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Abstract

Protocols for secure multiparty computation enable a set of parties to compute
a joint function of their inputs, while preserving privacy, correctness and more. In
theory, secure computation has broad applicability and can be used to solve many of
the modern concerns around utilization of data and privacy. Huge steps have been
made towards this vision in the past few years, and we now have protocols that can
carry out large computations extremely efficiently, especially in the setting of an honest
majority. However, in practice, there are still major barriers to widely deploying secure
computation, especially in a decentralized manner.

In this paper, we present the first end-to-end automated system for deploying large-
scale MPC protocols between end users, called MPSaaS (for MPC system-as-a-service).
Our system enables parties to pre-enroll in an upcoming MPC computation, and then
participate by either running software on a VM instance (e.g., in Amazon), or by run-
ning the protocol on a mobile app, in Javascript in their browser, or even on an IoT
device. Our system includes an automation system for deploying MPC protocols, an
administration component for setting up an MPC computation and inviting partici-
pants, and an end-user component for running the MPC protocol in realistic end-user
environments. We demonstrate our system for a specific application of running secure
polls and surveys, where the secure computation is run end-to-end with each party ac-
tually running the protocol (i.e., without relying on a set of servers to run the protocol
for them). This is the first such system constructed, and is a big step forward to the
goal of commoditizing MPC.
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One of the cryptographic difficulties that arise in this type of setting is due to the
fact that end users may have low bandwidth connections, making it a challenge to
run an MPC protocol with high bandwidth. We therefore present a protocol based
on Beerliova-Trubiniova and Hirt (TCC 2008) with many optimizations, that has very
low concrete communication, and the lowest published for small fields. Our protocol
is secure as long as less than a third of the parties are malicious, and is well suited
for computing both arithmetic and Boolean circuits. We call our protocol HyperMPC
and show that it has impressive performance. In particular, 150 parties can compute
statistics—mean, standard deviation and regression—on 4,000,000 inputs (with a cir-
cuit of size 16,000,000 gates of which 6,000,000 are multiplication) in just 45 seconds,
and 150 parties can compute a circuit over GF [28] (which can be used for a Boolean
computation) with 1,000,000 multiplication gates and depth-20 in just 2 seconds. Al-
though our end-to-end system can be used to run any MPC protocol (and we have
incorporated numerous protocols already), we demonstrate it for our new protocol
that is optimized for end-users without high bandwidth.

1 Introduction

1.1 Background

Secure multiparty computation (MPC) allows a set of parties to securely compute an agreed
function on their private inputs. Informally speaking, security means that the secrecy of
the inputs and the correctness of the output is maintained, even in the presence of some
malicious parties who may deviate from the protocol.

Feasibility of secure multiparty computation (MPC) was proven in the late 1980s,
demonstrating that any functionality can be securely computed in the presence of a mali-
cious adversary who may arbitrarily deviate from the protocol specification in an attempt to
breach security. Secure computation can be achieved with computational security [33, 15]
for any number of corrupted parties, with perfect security as long as less than one third of
the parties are corrupted [4], and with statistical security for an honest majority assuming
broadcast [26]. These powerful results prove that MPC can solve the problem of data
utilization while preserving privacy. However, they do not address the problem of concrete
efficiency, and the ability to carry out MPC in practice.

Over the past decade there has been huge progress on the problem of constructing
efficient MPC; see [6, 24, 14, 12, 22, 23, 18, 25, 1, 28, 21] for just a few examples. The
current state of affairs is that it is possible for parties to carry out huge computations (with
millions and even billions of Boolean or arithmetic gates) in reasonable time.

The above demonstrates that secure computation can be made practical, and indeed
there are a number of startup companies offering MPC solutions, and other large companies
using MPC for internal computations. This is of great importance, and we are already
seeing the use of MPC in real-world business solutions. However, the promise of MPC goes
far beyond the B2B context, and is a perfect fit for peer-to-peer decentralized settings.
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In its basic theory, MPC enables an arbitrary set of end-user parties to carry out joint
computations on their own personal private data, without revealing it to anyone else. This
is extremely attractive, since parties participating in MPC protocols do not need to trust
anyone beyond themselves.

However, despite the above, there are still significant obstacles to deploying peer-to-peer
MPC in practice:

1. It is unclear how in practice a set of parties can synchronize what protocol to run and
when.

2. Most MPC implementations to date require the installation of software, and cannot be
run on end-user devices like Mobile phones or in a browser, which is the way that most
end users prefer to work.

3. Almost all MPC protocols require all parties to be online at the same time. This is a
serious obstacle to carrying out large-scale MPC between end users who may reside in
different time zones.

These above issues, and more, must be solved before peer-to-peer MPC can be used in
practice.

In order to illustrate the above, we refer to an extremely interesting example of a real
MPC deployment that was carried out recently. The Boston Women’s Workforce Coun-
cil used MPC to carry out a study of the gender wage gap among employers within the
Greater Boston Area [20]. This study required obtaining (anonymized) employee compen-
sation from private companies, which was refused due to requirements to protect sensitive
information. After considerable legal and technical work, secure multiparty computation
was used, and enabled the study to be carried out. In the specific case of [20], two servers
received shares of the inputs from all and were used to run the entire computation. This
means that all parties involved had to trust that the two servers would not collude, or be
simultaneously breached. Indeed, in many cases, such a model can be legally problematic
due to questions of trust (who runs these servers) and the regulatory requirements for each
party to protect its own data.

A far more compelling way of carrying out the above study would be to have each
company run its own copy of the MPC. However, as described by [20], none of these
companies would install software and would only use a browser interface. Furthermore, it
took great effort on the part of the Boston Women’s Workforce Council to get the companies
to agree to this model. It would be much easier, and more effective, to ask end users to
provide their own information and run the MPC themselves. This would enable the study
to span the entire nation, and even world, and give a far bigger and better picture of the
gender wage gap problem.
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1.2 An End-to-End System for P2P MPC

In this paper, we describe a full-fledged end-to-end MPC system that can be used to run
large-scale secure computations between end users on their own personal data. Our aim
was to build an MPC system that works the way modern software works. As such, end
users can participate in MPC executions on platforms that real end users use, a mobile
app or web browser (with any browser), and without requiring software installation or
allocating servers. In addition the MPC system can be offered in the software-as-as-service
model, meaning that there is a cloud service provider who offers the MPC service, sub-
scribers who can purchase/use the service and initiate MPC executions, and end users
who can participate in these executions. Crucially, end users need not trust anyone but
themselves, since they are active participants in the MPC. The system must provide elas-
ticity, be low cost, and not require out-of-pocket expenditure in order to participate (i.e.,
in the OPEX model).

We call the system MPSaaS, or MPC system-as-a-service, and it can be used to setup
and deploy end-to-end MPC computations in practice. The system works by a provider
(or anyone running the system) publishing an upcoming MPC execution that anyone can
register to join. The existing system uses Google or Facebook authentication to register,
but this is just used as a demonstration of capability. After registering, users can view
upcoming executions, and can join any that they wish (or are invited to). At this point,
the user makes a decision as to whether or not they will be online during the actual MPC
execution. If yes, then they can run the MPC from their mobile phone or browser (and
will receive an automatic notification a little before the execution is supposed to begin).
The secure computation is then run on their phone itself (or within their browser), and
their private input never leaves the device (or browser boundary). If they cannot guarantee
being online, then they can choose to connect a cloud VM instance to the MPC which will
receive their input and run the MPC for them (this can be done in two ways, as will be
described below); once again, their private input never leaves the VM instance. We stress
that the system generates the circuit on-the-fly when the computation begins, so if a user
who is supposed to join the execution does not show up, this will not prevent the execution
from running.

In order to achieve the above, MPSaaS is comprised of the following components:

1. The automation backend: In order to deploy large scale secure computation, it is essen-
tial that instances of the MPC protocol be automatically delivered and executed. We
implemented a backend that can be used to deploy general MPC executions, in a fully
automated way. The capabilities of the backend include: a fully automated environment
setup in AWS or Azure, multiple execution coordination (including setting up parties
by bidding for instances, running the MPC protocol, and tearing the parties down upon
completion), and monitoring, result collection and reporting (in order to obtain results,
as well as reporting on running time and other resource usage). The backend works with
arbitrary protocols and we have already incorporated 10 different protocols into the sys-
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tem. It is possible to setup complex experiments with executions for different numbers
of parties on different circuit types in different topologies in minutes, and automatically
receive back a summary of the results.

We believe that this backend is of independent interest, and will be very useful for
the MPC community at large. As with all of our software, we stress that the backend
automation system is open source and will be made freely available to all.

