
Isogeny Secrets can be Traded

David Urbanik

University of Waterloo, Waterloo ON, Canada,
dburbani@uwaterloo.ca

Abstract. We consider a situation in which two mutually distrusting parties, each
possessing a secret piece of information, wish to exchange these secrets while commu-
nicating over a secure channel, in effect “trading” them. Each is afraid of counterparty
risk: Alice fears that as soon as she sends her secret to Bob he will cease communi-
cation without sending his secret in return, and likewise for the reverse case. In the
situation where Alice and Bob’s secrets are protected by isogenies, we propose a sys-
tem in which Alice and Bob may fairly exchange their secrets without counterparty
risk, and without a trusted third party. We then discuss potential applications.
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1 Introduction

Suppose Alice and Bob are each in possession of a piece of secret data. The data could
be encrypted information, such as encrypted digital goods; a private key securing a digital
token, such as a cryptocurrency; or a secret code or key phrase for an escrow system,
such as the one we will describe in Section 3. Alice and Bob are in possession of a secure
digital communication channel and wish to exchange their secret data, in effect performing
a “trade”. The problem is that neither party can assume the other is trustworthy: if Alice
sends her secret data to Bob, he may simply cease communication and not hold up his
end of the bargain. Alice and Bob could enlist a trusted third party to help carry out this
transaction, but this simply changes the problem to one of finding a sufficiently trustworthy
intermediary. We consider the question of whether it is possible for Alice and Bob to carry
out this exchange without a trustworthy third party.

There is a näıve argument which suggests this isn’t possible. Any such protocol, one
argues, produces a series of messages between Alice and Bob exchanged over the secure
digital channel. Since the messages arrive in a definite order, there is some first message from
which Alice (say) may recover Bob’s secret. If Alice receives this message before sending her
secret to Bob, she can simply neglect to complete her half of the protocol. If Alice divulges
the information of her secret to Bob before he reveals his secret to her, then Bob can behave
similarly. Since the messages are ordered, and the first party to divulge their secret has
no guarantee the other will do likewise, a protocol which guarantees that neither party
misbehaves cannot exist.

The issue with the näıve argument is with the claim that there is some first message from
which Alice has sufficient information to recover Bob’s secret. In fact, in a typical setting
with a public-private key pair, each party always has enough information to determine the
secret (the private key) from publicly available information (the public key) but simply
lacks the computational means to be able to do so. Therefore, Alice and Bob’s exchange of
information can be viewed as a process through which Alice and Bob provide each other
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with additional information which assists the other party in obtaining the secret information
efficiently from the data available to them. The idea is then to develop a protocol where
Alice and Bob can take turns providing information to the other party which lowers the
computational difficulty of obtaining their respective secrets from the revealed data, in
effect exchanging the secrets “bit by bit”. If either abandons the protocol at any point,
both parties will be left with an equivalent (up to a small constant factor) “amount of
information” about the other party’s secret, or alternatively, will have their secrets secured
from the other party by problems of equal difficulty.

The above protocol is still subject to counterparty risk in the following way: if the data
Alice sends Bob to assist his recovery of her secret is faked, then Bob cannot detect this
forgery until Alice and Bob have completed enough rounds of the protocol so that they
would both be able to recover each other’s secret had both parties been behaving honestly.
But in such a situation, an honest Bob would lose his secret to a devious Alice, while the
devious Alice would have revealed nothing but faked data. Alice and Bob therefore need a
mechanism to not just exchange partial information about their secrets, but also to prove
that the revealed partial information is accurate without divulging their secrets further. We
show in the next section that such a secret exchange can be achieved with isogeny-based
techniques.

2 Implementation Using Isogenies

In the interest of making this paper accessible to a wider audience, we review the basics of
isogeny-based cryptography. We assume basic knowledge of elliptic curves, abelian groups,
and the elliptic curve group law.

Let E be an elliptic curve, and suppose that G is a finite subset of points of E which
form a subgroup of E under the group addition. It is then possible to construct another
elliptic curve, which we label E/G, and a surjective map φ : E → E/G which is both a
group homomorphism and an algebraic map; that is, if E and E/G are given by Weierstrass
equations in the coordinates (x, y) and (x′, y′) respectively, then the map φ takes the form

(x′, y′) = φ(x, y) =

(
ψx′(x, y)

ηx′(x, y)
,
ψy′(x, y)

ηy′(x, y)

)
for polynomials ψx′ , ηx′ , ψy′ , and ηy′ in x and y. The kernel of the map φ is exactly the group
G, and the degree of the map φ, which is the same as the degree of the rational functions
which define it, is the size |G| of the subgroup G. The map φ is called an isogeny,1 and is
the main object of interest in isogeny-based cryptography.

