−1RR/RR. Indeed, this polynomial is
very close to our target P−1R mod RZ. To that end, we can just apply the pub-
lic key-switch c = PubKS(id,KS, (c0, . . . , ck−1)), where the key-switching key is
composed by KSi = TRGSWK(Si) to pack the k ciphertexts as a single TRLWE
ciphertext.

4 A general abstraction of HEAAN over the torus

For HEAAN, the homomorpic encryption scheme of approximate numbers, the
idea is that instead of correcting the error during the decryption for the sake of
increased noise, one keeps the approximation error and thus, reduces the noise.
In this scheme only the significant digits are used and the phase is taken as
a good approximation of the plaintext. HEAAN is a mixed encryption scheme
dedicated to fixed-point arithmetic with public exponent. Similarly to scale in-
variant schemes, the noise is appended to the least significant bits of the phase,
but unlike B/FV, the space of valid messages is a small bounded interval rather
than evenly-distributed in the whole space. Also, the maximal amount of noise is
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interpreted in terms of the ratio between the diameter of the message space and
the scale modulus q rather than the usual noise amplitude versus packing radius
As we keep performing homomorphic operations, the message space diameter
increases until the majority of the space is covered at this point, the scale in-
variance property enables to extract the message as a classical LWE sample that
can be processed, for instance, by TFHE. To fully enable this switch between
schemes, it is necessary to relate the message spaces of HEAAN and TFHE.

Tags of ciphertexts. To do this, we revisit the representation of HEAAN cipher-
texts by adding the following three tags/parameters that we define and clarify
below:

– L ∈ N: level exponent of the ciphertext - overall, it quantifies the maximum
amount of homomorphic operations before performing a bootstrapping (the
native plaintext ‖µ‖∞ ≤ 2−L),

– ρ ∈ N: bits of precision of the plaintext, that is, the number of bits in the
mantissa. Since it is a global constant, we omit it in general.

– τ ∈ Z: slot exponent (order of magnitude of the complex values in each slot).
Here, we use floating-point representation for which the exponent is public
and fixed across all the coordinates of the vector and only the mantissa’s
are secret. More precisely, a complex number z is represented as z = m · 2τ
where τ is public and m ∈ 2−ρ · (Z + iZ) with 0 ≤ |m| < 1.

In Figure 5, we show the plaintext space (with the rounding error) using the
tags defined before.

m2τ + ε

− 1
2L

1
2L

1
q

= 2−(L+ρ)

Fig. 5: The HEAAN plaintext space over the TR, where the error ε is an approximation
error of the same order as α = 2−(L+ρ).

More precisely, L is needed since HEAAN can be viewed as an instantiation
of TRLWE whose native plaintext space is the subset of all polynomials µ ∈ TR
of small norm ‖µ‖∞ ≤ 2−L. The integer L > 0 is the level exponent of the
ciphertext, it is public and decreases with each multiplication. When the level is
too low, the ciphertext must be bootstrapped to allow further processing.
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The plaintext space is always described with a global and fixed number ρ of
significant bits. One can define the noise amplitude α := 2−(L+ρ). Finally, since
the goal is to represent ρ-bit fixed-point values of any order of magnitude, each
ciphertext carries a public integer exponent τ ∈ Z which represents the order of
magnitude of its slots.

We choose these three tags because they are helpful for the parameter selec-
tion of the cryptosystem (N and α) from the user point of view. For that, the
first step is to fix ρ, the precision needed at the end of the algorithm, the second
step is to determine the range of each variable (so the slot exponents τ): this can
be done either from the domain of the evaluated function or experimentally by
running the algorithm on a fake data. Then, using the noise propagation formula
for elementary operations given in this section, we compute the smallest level
exponent L > 1 for each variable by traversing the arithmetic graph of the al-
gorithm. Finally, we use the security API document [8] (or the LWE estimator)
to find the smallest key size N that supports a noise rate α = 2−(L+ρ) to the
desired security parameter.7 The original HEAAN choice of tags is inherent and
to determine the final system parameters, we have to solve a complex system of
equations.