2. MPSaaS administrator component: This component enables a provider (or anyone run-
ning the open source software) to invite participation in a secure computation. The
administrator can publish proposed secure computations, track how many users have
registered (and potentially which users), and obtain the results (we stress that partici-
pants also receive all results as part of the MPC protocol that they run). The system
is not intended for providing anonymity regarding the identity of the participants, but
rather focuses on guaranteeing privacy of their inputs. This has the advantage of making
it easier to prevent sybil attacks and bogus registrations. The administrator component
is linked to the backend, to actually deploy the MPC executions that are published.

3. MPSaaS end-user execution: The end-user component consists of a software layer for
running MPC on end-user devices, including mobile phones, browsers and even on IOT
devices. We demonstrated MPC on Raspberry Pi for the latter, and this can be used
for secure computations over data gathered by IOT devices.

We demonstrated the above system by constructing an MPC private polling solution for
carrying out surveys while keeping inputs private. This solution has very broad applicabil-
ity, and could be used to run a gender wage gap study as discussed above, but with each
individual party actually running the MPC protocol and therefore not needing to trust
anyone with their data.

1.3 HyperMPC – A Low-Bandwidth Protocol

One of the challenges that arises when attempting to deploy end-user MPC protocols is due
to the large amount of communication that can be required. This is especially a problem
when users run on mobile devices with limited bandwidth (and costs encountered) and on
IOT devices that need to save power. There has been great progress in this direction in
recent years for the case of an honest majority. For example, [2] achieve secure computation
over Boolean circuits with security in the presence of malicious adversaries at the cost of
just 7 bits per AND gate. However, their protocol only works for 3 parties (with an
honest majority), and only achieves this efficiency when running secure computations with
massively parallelizable circuits or when amortizing over many secure computations. Thus,
such protocols do not suit the type of environment needed for MPSaaS, where many parties
participate in a single execution.
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Highly efficient protocols were recently presented for the setting of an honest majority
and computation over arithmetic circuits in [21] with additional improvements in [10].
These protocols have very impressive performance in practice, especially when working
over large fields. However, on smaller fields, they require considerably more bandwidth. In
particular, they are not efficient for Boolean-circuit computations, which are very common.

A new protocol with low bandwidth. In order to address this issue, we present a new
protocol for information-theoretic multiparty computation that is secure in the presence
of an adaptive, malicious adversary corrupting up to t < n/3 parties. Our protocol is
based on the protocol of [5], with significant optimizations to achieve practical efficiency.
In particular, since robustness cannot be achieved in the asynchronous setting that we
consider without great cost, there is no need to take (expensive) preparations to recover
from adversarial attacks. Rather, if cheating is observed, then the parties simply abort
the computation. Hence, as opposed to the protocol of [5], we employ neither the player
elimination framework [16] nor circuit randomization [3]. This significantly simplifies the
implementation (an important feature in practice) and improves the performance.

We call our protocol HyperMPC, since one of the main techniques utilized to achieve
such high efficiency is hyper-invertible matrices [5]. A matrix is hyper-invertible if every
non-trivial square sub-matrix is invertible. Hyper-invertible matrices allow for extremely
efficient verifiable secret-sharing (a small factor slower than just sending the shares to
the parties), extremely efficient randomness generation (n − t random values at the cost
of n sharings), and also extremely efficient public reconstruction (n times faster than just
sending the shares to each party). As a result, the communication complexity of each party
is constant per multiplication gate. Thus, the overall communication is linear, meaning that
the overall number of field elements sent per multiplication gate is O(n) (when we measure
the communication complexity, by default, we count the communication of all parties
together). We describe the hyper-invertible matrix technique in detail in Section 3.1.3.

HyperMPC follows the usual offline/online pattern: In the offline phase, a number
of so-called random double-sharings are generated [13, 5]. A random double-sharing is
a pair of two (valid) sharings, one with degree t, and one with degree 2t, of the same
uniformly distributed (and unknown) value. The generation of these double-sharings can be
performed in parallel. In the online phase, the actual circuit is computed. For input gates,
multiplication gates, and random gates, one of the prepared double-sharings is consumed
(where for input and random gates, only the t-sharing is used). Due to the linearity of
the secret-sharing scheme, linear gates can be evaluated locally. Finally, output gates use
standard secret reconstruction.

We prove the following theorem:

Theorem 1.1 Let f be an n-party functionality, and let C be an arithmetic circuit over
field F that computes f . Then, protocol HyperMPC computes f with perfect security and
with abort, in the presence of an adaptive, malicious adversary corrupting t < n/3 parties.
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The exact communication complexity of HyperMPC is

13n · cM + 13.5n · cI + 10n · cR + n · cO + 2n2 ·DM + 10n2

field elements (sent by all parties overall), where cm denotes the number of multiplication
gates, cI the number of input gates, cR the number of random gates, cO the number of
output gates, and DM the multiplicative depth of C.

The basic version of the protocol that we present does not achieve fairness, but this
can be achieved with almost no additional cost as we describe in Section 3.8.

Perfect security and concrete efficiency. Our protocol achieves perfect security, in
contrast to previous honest majority protocols like [21, 10] that are only statistically
secure. Although this seems to not be an issue to be concerned with in practice, it turns
out that it has real benefits. In particular, all known efficient protocols with statistical
security have the property that the adversary can cheat with probability 1/|F| where F is
the field over which the arithmetic circuit is defined. Thus, in order to obtain the required
level of security over a small field, the verification parts of the protocol need to be repeated.
For this reason, the protocol of [10] requires each party to send only 12 field elements per
multiplication gate (overall, not to each other party) when working over a large field (for
which 1/|F| error is acceptable). In contrast, the analogous protocol in [10] for small fields
requires each party to send 6+8δ field elements per multiplication gate where δ > σ

log(|F|/3)

for error 2−σ. Concretely, if 2−80 error is desired, and F is 16 bits long, then each party
must send 46 field elements per multiplication gate. Furthermore, if the parties wish to
run a Boolean computation, then as described in the beginning of Section 3.1.1, a Boolean
circuit can be easily embedded into the field GF [2κ] and run within an arithmetic-circuit
protocol (as long as 2κ is larger than the number of parties). If [10] is used, then GF [28]
suffices for up to 250 parties. However, in order to achieve 2−80 error, this would require
each party to send 86 field elements per multiplication gate. In contrast, for all fields, in
our protocol each party sends only 13 field elements per multiplication gate. Thus, for this
example of a Boolean circuit and GF [28], our protocol has one seventh the bandwidth of
the previous best protocol of [10]. In Section 4.2, we demonstrate that HyperMPC has
excellent performance, especially for small fields.

Related low-bandwidth protocols. Our protocol is based on the linear communica-
tion protocol of [5], with significant simplifications made possible by the fact that we focus
on security with abort. We chose [5] as basis because it is at the same time very simple and
very efficient (and has low constants). As we have discussed, by the fact that the protocol
is perfectly secure, one does not need to worry about field sizes and error probabilities.
Other protocols, like e.g. [13], offer similar asymptotic efficiency, but require probabilistic
consistency checks, which complicate the implementation and increase the constants in the
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communication complexity. We are not the first to base a concretely efficient construction
on [5]. In particular, the VIFF system presented in [11] is based on [5] and uses many of
their ideas. However, the actual construction of [11] has quadratic communication complex-
ity, in contrast to linear communication complexity in our protocol. For a large number of
parties, which is the goal for our end-to-end system, this difference is paramount. Another
related protocol discussed above is that of [10], which improves on [21]. The protocol of [10]
has comparable communication to HyperMPC for large fields, but much higher communi-
cation for small fields. We stress, however, that [10] is secure for any t < n/2 whereas we
require t < n/3.

1.4 Implementation and Experiments

We implemented both the MPSaaS system and the HyperMPC protocol. In Section 2, we
describe the system design and the platforms upon which it was implemented. Then, in
Section 4.1 we provide running times of executions with different end-user endpoints. We
are currently extending these experiments and will include them in the full version of this
paper.

In Section 4.2, we provide running times of executions of the HyperMPC protocol for
a number of settings. In particular, we provide results for experiments with circuits of
different sizes and depths for 150 parties, for experiments computing statistics with 10–150
parties at increments of 10, and a single experiment demonstrating that HyperMPC can
even support an MPC with 500 parties in reasonable time. To the best of our knowledge,
this is the largest number of parties ever reported for an MPC protocol, in any setting.

