
Simulation-Based Selective Opening Security for Receivers
under Chosen-Ciphertext Attacks

Zhengan Huang1, Junzuo Lai2,3,�, Wenbin Chen1, Man Ho Au4,
Zhen Peng5, and Jin Li1

1. School of Computer Science, Guangzhou University, Guangzhou, China
zhahuang.sjtu@gmail.com, cwb2011@gzhu.edu.cn, jinli71@gmail.com

2. College of Information Science and Technology, Jinan University, Guangzhou, China
3. State Key Laboratory of Cryptology, Beijing, China

laijunzuo@gmail.com

4. Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
csallen@comp.polyu.edu.hk

5. Westone Cryptologic Research Center, Beijing, China
peng.zhen@westone.com.cn

August 16, 2018

Abstract. Security against selective opening attack (SOA) for receivers requires that in a multi-
user setting, even if an adversary has access to all ciphertexts, and adaptively corrupts some fraction
of the users to obtain the decryption keys corresponding to some of the ciphertexts, the remaining
(potentially related) ciphertexts retain their privacy. In this paper, we study simulation-based selec-
tive opening security for receivers of public key encryption (PKE) schemes under chosen-ciphertext
attacks (RSIM-SO-CCA).
Concretely, we first show that some known PKE schemes meet RSIM-SO-CCA security. Then, we
introduce the notion of master-key SOA security for identity-based encryption (IBE), and extend the
Canetti-Halevi-Katz (CHK) transformation to show generic PKE constructions achieving RSIM-
SO-CCA security. Finally, we show how to construct an IBE scheme achieving master-key SOA
security.

Keywords: simulation-based security, selective opening security for receivers, chosen-ciphertext
attacks, public-key encryption, identity-based encryption

1 Introduction

Selective opening attacks (SOA) concern a multi-user scenario, where an adversary breaks into
a subset of honestly created ciphertexts and tries to learn information on the plaintexts of
some unopened (but potentially related) ciphertexts. The notion of selective opening attacks is
considered in two settings: sender corruption and receiver corruption. In the sender corruption
setting, there is one receiver and many senders; senders may be corrupted, with the corruption
exposing their coins and messages. In the receiver corruption setting, there is a single sender
and many receivers; each receiver has its own public and secret key; receivers may be corrupted,
with corruption exposing their secret key. For each setting, there are two ways to formalize the
requirement of selective opening security notion [1, 4], namely indistinguishability-based (IND-
SO) and simulation-based (SIM-SO) ones.

IND-SO security requires that no adversary can distinguish an unopened ciphertext from
an encryption of a fresh message, which is distributed according to the conditional probabil-
ity distribution (conditioned on the opened ciphertexts). Such a security notion requires that

the joint plaintext distribution should be “efficiently conditionally re-samplable”. On the other
hand, SIM-SO security requires that anything that can be computed by an adversary from all
the ciphertexts and the opened messages together with the corrupted information can also be
computed by a simulator with only the opened messages. SIM-SO security imposes no limitation
on the message distribution, and it implies IND-SO security. The selective opening security is
further classified into two notions, security against selective opening chosen-plaintext attacks
(SO-CPA) and that against selective opening chosen-ciphertext attacks (SO-CCA), depending
on whether the adversary has access to a decryption oracle or not.

In this paper, we study simulation-based selective opening security for receivers of public
key encryption (PKE) schemes under chosen-ciphertext attacks (RSIM-SO-CCA).

1.1 Our Contribution

We first show that some known PKE schemes meet RSIM-SO-CCA security. More specifically,
we show that the DDH-based PKE scheme (for single-bit messages) proposed by Cramer and
Shoup in [11] and the DCR-based PKE scheme proposed by Cramer and Shoup in [12] both
achieve RSIM-SO-CCA security.

Then, we introduce the notion of master-key selective opening security (mSO) for identity-
based encryption (IBE), which focuses on IBE in the setting of multiple private key generators
[34, 33]. In a master-key selective opening attack for IBE, after seeing the challenge ciphertexts,
the adversary can corrupt some of the private key generators, by obtaining their master secret
keys. The goal of master-key SOA security is to guarantee that the messages of the users,
whose private key generators are uncorrupted, are still confidential. As pointed out by Bellare
et al. [3], the standard security notions for IBE naturally provide security against non-adaptive
receiver corruption (i.e., the adversaries are allowed to query the private key generation oracle).
However, to the best of our knowledge, SOA security notions for IBE in the adaptive receiver
corruption setting have never been formalized, and are less studied. Our mSOA security notions
focus on SOA security in the adaptive receiver corruption setting. Furthermore, we stress that
in the experiments defining mSOA security, the adversaries are actually more powerful. They
are allowed to corrupt the private key generators, not the receivers (users), even after seeing the
challenge ciphertexts.

Next, we show a generic construction of RSIM-SO-CCA secure PKE schemes, by applying
the CHK method [9] to any SIM-sID-mSO-CPA secure IBE scheme. Note that the CHK method
does not work in the sender corruption setting [19]. Our result shows that it does work in the
receiver corruption setting.

Finally, we show that a hybrid IBE scheme constructed from an identity-based key encap-
sulation mechanism (IB-KEM) scheme and a data encapsulation mechanism (DEM) scheme, is
SIM-sID-mSO-CPA secure, if the underlying IB-KEM scheme is IND-sID-CPA secure, and the
DEM scheme has some special properties.

1.2 Related Work

SOA for Senders. In [1], Bellare, Hofheinz and Yilek showed that any lossy encryption is able to
achieve indistinguishability-based selective opening security for senders under chosen-plaintext
attacks (SIND-SO-CPA), and simulation-based selective opening security for senders under

2

chosen-plaintext attacks (SSIM-SO-CPA) is achievable as well if the lossy encryption is “effi-
ciently openable”. Recently, Hofheinz et al. [23] showed how to construct SSIM-SO-CPA secure
PKE schemes with compact ciphertexts.

Hemenway et al. [19] showed that SIND-SO-CCA secure PKE can be obtained from selective-
tag weakly secure and separable tag-based PKE with the help of chameleon hashing. Hofheinz
[22] showed how to get (SIND/SSIM-SO-CCA) secure PKE with compact ciphertexts from
all-but-many lossy trapdoor functions (ABM-LTF). Recently, Boyen and Li [8] presented an
ABM-LTF construction from lattices and obtained a SIND-SO-CCA secure PKE from lattices.

For SSIM-SO-CCA security, Fehr et al. [17] proved that sender-equivocable (NC-CCA) secu-
rity implies SSIM-SO-CCA security, and showed how to construct PKE schemes with NC-CCA
security based on hash proof systems with explainable domains and L-cross-authentication codes
(L-XAC, in short). Huang et al. [24, 25] showed that using the method proposed in [17] to con-
struct SSIM-SO-CCA secure PKE, L-XAC needs to be strong. Heuer et al. [20, 21] showed that
some practical PKE schemes is SSIM-SO-CCA secure in the random oracle model. Recently,
Libert et al. [31] presented an ABM-LTF construction from lattices and used it to obtain a
SSIM-SO-CCA secure PKE from lattices.

SOA for Receivers. Hazay et al. [18] showed that RSIM-SO-CPA secure PKE schemes can be
achieved from non-committing encryption for receiver (NCER) [10] and RIND-SO-CPA secure
PKE schemes can be achieved from a tweaked variant of NCER which, in turn, can be instanti-
ated from a variety of basic, well-established, assumptions. Recently, Jia et al. [27] showed that
the PKE scheme based on HPS [12] achieves RIND-SO-CCA security and provided a general
construction of RIND-SO-CCA secure PKE schemes by combining any RIND-SO-CPA secure
scheme with any regular CCA secure scheme, along with an appropriate non-interactive zero-
knowledge proof. In this paper, we consider RSIM-SO-CCA secure PKE schemes.

SOA for IBE. Bellare et al. [3] considered the SOA security in the IBE setting and proposed a
general paradigm to achieve SIM-SO-CPA security from IND-ID-CPA secure and “One-Sided
Publicly Openable” (1SPO) IBE schemes. For SIM-SO-CCA secure IBE, Lai et al. [28] gave
a generic construction from an IND-ID-CCA secure extractable IBE with “One-Sided Public
Openability”(1SPO), a collision-resistant hash function and a strengthened cross-authentication
code.

IBE in the multi-PKG setting. In some application scenarios (e.g., a multi-domain ad hoc network
which is formed by different organizations [30]), IBE in the multi-PKG setting is required.
Motivated by earlier work on anonymous credential systems, Holt [26] proposed a security notion
for IBE in the multi-PKG setting. But this security model just focuses on anonymity, and does
not allow the adversary to extract any user secret key at all. Wang and Cao [34] put forth some
IBE schemes, which consider multiple public parameters, but the security model in [34] is still
in the standard single-PKG setting. In 2008, Paterson and Srinivasan [33] formalized several
security notions for IBE in the multi-PKG setting. In the security games of these notions, an
adversary is allowed to obtain the master secret keys of some of the PKGs by oracle queries.
Paterson and Srinivasan also provided IBE constructions meeting these security requirements in
[33]. However, to the best of our knowledge, no SOA security notions for IBE in the multi-PKG
setting has been proposed or researched.

3

2 Preliminaries

Notations. Throughout this paper, we denote the security parameter by λ ∈ N. For n ∈ N,
let [n] := {1, 2, · · · , n}. We use boldface to denote vectors, e.g., x. For vector x, let |x| de-
note the number of components in this vector, and x[i] denote its ith component for i ∈ [|x|].
For a set I ⊆ [|x|], let x[I] := (x[i])i∈I , and x[|x|]\I := (x[i])i/∈I . For a finite set S, we de-
note by s ← S the process of sampling s uniformly random from S. For a distribution X,
we denote by x ← X the process of sampling x from X. For a probabilistic algorithm A, let
RA denote the randomness space of A. We denote by y ← A(x; r) the process of running A
on input x and with randomness r ∈ RA, and assigning y the result. We write y ← A(x)
for y ← A(x; r) with uniformly chosen r ← RA. For vectors x and r with |x| = |r|, we
write A(x; r) := (A(x[1]; r[1]), A(x[2]; r[2]), · · · , A(x[|x|]; r[|x|])). We write PPT for probabilistic
polynomial-time.

For any event evt (e.g., bad1 in Fig. 13) defined in a game G, wlog, we denote by Pr [evt] the
probability that evt occurs in G.

The decisional Diffie-Hellman assumption. We recall the decisional Diffie-Hellman (DDH)
assumption and its variant as follows.

Definition 1 (The DDH assumption). Let Gq be a cyclic group of prime order q. We say
that the decisional Diffie-Hellman (DDH) assumption holds for Gq, if for any PPT distinguisher
D,

|Pr [D(g, ga, gb, gab) = 1]− Pr [D(g, ga, gb, gc) = 1]|

is negligible, where g ← Gq \ {1} and a, b, c← Zq.

As pointed out in [10], the DDH assumption implies that for g ← Gq \ {1}, a, b ← Zq,
(g, ga, gb, gab) and (g, ga, gb, gab+1) are computationally indistinguishable. Formally, we have the
following lemma.

Lemma 1. If the DDH assumption holds for Gq, then for any PPT distinguisher (denoted by
DDDH1),

|Pr [DDDH1(g, ga, gb, gab) = 1]− Pr[DDDH1(g, ga, gb, gab+1) = 1]|

is negligible, where g ← Gq \ {1} and a, b← Zq.

The Decision Composite Residuosity assumption. We recall Paillier’s decision composite
residuosity (DCR) assumption [32] and its variant as follows.

Let p, q, p′, q′ be distinct odd primes with p = 2p′ + 1 and q = 2q′ + 1, where both p′ and q′

are λ bits in length. Let N = pq and N ′ = p′q′. Then the group Z∗N2 can be decomposed as an
inner direct product GN ·GN ′ ·G2 ·S, where Gi is a cyclic group of order i, and S is the subgroup
of Z∗N2 generated by (−1 mod N2). It’s easy to see that the order of 1 + N mod N2 in Z∗N2 is
N , and for any m ∈ ZN , (1 +N)m mod N2 = 1 +mN . Let G denote a DCR instance generator,
which takes 1λ as input and returns numbers N and N ′ as above.

Definition 2 (The DCR assumption). We say that the Decision Composite Residuosity
(DCR) assumption holds for G, if for any PPT distinguisher D,

|Pr [D(N, g2) = 1]− Pr [D(N, g2N) = 1]|

is negligible, where (N,N ′)← G(1λ) and g ← Z∗N2.

4

Exprsim-so-cca-real
PKE,A (λ) DEC(i, c) : Exprsim-so-cca-ideal

PKE,A,S (λ)

(pk, sk)← (Gen(1λ))n If (i, c) ∈ C, then return ⊥ (M, s1)← S1(1λ)

C ← ∅, Iopen ← ∅ If i ∈ Iopen, then return ⊥ m := (m[i])i∈[n] ←M
(M, s1)← ADEC

1 (pk) m← Dec(sk[i], c) (I, s2)← S2((1|m[i]|)i∈[n], s1)

m := (m[i])i∈[n] ←M Return m out← S3(m[I], s2)

c← (Enc(pk[i],m[i]))i∈[n] Return (m,M, I, out)

C ← {(i, c[i]) | i ∈ [n]}
(I, s2)← ADEC

2 (c, s1)

Iopen ← I

out← ADEC
3 (sk[I],m[I], s2)

Return (m,M, I, out)

Fig. 1. Experiments for defining RSIM-SO-CCA security of a PKE scheme PKE.