Complex-valued slots for plaintexts. Recall that N is always a power of 2. Given
a message µ ∈ RR where ‖µ‖∞ ≤ 2−L, its complex slots (z1, . . . , zN/2) are
defined as the (rescaled) evaluation on the complex roots of XN + 1, so zk =
2L+τµ(ζk) ∈ C. We omit the values on the last N/2 roots as they are complex
conjugates of the first ones since µ is real. If ‖µ‖∞ ≈ 2−L, this indeed implies

that slot values |zk| ≈
√
N2τ and that the slot precision is up to 2τ−ρ.

In order to unify the message spaces, we redefine tagged HEAAN ciphertexts
as a quadruple (a, b, τ, L) ∈ T2

R × Z×N where (a, b) is a TRLWE ciphertext. As
usual, the phase of a ciphertext is (b− s · a) ∈ TR and the message is the expec-
tation of the phase. The slots of a ciphertext are the slots of its message µ ∈ TR
represented by a lift in RR of small real norm ≤ 2−L. From a matrix point of
view, the transformation between the coefficients and the slots is the multiplica-
tion with 2τ+L times the complex DFT matrix of ζk. We have (z1, . . . , zN/2) =
DFT · (µ0, . . . , µN−1) and (µ0, . . . , µN−1) = 2Re(IDFT · (z1, . . . , zN/2)).

DFT =




1 ζ11 · · · ζN−11

1 ζ12 · · · ζN−12
...

... · · ·
...

1 ζ1N/2 · · · ζN−1N/2


 , IDFT =

1

N




1 1 · · · 1
ζ̄11 ζ̄12 · · · ζ̄1N/2
...

... · · ·
...

ζ̄N−11 ζ̄N−12 · · · ζ̄N−1N/2


 (7)

Tag propagation formulas. We now describe the tag propagation formulas
for the homomorphic operations over the slot representation of the ciphertext8:

7 There is a very light dependency requirement ρ ≥ log2(N) in the noise propagation
formula of the product, but in general, choosing ρ ≥ 15 should be enough.

8 The identities below are approximate since the sum of two normal distributions
X = N(0, σX) and Y = N(0, σY ) is not necessarily a normal distribution (unless the
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Addition HeaanAdd((c1, τ1, L1), (c2, τ2, L2))→



c = 2τ1+L1−τ−Lc1 + 2τ2+L2−τ−Lc2 mod Z,
τ = max(τ1, τ2) + 1,
L = min(L1 + τ1, L2 + τ2)− τ

Proof. We can check that this transformation changes the slot value into
2τ+Lµ(ζk) = 2τ1+L1µ1(ζk) + 2τ2+L2µ2(ζk) = (z1 + z2), that proves the cor-
rectness of the sum of two slots. The fact that τi + Li − τ − L ≥ 0, for
i ∈ {1, 2} means that the sum is an integer combination of the ciphertexts.
At the end, we verify that

‖µ(X)‖∞ ≤ 2τ1+L1−τ−L‖µ1(X)‖∞ + 2τ2+L2−τ−L‖µ2(X)‖∞ ≤
≤ 2τ1+L1−τ−L−L1 + 2τ2+L2−τ−L−L2 ≤ 2−L.

Decrease level HeaanRSL→L′((c, τ, L), L′ < L)→ (2L−L
′
c′ mod Z, τ, L′)

Proof. We verify that the slot values are preserved and that ‖µ(X)‖∞ <
2L−L

′‖µ′(X)‖∞ ≤ 2L−L
′−L = 2−L

′
.

Binary Shift (multiply by 2t) HeaanBS(t, (c, τ, L))→ (c, τ + t, L)

Proof. Slots are indeed transformed as z′ = 2τ+t+Lµ(ζk) = 2tz where t is
the shift and z = 2τ+Lµ(ζk) is the slot value. Since the TRLWE part does
not change, the native plaintext does not change either and the bound 2−L

is preserved.