2 The MPSaaS System and PrivatePoll

2.1 Overview

In the interconnected world of browsing, social networks, mobile applications and cloud
services, the focus is on usability and experience. While MPC is a promising technology
with prominent privacy guarantees, use cases in research are mostly Business-To-Business
(B2B) or Business-To-Customer (B2C). This limits the applicability of MPC, making it
unsuitable for many real world use cases. The goal of our system is to enable true P2P
MPC on a large scale for the first time. We demonstrate the use of MPC for peer-to-peer
applications involving end users over the Internet. In order to demonstrate our system,
we constructed an application called PrivatePoll that enables end users to participate in
private polls and surveys. The incentive for the user to participate is to receive the results
of the poll (or simply to support the study being carried out), and their privacy is provable
guaranteed via secure computation. One example of where this could be used is a salary
poll among peers in the same professional category and skill level.
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MPC-as-a-service. We developed an application that can be deployed in a standard
cloud service scenario, with necessary adaptions for MPC. An MPC Cloud Service Provider
(MPC-CSP) can provide the service to register participants in an upcoming MPC com-
putation. Then, upon registering for the computation, each user is provided with the
means necessary to actively participate as one of the parties in the executed MPC pro-
tocol. Our application enables end users to participate using their Google or Facebook
account (oAuth2 provider), and are not required to fill in additional information, to ensure
usability and increase participation level. Of course, this can be easily modified to accept
alternative forms of authentication (e.g., LinkedIn login in order to run MPC computations
for a salary survey, or Active Directory for running MPC computations between university
students with university accounts). Using such authentication mechanisms also helps to
prevent double registration and bogus users.

MPC end-user interaction. Our application is novel in the way end-users interact with
the service. Specifically, the MPC functionality can be run directly inside the user’s browser
or in a mobile app, as these are the methods used for virtually all modern user interactions.
In addition, users can register a cloud instance to which they upload their input, and which
runs their party in the MPC protocol. This latter mode is useful for users who do not wish
to (or cannot) guarantee that they will be online (via their mobile or browser) at the time
of the actual MPC execution. In more detail, the following execution modes are offered to
end users:

1. Mobile App: in this mode, the user enters her private input in a Mobile app. The MPC
protocol is executed inside the mobile (MPC code ported to mobile platform), ensuring
that the private information does not leave the device boundary.

2. Online In-Browser: in this mode, the user enters her private input in a Web Form.
Then, the MPC protocol is executed in Javascript inside any browser, ensuring that
private information does not leave the Browser boundary.

3. Cloud Instance: In both the mobile app and browser modes, the user must be online at
the time of actual execution, which is a major problem for real-world deployment. In
order to overcome this obstacle, we enable users to define a cloud instance of their own
to run the MPC protocol for them. In our implemented solution, users can participate
by using a cloud instance that they own (like an AWS Docker instance), or they can
choose to use an instance generated for them by the MPC service provider. The latter
is of course less secure (since the user sends their input to a machine controlled by
the provider), but is an option provided nevertheless; we discuss this in more detail in
Section 2.5. This simple solution solves the acute problem that all MPC participants
must be simultaneously online in order to run the protocol, since parties who cannot
be online (e.g., they cannot guarantee that their mobile is connected, etc.) can define
cloud instances that are always online.
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4. IoT Device: This mode considers MPC involving IoT devices that take sensitive mea-
surements which are input to the MPC computation. The MPC protocol is run inside
the device, ensuring that private information never leaves the device. Our implementa-
tion currently works for Raspberry Pi3; if the remote device is inactive then it can be
automatically woken for the MPC execution. (This can be used for drones, and can be
extended to weaker IoT devices like wearables in the future.)

Deployment and delivery of MPC software. To increase user trust, secure artifacts
can be used. The MPC Mobile App (apk) can be delivered via Google Play, or equivalently
as an IOS App via the Apple App Store, the Docker Image which executes cloud instance
for a user can also be signed to ensure trusted delivery, and Subresource Integrity via CDN
can be used on a browser. In addition, the code of the MPC protocol being used should be
open source to increase trust. We stress that our entire system, including all components,
is completely open source and available for review (and use). An independent review by an
organization like EFF.org can be carried out on specific MPC modules to further increase
trust.

The overall system. The system components and their interactions are shown in Fig-
ure 1.

Figure 1: Components of the system, and their interaction.
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2.2 MPSaaS Backend – the MATRIX Automated Execution System

The backend service, called MATRIX, provides the ability to automatically deploy large-
scale MPC experiments in the cloud. As such, this component is of independent interest to
the community. In particular, running multiparty experiments can be very time-costly if
done manually, causing researchers to either spend a large amount of effort on this menial
task or to cut corners. As an example of the capabilities of the system, we recently ran a
protocol experiment for an MPC protocol for 10–100 parties with increments of 10, with 12
different configurations per number of parties (a configuration being a mix of a circuit and
execution parameters), and 5 repetitions of each experiment for statistical accuracy, in just
17 minutes (observe that this consists of 600 different executions, with different numbers
of parties and different configurations each time). We stress that this includes the entire
time to setup the experiment and get the results back. Given the automation capabilities
of MATRIX, this serves as the perfect backend for the MPSaaS system. We now proceed
to describe the different components of MATRIX; throughout the explanation Figure 2 can
serve as a guide for the different components and capabilities. We remark that MATRIX
works in an identical manner for running experiments, and for real protocol executions (of
course, for real executions, there is no need to collect logs containing running times, and
so on).

Figure 2: The MATRIX backend.
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The key features of the MATRIX backend are as follows:

Protocol compatibility: The system includes a well-defined “contract” that must be
fulfilled by an MPC executable that is run in the system. This contract ensures that it
runs correctly in the Test Environment, and includes definitions for configuration, result
reporting and fault handling. This contract can be easily implemented in wrapper classes
and protocols, and is all that is needed to use MATRIX for a new protocol. We have
already incorporated 10 different MPC protocols into the system, for both semi-honest
and malicious adversaries, and for honest majority and dishonest majority. Specifically,
the protocols incorporated so far are semi-honest GMW, semi-honest Yao, semi-honest
BMR, malicious Yao [22], SPDZ [12], the protocols in [1, 2, 21, 10] and HyperMPC from
Section 3. In order to incorporate new protocols in MATRIX it suffices to write a python
script that accepts the command line arguments and does the following:

1. Converts formats (parties’ file IP addresses and Ports to its internal parties’ presenta-
tion),

2. Converts input circuit if required, and

3. Launches the actual protocol executable (using the party ID and other configuration
flags).

In addition, in order to utilize the result reporting feature, it is necessary to add code to
the protocol to log in our format, or write a script to convert its internal log files to our
format. We incorporated the SPDZ-2 protocol [12] in one day.

Fully Automated Environment Setup across regions: MATRIX provides full au-
tomation to create instances for MPC execution, and immediately tear them down after-
wards (reducing cost). In detail:

1. Host setup: We create cloud instances from custom AMI images, and deploy the protocol
code, which is then compiled on the host for optimal native performance (e.g., utilizing
Intel-AVX instructions where available). MATRIX is integrated with Github or any GIT
provider to pull experimental or master versions as required. We select the EC2 instance
type based on the capabilities and requirements of the protocol, and create standard
or Spot Instances based on a cost strategy. For example, when the actual time of the
execution is not significant, one can execute during off load hours (say weekends), using
spot-instances issued in 6-hour quotas. This results in significant savings, assuming
many executions are run (and so the 6-hour quota is utilized).

2. Network setup: MATRIX automatically sets the network for all parties, defining the
security groups and rules as required. Once a network is set up, it collects information
on allocated addresses and DNS names in order to generate a parties file that is used
in the execution. MATRIX also supports setting up a VPC (virtual private cloud,
ensuring that all pairwise connections between parties are encrypted and authenticated).
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However, we stress that this comes at a high monetary cost, and so only makes sense
for real-world applications and not experiments.

The configuration file to define the experiment can specify the regions that the parties are
deployed, enabling experiments over fast and slow networks to be seamlessly carried out.

Execution coordination: MATRIX launches the MPC process on each hosts, automat-
ically providing it with the details of all participating parties, and the relevant parameters
for computation (where amongst other things parameters include a circuit description, or
code to be compiled). MATRIX can receive a script for automatically generating circuits
based on the number of parties, and then will provide the circuits of the correct size for
each experiment. This is important in real-world systems like MPSaaS, since the circuit
needs to be generated for the exact number of parties who are online when the experiment
starts. MATRIX takes care of this issue automatically. We stress that MATRIX can run
any MPC protocol, and it does not have to be circuit based (e.g., specific protocols like PSI
can be run, as well as SPDZ-like systems that generate gates to be computed on the fly; in
fact, as we have mentioned, SPDZ-2 together with its run-time [12] is already incorporated
in MATRIX).