As pointed out in [10], the DCR assumption implies that for (N,N ′)← G(1λ) and g ← Z∗N2 ,
(N, g2N) and (N, (1 + N) · g2N) are computationally indistinguishable. Formally, we have the
following lemma.

Lemma 2. If the DCR assumption holds for G, then for any PPT distinguisher (denoted by
DDCR1),

|Pr [DDCR1(N, g2N) = 1]− Pr[DDCR1(N, (1 +N) · g2N) = 1]|

is negligible, where (N,N ′)← G(1λ) and g ← Z∗N2.

The formal definitions of IBE, strong one-time signature and IB-KEM are recalled in Ap-
pendix B, C and D, respectively.

3 Simulation-based SOA security for receivers under chosen-ciphertext
attacks

In this section, we formalize the notion of simulation-based selective opening security for receivers
under chosen-ciphertext attacks (RSIM-SO-CCA security). Similar to other security notions
in the CCA setting, in the following experiment defining SO-CCA security for receivers, the
adversary is given access to a decryption oracle. However, compared with SIM-SO-CCA security
for senders, there are some subtleties in our formalization. First, in the receiver setting, there
are n public/secret key pairs, so the adversary has to specify the secret key when she makes
decryption queries. Second, in our following definition, we require that the adversary cannot
query the decryption oracle on the opened secret keys. This is a very mild and reasonable
condition, since once the adversary has obtained the secret key of some user, she can decrypt all
the ciphertexts received by the user. It’s not necessary for the adversary to query the decryption
oracle on the opened secret keys.

The formal definition is as follows.

Definition 3 (RSIM-SO-CCA). A public-key encryption scheme PKE = (Gen,Enc,Dec) is
RSIM-SO-CCA secure, if for any polynomially bounded function n > 0, and any PPT adversary
A, there is a PPT simulator S, such that for any PPT distinguisher D, the advantage

Advrsim-so-cca
PKE,A,S,D(λ) := |Pr[D(Exprsim-so-cca-real

PKE,A (λ)) = 1]− Pr[D(Exprsim-so-cca-ideal
PKE,A,S (λ)) = 1]|

is negligible, where Exprsim-so-cca-real
PKE,A (λ) and Exprsim-so-cca-ideal

PKE,A,S (λ) are defined in Fig. 1.

5

CS.Gen(1λ) : CS.Enc(pk,m) : CS.Dec(sk, (u, v, w, e)) :

g1 ← Gq \ {1}, z ← Z∗q (g1, g2, h, θ, ϕ, hk)← pk (x, y, a, b, a′, b′)← sk

x, y, a, b, a′, b′ ← Zq r ← Zq α← HEvl(hk, (u, v, w))

g2 ← gz1 , h← gx1 g
y
2 u← gr1 , v ← gr2 If ua+αa

′
vb+αb

′ 6= e, then return ⊥
θ ← ga1g

b
2, ϕ← ga

′
1 g

b′
2 w ← gm1 h

r δ ← w · (uxvy)−1

hk ← HGen(1λ) α← HEvl(hk, (u, v, w)) If δ = 1, then m← 0

pk ← (g1, g2, h, θ, ϕ, hk) e← (θϕα)r If δ = g1, then m← 1

sk ← (x, y, a, b, a′, b′) Return (u, v, w, e) Else, then m← ⊥
tk ← z Return m

Return (pk, sk, tk)

Fig. 2. Construction of PKECS.

Remark 1. We note that Iopen 6= ∅ only if the adversary has made the opening query. The
definition can be extended to the version where the adversary is allowed to make multiple
opening queries adaptively [6, 17]. For simplicity, in this paper we only consider the adversaries
making one opening query.

4 Concrete constructions of RSIM-SO-CCA secure PKE

In this section, we show that some known PKE schemes meet RSIM-SO-CCA security. More
specifically, we show that the DDH-based PKE scheme (for single-bit messages) proposed by
Cramer and Shoup in [11] and the DCR-based PKE scheme proposed by Cramer and Shoup in
[12] both achieve RSIM-SO-CCA security.

4.1 RSIM-SO-CCA secure PKE under the DDH assumption

We show that the Cramer-Shoup encryption scheme [11] for single-bit messages meets RSIM-
SO-CCA security.

Let Gq be a cyclic group of prime order q, and Hash = (HGen,HEvl) be a family of collision-
resistant (CR) hash functions Λ(·) : G3

q → Zq. The Cramer-Shoup encryption scheme [11] (for
single bit) PKECS := (CS.Gen,CS.Enc,CS.Dec) is shown in Fig. 2. We refer the readers to [11]
for the correctness of PKECS. We stress that here we set a trapdoor key tk which is z satisfying
g2 = gz1 (see Fig. 2). The additional trapdoor key is useless for normal encryption/decryption,
but will be used in the following security proof.

Formally, we have the following theorem. The proof is inspired by that of Hazay et al. [18].

Theorem 1. PKECS (for single-bit messages) is RSIM-SO-CCA secure.

Proof. For any PPT adversary A attacking PKECS in the sense of RSIM-SO-CCA, let qd denote
the number of decryption queries made by A. We prove the theorem with a sequence of games
G−1 −G3n,G

′
3n in Fig. 3.

Firstly, note that the view of A in game G−1 is exactly the same as in Exprsim-so-cca-real
PKECS,A

, so

the final outputs of these two games are identical, i.e., G−1 = Exprsim-so-cca-real
PKECS,A

.
Games G0 and G−1 are identical except that the challenge ciphertext vector is encrypted

with secret key sk (lines 06, 12, 19). We stress that the view of A in game G0 is exactly the same
as in G−1. That’s because for all j ∈ [n], sk[j] = (x, y, a, b, a′, b′, z), pk[j] = (g1, g2, h, θ, ϕ, hk),
we have that

w = g
m[j]
1 uxvy = g

m[j]
1 grx1 g

ry
2 = g

m[j]
1 (gx1g

y
2)r = g

m[j]
1 hr,

6

Games G−1 −G3n Game G′3n
01 (pk, sk, tk)← (CS.Gen(1λ))n 37 (pk, sk, tk)← (CS.Gen(1λ))n

02 C ← ∅, Iopen ← ∅, sk′ ← sk 38 C ← ∅, Iopen ← ∅
03 (M, s1)← ADEC

1 (pk), m←M 39 (M, s1)← ADEC
1 (pk), m←M

04 For j = 1 to n 40 For j = 1 to n

05 (g1, g2, h, θ, ϕ, hk)← pk[j] 41 (g1, g2, h, θ, ϕ, hk)← pk[j]

06 (x, y, a, b, a′, b′)← sk[j] //G0 −G3n 42 (x, y, a, b, a′, b′)← sk[j]

07 r ← Zq, u← gr1 43 r ← Zq, u← gr1
08 v ← gr2 44 v ← g1g

r
2

09 If j ≤ i, then v ← g1g
r
2 //G1 −Gi 45 w ← g

y
1h
r

10 v ← g1g
r
2 //Gn+1 −G3n 46 α← HEvl(hk, (u, v, w))

11 w ← g
m[j]
1 hr //G−1 47 e← ua+αa

′
vb+αb

′

12 w ← g
m[j]
1 uxvy //G0 −G3n 48 c[j]← (u, v, w, e)

13 If j ≤ i, then //G2n+1 −G2n+i 49 C ← C
⋃
{(j, c[j])}

14 w ← g
y
1h
r , z ← tk[j] //G2n+1 −G2n+i 50 (I, s2)← ADEC

2 (c, s1), Iopen ← I

15 (x′, y′)← (x + m[j] · z, y −m[j]) //G2n+1 −G2n+i 51 For j ∈ I, then

16 sk′[j]← (x′, y′, a, b, a′, b′) //G2n+1 −G2n+i 52 (x, y, a, b, a′, b′)← sk[j]

17 α← HEvl(hk, (u, v, w)) 53 (x′, y′)← (x + m[j] · z, y −m[j])

18 e← (θϕα)r //G−1 54 sk[j]← (x′, y′, a, b, a′, b′)

19 e← ua+αa
′
vb+αb

′
//G0 −G3n 55 out← ADEC

3 (sk[I],m[I], s2)

20 c[j]← (u, v, w, e), C ← C
⋃
{(j, c[j])} 56 Return (m,M, I, out)

21 (I, s2)← ADEC
2 (c, s1), Iopen ← I

22 out← ADEC
3 (sk′[I],m[I], s2)

23 Return (m,M, I, out)

On query DEC(j, c′) : On query DEC(j, c′) :

24 If (j, c′) ∈ C, then return ⊥ 57 If (j, c′) ∈ C, then return ⊥
25 If j ∈ Iopen, then return ⊥ 58 If j ∈ Iopen, then return ⊥
26 (x, y, a, b, a′, b′)← sk[j], (u, v, w, e)← c′ 59 (x, y, a, b, a′, b′)← sk[j]

27 If j ≤ i, then //Gn+1 −Gn+i 60 (u, v, w, e)← c′

28 If utk[j] 6= v, then return ⊥ //Gn+1 −Gn+i 61 If utk[j] 6= v, then return ⊥
29 If utk[j] 6= v, then return ⊥ //G2n+1 −G3n 62 α← HEvl(hk, (u, v, w))

30 α← HEvl(hk, (u, v, w)) 63 If ua+αa
′
vb+αb

′
6= e, then return ⊥

31 If ua+αa
′
vb+αb

′
6= e, then return ⊥ 64 δ ← w · (uxvy)−1

32 δ ← w · (uxvy)−1 65 If δ = 1, then m′ ← 0

33 If δ = 1, then m′ ← 0 66 If δ = g1, then m′ ← 1

34 If δ = g1, then m′ ← 1 67 Else, then m′ ← ⊥
35 Else, then m′ ← ⊥ 68 Return m′

36 Return m′

Fig. 3. Games G−1 −G3n in the proof of Theorem 1. Note that lines ending with a range of games Gj1 −Gj2

(resp. Gj) are only executed when a game within the range is run, and for the “Gi, Gn+i, G2n+i” above, we
require that 1 ≤ i ≤ n.

e = ua+αa
′
vb+αb

′
= g

r(a+αa′)
1 g

r(b+αb′)
2 = (ga1g

b
2 · (ga

′
1 g

b′
2)α)r = (θ · ϕα)r.

Hence, we derive that G0 = G−1.

For i ∈ [n], games Gi and Gi−1 are identical, except for the generation of v for j = i (line
09). More specifically, when j = i, v = g1g

r
2 in Gi, and v = gr2 in Gi−1. It is easy to see that

for any PPT algorithm D distinguishing Gi and Gi−1, we can construct a PPT distinguisher
DDDH1 to distinguish (g1, g

z
1 , g

r
1, g

rz
1) and (g1, g

z
1 , g

r
1, g

rz+1
1) based on D with almost the same

advantage. The construction is very trivial so we omit the details here. According to Lemma 1,
we derive that for any PPT algorithm D,

|Pr [D(Gi) = 1]− Pr [D(Gi−1) = 1]|
≤ |Pr [DDDH1(g1, g

z
1 , g

r
1, g

rz+1
1) = 1]− Pr [DDDH1(g1, g

z
1 , g

r
1, g

rz
1) = 1]|

is negligible. Thus, with a standard hybrid argument, we derive that for any PPT algorithm D,
|Pr [D(Gn) = 1]− Pr [D(G0) = 1]| is negligible.

Now we stress that in games Gn+1 −G3n, during the generation of the challenge ciphertext
vector, for every j ∈ [n], the computation of v is v = g1g

r
2 (line 10).

7

For i ∈ [n], let bad denote the event in game Gn+i−1 that the adversary submits a de-
cryption query (j, c′ = (u, v, w, e)) satisfying ((j, c′) /∈ C)

∧
(j /∈ Iopen)

∧
(j = i)

∧
(utk[j] 6=

v)
∧

(ua+αa
′
vb+αb

′
= e) where α ← HEvl(hk, (u, v, w)). Games Gn+i and Gn+i−1 are identical

until bad occurs. According to the fundamental lemma of game-playing [2], for any PPT distin-
guisher D, |Pr[D(Gn+i) = 1] − Pr[D(Gn+i−1) = 1]| ≤ Pr[bad]. With the help of the following
lemma, we have that |Pr[D(Gn+i) = 1]−Pr[D(Gn+i−1) = 1]| is negligible. Then with a standard
hybrid argument, for any PPT algorithm D, |Pr [D(G2n) = 1]− Pr [D(Gn) = 1]| is negligible.

Lemma 3. Pr [bad] is negligible.