It is known how to compute an appropriate elliptic curve E/G and map φ given the
subgroup G. For the case where G is cyclic, which is the primary case of interest, there
are explicit formulas given by Vélu[5] which accomplish this. It is then a fact that the pair
(E/G, φ) satisfy a kind of “first isomorphism” property: if (E′, φ′) is another pair such that
φ′ : E → E′ is an isogeny with kernel G, then there is an isomorphism α : E′ → E/G
of elliptic curves such that φ = α ◦ φ′. This property plays a crucial role in isogeny-based
protocols, since they often require the parties involved to agree on isomorphic curves by
constructing two different isogenies with the same kernels.

1 More precisely, this is a separable isogeny, but we won’t be concerned with the inseparable case
here.
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Given two elliptic curves E and E′, it is typically very difficult to construct an isogeny
φ : E → E′ between them. Moreover, if some additional information such as the degree of
the isogeny φ is specified, then one can often ensure heuristically that there is at most one
appropriate isogeny φ. Thus, isogenies naturally lend themselves to the role of public-private
key pairs in cryptography: the public key is the pair (E,E′), possibly with some additional
information depending on the protocol of interest, and the private key is the isogeny φ (or
information that allows one to compute it). The person possessing the private key can then
use it to either evaluate the isogeny or compute other isogenies determined by φ, and from
this a number of cryptographic primitives can be constructed (c.f. [3][6][2]).

However, even if we know the subgroup G, it is not always easy to compute the map
φ : E → E/G. The issue is that in order to make finding φ (which is the same as finding
G) difficult for the attacker, the degree of φ has to be exponentially sized so there is an
exponential search space (i.e., exponentially many possible kernels G). But if the degree of
φ is exponentially large, then so are the rational functions which define it, which can make
evaluating and working with φ computationally difficult.

The problem may be solved in the following manner. Choose a prime p = n± 1, where n
is a positive composite integer with many small factors; say that, in particular, `e|n where
` is a small prime and e is an exponent such that `e is exponential in size. Denote by Fp2 a
finite field of order p2. Then it is possible find a family of elliptic curves, the supersingular
elliptic curves, such that every isomorphism class of supersingular curve has a representative
where the Fp2-points satisfy E(Fp2) ∼= (Z/nZ)×(Z/nZ). In particular, this means that there
are exponentially many subgroups of order `e defined over the field Fp2 . Then if G is such
a cyclic subgroup generated by P , we have a chain of subgroups

〈OE〉 ⊂ 〈[`e−1]P 〉 ⊂ 〈[`e−2]P 〉 ⊂ · · · ⊂ 〈[`]P 〉 ⊂ 〈P 〉 = G,

where OE is the point at infinity on E. What this then means is that we may construct the
map φ : E → E/G of degree `e as a series of isogenies φi : Ei−1 → Ei of degree `, where
we set the curve E0 = E, the curve Ee = E/G, and the kernel of φi to be the image of the
group 〈[`e−i]P 〉 under the map φi−1 ◦ · · · ◦ φ1. Since each map φi has small degree `, the
overall isogeny φ can be efficiently represented in this way.

Using the protocols described in [3] or the signature scheme described in [6], an isogeny
φ : E → E/G can secure anything ranging from the secret key for a symmetric cipher
(using an SIDH-based key agreement), encrypted data (using SIDH encryption), or anything
protected by signatures (such as a digital wallet). To implement the trading mechanism
described in the previous section, therefore, it suffices to show how one can reveal φ “one
step at a time” in a way where each step is verifiable by a non-interactive proof. The obvious
answer is to reveal the maps φ1, φ2, etc. in order. Note that if ` = 2, then this quite literally
reveals one bit of information, since there are exactly two choices for the isogeny φi for
i ≥ 2. By the obvious symmetry of the problem, it suffices to explain how we may reveal
φ1 : E → E1 and prove that there exists an isogeny φ′ : E1 → E/G of degree `e−1.

The idea is simply to use the zero-knowledge protocol described in the original paper
of Jao and De Feo. Jao and De Feo give an identification scheme where to demonstrate
knowledge of an isogeny η : E → E/G of degree `e11 one computes commuting diagrams of
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the form

E E/G

E/H E/〈G,H〉

η

ψ ψ′

η′

,

where H is a subgroup of order `e22 (`2 a small prime relatively prime to `1, and e2 a large
exponent), ψ and ψ′ are isogenies of degree `e22 , and η′ is an isogeny of degree `e11 related to
η. The prover then commits the curves E/H and E/〈G,H〉, and alternately reveals either
the maps ψ and ψ′ or the map η′ depending on the bit sent by the challenger. Applying
a Fiat-Shamir transform, one can turn this interactive proof into a non-interactive one. In
particular, if we take η = φ′, we may demonstrate the correctness of the revealed map φ1
by proving that the isogeny φ′ satisfying φ = φ′ ◦ φ1 exists. For more details, see the paper
of Jao and De Feo, and also the discussion of applying the Fiat-Shamir transform to this
protocol in the paper [6].