MATRIX receives an experiment configuration file that defines a series of experiments
(executions). For each experiment, the number of repetitions is defined, how many parties
participate, the location of the parties (cloud regions), the machine type for all parties,
and the protocol parameters (for example, the circuit that they execute if the protocol
is a circuit-based protocol). When spot (or low priority) instances are desired, then the
configuration also includes the maximum price that you are willing to pay for the instances
(in the cloud bidding scheme).1

The MATRIX binding to a specific cloud vendor is abstracted to a small layer of the
code, and can be deployed to any vendor providing a complete automation API. MATRIX
was first deployed in AWS, and the time to port it completely to Azure (using Azure CLI
2.0) was just 2 person days.

Monitoring, result collection, reporting and fault handling: MATRIX monitors
the execution of the MPC program across all the hosts, and detects exit signals that
indicate cheat detection, protocol breach or simply machine failure. In addition, the system
collects MPC logs written during the protocol execution (according to the format in the
contract). Such logs typically include micro-benchmarking of the different protocol phases.
For example, it is possible to measure the times for peer-2-peer communication setup,
the input sharing phase, online computation, and so on. The granularity of the logs and
measurements taken is at the full discretion of the protocol, and typically includes running-
time and actual bandwidth sent and received. MATRIX also automatically measures the
memory usage of each machine.

1Although the system receives a maximum price, in AWS it begins by checking the latest winning price
for the instances desired, and bids that price first, if it is lower. By experience, in almost all cases, the last
winning price was sufficient, resulting in considerable cost savings.
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All of the results are recorded by MATRIX in an ElasticSearch database, which en-
ables users to review performance dashboards and compare the performance of different
protocols, running on different machines in different regions and so on, using a tool like
Kibana; see Figure 3 for an example. MATRIX also generates spreadsheet reports for
post-execution analysis.

Figure 3: MPC analytics using Kibana.

2.3 MPSaas Administration Component

The MPSaaS Administrator component is used to create, manage and execute MPC pro-
tocols as desired. The MPSaaS administrator is the party who initiates the execution, and
invites participants. In the PrivatePoll example, this could be an HR consulting company
authoring Salary Polls, or it could be a researcher wishing to survey gender wage gap. The
administrator can purchase these services from an MPC-CSP (service provider) or may act
itself as a service provider using the open source platform. We stress that the administrator
has no access to private inputs, since each participating party runs the MPC protocol lo-
cally, and thus need not be trusted at all. The administrator component contains all of the
capabilities necessary to manage the MPC executions, and is connected to the administra-
tion capabilities of the MATRIX system. In Figure 4, you can see the administrator page
for creating new executions (in our specific example of PrivatePoll these are all polls) and
viewing the status of active ones. The administrator can also see the results of completed
polls.
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Figure 4: The main admin page for MPSaaS.

In Figure 5, you can see the administrator page for creating or editing a poll. In our
Proof-Of-Concept (POC) implementation, each poll includes a single numeric private input
( such as “salary”).

Figure 5: The poll create/edit page.

The result type governs the circuit chosen to evaluate the functionalilty. For our POC,
the “Basic” option defines a circuit that evaluates the mean and variance, whereas the
“Histogram” result would require a circuit that also sorts or buckets the input values.
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We stress that any reasonable MPC solution would also include a minimal number of
participants (enforced as part of the protocol) in order to provide privacy. (it is also possible
to include differential privacy guarantees by adding the required noise to the result inside
the MPC; by adding the noise to the result and not to the input, far higher accuracy can be
achieved. The best way to do this is left to future work.) Although very basic, we remark
that this already suffices for achieving quite general results. In particular, a general study
of gender wage gap can be carried out by defining a different poll for each sector/years
of experience/sex, and then obtaining the results for each set separately. Since only the
salary needs to be protected, this suffices.

Finally, the administrator page also includes the option to view information about the
uses registered to the poll; see Figure 6. As a matter of policy, this page can be open to
all participants to view, depending on the desired result. Specifically, in many cases, the
parties’ input is private but the fact of their participation need not be. In these cases, it
is useful to allow all parties to view who is registered, to ensure that their private input is
really protected under a large aggregation. For simplicity and a seamless login flow, the
basic login functionality in the POC is carried out simply using a Google of Facebook ID.
Additional attributes may be added to users by creating an extended user profile, if this is
desired.

Figure 6: The user participation page.

We stress that none of the above is a recommendation as to how to run a secure MPC
system for polling. This depends exactly on the use case, and is an orthogonal issue. Here,
we merely demonstrate the capabilities of the system.

2.4 MPSaas End-User Component

The end-user component is used for actually running the MPC protocol. Although some
MPC executions have been demonstrated on a mobile platform (e.g., [17]), they are limited
and do not include a rich variety of MPC protocols. Since realistic end-user execution
is essential for achieving true peer-2-peer MPC, enabling Mobile, IOT and in-browser
general MPC execution is a cornerstone of this research. We reviewed available open-source
implementations of MPC and found that none work on our platforms. For example, for
oblivious transfer, neither LibOTE, SimpleOT or any TinyOT implementations are available.
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It is of course possible to simply reimplement any MPC protocol for mobile and browser
environments. However, this is very time consuming and an obstacle to deployment. We
therefore searched for general techniques that can be reused to help port existing MPC
code to mobile devices and browser. We report on these techniques and the challenges
encountered in Appendix A.

2.5 PrivatePoll End User Workflow

In this section, we describe the user experience in participating in an MPSaaS secure
multiparty computation, via their mobile phone (after having installed the PrivatePoll
mobile app). Users are notified of existing polls via any standard means. In order to join
a poll, the user logs in using an existing Google or Facebook account, at which point she
is presented the available and completed polls. The user can view completed polls she has
participated in previously, and can see active polls. For each active polls, the user may
view how many users are registered (see the middle screen in Figure 7 and the number
next to the “active” button), and the poll open date and time. The user may then select
to join a poll. See Figure 7 for this flow.

Figure 7: The user login, poll status, and poll join pages.

Once the user selects to join an active poll, she is prompted to select her participation
mode. The online mode refers to running a mobile or browser instance (which requires
her to be online when the poll begins), whereas the offline mode refers to using a cloud
instance. We stress that the cloud instance is always online, thereby allowing the user
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herself to be offline during the actual MPC execution. If the user selects online mode, then
her request is registered and a notification will be sent to her to login and input her private
value prior to the poll. We stress that the MPSaaS system generates the circuit at the
time of the actual execution, so if a user does not actual come online, this will not prevent
the poll from proceeding.

If the users selects to be offline, then she can choose to either use a hosted instance or
her own instance; see Figure 8.

Figure 8: The user instance generation pages.

It is always preferable for a user to choose her own instance, and in this case the user
is directed to connect a Docker instance. This Docker instance can be in her own AWS
account, or the AWS organizations service can be used. This service enables the service
provider (MPSaaS) to set a policy and have users create accounts via the service provider,
with the policy transparent to the user. This policy can be set to only allow the provider
to monitor usage, thereby preventing the MPSaaS administrator from viewing the data.
(Future versions will allow cross-cloud instances so that users are not required to rely on
AWS or Azure or any single cloud provider.) If the user insists on not setting up her own
instance, then she can choose a hosted instance which is run by the poll administrator. This
is clearly not recommended, but may be chosen by a participant who does not consider the
poll information to be private (e.g., a faculty member of a public university in the USA,
whose salary is anyway public record). In this latter case, the image of a separate instance
is automatically deployed for the specific user, on the administrator’s AWS account. This
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image includes a user facing mini web-server, which will serve the user granted access to the
instance (this can be extended so that the user receives an out-of-band one-time-password
to login, or some other method).

Figure 9: The input/output pages.

In offline mode executions, the user is immediately redirected to the registered instance
to enter her input (left screen in Figure 9). In online mode executions, the user is sent
a reminder just before the execution begins, at which point she can enter her input and
get output (middle screen in Figure 9). In all cases, the user receives the computation
result to her mobile app, providing additional motivation for participating (right screen in
Figure 9).

3 The HyperMPC Protocol

3.1 Preliminaries

3.1.1 Model

We consider a set P of n parties, P = {P1, . . . , Pn}, who are connected by a complete
network of secure (private and authentic) channels.

We consider a computation over any finite field F with |F| > 2n. To every party Pi ∈ P
a unique, non-zero element αi ∈ F \ {0} is assigned (e.g. the i-th element in F). We stress
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that HyperMPC is perfectly secure, and thus there is no need to work in a large field (this is
in contrast to statistically secure protocols that have a basic error of 1/|F| and thus need to
repeat checks in case F is small, making the complexity higher). We also remark that since
we can work over any field, Boolean circuits can be embedded into GF [2k] for the smallest
k such that 2k > 2n. In this case, as long as we verify that all input values are either 0
or 1, it follows that field addition is equivalent to Boolean XOR and field multiplication is
equivalent to Boolean AND.