The proof of this lemma is very similar to that of [11, Claim 2]. For completeness, we provide
it in Appendix A.

Now we stress that in games G2n+1 − G3n, for any decryption query (j, c′ = (u, v, w, e))
satisfying u′tk[j] 6= v′, the decryption oracle always returns ⊥ (line 29).

For i ∈ [n], games G2n+i and G2n+i−1 are identical, except that in the generation of challenge
ciphertext vector of G2n+i, when j = i, w and sk′[j] will be updated (lines 13-16). For clarity,
we use sk[i] = (x, y, a, b, a′, b′) to denote the original ith secret key, and sk′[i] = (x+ m[i] · z, y−
m[i], a, b, a′, b′) to denote the corresponding updated secret key. Firstly, note that sk′[i] is indeed
a valid secret key for pk[i] = (g1, g2, h, θ, ϕ, hk), since the tuple (a, b, a′, b′) of sk′[i] is the same
as that of the original, valid sk[i], and

g
x+m[i]·z
1 g

y−m[i]
2 = g

x+m[i]·z
1 g

z(y−m[i])
1 = gx1g

zy
1 = gx1g

y
2 = h.

Next, note that decrypting the updated c[i] = (u, v, w, e) where w = gy1h
r, with the updated

secret key sk′[i], we can still recover m[i]. That’s because when decrypting c[i] = (u, v, w, e), we
have that for α← HEvl(u, v, w), e = ua+αa

′
vb+αb

′
and

w · (ux+m[i]·zvy−m[i])−1 = gy1h
r(g

r(x+m[i]·z)
1 (g1g

r
2)y−m[i])−1

= gy1g
rx
1 g

ry
2 (g

rx+m[i]·rz
1 g

y−m[i]
1 g

ry−m[i]·r
2)−1

= gy1g
rx
1 g

ry
2 (grx1 g

m[i]·r
2 g

y−m[i]
1 g

ry−m[i]·r
2)−1

= g
m[i]
1 .

Thirdly, note that the only differences between sk′[i] and sk[i] are the elements (x+ m[i] · z, y−
m[i]) (resp. (x, y)). We also note that the only procedure involving (x+ m[i] · z, y−m[i]) (resp.
(x, y)) during the decryption in G2n+i (resp. G2n+i−1) is the computation of ux+m[i]·zvy−m[i]

(resp. uxvy), for any ciphertext (u, v, w, e). For any ciphertext (u, v, w, e) satisfying logg1 u =
logg2 v = r for some r, we obtain that

ux+m[i]·zvy−m[i] = g
r(x+m[i]·z)
1 g

r(y−m[i])
2 = grx1 g

ry
2 = uxvy.

In other words, for any ciphertext (u, v, w, e) satisfying logg1 u = logg2 v, its decryption with
sk′[i] and that with sk[i] (i.e., the response of the decryption oracle) are identical. Therefore, even
receiving sk′[i] as the response of the opening query (when i ∈ I) in G2n+i, the view of A is the
same as that in G2n+i−1, except that A submits some decryption query (i, (u, v, w, e)) satisfying
logg1 u 6= logg2 v before the opening query. On the other hand, both in G2n+i and G2n+i−1,

for any decryption query (i, (u, v, w, e)) satisfying logg1 u 6= logg2 v, we have utk[i] 6= v, so the

8

S1(1λ) : S2((1|m[i]|)i∈[n], s̃1) : S3(m[I], s̃2) :

(pk, sk, tk)← (CS.Gen(1λ))n (pk, sk, tk, C, s1)← s̃1 (pk, sk, tk, C, I, s2)← s̃2, Iopen ← I

C ← ∅ Iopen ← ∅ For j ∈ I, then
Iopen ← ∅ For j = 1 to n (x, y, a, b, a′, b′)← sk[j], z ← tk[j]

(M, s1)← ADEC
1 (pk) (g1, g2, h, θ, ϕ, hk)← pk[j] (x′, y′)← (x+m[j] · z, y −m[j])

s̃1 ← (pk, sk, tk, C, s1) (x, y, a, b, a′, b′)← sk[j] sk[j]← (x′, y′, a, b, a′, b′)

Return (M, s̃1) r ← Zq , u← gr1 out← ADEC
3 (sk[I],m[I], s2)

v ← g1gr2 , w ← gy1h
r Return out

α← HEvl(hk, (u, v, w))

e← ua+αa
′
vb+αb

′
On query DEC(j, (u, v, w, e)) :

c[j]← (u, v, w, e) If (j, c′) ∈ C, then return ⊥
C ← C

⋃
{(j, c[j])} If j ∈ Iopen, then return ⊥

(I, s2)← ADEC
2 (c, s1) (x, y, a, b, a′, b′)← sk[j], z ← tk[j]

s̃2 ← (pk, sk, tk, C, I, s2) If uz 6= v, then bad← true; return ⊥
Return (I, s̃2) α← HEvl(hk, (u, v, w))

If ua+αa
′
vb+αb

′ 6= e, then return ⊥
δ ← w · (uxvy)−1

If δ = 1, then return m′ = 0

If δ = g1, then return m′ = 1

Else, return m′ = ⊥

Fig. 4. Simulator S = (S1, S2, S3) in the proof of Theorem 1.

decryption oracle will always return ⊥. Hence, we obtain the conclusion that G2n+i = G2n+i−1.
Then with a sequence of hybrid games, we obtain G3n = G2n.

Now we stress that in game G3n, during the generation of the challenge ciphertext vector,
for every j ∈ [n], w = gy1h

r and sk′[j] = (x+ m[j] · tk[j], y −m[j]).

Note that game G3n can be written as G′3n, which implies that G′3n = G3n. Therefore, a
PPT simulator S for A can be constructed as shown in Fig. 4. S simulates G′3n for A perfectly,
so we derive that Exprsim-so-cca-ideal

PKECS,A,S
= G′3n, which concludes this proof. ut

Remark 2. As pointed out in [10], the aforementioned scheme can be extended to support any
polynomial-size message space, i.e., m = logg1(w · (uxvy)−1) can be determined efficiently.

4.2 RSIM-SO-CCA secure PKE under the DCR assumption

We show that the PKE scheme under the DCR assumption, proposed by Cramer and Shoup in
[12], meets RSIM-SO-CCA security. We note that this scheme supports exponential-size message
space.

Let Hash = (HGen,HEvl) be a family of collision-resistant (CR) hash functions Λ(·) : (Z∗N2)2 →
{0, 1, · · · , 2λ−1}. The DCR-based PKE scheme [12] PKEPaCS := (PaCS.Gen,PaCS.Enc,PaCS.Dec)
is shown in Fig. 5. For public key pk = (N, g, h, θ0, θ1, hk), the corresponding message space is
ZN . We refer the readers to [12] for the correctness of PKEPaCS. Again, here we set a trapdoor
key tk which is N ′ as above (see Fig. 5). The additional trapdoor key is useless for normal
encryption/decryption, but will be used in the following security proof.

Formally, we have the following theorem. The proof is inspired by that of Hazay et al. [18].

Theorem 2. PKEPaCS is RSIM-SO-CCA secure.

9

PaCS.Gen(1λ) : PaCS.Enc(pk,m) : PaCS.Dec(sk, (u, e, v)) :

(N,N ′)← G(1λ) (N, g, h, θ0, θ1, hk)← pk (x, y0, y1)← sk

x, y0, y1 ← ZbN2/4c r ← ZbN/4c α← HEvl(hk, (u, e))

g′ ← Z∗
N2 , g ← g′2N u← gr If uy0+y1α 6= v, then return ⊥

h← gx, θ0 ← gy0 , θ1 ← gy1 e← (1 +N)mhr M ← (e/(ux))N+1

hk ← HGen(1λ) α← HEvl(hk, (u, e)) If M = 1 +mN , then return m

pk ← (N, g, h, θ0, θ1, hk) v ← (θ0θα1)
r Else, return ⊥

sk ← (x, y0, y1) Return (u, e, v)

tk ← N ′

Return (pk, sk, tk)

Fig. 5. Construction of PKEPaCS.

Proof. Let CRTM denote a PPT algorithm which takes a0, N0, a1, N1 ∈ N as input, where N0, N1

are relatively prime, and employs the Chinese Remainder Theorem to return x ∈ ZN0N1 such
that x = a0 mod N0, and x = a1 mod N1.

For any PPT adversary A attacking PKEPaCS in the sense of RSIM-SO-CCA, let qd denote
the number of decryption queries made by A. We prove the theorem with a sequence of games
G−1 −G3n,G

′
3n in Fig. 6.

Firstly, note that the view of A in game G−1 is exactly the same as in Exprsim-so-cca-real
PKEPaCS,A

, so

the final outputs of these two games are identical, i.e., G−1 = Exprsim-so-cca-real
PKEPaCS,A

.

In game G0, lines 06, 18 are added. G0 and G−1 are identical except that the challenge
ciphertext vector is encrypted with secret key sk. We stress that the view of A in G0 is exactly
the same as in G−1. That’s because for all j ∈ [n], sk[j] = (x, y0, y1), pk[j] = (N, g, h, θ0, θ1, hk),
we have

v = uy0+y1α = gr(y0+y1α) = (gy0gy1α)r = (θ0θ
α
1)r.

Hence, we derive that G0 = G−1.

For i ∈ [n], games Gi and Gi−1 are identical, except for the generation of u for j = i (line
09). More specifically, when j = i, u = (1 +N)gr = (1 +N)(g′2N)r in Gi, and u = gr = (g′2N)r

in Gi−1. Since g′ ← Z∗N2 = GN · GN ′ · G2 · S, g′2N is uniformly distributed over GN ′ , and with
overwhelming probability the order of g′2N is N ′. Note that the uniform distributions over ZbN/4c
and ZN ′ are statistically indistinguishable. Therefore, the distribution of the above (g′2N)r and
the uniform distribution over GN ′ are also statistically indistinguishable. In other words, the
distribution of (g′2N)r is statistically indistinguishable from that of g̃2N , where g̃ ← Z∗N2 . Hence,
if there is some PPT algorithm D distinguishing Gi and Gi−1 with non-negligible advantage,
then we can construct a PPT distinguisher DDCR1 to distinguish (N, (1 +N)g̃2N) and (N, g̃2N)
based on D with non-negligible advantage, contradicting Lemma 2. The construction is very
trivial so we omit the details here. Thus, with a standard hybrid argument, we derive that for
any PPT algorithm D, |Pr [D(Gn) = 1]− Pr [D(G0) = 1]| is negligible.

Now we stress that in games Gn+1 −G3n, during the generation of the challenge ciphertext
vector, for every j ∈ [n], the computation of u is u = (1 +N)gr (line 10).

For i ∈ [n], let bad denote the event that in game Gn+i−1 the adversary submits a decryption
query (j, c′ = (u, e, v)) satisfying ((j, c′) /∈ C)

∧
(j /∈ Iopen)

∧
(j = i)

∧
(u2tk[j] 6= 1)

∧
(uy0+y1α =

v) where α ← HEvl(hk, (u, e)). Games Gn+i and Gn+i−1 are identical until bad occurs. Hence,
for any PPT distinguisher D, |Pr[D(Gn+i) = 1]−Pr[D(Gn+i−1) = 1]| ≤ Pr[bad]. With the help
of the following lemma, we have |Pr[D(Gn+i) = 1]−Pr[D(Gn+i−1) = 1]| is negligible. Then with

10

Games G−1 −G3n Game G′3n
01 (pk, sk, tk)← (PaCS.Gen(1λ))n 35 (pk, sk, tk)← (PaCS.Gen(1λ))n

02 C ← ∅, Iopen ← ∅, sk′ ← sk 36 C ← ∅, Iopen ← ∅
03 (M, s1)← ADEC

1 (pk), m←M 37 (M, s1)← ADEC
1 (pk), m←M

04 For j = 1 to n 38 For j = 1 to n

05 (N, g, h, θ0, θ1, hk)← pk[j] 39 (N, g, h, θ0, θ1, hk)← pk[j]

06 (x, y0, y1)← sk[j] //G0 −G3n 40 (x, y0, y1)← sk[j]

07 r ← ZbN/4c 41 r ← ZbN/4c
08 u← gr 42 u← (1 +N)gr

09 If j ≤ i, then u← (1 +N)gr //G1 −Gi 43 e← ux

10 u← (1 +N)gr //Gn+1 −G3n 44 α← HEvl(hk, (u, e))

11 e← (1 +N)m[j]hr 45 v ← uy0+y1α

12 If j ≤ i, then //G2n+1 −G2n+i 46 c[j]← (u, e, v), C ← C
⋃
{(j, c[j])}

13 e← ux, N′ ← tk[j] //G2n+1 −G2n+i 47 (I, s2)← ADEC
2 (c, s1), Iopen ← I

14 x′ ← CRTM(x,N′, x−m[j], N) //G2n+1 −G2n+i 48 For j ∈ I, then

15 sk′[j]← (x′, y0, y1) //G2n+1 −G2n+i 49 (x, y0, y1)← sk[j], N′ ← tk[j]