Multiplication by a constant HeaanMultCst(a ∈ Z s.t.|a| ≤ 2ρ, (c, τ, L)→
(a · c mod Z, τ + ρ, L− ρ)

Proof. We can check that multiplication with a ≤ 2ρ transforms the slot
value into z′ = 2τ+Laµ(ζk) = az Note that the combination of constant
integer multiplication and binary shift allows to multiply by an arbitrary
fixed-point plaintext of precision ρ.

Constant slot-wise multiplication HeaanSlotMult((u1, . . . , uN/2), (c, τ, L))
Let u1, . . . , uN/2 be N fixed-point complex slots of the same order of mag-
nitude (e.g. uk = (xk + iyk).2−ρ where xk, yk are integers in [−2ρ, 2ρ].
Interpolate (or find by least mean square) an integer polynomial d(x) with
coefficients in [−2ρ, 2ρ] and t an integer exponent such that the slots of
d(X)2t are all good approximations of z1, . . . , zN/2, up to precision 2t−ρ.
Namely,

|d(ζk)2t − uk| ≤ 2t−ρ for all k ∈ [1, N/2]. (8)

variables are independent which needs not be the case as they are distributions over
ciphertexts), but, for any practical purposes, is close enough to a normal distribution
with zero mean and standard deviation σ =

√
σ2
X + σ2

Y . In addition, the Gaussian
distributions that appear in practice are not even continuous Gaussian distributions
and this makes the estimate even more complex.
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Then all we need is to multiply the input ciphertext by d(x) and shift the
result by τ bits. The level decreases by ρ bits, where 2ρ is the norm of d.

d(X) ∈ RZ(‖d‖∞ ≤ 2ρ), (c, τ, L) :




d(X) · c mod Z,
τ ′ = τ + ρ+ t,
L′ = L− ρ.

Proof. It follows from (8) that z′k = 2τ
′+L′

µ(ζk)d(ζk) = 2τ+Lµ(ζk)d(ζk)2t =

zk ·(uk+εk) where |zkεk| ≤ 2τ
′−ρ and that the native plaintext norm verifies

||µ′(X)||∞ ≤ 2−L+ρ = 2−L
′
.

Slot-wise precomputed secret multiplication :
HeaanPrivSlotMult(TRGSW(D), (c, τ, L))
In the previous multiplication, d(x) can be provided encrypted as a TRGSW
ciphertext of D.

General multiplication HeaanMult((c1, τ1, L
′), (c2, τ2, L′)) use the Algorithm 3

below, proved in Proposition 3.

Algorithm 3 HEAAN homomorphic product on TR
Input: Two HEAAN ciphertexts (a1, b1, τ1, L1), (a2, b2, τ2, L2) ∈ T2 × Z × N whose

slots are (z
(1)
1 , . . . , z

(1)

N/2) and (z
(2)
1 , . . . , z

(2)

N/2) under the same key s and precision
ρ > log2N .

Output: a HEAAN ciphertext (a, b, τ, L) whose slots are zj = z
(1)
j z

(2)
j for j ∈ [1, N/2]

with the same key s
1: Set τ = τ1 + τ2 (slot exponent)
2: Set L′ = min(L1, L2) and use HeaanRSLi→L′ to decrease both ciphertexts to level L′

3: Let q = 2L
′+ρ, α = q−1, and L = L′ − ρ

4: Round (ai, bi) to the nearest multiple of α = q−1.
5: Let (a, b) = (a1, b1) �q,α (a2, b2) (with �q,α the internal homomorphic product

defined in the Definition 3)
6: return (a, b, τ, L)

Proposition 3 (HEAAN product). Let (a1, b1, τ1, L1), (a2, b2, τ2, L2) ∈ T2
R×

Z × N whose slots are (z
(1)
1 , . . . , z

(1)
N/2) and (z

(2)
1 , . . . , z

(2)
N/2) under the same key

s. Suppose that the precision ρ is larger than log2N . Algorithm 3 computes a

HEAAN ciphertext (a, b, τ, L) whose slots are zj = z
(1)
j z

(2)
j for j ∈ [1, N/2] with

the same key s such that Var(Err((a, b))) remains implicitly 4−L−ρ.