The function to be computed is specified as an arithmetic circuit over F, with input,
addition, multiplication, random, and output gates. A random gate is simply a gate
that outputs a random value; it is always possible to generate randomness by adding
random inputs provided by the parties, but dedicated random gates can be computed
more efficiently. We denote the number of gates of each type by cI , cA, cM , cR, and cO,
respectively.

We consider a malicious adversary who can corrupt up to t parties for any fixed t with
t < n/3, and make them deviate from the protocol in any desired manner. The adversary is
computationally unbounded, active, adaptive, and rushing. We use the standard definition
of security following the ideal/real paradigm [8]. Since our protocol achieves perfect secu-
rity, it suffices to prove security in the stand-alone model of [8] and this implies universal
composability [9], as shown in [19].

3.1.2 Non-Robust Computation

Our MPC protocol does not (and cannot) achieve robustness; the adversary can delay the
progress of the protocol arbitrarily, which is equivalent to aborting the protocol. As anyway
the adversary can abort the protocol, we allow (honest) parties to abort the computation
once they have observed an inconsistency. Inconsistencies only occur in the presence of
corruption, and instead of causing inconsistencies the adversary could also have made the
protocol abort.

All sub-protocols in this paper achieve non-robust security only, which means that
in the presence of malicious parties, honest parties might not complete the sub-protocol
(either wait forever or abort after some timeout).

We stress that all other security properties are preserved. As a result, formally, our
protocol achieves the notion of perfect security with abort, in the presence of adaptive,
malicious adversaries.

3.1.3 Hyper-Invertible Matrices

Our protocol uses hyper-invertible matrices [5]. A hyper-invertible matrix is a matrix whose
every non-trivial square sub-matrix is invertible. More formally, an r-by-c matrix M is
hyper-invertible if for all index sets R ⊆ {1, . . . , r} and C ⊆ {1, . . . , c} with |R| = |C| > 0,
the matrix MC

R is invertible, where MR denotes the matrix consisting of the rows i ∈ R of
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M , MC denotes the matrix consisting of the columns j ∈ C of M , and MC
R = (MR)C .

A hyper-invertible r-by-c matrix M can be constructed as

M = {λi,j} i=1,...,r
j=1,...c

with λi,j =
c∏

k=1
k 6=j

βi − αk
αj − αk

,

where α1, . . . , αc, β1, . . . , βr are fixed distinct elements in F (and |F| ≥ c+r). The mappings
defined by hyper-invertible matrices have a very nice symmetry property: Any subset of n
input/output values can be expressed as a linear function of the remaining n input/output
values:

Lemma 3.1 ([5]) Let M be a hyper-invertible n-by-n matrix and (y1, . . . , yn)T = M ·
(x1, . . . , xn)T .2 Then for all index sets A,B ⊆ {1, . . . , n} with |A| + |B| = n, there exists
an invertible linear function f : Fn → Fn, mapping the values {xi}i∈A, {yi}i∈B onto the
values {xi}i/∈A, {yi}i/∈B.

More details and proofs can be found in [5, Section 3].

An intuitive explanation. The power of a hyper-invertible matrix can best be demon-
strated in the linear mapping induced by the matrix. We say that a matrix M with r
rows and c columns induces a linear mapping fM , which takes as input c values x1, . . . , xc,
and computes as output r values y1, . . . , yr, such that (y1, . . . , yr)

T = M · (x1, . . . , xc)
T . In

other words, for any c input values x1, . . . , xc, the mapping defines the corresponding out-
put values y1, . . . , yr. If the matrix M is hyper-invertible, then one can show that actually
for any c values (some inputs, some outputs), the remaining r values are defined (cg. [5,
Lemma 2]).

Such a mapping can, for example, be used for efficiently generating sharings of random
values. The standard way for generating random sharings is to let every party share
a random value (using a linear secret-sharing scheme) and then take the sum of theses
sharings. However, this approach is rather inefficient, as it requires n initial sharings to
produces a single good sharing. As t of the initial sharings are provided by corrupted
parties and hence known to the adversary, the best one can hope for is to produce n − t
good sharings from n initial sharings; and this can actually be achieved. Using an (n− t)-
by-n hyper-invertible matrix, the given n sharings can be mapped to (n− t) sharings such
that the resulting sharings are “as random as” the good n− t initial sharings. The reason
for this is that the n−t output sharings are determined by a bijective function from the n−t
input sharings of the honest parties, where the function is determined by the t sharings
of the corrupted parties. Formally, assume that I ⊆ {1, . . . , n} is the (unknown) set of
indexes of the corrupted parties, where |I| = t. Then, one can write ~y = M Ī · ~xĪ +M I · ~xI ,

2Note that (x1, . . . , xn)T and (y1, . . . , yn)T are column vectors.
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where Ī = {1, . . . , n} \ I is the set complement of I.3 As M Ī is invertible, this mapping is
bijective.

The above construction requires all initial sharings to be valid (e.g., to have the right
degree). This can be ensured by either assuming that the adversary is passive only, or
by using some expensive mechanisms to verify the validity of each single sharing. Further
exploiting the structure of hyper-invertible matrices, this verification can be done at very
little cost. Again, each party shares a random value, but this time, we allow corrupted
parties to distribute invalid sharings (which is equivalent to using polynomials of too high
degree). This time, the parties apply an n-by-n hyper-invertible matrix on these initial
sharings, and 2t of the produced sharings are reconstructed, each towards a different single
party. Each party checks whether its sharing is valid, and complains otherwise. If no party
complains, then the remaining n− 2t output sharings are used as random sharings.

We argue why the remaining n−2t sharings are (i) valid sharings and are (ii) unknown
to the adversary. (i) We know that at least n − t of the initial sharings, and, if no party
has complained, also at least t of the output sharings are valid. Due to the property of
the hyper-invertible matrix, the other sharings can be expressed as linear combination of
those n valid sharings, which implies that they are valid as well (due to the linearity of the
sharing scheme). (ii) The adversary knows at most t initial and t output sharings. Fixing
these sharings, there is a bijective (affine) function from any other n− 2t input sharings to
the non-reconstructed n − 2t output sharings. Hence, the produced random sharings are
indeed random and unknown the the adversary.

3.2 Protocol Overview

Our protocol is based on [5], adjusted and simplified to better fit our needs. In particular,
as in the considered model robustness is not possible, we employ neither the player elim-
ination framework [16] nor circuit randomization [3]. This not only significantly reduces
the intricacy of the implementation, but also improves the performance of the protocol
by a constant factor of 4, which is significant in practice. See Section 3.9 for a detailed
explanation of the difference between HyperMPC and the protocol of [5].

Our protocol follows the usual offline/online pattern: In the offline phase, a number
of so-called random double-sharings is generated [13, 5]. A random double-sharing is a
pair of two sharings, one with degree t, and one with degree 2t, of the same random (and
unknown) value. The generation of these double-sharings can be performed in parallel.

In the online phase, the actual circuit is computed. For input gates, multiplication
gates, and random gates, one of the prepared double-sharings is consumed (where for
input and random gates, only the t-sharing is used). Due to the linearity of the secret-
sharing scheme, linear gates can be evaluated locally. Output gates use standard secret
reconstruction.

3We write MR for the matrix consisting of those rows of M with the row index in R, and MC for the
matrix consisting of those columns of M with the column index in C.
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All given protocols are non-robust. This means that in the presence of malicious parties,
honest parties might not complete the protocol. They may abort (e.g., when observing
cheating) a run forever (e.g., when waiting for a message from a corrupted party). The
latter case can easily be turned into abort by implementing some reasonable time-out
mechanism.

3.3 Secret Sharing

The secret-sharing scheme used in our protocol is the standard Shamir sharing scheme [27].
We assume that every party Pi is assigned some fixed unique non-zero field element αi. We
say that a value s is d-shared if every honest party Pi ∈ P holds a share si, such that there
exists a degree-d polynomial p(·) with p(0) = s and p(αi) = si.

4 The vector (s1, . . . , sn) of
shares is called a d-sharing of s, and is denoted by [s]d.

We will mostly use sharings of degree t. However, in the multiplication, we also need
sharings of degree 2t.