16 α← HEvl(hk, (u, e)) 50 x′ ← CRTM(x,N′, x−m[j], N)

17 v ← (θ0θ
α
1)r //G−1 51 sk[j]← (x′, y0, y1)

18 v ← uy0+y1α //G0 −G3n 52 out← ADEC
3 (sk[I],m[I], s2)

19 c[j]← (u, e, v), C ← C
⋃
{(j, c[j])} 53 Return (m,M, I, out)

20 (I, s2)← ADEC
2 (c, s1), Iopen ← I

21 out← ADEC
3 (sk′[I],m[I], s2)

22 Return (m,M, I, out)

On query DEC(j, c′) : On query DEC(j, c′) :

23 If (j, c′) ∈ C, then return ⊥ 54 If (j, c′) ∈ C, then return ⊥
24 If j ∈ Iopen, then return ⊥ 55 If j ∈ Iopen, then return ⊥
25 (x, y0, y1)← sk[j] 56 (x, y0, y1)← sk[j]

26 (u, e, v)← c′ 57 (u, e, v)← c′

27 α← HEvl(hk, (u, e)) 58 α← HEvl(hk, (u, e))

28 If uy0+y1α 6= v, then return ⊥ 59 If uy0+y1α 6= v, then return ⊥
29 If j ≤ i, then //Gn+1 −Gn+i 60 If u2tk[j] 6= 1, then return ⊥
30 If u2tk[j] 6= 1, then return ⊥ //Gn+1 −Gn+i 61 M ← (e/(ux))N+1

31 If u2tk[j] 6= 1, then return ⊥ //G2n+1 −G3n 62 If M = 1 +m′N , then return m′

32 M ← (e/(ux))N+1 63 Else, return ⊥
33 If M = 1 +m′N , then return m′

34 Else, return ⊥

Fig. 6. Games G−1 −G3n in the proof of Theorem 2. Note that lines ending with a range of games Gj1 −Gj2

(resp. Gj) are only executed when a game within the range is run, and for the “Gi, Gn+i, G2n+i” above, we
require that 1 ≤ i ≤ n.

a standard hybrid argument, for any PPT algorithm D, |Pr [D(G2n) = 1]− Pr [D(Gn) = 1]| is
negligible.

Lemma 4. Pr [bad] is negligible.

Now we stress that in games G2n+1−G3n, for any decryption query (j, c′ = (u, e, v)) satisfying
u2tk[j] 6= 1, the decryption oracle always returns ⊥ (line 31).

For i ∈ [n], games G2n+i and G2n+i−1 are identical, except that in the generation of challenge
ciphertext vector of G2n+i, when j = i, e and sk′[j] will be updated (lines 12-15). For clarity,
we use sk[i] = (x, y0, y1) to denote the original ith secret key, and sk′[i] = (x′, y0, y1) to denote
the corresponding updated secret key. Firstly, note that sk′[i] is indeed a valid secret key for
pk[i] = (N, g, h, θ0, θ1, hk). The reasons are as follows: (i) the tuple (y0, y1) of sk′[i] is the same
as that of the original, valid sk[i]; (ii) gx

′
= h = gx, since g = g′2N ∈ GN ′ , and the Chinese

Remainder Theorem guarantees that x′ = x mod N ′. Next, note that decrypting the updated
c[i] = (u, e, v), where e = ux, with the updated secret key sk′[i], we can still recover m[i]. That’s
because when decrypting c[i] = (u, e, v), we have that for α← HEvl(u, e),

(e/(ux
′
))N+1 =

(
ux

ux′

)N+1

=

(
(1 +N)x · grx

(1 +N)x′ · grx′
)N+1

=

(
(1 +N)x · hr

(1 +N)x′ · hr

)N+1

11

= (1 +N)(x−x
′)(N+1) = (1 +N)x−x

′
= (1 +N)m[i]

= 1 + m[i]N.

Thirdly, note that the only differences between sk′[i] and sk[i] are the elements x′ (resp. x).
We also note that the only procedure involving x′ (resp. x) during the decryption in G2n+i

(resp. G2n+i−1) is the computation of (ux
′
)N+1 (resp. (ux)N+1), for any ciphertext (u, e, v).

Recall that tk[i] = N ′. For any ciphertext (u, e, v) satisfying u2tk[i] = u2N
′

= 1, we claim that
(ux

′
)N+1 = (ux)N+1. The reason is as follows. The fact u2N

′
= 1 implies that the order of u

divides 2N ′. Thus, there are three possibilities.

(1) If the order of u is 1, then obviously we have (ux
′
)N+1 = (ux)N+1.

(2) If the order of u is 2, then uN+1 = 1 because N is odd. Thus, we still have (ux
′
)N+1 =

(ux)N+1.

(3) If the order of u is η ∈ {p′, q′, N ′}, then we derive that η | (x− x′) (i.e., x = x′ mod η), since
x = x′ mod N ′ and N ′ = p′q′. Hence, (ux

′
)N+1 = (ux)N+1.

In other words, for any ciphertext (u, e, v) satisfying u2tk[i] = 1, its decryption with sk′[i] and
that with sk[i] (i.e., the response of the decryption oracle) are identical. Therefore, even receiving
sk′[i] as the response of the opening query (when i ∈ I) in G2n+i, the view of A is the same as
that in G2n+i−1, except that A submits some decryption query (i, (u, e, v)) satisfying u2tk[i] 6= 1
before the opening query. On the other hand, both in G2n+i and G2n+i−1, for any decryption
query (i, (u, e, v)) satisfying u2tk[i] 6= 1, the decryption oracle always returns ⊥ (line 31). Hence,
we have the conclusion that G2n+i = G2n+i−1. Then with a sequence of hybrid games, we obtain
G3n = G2n.

Now we stress that in game G3n, during the generation of the challenge ciphertext vector,
for every j ∈ [n], e = ux and sk′[j] = (x′, y0, y1).

Note that game G3n can be written as G′3n, which implies that G′3n = G3n. Therefore, a
PPT simulator S for A can be constructed as shown in Fig. 7. S simulates G′3n for A perfectly,
so we derive that Exprsim-so-cca-ideal

PKEPaCS,A,S
= G′3n, which concludes this proof.

We catch up with the proof of Lemma 4.

Proof (of Lemma 4). Parse pk[i] = (N, g, h, θ0, θ1, hk), sk[i] = (x, y0, t1) and tk[i] = N ′. Denote
the ith challenge ciphertext in Gn+i−1 by c[i] = (u, e, v).

Game Gn+i−1 sets bad iff adversary A, without obtaining sk[i] by opening query, submits a
decryption query (i, c′ = (u′, e′, v′)) such that (i, c′) /∈ C, u′2N

′ 6= 1, and u′y0+y1α
′

= v′, where
α′ = HEvl(hk, (u′, e′)). There are four possible cases.

Case 1. (u′, e′, v′) = (u, e, v).

Since (i, c′) /∈ C, this case occurs only when A submits such a decryption query before
receiving c. In both Gn+i and Gn+i−1, u = (1+N)gr = (1+N)(g′2N)r. As mentioned earlier, the
distribution of (g′2N)r and the uniform distribution over GN ′ are statistically indistinguishable.
Hence, the distribution of u is statistically indistinguishable from the uniform distribution over
(1+N) ·GN ′ . Notice that A makes at most qd decryption queries, and that the best circumstance
for A is that each decryption query will help A to eliminate one possible value of u. Hence, the
probability that Case 1 occurs is at most qd

N ′−qd , which is negligible.

We stress that this is also a loose bound. That’s because in both Gn+i and Gn+i−1, e =
(1 + N)m[i]hr is computed with m[i], which A does not know, and v is computed with α =

12

S1(1λ) : S2((1|m[i]|)i∈[n], s̃1) : S3(m[I], s̃2) :

(pk, sk, tk)← (PaCS.Gen(1λ))n (pk, sk, tk, C, s1)← s̃1 (pk, sk, tk, C, I, s2)← s̃2

C ← ∅ Iopen ← ∅ Iopen ← I

Iopen ← ∅ For j = 1 to n For j ∈ I, then
(M, s1)← ADEC

1 (pk) (N, g, h, θ0, θ1, hk)← pk[j] (x, y0, y1)← sk[j]

s̃1 ← (pk, sk, tk, C, s1) (x, y0, y1)← sk[j] x′ ← CRTM(x, tk[j], x−m[j], N)

Return (M, s̃1) r ← ZbN/4c sk[j]← (x′, y0, y1)

u← (1 +N)gr out← ADEC
3 (sk[I],m[I], s2)

e← ux Return out

α← HEvl(hk, (u, e))

v ← uy0+y1α On query DEC(j, (u, e, v)) :

c[j]← (u, e, v) If (j, c′) ∈ C, then return ⊥
C ← C

⋃
{(j, c[j])} If j ∈ Iopen, then return ⊥

(I, s2)← ADEC
2 (c, s1) (x, y0, y1)← sk[j], (u, e, v)← c′

s̃2 ← (pk, sk, tk, C, I, s2) α← HEvl(hk, (u, e))

Return (I, s̃2) If uy0+y1α 6= v, then return ⊥
If u2tk[j] 6= 1, then return ⊥
M ← (e/(ux))N+1

If M = 1 +m′N , then return m′

Else, return ⊥

Fig. 7. Simulator S = (S1, S2, S3) in the proof of Theorem 2.

HEvl(hk, (u, e)). Thus, the probability that A generates c[i] beforehand is less than qd
N ′−qd .

Case 2. (u′, e′) = (u, e) and v′ 6= v.
In this case, α′ = α and u′y0+y1α

′
= uy0+y1α = v 6= v′. Hence, Gn+i−1 will not set bad.

Case 3. (u′, e′) 6= (u, e) and α′ = α.
Since Hash is a CR hash function, Case 3 occurs with negligible probability.

Case 4. (u′, e′) 6= (u, e) and α′ 6= α.
Since Z∗N2 can be decomposed as an inner direct product GN ·GN ′ ·G2 · S, for any a ∈ Z∗N2 ,

a can be uniquely written as a = a(N)a(N ′)a(2)a(S), where a(i) ∈ Gi and a(S) ∈ S.
From the public key pk and the challenge ciphertext vector c, for sk[i] = (x, y0, y1), all

the information about (y0, y1) that A learns is: (i) θ0 = gy0 ; (ii) θ1 = gy1 ; (iii) v = uy0+y1α =
(1 +N)y0+y1α(gr)y0+y1α. Since the order of g (resp., 1 +N) is η′ ∈ {p′, q′, N ′} (resp., N), all A
learns from (i)-(iii) is actually

logg θ0 = y0 mod η′, (1)

logg θ1 = y1 mod η′, (2)

log1+N (v/(gr)y0+y1α mod N ′) = y0 + y1α mod N. (3)

And for the decryption query (i, (u′, e′, v′)), Gn+i−1 sets bad only if u′y0+y1α
′

= v′ and
u′2N

′ 6= 1. Notice that u′y0+y1α
′

= v′ implies (u′2N
′
)y0+y1α

′
= v′2N

′
, and u′2N

′ 6= 1 implies

(u′(N))
2N ′ = (u′(N)u

′
(N ′)u

′
(2)u

′
(S))

2N ′ = u′2N
′ 6= 1.

Denote the order of (u′(N))
2N ′ by η. Then we derive η ∈ {p, q,N}, and

log(u′
(N)

)2N′ v
′2N ′ = y0 + y1α

′ mod η. (4)

13

Since η | N , equation (3) implies that

log1+N (v/(gr)y0+y1α mod N ′) ≡ y0 + y1α (mod η). (5)

Because N and N ′ are relatively prime, for every b ∈ {0, 1}, yb mod η and yb mod η′ are
independent. So equations (1)-(2) provide no information about y0 mod η or y1 mod η. Equations
(3) (resp. equation (5)) and (4) are linearly independent since α′ 6= α. So we have the following
conclusions:

(i) If η = N , equations (3)-(4) uniquely determine y0, y1 ∈ ZN . Hence, the probability that
A submits a decryption query (i, (u′, e′, v′)) where u′2N

′ 6= 1 for the first time, such that
Gn+i−1 sets bad, is 1

N . At best, each decryption query will help the adversary to eliminate
one possible value. Therefore, when η = N , the possibility that Gn+i−1 sets bad in Case 4 is
at most qd

N−qd , which is negligible.
(ii) If η 6= N , then η = p or q. Equations (5)-(4) uniquely determine y0, y1 ∈ Zη. Hence, the

probability that A submits a decryption query (i, (u′, e′, v′)) where u′2N
′ 6= 1 for the first

time, such that Gn+i−1 sets bad, is 1
η . At best, each decryption query will help the adversary

to eliminate one possible value. Therefore, when η 6= N , the possibility that Gn+i−1 sets bad
in Case 4 is at most qd

η−qd , which is negligible.
ut

5 Generic construction of RSIM-SO-CCA secure PKE

In this section, we firstly introduce the notion of master-key selective opening security for IBE.
Then based on this notion, we extend the Canetti-Halevi-Katz (CHK) transformation [9] to show
generic constructions achieving RSIM-SO-CCA security. Finally, we show how to construct an
IBE scheme meeting master-key SOA security.