3 Blockchain-based Escrow

One natural issue that arises with exchanging digital goods using such a system is deciding
when precisely two parties can be assured that the goods are secured by an isogeny. For
instance, if the digital goods take the form of encrypted data, the party receiving the key
to decrypt the data must somehow be assured in advance that the decrypted data is the in
fact the digital good they are interested in. One way this can happen is if the digital goods
themselves are part of some larger system that routinely uses cryptographic techniques to
secure those goods; a natural candidate for this sort of phenomenon is blockchains, where
digital currencies are secured using cryptographic signatures.

Unfortunately, all proposed isogeny-based signature schemes to date have various effi-
ciency drawbacks, which makes their widespread use unlikely (especially in blockchain-based
systems, which already have their own efficiency concerns). For this reason, we sketch a
blockchain-based escrow system which applies these techniques.

Suppose that Alice and Bob wish to perform an exchange, and that Alice wishes to pay
Bob using a digital currency implemented via a blockchain. We suppose that Alice and Bob
have well-established identities, and so are able to both authenticate each other’s messages,
sign messages, and also to commit2 messages to the blockchain in an authenticated manner.

The blockchain also supports an escrow feature, which works as follows:

(1) To put money in escrow, Alice commits a message consisting of:
(i) the quantity Q of digital tokens she intends to commit,

(ii) the intended recipient’s wallet (i.e., Bob’s wallet address),
(iii) a “return” address (i.e., Alice’s wallet address),
(iv) an expiry date,
(v) a public key KA corresponding to some tradable private secret PA,
(vi) and an integer k.

(2) When Alice commits her message, Q digital tokens are removed from Alice’s wallet and
enter escrow.

2 We use “commit” as a synonym for “broadcast” here.
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(3) If at any time before the expiry date the private key PA is committed to the blockchain
(as can be verified using KA), then the Q digital tokens leave escrow and are transferred
to Bob’s wallet and the transaction is completed. Note that there is no requirement
that the private key remain secret after this point; it is simply a temporary tool used
to facilitate the transaction.

(4) Prior to either the expiry date or the completion of the transaction, Alice and Bob may
both “dispute” the transaction. If Bob files a dispute against Alice, then he submits
a signed message from Alice in which Alice asserts that Bob honestly carried out the
secret exchange protocol up until stage `. Alice may due likewise. Note that Bob and
Alice will obtain such signed statements from each other in the course of the modified
exchange protocol, described below.

(5) If the expiry date is reached, then either the transaction has been disputed or it hasn’t.
If it hasn’t been disputed, then the money is returned to Alice. If it has been disputed,
then one of two things can happen:

(i) If the maximum value of ` over all signed statements submitted by Alice and Bob
is greater than or equal to k, then the expiry date is invalidated and the money
either remains in escrow until PA is committed (in which case it is released to
Bob), or remains in escrow indefinitely.

(ii) If the maximum value of ` over all signed statements submitted by Alice and Bob is
less than k, then the money is returned to Alice and the transaction is terminated.

Now suppose that Alice and Bob wish to perform an exchange in which Bob’s se-
cret is a private key PB corresponding to a public key KB , and Alice is willing to pay
him quantity Q in digital currency for his secret. Alice then generates a private-public
key pair (PA,KA) where KA will be the key Alice will commit her escrow message with.
Alice and Bob agree to carry out the exchange in n stages, using a series of messages
M1

A,M
1
B ,M

2
A,M

2
B , . . . ,M

n
A,M

n
B , where the message M i

A will be the i’th message Alice sends
to Bob, and the message M i

B will be the i’th message that Bob sends to Alice. The message
M i

A is of the form Hi
A|N i

A|V i
A, where

(i) Hi
A is the i’th “hint” that Alice gives Bob about her private key (so the isogeny φi in

the isogeny protocol described in Section 2),
(ii) N i

A is a non-interactive zero-knowledge proof that Hi
A is correct,

(iii) and V i
A is a signed statement from Alice that Bob has correctly carried out the protocol

up to at least stage i− 1.

Bob’s messages M i
B are analogous.