Proof. (sketch) Since Algorithm 3 rescales both ciphertexts to the same level,
we can assume that both inputs have the same level L′. Compared to the proof
of Lemma 1, defining the same auxiliary quantities C0,C1,C2, we have

ϕs(a, b) = µ1 �q µ2 + e2µ1q + e1µ2q + e1e2q + e2I1q + e1I2q

+ Err(RK �α (C2, 0)) mod 1

= µ1 �q µ2 + e2µ1q + e1µ2q + e1e2q + Err(RK �α (C2, 0)) mod 1
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Here, the terms e1I2q and e2I1q disappear because ei are exact multiples of
1
q after the rounding. The expectation of the phase is still µ1 �q µ2, so the

output slots contain zk = qµ1(ζk)µ2(ζk)2τ+L = z1,kz2,k since L = 2L′ − log2(q).

The native plaintext µ1 �q µ2 itself is bounded by q2−2L
′

= 2L
′+ρ−2L′

= 2−L.

The phase variances of e2µ1q, e1µ2q are bounded by
(
q2−L

′
2−L

′−ρ
)2

= 4−L−ρ,

e1e2q by 4−L−2ρ, and Var(Err(RK �α (C2, 0)) ≤
(

2`N + N2+N
4

)
α2 ≤ N2α2 ≤

4log2(N)−L′−ρ < 4−L
′ ≤ 4−L−ρ because ρ > log2(N). Overall, the output noise

standard deviation is 2−L−ρ, which corresponds to ρ bits of fixed-point precision.
ut

4.1 Scheme switching between TFHE and HEAAN

TFHE → HEAAN Let S = (S1, . . . , Sn) ∈ {0, 1}n be a TLWE key and let N
be the power of 2 in the HEAAN cryptosystem. Let (a1, b1), . . . , (aN/2, bN/2) ∈
Tn×T be TLWE ciphertexts encrypted under the secret key S. For every 1 ≤ k ≤
N/2, let νk = ϕS(ak, bk) be their phases. Suppose that N is the modulus used
in HEAAN and K ∈ B is a HEAAN secret key. Here, we describe an algorithm
(functional switching from TFHE to HEAAN) that outputs a HEAAN ciphertext
(a, b, τ, L) which, when decrypted with the key K, yields a vector of size N/2
whose components are the complex values zk = exp(2πiνk) for 1 ≤ k ≤ N/2.
This allows us to evaluate trigonometric polynomials and have various practical
applications such as evaluating continuous functions via rapid convergence of
Fourier series. We describe this algorithm as a variant of the bootstrapping for
HEAAN [14].

Letting BKi = TRGSWK(Si) be the components of the bootstrapping key
BK, this algorithm is a combination of a homomorphic evaluation of the mod Z
operation (the bootstrapping proposed by HEAAN in [14]) and a multiplications
with the DFT matrix in order to switch between coefficients and slots.

Once we have the complex exponential, we can represent any other piecewise
continuous function f from T to C and obtain f(ν1), . . . , f(νN/2) in the slots,
by just evaluating the first terms of the Fourier series of f .

Proposition 4 (Functional switching TFHE to HEAAN). In the setting de-
scribed above where the noise standard deviation is α and the precision param-
eter is ρ ∈ N, Algorithm 4 computes a HEAAN ciphertext (a, b, τ, L) decrypting
to (z1, . . . , zN/2) under K and having precision ρ, p =

√
ρ + log2(2πn/

√
ρ) and

level ciphertext exponent

L = − log2 α− (p+ log2 ρ)ρ− 1

2

(
log2

(
−2nN log2 α+ n

1 +N

4

))
.