5.1 The notions of master-key SOA security for IBE

Roughly speaking, in a master-key selective opening attack for IBE, after seeing the challenge
ciphertexts, the adversary can corrupt some of the private key generators, by obtaining their
master secret keys. The goal of master-key SOA security is to guarantee that the messages of
the users, whose private key generators are uncorrupted, are still confidential.

Master-key SOA security for IBE. We formalize the notion of master-key selective opening
security (mSOA security) for IBE as follows. More specifically, we present the notion of mSOA
security under selective-identity, chosen-plaintext attacks. This security notion is sufficient for
our RSIM-SO-CCA secure PKE constructions.

Definition 4 (SIM-sID-mSO-CPA). An IBE scheme IBE = (PGen,KGen, Enc,Dec) is SIM-
sID-mSO-CPA secure, if for any polynomially bounded n > 0, any PPT adversary A, there is a
PPT simulator S, such that for any PPT distinguisher D, the advantage

Advsim-sid-mso-cpa
IBE,A,S,D (λ) := |Pr[D(Expsim-sid-mso-cpa-real

IBE,A (λ)) = 1]− Pr[D(Expsim-sid-mso-cpa-ideal
IBE,A,S (λ)) = 1]|

is negligible, where Expsim-sid-mso-cpa-real
IBE,A (λ) and Expsim-sid-mso-cpa-ideal

IBE,A,S (λ) are defined in Fig. 8.

14

Expsim-sid-mso-cpa-real
IBE,A (λ) Expsim-sid-mso-cpa-ideal

IBE,A,S (λ)

(id∗ := (id∗[i])i∈[n], s1)← A1(1λ) (id∗ := (id∗[i])i∈[n],M, s1)← S1(1λ)

Iopen ← ∅ m := (m[i])i∈[n] ←M
(pp,msk)← (PGen(1λ))n (I, s2)← S2((1|m[i]|)i∈[n], s1)

(M, s2)← AKG
2 (pp, s1) out← S3(m[I], s2)

m := (m[i])i∈[n] ←M Return (m,M, id∗, I, out)

c← (Enc(pp[i], id∗[i],m[i]))i∈[n]

(I, s3)← AKG
3 (c, s2), Iopen ← I KG(j, id):

out← AKG
4 (msk[I],m[I], s3) If (id = id∗[j])

∨
(j ∈ Iopen), then return ⊥

Return (m,M, id∗, I, out) skid ← KGen(pp[j],msk[j], id)

Return skid

Fig. 8. Experiments for defining SIM-sID-mSO-CPA security of an IBE scheme IBE.

Remark 3. As pointed out by Bellare et al. [3], the standard security notions for IBE naturally
provide security against non-adaptive receiver corruption (i.e., the adversaries are able to obtain
the secret key of any identity which is not equal to the challenge identity, by querying the private
key generation oracle KG(·)). However, to the best of our knowledge, SOA security notions for
IBE in the adaptive receiver corruption setting (i.e., the adversaries are able to obtain the secret
key of any identity, including the challenge identity, after receiving the challenge ciphertext
vectors) have never been formalized, and are less studied. Our mSOA security notions focus
on SOA security in the adaptive receiver corruption setting. Furthermore, we stress that in
the experiments defining mSOA security, the adversaries are actually more powerful. They are
allowed to corrupt the private key generators, not the receivers (users), even after seeing the
challenge ciphertexts. In other words, an mSOA adversary can obtain the master secret keys
corresponding to the opened ciphertexts, and an adversary, in the experiments for some “general”
SOA security for IBE in the receiver corruption setting, can only obtain the user secret keys,
which the mSOA adversary can also obtain by running algorithm KGen. Hence, our mSOA
security notions are strictly stronger than the “general” SOA security for IBE in the receiver
corruption setting.

Remark 4. The notion of indistinguishability-based mSOA security for IBE, and the notions of
mSOA security under fully identity or/and chosen-ciphertext attacks can be similarly defined.

5.2 RSIM-SO-CCA secure PKE from IBE

We show a generic construction of RSIM-SO-CCA secure PKE schemes, by applying the CHK
method [9] to any SIM-sID-mSO-CPA secure IBE scheme. Note that the CHK method does not
work in the sender corruption setting [19]. Our result shows that it does work in the receiver
corruption setting.

Generic construction. Let IBE = (PGen,KGen,Enc, Dec) be an IBE scheme, and SIG =
(SGen,Sign,Verf) be a signature scheme. The PKE scheme PKECHK = (GenCHK,EncCHK, DecCHK),
constructed according to the well-known CHK transformation [9], is shown in Fig. 9. Verifying
correctness is trivial. We turn to security analysis.

Theorem 3. If IBE is SIM-sID-mSO-CPA secure, and SIG is strong one-time, then PKECHK is
RSIM-SO-CCA secure.

15

GenCHK(1
λ) : EncCHK(pk,m) : DecCHK(sk, (vks, c, sg)) :

(pp,msk)← PGen(1λ) pp← pk msk ← sk

pk ← pp (sks, vks)← SGen(1λ) If Verf(vks, c, sg) 6= 1, then return ⊥
sk ← msk c← Enc(pp, vks,m) skvks ← KGen(pp,msk, vks)

Return (pk, sk) sg ← Sign(sks, c) m← Dec(pp, skvks , c)

Return (vks, c, sg) Return m

Fig. 9. Construction of PKECHK.

Proof. For any PPT adversary A = (A1, A2, A3) attacking PKECHK in the sense of RSIM-SO-
CCA, we construct a PPT adversary A′ = (A′1, A

′
2, A

′
3, A

′
4), attacking IBE in the sense of

SIM-sID-mSO-CPA, as shown in Fig. 10.
In Fig. 10, let bad denote the event that A submits a decryption (j, (vk′, c′, sg′)) /∈ CCHK

satisfying j /∈ Iopen, vk′ = vks[j] and Verf(vk′, (c′, sg′)) = 1. Note that (c′, sg′) 6= (c[j], sg[j])
since (j, (vk′, c′, sg′)) /∈ CCHK. Hence, it’s easy to show a PPT adversary Asig, based on A, can
break the underlying strong one-time signature SIG with advantage 1

n Pr [bad]. Strong one-time
unforgeability of SIG guarantees Pr [bad] is negligible.

Denote the final output of Exprsim-so-cca-real
PKECHK,A

by (mA,MA, IA, outA), and the final output of

Expsim-sid-mso-cpa-real
IBE,A′ by (mA′ ,MA′ ,vks, IA′ , outA′). Since A′ perfectly simulates Exprsim-so-cca-real

PKECHK,A

for A unless event bad occurs, we derive that Pr [(mA′ ,MA′ , IA′ , outA′) = (mA,MA, IA, outA)] =
1− Pr [bad]. In other words, for any PPT distinguisher D,

|Pr [D(mA′ ,MA′ , IA′ , outA′) = 1]− Pr [D(mA,MA, IA, outA) = 1]| = nAdvstr-ot
SIG,Asig(λ), (6)

where Advstr-ot
SIG,Asig

(λ) denotes the advantage of Asig attacking SIG (see Appendix C).

Considering that IBE is SIM-sID-mSO-CPA secure, there is a PPT simulator S′ = (S′1, S
′
2, S
′
3),

such that the final output of Expsim-sid-mso-cpa-ideal
IBE,A′,S′ (denoted by (mS′ ,MS′ , id

∗, IS′ , outS′)) is com-
putationally indistinguishable from (mA′ ,MA′ ,vks, IA′ , outA′), i.e., for any PPT distinguisher
D,

|Pr [D(mS′ ,MS′ , id
∗, IS′ , outS′) = 1]

− Pr [D(mA′ ,MA′ ,vks, IA′ , outA′) = 1]| ≤ Advsim-sid-mso-cpa
IBE,A′,S′,D (λ).

Therefore,

|Pr [D(mS′ ,MS′ , IS′ , outS′) = 1]

− Pr [D(mA′ ,MA′ , IA′ , outA′) = 1]| ≤ Advsim-sid-mso-cpa
IBE,A′,S′,D (λ). (7)

Based on S′, we construct a PPT simulator S in the sense of RSIM-SO-CCA in Fig. 10.
Denote the final output of Exprsim-so-cca-ideal

PKECHK,A,S
by (mS ,MS , IS , outS). Obviously we have that

(mS ,MS , IS , outS) = (mS′ ,MS′ , IS′ , outS′), which implies that for any PPT distinguisher D,

Pr [D(mS ,MS , IS , outS) = 1] = Pr [D(mS′ ,MS′ , IS′ , outS′) = 1]. (8)

Combining equations (6)-(8), we derive that for any PPT distinguisher D,

|Pr [D(Exprsim-so-cca-real
PKECHK,A

) = 1]− Pr [D(Exprsim-so-cca-ideal
PKECHK,A,S

) = 1]|

≤ nAdvstr-ot
SIG,Asig(λ) + Advsim-sid-mso-cpa

IBE,A′,S′,D (λ).

ut

16

A′1(1
λ) : On query DEC(j, (vk′, c′, sg′)) :

(sks,vks)← (SGen(1λ))n If (j, (vk′, c′, sg′)) ∈ CCHK, then

CCHK ← ∅, Iopen ← ∅, s′1 ← (CCHK, Iopen) Return ⊥
Return (vks, s′1) If j ∈ Iopen, then

Return ⊥
A′KG

2 (pp, s′1) : If Verf(vk′, (c′, sg′)) 6= 1, then

(CCHK, Iopen)← s′1, pk← pp Return ⊥
(M, s1)← ADEC

1 (pk), s′2 ← (s1, CCHK, Iopen) If (Verf(vk′, (c′, sg′)) = 1)

Return (M, s′2)
∧
(vk′ = vks[j]), then

bad← true; abort

A′KG
3 (c, s′2) : Else,

(s1, CCHK, Iopen)← s′2, sg← (Sign(sks[i], c[i]))i∈[n] skvk′ ← KG(j, vk′)

CCHK ← {(i, (vks[i], c[i], sg[i]) | i ∈ [n]} m′ ← Dec(skvk′ , c
′)

(I, s2)← ADEC
2 ((vks, c, sg), s1) Return m′

Iopen ← I, s′3 ← (s2, CCHK, Iopen)

Return (I, s′3)

A′KG
4 (msk[i],m[I], s′3) :

(s2, CCHK, Iopen)← s′3
out← ADEC

3 (msk[i],m[I], s2)

Return out

S1(1λ) : S2((1|m[i]|)i∈[n], s1) :

(id∗,M, s′1)← S′1(1
λ), s1 ← (id∗, s′1) (id∗, s′1)← s1

Return (M, s1) (I, s′2)← S′2((1
|m[i]|)i∈[n], s

′
1), s2 ← s′2

Return (I, s2)

S3(m[I], s2) :

s′2 ← s2, out← S′3(m[I], s′2)

Return out

Fig. 10. Adversary A′ = (A′1, A
′
2, A

′
3, A

′
4) and simulator S = (S1, S2, S3) in the proof of Theorem 3.

Remark 5. Similar to the original CHK transformation [9], the above theorem is proved in
the standard model. Since strong one-time signatures can be constructed based on any one-
way functions [29], if we construct an IBE scheme achieving SIM-sID-mSO-CPA security in
the standard model (resp. ROM), we obtain a standard-model (resp. ROM) construction of
RSIM-SO-CCA secure PKE.

Remark 6. Theorem 3 can be extended to the indistinguishability-based notions.

5.3 Construction of master-key SOA secure IBE

In the following, we show an IBE construction achieving SIM-sID-mSO-CPA security in the ideal
cipher model. Our construction is inspired by the work of Heuer and Poettering [21]. Roughly
speaking, consider a hybrid IBE scheme constructed from an identity-based key encapsulation
mechanism (IB-KEM) scheme and a data encapsulation mechanism (DEM) scheme. Our result
is as follows. The IBE scheme is SIM-sID-mSO-CPA secure in the ideal cipher model, if the
underlying IB-KEM scheme is IND-sID-CPA secure, and the DEM scheme has some special
properties, “permutation-driven” and “simulatability”, introduced in [21].

We begin by recalling the building blocks, and then present our hybrid construction.

17

(Partial) permutation. For a finite domain D, we say that a relation R = R(l)×R(r) ⊆ D×D is
a partial permutation, if the following two conditions hold: (i) for any a1, a2, b ∈ D, if (a1, b) ∈ R
and (a2, b) ∈ R, then a1 = a2; (ii) for any a, b1, b2 ∈ D, if (a, b1) ∈ R and (a, b2) ∈ R, then b1 = b2.
We say that R is a permutation on D if in addition |R| = |D|. Trivially, any blockcipher Ek, where
k is the secret key, with domain D is a permutation on D. Throughout this paper, let P(D) (resp.
PP(D)) denote the set of all permutations (resp. partial permutations) on D. Any R ∈ PP(D)
can be completed to a full permutation by adding sufficiently many (a, b) ∈ (D\R(l))×(D\R(r))
to it (of course, updating R(l) and R(r) at every step). Furthermore, as pointed out in [21], if
R ← PP(D) and (a, b) ← (D \ R(l)) × (D \ R(r)), then the above obtained full permutation is
uniformly distributed in P(D).