Below, we provide protocols for sharing and reconstruction. The sharing protocol Share
is completely insecure; it computes a correct sharing only if the dealer is honest. Hence,
the consistency of the sharing must be checked before the sharing can be used. We provide
two reconstruction protocols, one for private reconstruction ReconsPriv, and one for public
reconstruction ReconsPubl. Both protocols non-robustly reconstruct sharings of degree d
with d < n− t. For private reconstruction, the parties simply send their respective shares
to the output party. For public reconstruction, the private reconstruction protocol could
be invoked once for each output party; however, this would result in a complexity of O(n2)
field elements. We provide a protocol that allows to reconstruct n− t sharings towards all
n parties at an overall cost of O(n2) field elements, which corresponds to O(n) elements
per reconstructed sharing.

Protocol Share(PD ∈ P, s, d).
1. PD chooses a random degree-d polynomial p(·) with s = p(0) and sends si = p(αi) to

every Pi ∈ P.

Protocol ReconsPriv(PR ∈ P, d, [s]d).
1. Every party Pi ∈ P sends its share si of s to PR.

2. PR checks whether there exists a degree-d polynomial p(·) such that all received shares
lie on it, and if so, computes the secret s = p(0). Otherwise PR aborts.

The following lemma is immediate, by inspection of the protocol.

4By convention, we say that a polynomial p(x) = p0 + p1x + . . . , pdx
d is a degree-d polynomial, even if

the leading coefficient(s) are zero (and hence the mathematical degree is smaller than d).
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Lemma 3.2 For [s]d being a valid sharing of s with degree d < n−t, the protocol ReconsPriv
non-robustly reconstructs s towards PR. ReconsPriv communicates exactly n field elements.

The public reconstruction protocol ReconsPubl takes T = n − t correct d-sharings
[s1]d, . . . , [sT ]d for d < n−t, and publicly (to all parties in P) outputs the secrets s1, . . . , sT .
Every party either learns the correct secrets or aborts. In ReconsPubl we use an idea
from [13]: first the T sharings [s1]d, . . . , [sT ]d are expanded (using a linear error-correction
code) to n sharings [u1]d, . . . , [un]d, each of which is reconstructed towards one party in
P (using ReconsPriv). Then every Pi ∈ P sends its reconstructed value ui to every other
party in P, who decodes the received codeword (u1, . . . , un) to the secrets s1, . . . , sT . More
concretely, we interpret the secrets s1, . . . , sT as coefficients of a degree-(T −1) polynomial,
and the code word (u1, . . . , un) as evaluation of this polynomial at positions α1, . . . , αn,
respectively.

Protocol ReconsPubl(d, [s1]d, . . . , [sT ]d).
1. For i = 1, . . . , n the parties in P (locally) compute [ui]d as:

[ui]d = [s1]d + [s2]dαi + [s3]dα
2
i + . . .+ [sT ]dα

T−1
i

2. For every Pi ∈ P, ReconsPriv is invoked to reconstruct [ui]d towards Pi.

3. Every Pi ∈ P sends ui to every Pj ∈ P.

4. ∀Pj ∈ P: If the values (u1, . . . , un) lie on a degree-(T − 1) polynomial, then compute
its coefficients s1, . . . , sT (using Lagrange interpolation). Otherwise abort.

Lemma 3.3 For [s1]d, . . . , [sT ]d being T degree-d sharings with d < n−t and T = n−t, the
protocol ReconsPubl non-robustly reconstructs [s1]d, . . . , [sT ]d towards all parties in P, i.e.,
each party who completes the protocol learns the correct secrets. ReconsPubl communicates
exactly 2n2 field elements.

Proof: As each [si]d is of degree d < n−t, the secrets si are uniquely defined by the honest
parties’ shares. Denote the polynomial of degree T − 1 with the coefficients s1, . . . , sT by
f . After Step 1, each [ui]d is a degree-d sharing of ui = f(αi). By Lemma 3.2, in Step 2
each honest Pi learns the correct secret ui = f(αi), and sends it (in Step 3) to every Pj .
Hence, Pj now holds n values ui, where at least n − t of them are from honest Pi’s and
hence correct. These T = n− t correct ui’s lie on f , and if all values (u1, . . . , un) lie on a
degree-T − 1-polynomial, then this must be f . Hence, the correct coefficients (s1, . . . , sT )
are computed.
The claimed communication follows directly from inspection.

Observe that ReconsPubl provides public reconstruction for n − t > 2n
3 elements, at a

cost of 2n2. Thus, the amortized cost of public reconstruction per element is 2n2/2n
3 = 3n.
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3.4 Broadcast

In the sequel, we construct a non-robust broadcast protocol with linear communication
complexity. This protocol is a variation of the basic broadcast protocol of [5]. Note
that the trivial approach to non-robust broadcast (distribute value, one round of echoing)
requires quadratic communication per element, which is too much.

We construct a broadcast protocol that allows one (or several) senders to broadcast
T = n − t field elements overall. First, these elements are sent to every party. Then the
parties need to verify that they all hold the same values. Instead of echoing all elements,
the parties use a hyper-invertible matrix and then each element is echoed to only one
recipient, who checks consistency. The protocol has quadratic communication complexity
for broadcasting n− t elements, and so is linear per element.

Protocol Broadcast(Ps, ~x).
1. Ps sends ~x (of length T = n− t) to every Pj ∈ P.5 Denote the received vector as ~x(j)

(Pj-th view on the vector).

2. Every Pj ∈ P applies the hyper-invertible matrix M :6(
y

(j)
1 , . . . , y(j)

n

)T
= M ·

(
x

(j)
1 , . . . , x

(j)
T , 0, . . . , 0︸ ︷︷ ︸

t zeros

)T
3. Every Pj ∈ P sends y

(j)
k to every Pk ∈ P.

4. Every Pk ∈ P checks whether all received values {(y(j)
k }j are equal; if yes sends a 1-bit

and if not a 0-bit, to all other parties.

5. Every Pk ∈ P checks that he received a 1-bit from every other party, and aborts
otherwise.

Lemma 3.4 The protocol Broadcast achieves non-robust broadcast, i.e., every (honest)
party who does not abort outputs the vector ~x = (x1, . . . , xn−t). Broadcast communicates

exactly 2n2 − nt > 2n2 − n2

3 field elements and n2 bits.

Proof: An honest party does not abort only if in Step 5, it received a 1-bit from every
other party. Hence, in Step 4, every honest party Pk ∈ P has received n identical versions

of {(y(j)
k }j . This means that all honest parties holds the same value for each yk where Pk

is honest; there are at least n− t such values yk.

5Actually, not all values xi must be sent by the same sender Ps. It is sufficient that for each xi there is
a sender Pi.

6Instead of appending t zeros to the x-vector, one can use an n-by-(n− t) hyper-invertible matrix (which
can be derived from a n-by-n hyper-invertible matrix by removing t rows).
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Furthermore, for every honest party Pj ∈ P, the equation(
y

(j)
1 , . . . , y(j)

n

)
= M ·

(
x

(j)
1 , . . . , x

(j)
n−t, 0, . . . , 0︸ ︷︷ ︸

t zeros

)T
holds. As M is hyper-invertible, from any n input/output values, the other n input/output
values can be computed. As seen above, all honest parties have the same value for at least
n − t of the yk, and furthermore have the same values for the t zeros. Hence, all honest
parties have all values identical, in particular the values in ~x.

Regarding communication, the first step of Broadcast communicates n · T = n(n− t) =

n2 − nt > n2 − n2

3 field elements. An additional n2 elements are communicated in the
3rd step, and n2 bits in the 4th step. From here on, we ignore the n2 bits since they are
insignificant next to the field elements.

Observe that Broadcast broadcasts n − t > 2n
3 elements, at a cost of 2n2 − n2

3 = 5n2

3

field elements. Thus, the amortized cost of broadcast per element is 5n2

3 /2n
3 = 2.5n.

3.5 Preparation (Offline) Phase

The goal of the preparation phase is to generate a number of double-sharings of random
values, i.e., each random value is shared once with degree t and once with degree 2t.
One double-sharing is consumed for each input gate, for each random gate, and for each
multiplication gate. We generate L random double-sharings, where L is an upper bound
on cI +cR+cM . We stress that in actuality, a simple sharing suffices for input and random
gates, and double sharing isn’t needed. Nevertheless, we do it this way for simplicity (and
since it makes little difference to the cost in practice in most circuits).

Formally, we say that a value x is (d, d′)-shared, denoted as [x]d,d′ , if x is both d-shared
and d′-shared via valid Shamir sharings. We observe that double-sharings are linear, i.e.,
the sum of correct (d, d′)-sharings is a correct (d, d′)-sharing of the sum.

The following protocol DoubleShareRandom(d, d′) non-robustly generates T = n − 2t
independent secret random values r1, . . . , rT , each independently (d, d′)-shared among P.
Every (honest) party who completes the protocol holds the corresponding shares.