Proof. (sketch) We approximate exp(2πiνk) using the idea of [14] by first taking
a small real representative of the input ciphertexts and divide them by 2p for a
suitable p (that depends on the target precision). This way, the (real) phase of the
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Algorithm 4 Switching TFHE to HEAAN

Input: N/2 TLWE ciphertexts (ak, bk), 1 ≤ k ≤ N/2 whose phases are νk ∈ T under
the same key S ∈ {0, 1}n and BKi = TRGSWK(Si).

Output: A HEAAN ciphertext (a, b) ∈ T2
R at level L that decrypts (under K) to the

slots (z1, . . . , zN/2) where zk = e2πiνk and νk = ϕS(ak, bk).
1: Let A be the N/2×(n+1) real matrix where Ai,j is the representative of the j-th co-

efficient of ai ∈ [−1/2, 1/2) and the last column Aj,n+1 contains the representative
of bj ∈ [−1/2, 1/2).

2: Let p =
√
ρ+ log2(2πn/

√
ρ)

3: Compute Pj ←
1

2pN
Re(IDFT ∗ Aj) for 1 ≤ j ≤ n + 1. Here, Pj is the polynomial

whose slots are 1
2p
Aj .

4: c← (0, 2−(L+(p+1)ρ)Pn+1)−
∑n
j=1BKj �α (0, 2−(L+(p+1)ρ)Pj).

5: Let C = (c, τ = 0, L+ (p+ 1)ρ)

6: Evaluate homomorphically E =

√
ρ−1∑
k=0

ik

k!
Ck using Paterson–Stockmayer algo-

rithm [25] (in depth log2 ρ), HeaanMult for non-constant multiplications and
HeaanSlotMult for constant multiplications. Here, E has parameters τ = 0 and
level L+ pρ.

7: for j = 1 to p do
8: E ← HeaanMult(E, E) (the new E has parameters τ = 0 and level L+ (p− j)ρ)
9: end for

10: return E at level L

rescaled ciphertext νk/2
p is guaranteed to be bounded by n/2p. We first compute

a good approximation, up to an error ≤ 2−ρ, for exp(2πiνk/2
p) using the first√

ρ terms of the Taylor expansion of the exponential function. For instance,

the Taylor–Lagrange inequality gives

∣∣∣∣∣∣
exp(ix)−



√
ρ−1∑

k=0

(ix)k

k!



∣∣∣∣∣∣
≤ |x|

√
ρ

√
ρ!

, so for

x ≤ n/2p, it suffices to choose p =
√
ρ + log2(2πn/

√
ρ) to get the required

approximation within 2−ρ. Then, we square and multiply (we square and square
in this case) the result to raise exp(2πiνk/2

p) to the power 2p to obtain the
desired plaintext exp(2πiνk). From Theorem 1 on the external product for TFHE,
the noise of the ciphertext c of line 4 is

Var(Err(c)) ≤ (−2n log2 αN + n
1 +N

4
)α2 ≤ 4−L−(p+log2(ρ))ρ.

We then evaluate the Taylor expansion of the complex exponential (up to
degree d =

√
ρ) via the algorithm of Paterson–Stockmayer [25]: this requires a

depth of 2 log2 d = log2 ρ, it uses 3
√
d non-constant (HeaanMult) as well as d

constant multiplications (HeaanSlotMult). After this step, the level decreases
by ρ times the multiplicative depth, so the level of E is ≤ L + pρ. Finally, we
square the ciphertext p times to obtain the desired result.

ut
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HEAAN → TFHE. Conversely, to switch from HEAAN to TFHE ciphertexts,
we use the observation that a HEAAN ciphertext of level 1 is automatically
a TFHE ciphertext. Starting from a ciphertext HEAAN of level L, we use the
level decrease function HeaanRSL→1 followed by a slot extraction to obtain a
TFHE ciphertext of µ. Here, by slot extraction, we mean the slots to coefficients
procedure described in [14] to extract HEAAN slots into coefficients of TRLWE
(i.e. applying the IDFT complex transformation homomorphically).