Data encapsulation mechanism. A data encapsulation mechanism (DEM) scheme, associat-
ed with a finite key space K, consists of two efficient algorithms (D.enc,D.dec). The encapsulation
algorithm D.enc(k,m) takes a key k ∈ K and a valid message m as input, and outputs a ci-
phertext c. The decapsulation algorithm D.dec(k, c) takes k ∈ K and c as input, and returns a
message m or ⊥, which indicates that c is invalid. For correctness, we require that for any valid
message m and any k ∈ K, if c← D.enc(k,m), then D.dec(k, c) = m.

An oracle DEM for a domain D is a DEM where both the encapsulation/decapsulation
algorithms are allowed to access to a permutation on D (in both directions). Specifically, for an
oracle DEM ODEM = (OD.enc,OD.dec) associated with key space K, we write

c← OD.encfp(k,m) and m or ⊥ ← OD.decfp(k, c),

which means that OD.enc,OD.dec both access to permutation fp. Correctness requires that
for any valid message m, any k ∈ K and any fp ∈ P(D), if c ← OD.encfp(k,m), then
OD.decfp(k, c) = m.

Definition 5 (Permutation-driven DEM [21]). For two key spaces KE and KO, a DEM
(D.enc,D.dec), associated with key space K = KE × KO, is called (KE ,D)-permutation-driven,
if there exists an oracle DEM ODEM = (OD.enc,OD.dec) for domain D associated with key
space KO, and a blockcipher (Eke)ke∈KE on domain D, such that for any valid message m, any
ko ∈ KO, and ciphertext c, D.enc((ke, ko), m) := OD.encEke (ko, m) and D.dec((ke, ko), c) :=
OD.decEke (ko, c).

Definition 6 (Simulatable oracle DEM [21]). Consider an oracle DEM ODEM = (OD.enc,
OD.dec) for domain D associated with key space K. ODEM is called ε-simulatable, if there
exist two PPT algorithms Fake and Make, and a negligible function ε, such that the following
conditions hold:

1. Algorithm Fake(k, |m|) takes a key k ∈ K and the length of a message m as input, and outputs
a ciphertext c and some state information st. Algorithm Make(m, st) takes a valid message
m and st as input, and outputs a partial permutation fpp ∈ PP(D).

2. For (c, st) ← Fake(k, |m|) and fpp ← Make(m, st), fpp can be completed to a uniformly
distributed full permutation fp ∈ P(D). More precisely, for every fpp ∈ PP(D), we write
fpp := R(l) × R(r). If (c, st) ← Fake(k, |m|), fpp ← Make(m, st), and fp ∈ P(D) is obtained
by adding all (a, b)← (D\R(l))× (D\R(r)) step by step (and updating R(l) and R(r) at every
step) to fpp, then we will obtain fp ← P(D).

18

Expind-sid-cpaIBKEM,A (λ) KG(id) :

(id∗, s1)← A1(1λ), b← {0, 1} If id = id∗, then return ⊥
(pp,msk)← PGen(1λ), (k0, c)← Encap(pp, id∗) skid ← KGen(pp,msk, id)

k1 ← K, b′ ← AKG
2 (pp, c, kb, s1) Return skid

Return (b′ = b)

Fig. 11. Experiment for defining IND-sID-CPA security of an IB-KEM scheme IBKEM.

PGenhyb(1
λ) : KGenhyb(pp,msk, id) : Enchyb(pp, id,m) : Dechyb(pp, skid, (c1, c2)) :

(pp,msk)← PGen(1λ) skid ← KGen(pp,msk, id) (k, c1)← Encap(pp, id) k ← Decap(pp, skid, c1)

Return (pp,msk) Return skid c2 ← D.enc(k,m) If k = ⊥, then return ⊥
Return (c1, c2) m← D.dec(k, c2)

Return m

Fig. 12. Construction of IBEhyb.

3. If (c, st) ← Fake(k, |m|), fpp ← Make(m, st), and fp ∈ P(D) is obtained by adding all
(a, b)← (D \R(l))× (D \R(r)) to fpp, then we have

Pr [c 6= OD.encfp(k,m)] ≤ ε,

where the probability is also taken over all steps of (a, b)← (D \R(l))× (D \R(r)).

4. The total running time of Fake(k, |m|) and Make(m, st) is at most the running time of
OD.enc(k,m), not counting the latter’s oracle queries.

As shown in [21], some blockcipher-based DEM schemes standardised by NIST (e.g., [13, 16,
14, 15]) are permutation-driven and simulatable.

IND-sID-CPA security for IB-KEM. We present the notion of IND-sID-CPA security for
IB-KEM as follows.

Definition 7 (IND-sID-CPA). An IB-KEM scheme IBKEM = (PGen,KGen, Encap,Decap)
is IND-sID-CPA secure, if for any PPT adversary A, the advantage

Advind-sid-cpa
IBKEM,A (λ) := 2|Pr[Expind-sid-cpaIBKEM,A (λ) = 1]− 1

2
|

is negligible, where Expind-sid-cpaIBKEM,A (λ) is defined in Fig. 11.

Construction of master-key SOA secure IBE. Let KE and KO be two key spaces. Let
IBKEM = (PGen,KGen,Encap,Decap) be an IB-KEM scheme for session key space K = KE×KO.
For a DEM scheme DEM = (D.enc,D.dec) and IBKEM = (PGen,KGen, Encap,Decap), the hybrid
IBE construction IBEhyb = (PGenhyb,KGenhyb, Enchyb,Dechyb) is shown in Fig. 12. Verifying
correctness is trivial. Now we turn to security analysis. Formally, we have the following theorem.

Theorem 4. If DEM is (KE ,D)-permutation-driven, where its underlying oracle DEM ODEM
associated with key space KO is ε-simulatable and its underlying E is modeled as an ideal cipher,
and IBKEM is IND-sID-CPA secure and E-independent, then IBEhyb is SIM-sID-mSO-CPA
secure.

19

Games G0 −G4 On query KG(j, id):

01 Iopen ← ∅, KE ← ∅, KQ← ∅ 27 If (id = id∗[j])
∨
(j ∈ Iopen), then

02 (id∗ := (id∗[i])i∈[n], s1)← AE
1 (1

λ) 28 Return ⊥
03 (pp,msk)← (PGen(1λ))n 29 skid ← KGen(pp[j],msk[j], id)

04 (M, s2)← AKG,E
2 (pp, s1) 30 Return skid

05 m := (m[i])i∈[n] ←M
06 For i = 1 to n On query E+(ke, a):

07 (k[i], c1[i])← Encap(pp[i], id∗[i]) 31 If ke ∈ KE \ {ke[Iopen]}, //G3 −G4

08 (ke[i],ko[i])← k[i] 32 then bad3 ← true; abort //G3 −G4

09 If ke[i] ∈ KE
⋃
KQ, then //G1 −G4 33 If a /∈ E(l)

ke , then

10 bad1 ← true; abort //G1 −G4 34 b← D \ E(r)
ke

11 c2[i]← OD.encE(ke[i],·)(ko[i],m[i]) //G0 −G1 35 Eke ← Eke
⋃
{(a, b)}

12 (c2[i], sti)← Fake(ko[i], |m[i]|) //G2 −G4 36 KQ← KQ
⋃
{ke}

13 f
(i)
pp ← Make(m[i], sti) //G2 −G3 37 Return E+

ke (a)

14 Eke[i] ← f
(i)
pp //G2 −G3

15 If OD.encE(ke[i],·)(ko[i],m[i]) 6= c2[i], //G2 −G3 On query E−(ke, b):

16 then bad2 ← true; abort //G2 −G3 38 If ke ∈ KE \ {ke[Iopen]}, //G3 −G4

17 KE ← KE
⋃
{ke[i]}, KQ← KQ

⋃
{ke[i]} 39 then bad3 ← true; abort //G3 −G4

18 c[i]← (c1[i], c2[i]) 40 If b /∈ E(r)
ke , then

19 (I, s3)← AKG,E
3 (c, s2), Iopen ← I 41 a← D \ E(l)

ke

20 For i ∈ I //G4 42 Eke ← Eke
⋃
{(a, b)}

21 f
(i)
pp ← Make(sti,m[i]) //G4 43 KQ← KQ

⋃
{ke}

22 Eke[i] ← f
(i)
pp //G4 44 Return E−ke (b)

23 If OD.encE(ke[i],·)(ko[i],m[i]) 6= c2[i], //G4

24 then abort //G4

25 out← AKG,E
4 (msk[I],m[I], s3)

26 Return (m,M, id∗, I, out)

Fig. 13. Games G0 −G4 in the proof of Theorem 4. Note that lines ending with a range of games Gj1 −Gj2

(resp. Gj) are only executed when a game within the range is run. Here {ke[I ′]} := {ke[i] | i ∈ I ′}.

Proof. Before going into the formal proof, we introduce some notation. As pointed out in [21],
any uniformly distributed partial permutation R = R(l) ×R(r) ⊆ D ×D can be completed to a
uniformly distributed full permutation, by adding sufficiently many uniformly chosen pairs from
(D \ R(l)) × (D \ R(r)). Although Eke ∈ P(D) (for any ke ∈ KE), in the following proof, we
abuse notation and let “Eke” denote the partial permutation which will be completed to Eke .

Additionally, let E+
ke(·) : E

(l)
ke → E

(r)
ke and E−ke(·) : E

(r)
ke → E

(l)
ke be two maps as follows: for any

(a, b) ∈ Eke , E+
ke(a) = b and E−ke(b) = a.

Now we turn to the formal proof. For any PPT adversary A attacking IBEhyb in the sense
of SIM-sID-mSO-CPA, let qe denote the number of permutation queries made by A. We prove
the theorem with a sequence of games G0 −G4 in Fig. 13.

Firstly, note that the view of A in game G0 is exactly the same as that in Expsim-sid-mso-cpa-real
IBEhyb,A

,

so the final outputs of these two games are identical, i.e., G0 = Expsim-sid-mso-cpa-real
IBEhyb,A

(λ).

Games G1 and G0 are identical until bad1 (lines 09 and 10) occurs. Thus, for any PPT
distinguisher D, |Pr[D(G1) = 1]− Pr[D(G0) = 1]| ≤ Pr[bad1]. Note that bad1 occurs iff during
the generation of the challenge ciphertext vector in G0, the ith iteration of OD.enc would have

access to a non-empty permutation E(ke[i], ·) for some i ∈ [n]. Let bad
(i)
1 denote the event

bad1 which is caused by the ith iteration of OD.enc. For any fixed i ∈ [n], we construct a
PPT IND-sID-CPA adversary B attacking IBKEM, based on A, as shown in Fig. 14. Denote

20

B1(1λ) : On query KGA(j, id):

KE ← ∅, KQ← ∅, (id∗, s1)← AE
1 (1

λ) If (id = id∗[j])
∨
(j ∈ Iopen), then return ⊥

sB1 ← (id∗, s1,KE,KQ) If j 6= i, then

Return (id∗[i], sB1) skid ← KGen(pp[j],msk[j], id)

Else,

BKG
2 (pp, c, k, (id∗, s1,KE,KQ)) : skid ← KG(id)

pp[i]← pp, Iopen ← ∅ Return skid
(pp[n]\{i},msk[n]\{i})← (PGen(1λ))j∈[n]\{i}
(M, s2)← A

KGA,E
2 (pp, s1) On query E+(ke, a):

m←M If a /∈ E(l)
ke , then

For j = 1 to i− 1 b← D \ E(r)
ke

(k[j], c1[j])← Encap(pp[j], id∗[j]) Eke ← Eke
⋃
{(a, b)}

(ke[j],ko[j])← k[j] KQ← KQ
⋃
{ke}

c2[j]← OD.encE(ke[j],·)(ko[j],m[j]) Return E+
ke (a)

KE ← KE
⋃
{ke[j]}, KQ← KQ

⋃
{ke[j]}

c[j]← (c1[j], c2[j]) On query E−(ke, b):

For j = i If b /∈ E(r)
ke , then

(ke[i],ko[i])← k a← D \ E(l)
ke

If ke[i] ∈ KE
⋃
KQ, then β′ ← 1 Eke ← Eke

⋃
{(a, b)}

Else, β′ ← 0 KQ← KQ
⋃
{ke}

Return β′ Return E−ke (b)

Fig. 14. Adversary B = (B1, B2) in the proof of Theorem 4.

by β the challenge bit of Expind-sid-cpaIBKEM,B . Note that B perfectly simulates G0 for A until the

ith iteration of OD.enc during the generation of the challenge ciphertext vector. When β = 0,
the distribution of (ke[i],ko[i]) in B’s simulation is identical to that in G0. In other words,

Pr [β′ = 1 | β = 0] = Pr [bad
(i)
1]. On the other hand, when β = 1, k[i] = k is uniformly and

independently sampled from K. Hence, Pr [β′ = 1 | β = 1] ≤ qe+n
|K| . Since IBKEM is IND-sID-

CPA secure, we have that

Advind-sid-cpa
IBKEM,B (λ) = 2

∣∣∣∣Pr[Expind-sid-cpaIBKEM,B (λ) = 1]− 1

2

∣∣∣∣
=
∣∣Pr [β′ = 1 | β = 0]− Pr [β′ = 1 | β = 1]

∣∣ ≥ ∣∣∣∣Pr [bad(i)]− qe + n

|K|

∣∣∣∣
is negligible. Thus, Pr [bad

(i)
1] ≤ Advind-sid-cpa

IBKEM,B (λ)+ qe+n
|K| is negligible. A union bound shows that

Pr [bad1] ≤ n · (Advind-sid-cpa
IBKEM,B (λ) +

qe + n

|K|
).