The protocol for non-robustly generating random double-sharings is taken from [5] as
is. For completeness, we repeat the protocol and the lemma, but omit the proof.

The generation of the random double-sharings employs hyper-invertible matrices: First,
every party Pi ∈ P selects and double-shares a random value si. Then, the parties compute
double-sharings of the values ri, defined as (r1, . . . , rn) = M(s1, . . . , sn), where M is a
hyper-invertible n-by-n matrix. Then, 2t of the resulting double-sharings are reconstructed,
each towards a different party, who verify the correctness of the double-sharings. The
remaining n− 2t = T double-sharings are outputted. This procedure guarantees that if no
honest party aborts, then at least n double-sharings are correct (the n− t double-sharings
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inputted by honest parties, as well as the t double-sharings verified by honest parties), and
due to the hyper-invertibility of M , all 2n double-sharings must be correct (the remaining
double-sharings can be computed linearly from the good double-sharings). Furthermore,
the outputted double-sharings are random and unknown to the adversary, as there is a
bijective mapping from any T double-sharings inputted by honest parties to the outputted
double-sharings.

Protocol DoubleShareRandom(d, d′).
1. Secret Share: Every Pi ∈ P chooses a random si and acts (twice in parallel) as a

dealer in Share to distribute the shares among the parties in P, resulting in [si]d,d′ .

2. ApplyM : The parties in P (locally) compute
(
[r1]d,d′ , . . . , [rn]d,d′

)
= M ·

(
[s1]d,d′ , . . . , [sn]d,d′

)T
.

In order to do so, every Pi computes its double-share of each rj as linear combination
of its double-shares of the sk-values.

3. Check: For i = T + 1, . . . , n where T = n− 2t, every Pj ∈ P sends its double-share
of [ri]d,d′ to Pi, who checks that all n double-shares define a correct double-sharing of
some value ri. More precisely, Pi checks that all d-shares indeed lie on a polynomial
g(·) of degree d, and that all d′-shares indeed lie on a polynomial g′(·) of degree d′,
and that g(0) = g′(0). Pi sends a bit to all Pj signaling whether inconsistencies were
observed or not, and every Pj aborts if at least one party reports inconsistencies.

4. Output: The remaining T double-sharings [r1]d,d′ , . . . , [rT ]d,d′ are outputted.

Lemma 3.5 ([5]) All (honest) parties who complete the protocol DoubleShareRandom(d, d′)
output T = n − 2t correct and random (d, d′)-sharings, unknown to the adversary.

DoubleShareRandom communicates exactly 2n2 +4nt > 2n2 + 4n2

3 field elements to generate
n− 2t random double-sharings.

The proof can be found in [5]. Regarding the communication cost, observe that the
secret sharing step costs exactly 2n2 since double sharings are sent. Then, in the check
phase, double sharings are sent for n − T = n − (n − 2t) = 2 values, resulting in an

additional 2n ·2t > 4n2

3 field elements. This results in n−2t = n
3 double sharings, and thus

the amortized cost is
(

2n2 + 4n2

3

)
/n3 = 10n elements per double sharing generated.

In the preparation phase, the parties need to generate L random (t, 2t)-sharings. This
is achieved by invoking the protocol DoubleShareRandom d L

n−2te times (in parallel).

Regular sharings. We stress that for input and random gates, it suffices to generate
regular sharings of random values of degree t only. The cost of generating (non-double)
random sharings is exactly half, and works in the same way as DoubleShareRandom except
that only single sharings are sent. Thus, the cost of generating these single sharings is 5n
per element. Nevertheless, for simplicity (and since it only makes a difference if there is
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a large number of input or random gates), we describe the protocol with random double-
sharings only, and in this case only the degree-t part is consumed for input and random
gates.

3.6 Summary of Costs

Before proceeding to the full protocol, we summarize the communication costs of all sub-
protocols. Table 1 includes the overall cost for each subprotocol, how many elements that
cost counts for, and the amortized cost per element. The amortized cost refers to the cost
per element reconstructed or broadcast, or to double sharing generated, depending on the
specific protocol. All counts are in field elements.

Subprotocol Cost # Generated Amortized

ReconsPubl n 1 n
ReconsPriv 2n2 2n

3 3n

Broadcast 2n2 − n2

3
2n
3 2.5n

DoubleShareRandom 2n2 + 4n2

3
n
3 10n

Table 1: Costs for all subprotocols.

3.7 Computation Phase

In the computation phase, the circuit is evaluated, whereby all intermediate values are
t-shared among the parties in P.

Input gates are realized by reconstructing a pre-shared random value r towards the
input-providing party, who then broadcasts the difference of this r and its input. We
always process n− t input gates at once, as the protocol Broadcast allows to broadcast that
many values at once.

Due to the linearity of Shamir sharing, addition gates (and general linear gates) can
be computed locally simply by applying the linear function to the shares. That is, for any
linear function L, a sharing [c] = [L(a, b, . . .)] is computed by letting every party Pi apply
L and its respective shares, i.e., ci = L(ai, bi, . . .).

With every random gate, one random sharing [r] (from the preparation phase) is asso-
ciated and [r]t is directly used as outcome of the random gate.

With every multiplication gate, one random double-sharing [r]t,2t (from the preparation
phase) is associated. The idea is that each party multiplies its share of [a]t and its share
of [b]t, resulting in a degree-2t sharing [ab]2t of the product ab. Then the difference of
[ab]2t and [r]2t is reconstructed (using ReconsPubl) and added on top of [r]t, resulting in
a degree-t sharing [ab]t of the product ab. As the protocol ReconsPubl reconstructs n − t
sharings at once, we process n− t multiplication gates in parallel.

Output gates involve private reconstruction ReconsPriv.
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Protocol ComputationPhase.
Evaluate the gates of the circuit as follows:
• Input Gate (party PI inputs s):

1. The parties invoke ReconsPriv(PI , t, [r]) to reconstruct the associated sharing [r]t
towards PI .

2. Party PI computes d = s− r and invokes Broadcast(PI , d).

3. Each Pi ∈ P computes its share si of s locally as si = ri + d.

As the protocol Broadcast allows to broadcast n − t values at once, we process n − t
input gates in parallel. Note that not necessarily all these input gates need to be for
the same party PI , as Broadcast can take values from several parties.

• Addition/Linear Gate: Every Pi ∈ P applies the linear function on its respective
shares.

• Random Gate: Pick the sharing [r]t associated with the gate.

• Multiplication Gate: We denote the two sharings to be multiplied as [a]t and [b]t,
respectively, and the associated double-sharing as [r]t,2t. The shares of [r]t are denoted
by (r1, . . . , rn), those of [r]2t by (r′1, . . . , r

′
n).

1. Each Pi ∈ P computes ei = ai · bi − r′i. Observe that (e1, . . . , en) form a random
degree-2t sharing of a random value, independent of a and b (as blinded by r).

2. The parties invoke ReconsPubl to reconstruct e to all.

3. Each Pi ∈ P computes ci = ri+e. Observe that (c1, . . . , cn) form a degree-t sharing
of c = ab.

As the protocol ReconsPubl reconstructs n− t sharings at once, we process n− t mul-
tiplication gates in parallel.

• Output Gate (output [s] to party PO): Invoke
ReconsPriv(PO, t, [s]t).

Theorem 3.6 (Theorem 1.1–restated) Let f be an n-party functionality, and let C be
an arithmetic circuit over field F that computes f . Then, protocol HyperMPC computes f
with perfect security and with abort, in the presence of an adaptive, malicious adversary
corrupting t < n/3 parties. The exact communication complexity of HyperMPC is

13n · cM + 13.5n · cI + 10n · cR + n · cO + 2n2 ·DM + 10n2

field elements (sent by all parties overall), where cm denotes the number of multiplication
gates, cI the number of input gates, cR the number of random gates, cO the number of
output gates, and DM the multiplicative depth of C.

Proof: [Proof sketch] The security of the protocol for input, random, and output gates
follows directly from inspection. The security of the protocol for addition / linear gates
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follows directly from the linearity of Shamir sharing. The security of the multiplication
protocol can be seen as followed: Given that the shares (a1, . . . , an) and b1, . . . , bn) lie on
a degree-t polynomial, then the pairwise products of the shares (a1b1, . . . , anbn) lie on a
degree-2t polynomial. Note that this polynomial is not necessarily random. However, from
the preparation phase we have a random degree-2t sharing of a random value r, given by
the shares (r′1, . . . , r

′
n). Hence, the differences {aibi−r′i}i lie on a uniform random degree-2t

polynomial; reconstructing its secret does not reveal any information. The secret of this
polynomial can easily be seen to be ab− r, hence [r]t + (ab− r) is a degree-t sharing of the
product ab.