4.2 Non-linear functions in HEAAN

In HEAAN, non-linear functions can be evaluated via approximations by either
complex-valued polynomials (via traditional products) or trigonometric polyno-
mials (Fourier approach within the bootstrapping).

As explained in [5], Fourier series of smooth and regular functions con-
verge rapidly: for instance, the Fourier series of a C∞-function converges super-
algebraically and if one smooths any periodic function by convolution with a
small Gaussian, its Fourier series converges exponentially fast. However, the
convergence is slower if the function has discontinuities (pointwise convergence
in Ω(1/k)), or discontinuities in its derivative (uniform convergence in Ω(1/k2))
where k is the number of harmonics used in the series.

Compared to classical approximations of functions by polynomials in [22, 10]
(i.e. Taylor series or Weierstrass approximation theorem), Fourier series have
three main advantages: they do not diverge to ∞ outside of the interval (bet-
ter numerical stability), the Fourier coefficients are small (square integrable),
and the series converge uniformly to the function on any interval that does not
contain any discontinuity in the derivative.

With this bootstrapping trick, HEAAN can at the same time evaluate a non-
linear function and bootstrap its output to a level L even higher than its input.
Taking this fact into account, instead of writing ReLU(x) = max(0, x) as 1

2 (|x|+x)
like in TFHE, where the term +x/2 is not bootstrapped, it is actually better to
extend the graph of ReLU from a half period (−1/4, 1/4) directly to a 1-periodic
continuous function and to decompose the whole graph as a Fourier series. In
the latter case, the output level L can be freely set to an arbitrary large value.
Figure 6 shows a degree-7 approximation of the odd-even periodic extension of
the graph of ReLU(x).

5 Implementation of some major components of Chimera

Some of the algorithms presented in this paper have been implemented and tested
in the context of an IDash 2018 [2] submission described in [9]. This submission
was selected in October 2018 to be among the finalists of the competition.

Since the challenge was mostly about real-valued algorithms, we implemented
the TFHE/HEAAN bridges, and we left the implementation of the TFHE-B/FV
bridges as a future work. In the implementation, torus arithmetic is represented
either by double-precision floats (for α ≥ 2−52), or by a fixed-size array of 64-bit
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Fig. 6: ReLU (on the right) for HEAAN

gmp limbs, and polynomial multiplications are implemented via the complex
FFT. Since the total precision required was always lower than 128 bits for ex-
ternal products and 192 bits for internal products (so at most two or three gmp
limbs), there was no advantage in switching to an alternative RNS/NTT repre-
sentation. All bit-decompositions for the TRGSW external products (also used
in the internal product) have been carried-on in base 216 and 232 rather than in
base 2. The implemented algorithms are:

– Evaluation of a sigmoid on a TLWE ciphertext via gate bootstrapping
followed by a functional key-switch to HEAAN (noise reduction from (α =
2−7, N = 650) to (α = 2−80, N = 4096)). The time for the evaluation of the
bootstrapped sigmoid is: 32s for the bootstrapping to TLWE and 7s for the
public key-switch TLWE to TRLWE.

– External product to multiply HEAAN ciphertext by a fresh TRGSW ci-
phertext, using both the slot packed ciphertexts (N/2 slots) and coefficient-
packed ciphertexts (N slots). The time is 80ms with parameters α = 2−80,
N = 4096.

– TRLWE internal product for HEAAN slotwise multiplication, using the
tagging system proposed here, and relinearization via the external product
formula. The time is 160ms for parameters α = 2−80, N = 4096.

– Evaluation of the non-linear function log |x| on 1024 slots in parallel
during the bootstrapping for HEAAN (Algorithm 4), versus the traditional
bootstrapping followed by a Taylor approximation.

Future Work

We are implementing and embedding all the described bridges to the TFHE
library [1]. Other directions that we leave as a future work is the elaboration
of a bridge towards the BGV scheme as well as the introduction of RNS in this
framework. Finally, we are wishing to apply the presented framework to concrete
use-cases in the domain of machine-learning.
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