Now, we stress that in G1, for each iteration of OD.enc during the generation of the challenge
ciphertext vector, OD.enc always accesses to an empty permutation.

In game G2, OD.enc is replaced with Fake and Make. More precisely, line 11 is replaced

with lines 12-16. For any i ∈ [n], the partial permutation f
(i)
PP output by Make can embedded

into Eke[i], since Eke[i] is empty when it is accessed to by OD.enc. We note that ODEM is ε-
simulatable, so from A’s point of view, G2 and G1 are identical except that G2 sets bad2.
Similarly, a simple union bound shows that Pr[bad2] ≤ nε. Therefore, for any PPT distinguisher
D, |Pr[D(G2) = 1]− Pr[D(G1) = 1]| ≤ nε.

21

B′1(1
λ) : On query KGA(j, id):

Iopen ← ∅, KE ← ∅, KQ← ∅ If (id = id∗[j])
∨
(j ∈ Iopen), then

(id∗, s1)← AE
1 (1

λ), sB
′

1 ← (id∗, s1, Iopen,KE,KQ) return ⊥
Return (id∗[i], sB

′
1) If j 6= i, then

skid ← KGen(pp[j],msk[j], id)

B′KG
2 (pp, c, k, (id∗, s1, Iopen,KE,KQ)) : Else,

pp[i]← pp skid ← KG(id)

(pp[n]\{i},msk[n]\{i})← (PGen(1λ))j∈[n]\{i} Return skid

(M, s2)← A
KGA,E
2 (pp, s1)

m←M On query E+(ke, a):

For j = 1 to n If ke ∈ KE \ {ke[Iopen]}
If j = i, then then bad3 ← true

(ke[j],ko[j])← k, c1[j]← c If a /∈ E(l)
ke , then

Else, b← D \ E(r)
ke

(k[j], c1[j])← Encap(pp[j], id∗[j]) Eke ← Eke
⋃
{(a, b)}

(ke[j],ko[j])← k[j] KQ← KQ
⋃
{ke}

If ke[j] ∈ KE
⋃
KQ, then abort Return E+

ke (a)

(c2[j], stj)← Fake(ko[j], |m[j]|)
f
(j)
pp ← Make(m[j], stj) On query E−(ke, b):

Eke[j] ← f
(j)
pp If ke ∈ KE \ {ke[Iopen]}

If OD.encE(ke[j],·)(ko[j],m[j]) 6= c2[j], then abort then bad3 ← true

KE ← KE
⋃
{ke[j]}, KQ← KQ

⋃
{ke[j]} If b /∈ E(r)

ke , then

c[j]← (c1[j], c2[j]) a← D \ E(l)
ke

(I, s3)← AKG,E
3 (c, s2), Iopen ← I Eke ← Eke

⋃
{(a, b)}

If i ∈ I, then return β′ = 0 KQ← KQ
⋃
{ke}

out← AKG,E
4 (msk[I],m[I], s3) Return E−ke (b)

If bad3 = true, then β′ ← 1

Else, β′ ← 0

Return β′

Fig. 15. Adversary B′ = (B′1, B
′
2) in the proof of Theorem 4. Here {ke[Iopen]} := {ke[i] | i ∈ Iopen}.

Games G3 and G2 are identical until bad3 (lines 31, 32, 38 and 39) occurs. Thus, for any
PPT distinguisher D, |Pr[D(G3) = 1] − Pr[D(G2) = 1]| ≤ Pr[bad3]. Note that bad3 occurs iff

A submits a query on (ke, x) to oracles E+ or E−, such that ke ∈ KE \ {ke[Iopen]}. Let bad
(i)
3

denote the event bad3 which is caused by the the query (ke, x) satisfying ke = ke[i]. Similarly,
for any fixed i ∈ [n], we construct a PPT IND-sID-CPA adversary B′ attacking IBKEM, based

on A, as shown in Fig. 15. Denote by β the challenge bit of Expind-sid-cpaIBKEM,B′ . When β = 0, B′’s
simulation for A and game G2 are identical except for the case i ∈ I. In B′’s simulation, if
i ∈ I, B′ will return β′ = 0 directly, without continuing the simulation for A. We stress that

in this case (i.e., i ∈ I), bad
(i)
3 does not occur and will not occur. Therefore, the probability

that bad
(i)
3 occurs in B′’s simulation (when β = 0) and the probability in G2 are equivalent. In

other words, Pr [β′ = 1 | β = 0] = Pr [bad
(i)
3]. On the other hand, when β = 1, (ke[i],ko[i]) = k

is uniformly and independently sampled from K. We claim that ke[i] is uniformly distributed
from A’s point of view. The reason is as follows. Among all the elements that A sees, only
(c1[i], c2[i]) might contain information about ke[i]. Note that ke[i] is independent of c1[i], because
ke[i] independent of the computation of Encap. ke[i] is also independent of c2[i], since c2[i] is
computed with Fake(ko[i], |m[i]|) and ke[i] is independent of ko[i] and uniformly distributed.
Hence, the probability that A generates ke = ke[i] is at most qe

|K| . Thus, Pr [β′ = 1 | β = 1] ≤ qe
|K| .

22

S1(1λ) : On query KG(j, id):

Iopen ← ∅, KE ← ∅, KQ← ∅ If (id = id∗[j])
∨
(j ∈ Iopen), then

(id∗, s1)← AE
1 (1

λ) Return ⊥
(pp,msk)← (PGen(1λ))n skid ← KGen(pp[j],msk[j], id)

(M, s2)← AKG,E
2 (pp, s1) Return skid

s̃1 ← (id∗,pp,msk, s2, I′,KE,KQ, (Eke)ke∈KQ)

Return (id∗,M, s̃1) On query E+(ke, a):

If ke ∈ KE \ {ke[Iopen]}, then abort

S2((1|m[i]|)i∈[n], s̃1) : If a /∈ E(l)
ke , then

(id∗,pp,msk, s2, I′,KE,KQ, (Eke)ke∈KQ)← s̃1 b← D \ E(r)
ke

For i = 1 to n Eke ← Eke
⋃
{(a, b)}

(k[i], c1[i])← Encap(pp[i], id∗[i]) KQ← KQ
⋃
{ke}

(ke[i],ko[i])← k[i] Return E+
ke (a)

If ke[i] ∈ KE
⋃
KQ, then abort

(c2[i], sti)← Fake(ko[i], |m[i]|) On query E−(ke, b):

KE ← KE
⋃
{ke[i]}, KQ← KQ

⋃
{ke[i]} If ke ∈ KE \ {ke[Iopen]}, then abort

c[i]← (c1[i], c2[i]) If b /∈ E(r)
ke , then

(I, s3)← AKG,E
3 (c, s2), Iopen ← I a← D \ E(l)

ke

s̃2 ← (s3, Iopen,KE,KQ, (Eke)ke∈KQ, (sti)i∈[n]) Eke ← Eke
⋃
{(a, b)}

Return (I, s̃2) KQ← KQ
⋃
{ke}

Return E−ke (b)

S3(m[I], s̃2) :

(s3, Iopen,KE,KQ, (Eke)ke∈KQ, (sti)i∈[n])← s̃2

For i ∈ I
f
(i)
pp ← Make(m[i], sti), Eke[i] ← f

(i)
pp

If OD.encE(ke[i],·)(ko[i],m[i]) 6= c2[i], then abort

out← AKG,E
4 (msk[I],m[I], s3)

Return out

Fig. 16. Simulator S = (S1, S2, S3) in the proof of Theorem 4.

Since IBKEM is IND-sID-CPA secure,

Advind-sid-cpa
IBKEM,B′ (λ) = 2

∣∣∣∣Pr[Expind-sid-cpaIBKEM,B′ (λ) = 1]− 1

2

∣∣∣∣
=
∣∣Pr [β′ = 1 | β = 0]− Pr [β′ = 1 | β = 1]

∣∣ ≥ ∣∣∣∣Pr [bad
(i)
3]− qe

|K|

∣∣∣∣
is negligible. Thus, Pr [bad

(i)
3] ≤ Advind-sid-cpa

IBKEM,B′ (λ) + qe
|K| is negligible. A union bound shows that

Pr [bad3] ≤ n · (Advind-sid-cpa
IBKEM,B′ (λ) +

qe
|K|

).

In game G4, the invocation of Make, the embedding procedure of Eke[i], and the consistency
check of OD.enc (i.e., lines 13-16) are all moved from the generation of the challenge ciphertext
vector to the opening procedure (i.e., lines 20-24), and the moved procedures are executed only
for i ∈ I. We claim that from A’s point of view, G4 = G3. The reasons are as follows. (i) In
both G3 and G4, what A3 sees are the challenge ciphertext vector c and two oracles, KG and
E. (ii) The moved procedures do not affect the generation of c. (iii) From A’s point of view, the
only elements, which might be affected by the moved procedures, are the partial permutations
Eke[i] for all i ∈ [n]. (iv) The key generation oracle KG has nothing to do with Eke[i] for any

23

i ∈ [n]. (v) The modification from G0 to G1 (i.e., bad1) guarantees that when Make is invoked
in G3 (line 13), Eke[i] (for any i ∈ [n]) is empty; the modification from G2 to G3 (i.e., bad3)
guarantees that in G3, the oracles E+ and E− do not fill up Eke[i] (for any i ∈ [n]) with any
pairs or reveal any information about Eke[i] (for any i ∈ [n]), until A makes an opening query I
such that i ∈ I. In other words, in G3, for every i ∈ [n] there is at most one pair in Eke[i] when
A3 outputs I (in line 19), and no information on these ≤ n pairs are revealed to A3 other than
(M, c).

Therefore, we derive that G4 = G3.
Now, we construct a PPT simulator S as shown in Fig. 16. Obviously S simulates G4 for A

perfectly, so we derive that Expsim-sid-mso-cpa-ideal
IBEhyb,A,S

(λ) = G4, which concludes this proof.
ut

Remark 7. As mentioned earlier, the notion of indistinguishability-based sID-mSO-CPA (IND-
sID-mSO-CPA) security can be similarly defined. With similar technique as that of Theorem 4,
we also can prove that IBEhyb is IND-sID-mSO-CPA secure.

Acknowledgments. Zhengan Huang was supported by National Natural Science Foundation
of China (No. 61702125, 61702126), and Scientific Research Foundation for Post-doctoral Re-
searchers of Guangzhou (No. gdbsh2016020). Junzuo Lai was supported by National Natural Sci-
ence Foundation of China (No. 61572235), Guangdong Natural Science Funds for Distinguished
Young Scholar (No. 2015A030306045), and Pearl River S&T Nova Program of Guangzhou. Wen-
bin Chen was partly supported by the Program for Innovative Research Team in Education De-
partment of Guangdong Province Under Grant No.2015KCXTD014. and No.2016KCXTD017.
Jin Li was supported by National Natural Science Foundation of China (No. 61472091), National
Natural Science Foundation for Outstanding Youth Foundation (No. 61722203), and the State
Key Laboratory of Cryptology, Beijing, China.

References

1. Bellare M., Hofheinz D., Yilek S.: Possibility and impossibility results for encryption and commitment secure
under selective opening. In: EUROCRYPT 2009. LNCS, vol. 5479, pp. 1-35. Springer (2009).

2. Bellare M., Rogaway P.: Code-based game-playing proofs and the security of triple encryption. In: EURO-
CRYPT 2006. LNCS, vol. 4004, pp. 409-426. Springer (2006).

3. Bellare M., Waters B., Yilek S.: Identity-based encryption secure against selective opening attack. In: TCC
2011. LNCS, vol. 6597, pp. 235-252, Springer (2011).

4. Bellare M., Yilek S.: Encryption schemes secure under selective opening attack. Cryptology ePrint Archive:
Report 2009/101, 2009. https://eprint.iacr.org/2009/101/20120923:212424. Accessed 09 September 2017.

5. Bentahar K., Farshim P., Malone-Lee J., Smart N. P.: Generic constructions of identity-based and certificate-
less KEMs. J. Cryptol. 21(2), 178-199 (2008).

6. Böhl F., Hofheinz D., Kraschewski D.: On definitions of selective opening security. In: PKC 2012. LNCS, vol.
7293, pp. 522-539. Springer (2012).