Alice and Bob then agree on an integer k, where k is the smallest integer such that the
expected cost to Alice of brute-forcing the key PB (respectively, the cost to Bob of brute-
forcing the key PA) using the hints H1

B , . . . ,H
k
B (respectively, the hints H1

A, . . . ,H
k
A) is less

than the value of Bob’s secret to Alice (respectively, Alice’s secret to Bob). Since Alice and
Bob are using keys of the same type, and Alice and Bob’s goods should be of approximately
equal value, they should be able to agree on such an integer. Alice and Bob agree on an
expiry date, which is chosen so that the average time required to brute force either PA or
PB using k hints is significantly longer than the difference between the expiry date and the
current time. Alice then makes her escrow commitment, and Alice and Bob exchange the
messages M1

A,M
1
B ,M

2
A,M

2
B , . . . ,M

n
A,M

n
B in order. If the protocol is completed successfully,

then both know each other’s secrets, and Bob recovers quantity Q of digital currency by
committing PA to the escrow system. If at any point Alice (respectively Bob) fails to carry
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out her (respectively his) obligations under the protocol, either by submitting an invalid
message or becoming unresponsive, then Alice (respectively Bob) may file a dispute using
the last signed statement V j

B (respectively V j
A) received. The following outcomes of this

protocol are possible:

(1) The protocol completes successfully, in which case Alice and Bob have performed their
exchange to the satisfaction of both parties.

(2) Alice fails to live up to her obligations, either by sending an invalid message or becoming
unresponsive, in which case Bob files a dispute using the last signed statement V j

A he
received from Alice. There are then two cases:

(i) If j < k, the money will be returned to Alice after the expiry date and brute-forcing
Bob’s private key will be prohibitively expensive, so neither party will obtain each
other’s secret.

(ii) If j ≥ k then the expiry date will be nullified, and Bob can brute-force Alice’s
key and commit it to the escrow system. Alice (if she chooses) can also brute-
force Bob’s key. Both then obtain each other’s digital goods at the mutual cost
associated with the brute-force computation. In this case, both Alice and Bob gain
equal value in goods and incur equal expected costs.

(3) If Bob fails to live up to his obligations, the analogous scenario occurs.
(4) If one party dishonestly commits a signed statement that misrepresents the stage to

which the protocol was carried out properly, the other party can submit a more recent
signed statement and proceed as in case (2) or (3).

In all of the above cases Alice and Bob (in their own estimation) either receive goods of
equal value and/or incur (approximately) equal costs, and so the protocol is fair.

One might imagine that Bob could try to obtain an advantage from the fact that he
goes second in the message-exchange stage of the protocol, and thus if he fails to live up to
his obligations at stage `, he will have one additional hint to work with when brute-forcing
Alice’s key. If Bob wishes to implement such a strategy, Bob must carry out his obligations
up until at least stage k, since otherwise if he only does so up until stage ` < k, Alice can
submit a signed statement which, when the expiry date arrives, will ensure that the money
is returned to her before Bob can brute-force Alice’s key, and Bob won’t have a signed
statement of his own which can ensure the money remains in escrow. But if Bob carries out
his obligations to stage k, then Alice will have enough hints such that the cost of brute-
forcing Bob’s secret will be less than the value of his secret to her, and so will brute-force
Bob secret if necessary. Hence Bob will still lose his secret if he takes such an approach, and
will incur additional costs in brute-forcing Alice’s key, so there is no advantage to Bob over
behaving honestly.

The protocol described has the downside that the concrete cost associated with brute-
forcing a key can be wildly unpredictable, and that even when assuming each additional hint
provides exactly one bit of information, can vary by a factor of two with each additional
hint. This means that the protocol is best suited to applications where the value of the goods
being exchanged is small and the parties involved can be assumed to be typically reliable;
that is, the dispute mechanism may effectively deter scammers, but may be an unreasonable
hassle if used on a regular basis. We leave further analysis and improvements to future work.

4 Conclusion

To the author’s knowledge, the ideas presented in this paper represent the first proposed
mechanism for a fair exchange of digital goods without a trusted third party. Indeed, there
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is prior work which argues that such protocols can’t even exist[4]. Some solutions to similar
problems, like Zero-Knowledge Contingent Payments or key escrow, do exist, but these
proposals depend on either a third party or have various implementation drawbacks[1].
Obviously, more work is needed to examine to what extent the protocols proposed here
still suffer from counterparty risk and what the potential applications are. However, we
believe that with the increasing prominence of digital goods and digital currencies in terms
of both cryptographic interest and use in the real-world marketplace, such ideas are worthy
of further investigation.
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