7. Boneh D., Boyen X.: Efficient selective-ID secure identity-based encryption without random oracles. In:
EUROCRYPT 2004. LNCS, vol. 3027, pp. 223-238. Springer (2004).

8. Boyen X., Li Q.: All-But-Many Lossy Trapdoor Functions from Lattices and Applications. In: CRYPTO 2017.
LNCS, vol, 10403, pp. 298-331. Springer (2017).

9. Canetti R., Halevi S., Katz J.: Chosen-ciphertext security from identity-based encryption. In: EUROCRYPT
2004. LNCS, vol. 3027, pp. 207-222. Springer (2004).

10. Canetti R., Halevi S., Katz J.: Adaptively-secure, non-interactive public-key encryption. In: TCC 2005. LNCS,
vol. 3378, pp. 150-168. Springer (2005).

11. Cramer R., Shoup V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext
attack. In: CRYPTO 1998. pp. 13-25. Springer (1998).

24

12. Cramer R., Shoup V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key
encryption. In: EUROCRYPT 2002. LNCS, vol. 2332, pp. 45-64. Springer (2002).

13. Dworkin M. J.: SP 800-38A: Recommendation for block cipher modes of operation: Methods and techniques.
Technical report, National Institute of Standards and Technology, Gaithersburg, MD, United States (2001).
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf. Accessed 02 October 2017.

14. Dworkin M. J.: SP 800-38C: Recommendation for block cipher modes of operation: The CCM mode for authen-
tication and confidentiality. Technical report, National Institute of Standards and Technology, Gaithersburg,
MD, United States (2007). http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38c.pdf.
Accessed 02 October 2017.

15. Dworkin M. J.: SP 800-38D: Recommendation for block cipher modes of operation: Galois/Counter Mod-
e (GCM) and GMAC. Technical report, National Institute of Standards and Technology, Gaithersburg,
MD, United States (2007). http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf.
Accessed 02 October 2017.

16. Dworkin M. J.: Addendum to SP 800-38A: Recommendation for block cipher modes of
operation: Three variants of ciphertext stealing for CBC mode. Technical report, Na-
tional Institute of Standards and Technology, Gaithersburg, MD, United States (2010).
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a-add.pdf. Accessed 02 Octo-
ber 2017.

17. Fehr S., Hofheinz D., Kiltz E., and Wee H.: Encryption schemes secure against chosen-ciphertext selective
opening attacks. In: EUROCRYPT 2010. LNCS, vol. 6110, pp. 381-402. Springer (2010).

18. Hazay C., Patra A., Warinschi B.: Selective opening security for receivers. In: ASIACRYPT 2015. LNCS, vol.
9452, pp. 443-469. Springer (2015).

19. Hemenway B., Libert B., Ostrovsky R., Vergnaud D.: Lossy encryption: Constructions from general assump-
tions and efficient selective opening chosen ciphertext security. In: ASIACRYPT 2011. LNCS, vol. 7073, pp.
70-88. Springer (2011).

20. Heuer F., Jager T., Kiltz E., Schäge S.: On the Selective Opening Security of Practical Public-Key Encryption
Schemes. In: PKC 2015. LNCS, vol. 9020, pp. 27-51. Springer (2015).

21. Heuer F., Poettering B.: Selective opening security from simulatable data encapsulation. In: ASIACRYPT
2016, LNCS, vol. 10032. Springer (2016).

22. Hofheinz D.: All-but-many lossy trapdoor functions. In: EUROCRYPT 2012. LNCS, vol. 7237, pp. 209-227.
Springer (2012).

23. Hofheinz D., Jager T., Rupp A.: Public-Key Encryption with Simulation-Based Selective-Opening Security
and Compact Ciphertexts. In: TCC 2016-B. LNCS, vol. 9986, pp. 146-168. Springer (2016).

24. Huang Z., Liu S., Qin B.: Sender-Equivocable Encryption Schemes Secure against Chosen-Ciphertext Attacks
Revisited. In: PKC 2013, pp. 369-385. Springer (2013).

25. Huang Z., Liu S., Qin B., Chen K.: Fixing the Sender-Equivocable Encryption Scheme in Eurocrypt 2010.
In: Intelligent Networking and Collaborative Systems (INCoS), 2013 5th International Conference on, pp.
366-372. IEEE (2013).

26. Holt, J. E.: Key Privacy for Identity Based Encryption. In: IACR Cryptology ePrint Archive, 2006, 120
(2006).

27. Jia D., Lu X., Li B.: Constructions Secure Against Receiver Selective Opening and Chosen Ciphertext Attacks.
In: CT-RSA 2017. LNCS, vol. 10159, pp. 417-431. Springer (2017).

28. Lai J., Deng R. H., Liu S., Weng J., Zhao Y.: Identity-Based Encryption Secure against Selective Opening
Chosen-Ciphertext Attack. In: EUROCRYPT 2014. LNCS, vol. 8441, pp. 77-92. Springer (2014).

29. Lamport L.: Constructing Digital Signatures from a One-Way Function. Technical Report CSL-98, SRI In-
ternational, Palo Alto (1979). http://lamport.azurewebsites.net/pubs/dig-sig.pdf. Accessed 06 October 2017.

30. Li F., Shirase M., Takagi T.: Efficient Multi-PKG ID-Based Signcryption for Ad Hoc Networks. In: Information
Security and Cryptology. Inscrypt 2008. Lecture Notes in Computer Science, vol 5487, pp. 289-304. Springer,
Berlin, Heidelberg (2008).

31. Libert B., Sakzad A., Stehlé D., Steinfeld R.: All-But-Many Lossy Trapdoor Functions and Selective Opening
Chosen-Ciphertext Security from LWE. In: CRYPTO 2017. LNCS, vol, 10403, pp. 332-364. Springer (2017).

32. Paillier P.: Public-key cryptosystems based on composite degree residuosity classes. In: EUROCRYPT 1999,
Vol. 1592, LNCS. pp. 223-238. Springer (1999).

33. Paterson K.G., Srinivasan S.: Security and Anonymity of Identity-Based Encryption with Multiple Trusted
Authorities. In: Pairing-Based Cryptography - Pairing 2008. Pairing 2008. Lecture Notes in Computer Science,
vol 5209, pp. 354-375. Springer, Berlin, Heidelberg (2008).

34. Wang, S., Cao, Z.: Practical identity-based encryption (IBE) in multiple PKG environments and its applica-
tions. In: Cryptology ePrint Archive, Report 2007/100 (2007), http://eprint.iacr.org/

25

A Proof of Lemma 3

Proof (of Lemma 3). First, parse pk[i] = (g1, g2, h, θ, ϕ, hk), sk[i] = (x, y, a, b, a′, b′) and tk[i] =
z. Denote the ith challenge ciphertext in Gn+i−1 by c[i] = (u, v, w, e). Let r1 := logg1 u and
r2 := logg2 v = logg2 g1 + r1. So we have r1 6= r2.

Game Gn+i−1 sets bad iff adversary A, without obtaining sk[i] through the opening query,
submits a decryption query (i, c′ = (u′, v′, w′, e′)) such that (i, c′) /∈ C, u′z 6= v′, and u′a+α

′a′v′b+α
′b′ =

e′, where α′ = HEvl(hk, (u′, v′, w′)). There are four possible cases.

Case 1. (u′, v′, w′, e′) = (u, v, w, e).
Since (i, c′) /∈ C, this case occurs only when A submits such a decryption query before

receiving c. In Gn+i−1, u is uniformly and independently chosen from Gq. Notice that A makes
at most qd decryption queries, and that the best circumstance for A is that each decryption
query will help A to eliminate one possible value of u. Hence, the probability that Case 1 occurs
is at most qd

q−qd , which is negligible.
We stress that this is a very loose bound. Because in Gn+i−1, v = g1g

r
2 and c[i] is generated

with sk[i], the probability that A generates c[i] beforehand is much less than qd
q−qd .

Case 2. (u′, v′, w′) = (u, v, w) and e′ 6= e.
In this case, α′ = α and u′a+α

′a′v′b+α
′b′ = ua+αa

′
vb+αb

′
= e 6= e′. Hence, Gn+i−1 will not set

bad.

Case 3. (u′, v′, w′) 6= (u, v, w) and α′ = α.
Since Hash is a CR hash function, the probability that the adversary generates (u′, v′, w′)

such that HEvl(hk, (u′, v′, w′)) = HEvl(hk, (u, v, w)) is negligible. Hence, Case 3 occurs with neg-
ligible probability.

Case 4. (u′, v′, w′) 6= (u, v, w) and α′ 6= α.
Let r′1 := logg1 u

′ and r′2 := logg2 v
′. When Gn+i−1 sets bad, u′z 6= v′, which implies r′1 6= r′2.

From the public key pk and the challenge ciphertext vector c, for sk[i] = (x, y, a, b, a′, b′),
all the information on (a, b, a′, b′) that A learns is:

logg1 θ = a+ bz, (9)

logg1 ϕ = a′ + b′z, (10)

logg1 e = r1a+ r2zb+ r1αa
′ + r2zαb

′. (11)

For the decryption query (i, (u′, v′, w′, e′)), Gn+i−1 sets bad only if

logg1 e
′ = r′1a+ r′2zb+ r′1α

′a′ + r′2zα
′b′. (12)

Because ∣∣∣∣∣∣∣∣
1 z 0 0
0 0 1 z
r1 r2z r1α r2zα
r′1 r′2z r′1α

′ r′2zα
′

∣∣∣∣∣∣∣∣ = z2(r2 − r1)(r′2 − r′1)(α− α′) 6= 0,

equations (9)-(12) are linearly independent. Therefore, the probability that A submits a decryp-
tion query (i, (u′, v′, w′, e′)) where u′z 6= v′ for the first time, such that Gn+i−1 sets bad, is 1

q .

26

At best, each decryption query will help the adversary to eliminate one possible value, so the
possibility that Gn+i−1 sets bad in Case 4 is at most qd

q−qd , which is negligible. ut

B Identity-based encryption

An identity-based encryption (IBE) scheme consists of four PPT algorithms (PGen,KGen,Enc,
Dec). The parameter generation algorithm PGen (1λ) outputs a public parameter pp and a master
secret key msk. The private key generation algorithm KGen(pp,msk, id) takes pp, msk and an
identity id as input, and outputs a secret key skid for id. The encryption algorithm Enc(pp, id,m)
taking pp, id and a message m as input, outputs a ciphertext c. The decryption algorithm
Dec(pp, skid, c), taking pp, skid and c as input, outputs a message m or ⊥, which indicates that
c is invalid. For correctness, we require that for any valid identity id and valid message m,
(pp,msk) ← PGen(1λ), c ← Enc(pp, id,m) and skid ← KGen(pp,msk, id), Dec(pp, skid, c) = m
with overwhelming probability.

C Strong one-time signature

A signature scheme consists of three PPT algorithms SIG = (SGen, Sign, Verf). The key gen-
eration algorithm SGen(1λ) outputs a signing/verification key pair (sks, vks). The signing algo-
rithm Sign(sks,m) taking sks and a message m as input, outputs a signature sg. The verifica-
tion algorithm Verf(vks,m, sg), taking vks, m and sg as input, returns b ∈ {0, 1}. For correct-
ness, we require that for any valid message m, (sks, vks) ← SGen(1λ) and sg ← Sign(sks,m),
Verf(vks,m, sg) = 1 with overwhelming probability. SIG is called strong one-time, if for any PPT
adversary A, the advantage

Advstr-ot
SIG,A(λ) := Pr


(sks, vks)← SGen(1λ)
m← A(vks)
sg ← Sign(sks,m)
(m′, sg′)← A(sg)

: (m′, sg′) 6= (m, sg)
∧

Verf(vks,m, sg) = 1


is negligible.

D Identity-based key encapsulation mechanism

According to [5], an identity-based key encapsulation mechanism (IB-KEM) scheme for a ses-
sion key space K consists of four PPT algorithms (PGen,KGen,Encap, Decap). The parameter
generation algorithm PGen(1λ) outputs a public parameter pp and a master secret key msk. The
private key generation algorithm KGen(pp,msk, id) takes pp,msk and an identity id as input, and
outputs a secret key skid for id. The encapsulation algorithm Encap(pp, id) taking pp and id as
input, outputs a session key k ∈ K and a corresponding ciphertext c. The decapsulation algorith-
m Decap(pp, skid, c), taking pp, skid and c as input, outputs a session key k or ⊥, which indicates
that c is invalid. For correctness, we require that for any valid identity id, (pp,msk)← PGen(1λ),
(k, c) ← Encap(pp, id) and skid ← KGen(pp,msk, id), Decap(pp, skid, c) = k with overwhelming
probability. For any blockcipher E, an IB-KEM is called E-independent if none of its four un-
derlying algorithms invokes E in either direction.

The notion of IND-sID-CPA security for IB-KEM is very similar to IND-sID-CPA security
for IBE. For constructions, any IND-sID-CPA secure IBE scheme (e.g., [7]) is an IB-KEM scheme
achieving this security.

27