The claimed communication complexity follows from the communication complexities
of the involved sub-protocols. Recall that each double-sharing costs 10n, and one is used for
each input, random and multiplication gate. Now, input requires a single double sharing,
one ReconsPriv invocation (n), and one Broadcast invocation (2.5n), resulting in 13.5n · cI .
Random gates have no additional cost beyond a single double sharing, and we therefore
have 10n · cR. Multiplication uses a single double sharing (10n) and a single ReconsPubl
invocation (3n), at the cost of 13n · cM . Finally, output is just a single ReconsPriv, adding
n · cO.

We now explain the 2n2 ·DM +10n2 terms. Recall that ReconsPubl in the multiplication
gate computation processes n− t values at once, but we can only process gates in parallel
when the gates are independent from each other (at the same level in the circuit). Thus, on
each (multiplicative) level of the circuit, one instance of ReconsPubl may process less than
2n
3 gates. In the worst case, only one gate is processed, at the cost of 2n2. This explains

the additional 2n2 · DM term in the communication. Likewise, double-random sharings
are generated at a cost of 10n2 for n/3 elements; if there are very few needed, then 10n2

field elements still need to be computed. We stress, however, that both these terms will
be insignificant, except for extremely small or narrow circuits. This completes the proof
sketch.

3.8 A Note on Fairness

HyperMPC as presented does not guarantee fairness. In order to see why, consider the case
that only one honest party participates in the output phase (since the other honest parties
have aborted previously). Then, in the output phase, the corrupted parties can simply not
send their shares, but they will obtain the honest party’s share. In this case, the corrupted
parties will have t + 1 shares and can reconstruct the output, while the honest parties
cannot.

One may make the protocol fair quite easily. The idea is that before any output gate
is processed, the parties check that all (honest) parties are still participating and have not
aborted. The output gates are processed only if all parties declare that they are alive and
ready to generate output.

In order to check that all parties are alive, one needs asynchronous broadcast (we must
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ensure that if some honest party concludes that everybody is alive, then all honest parties
will eventually conclude the same way). This can be achieved with Bracha broadcast [7],
as described below.

Protocol CheckAlive.
1. ∀Pi ∈ P: send every Pj ∈ P the message (alive).

2. ∀Pj ∈ P: Upon receiving (alive) from Pi, send (echo, i) to every Pk ∈ P.

3. ∀Pk ∈ P: Upon receiving (echo, i) from n − t different parties or receiving (ready, i)
from t+ 1 different parties, send (ready, i) to every P` ∈ P.

4. ∀Pl ∈ P: Upon receiving (ready, i) from n−t different parties, conclude that Pi is alive.

Each party proceeds to the output phase only once he has concluded that all parties
in P are alive. In the output phase, outputs need to be reconstructed asynchronously.
In particular, the output party PO must not wait until it has received all n shares of the
output, but only until it has received enough shares such that the output value can be
safely reconstructed (i.e., such that at least 2t + 1 of the received shares lie on a degree-t
polynomial). This suffices to ensure that the reconstructed output is valid, since at least
t+ 1 of those shares must be correct.

Protocol ReconsAsync.
1. ∀Pi ∈ P: send share si of output to the output party PO.

2. PO: Upon receiving a new share si from Pi, check that among all received shares there
are at least 2t+ 1 shares that lie on a degree-t polynomial p(·). If so, output s = p(0).
Otherwise, keep on waiting for more shares.

Step 2 can be implemented efficiently with an appropriate error-decoding algorithm
(e.g. the algorithm of Berlekamp and Welch). This is needed since at this point honest
parties cannot abort (the corrupted parties have already received output). Thus, honest
parties must be able to correctly reconstruct, even if they receive incorrect shares from the
corrupted parties.

3.9 Comparison to [5]

As we have stated, HyperMPC is a simplification of the protocol of [5], with significant
optimizations made possible by the fact that we compromise on security with abort. The
main difference between HyperMPC and [5] is that we can skip the generation of Beaver
triples. In particular, [5] generates random double-sharings in a preparation phase, and uses
those to generate Beaver triples. Then, in the evaluation phase, the Beaver triples are used
for multiplying shared values. In contrast, HyperMPC uses the random double-sharings
generated in the preparation phase directly to multiply shared values in the evaluation
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phase. As a result, the dominating costs per multiplication gate in the protocols are as
follows:

Protocol [5]:

1. Preparation phase: 3 random double-sharings and 1 public reconstruction

2. Evaluation phase: 2 public reconstructions

HyperMPC:

1. Preparation phase: 1 random double-sharing

2. Evaluation phase: 1 public reconstruction

This already yields a factor of 4 in the preparation phase and 2 in the evaluation phase
(and so a factor 3 overall). However, since we do not require guaranteed output delivery,
HyperMPC is even more efficient. In particular, [5] can carry out n − 2t public recon-
structions at once, whereas HyperMPC achieves n− t public reconstructions at exactly the
same cost. This means that our reconstructions are actually doubly as efficient per recon-
structed value (since for t = n/3, it holds that n− t is double n− 2t). Thus, in actuality,
the improvement is is also a factor of 4 in the evaluation phase, making HyperMPC four
times faster than [5] overall.

4 Implementation and Experimental Results

We ran experiments to verify the feasibility of running MPC on end-user devices via MP-
SaaS, and to test the efficiency of the HyperMPC protocol. Our experiments demonstrate
that MPC is feasible in these environments, albeit not providing real-time results. We
stress that most end-user secure computations that MPSaaS would be used for do not re-
quire execution times that are measure in milliseconds. However, very long computations
are also problematic, mainly due to the possibility of parties failing midway.

4.1 Endpoint HyperMPC Experiments

We ran experiments with mobile phones, MPC-in-the-browser, and Raspberry Pi3, running
the HyperMPC protocol. We ran two sets of experiments; in the first the size of the circuit
was varied, and in the second the depth of the circuit was varied. In all of these experiments,
we ran with 3 parties (due to the technical difficulties of deploying many endpoints). These
experiments will be extended to a large number of endpoints in the full version of this paper.
In Figure 10 you can see the running times (in milliseconds) of four different platforms for
a circuit of size 10,000 multiplication gates with depths 10, 20 and 30. The Raspberry Pi3
was connected via a LAN and so depth was less significant than for the other platforms.
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In our experiments we used 31-bit and 61-bit Mersenne primes to define the prime fields
(modular multiplication is extremely efficient modulo Mersenne primes, and these suffice
for integer computations).

Figure 10: 3 parties running a circuit of size 10,000 mult. gates (over a 61-bit prime), with
varying depths and platforms (time in ms).

Figure 11 presents the results of the analogous experiment with varying circuit size
(i.e., varying number of multiplication gates), where the parties run three different circuits
of sizes 10,000, 50,000 and 100,000. In each case, the depth of the circuit was 20.

Figure 11: 3 parties running a circuit of depth 20 (over a 61-bit prime), with varying sizes
and platforms (time in ms).
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4.2 Server HyperMPC Experiments

In addition to the endpoint experiments, we ran larger scale experiments on HyperMPC
in order to verify its scalability for a large number of parties and large circuits. In this
section, we describe these experiments. In our experiments, all parties are in a single AWS
region, running on m5.12xlarge instances.

Statistics computation – varying parties. First, we ran an experiment aimed at
demonstrating a real-world computation of interest in the multiparty setting. We consider
the case of parties holding private data, who wish to compute statistics of their joint data.
Specifically, each party holds a series of two variables (e.g., patient weight and blood sugar),
and the parties wish to compute the mean and standard deviation of each variable, and to
compute a regression test between them. The circuit has 4,000,000 inputs and 16,000,000
gates, of which approximately 10,000,000 are addition and 6,000,000 are multiplication.
This specific circuit is only of depth 1, but it models a very real computation of interest
that one may wish to compute privately (experiments on circuits of different depths appear
above). We ran this experiment with a differing number of parties, from 10 parties up to
150 parties, with increments of 10. The number of inputs is 4,000,000 always, and thus
with 10 parties it models a case where each of the 10 parties has an input database of size
400,000, and with 150 parties each of the parties has an input database of size ≈26,000. We
stress that the specific circuit we used was not optimized since the specific computation
is not of relevance; our aim was to take a circuit of a large size that represents a real
computation. Our results unequivocally demonstrate that it is possible to carry out large
scale computations using HyperMPC. The results are presented in Table 2 and Figure 12,
and clearly show the viability of the computation, and the linear scaling of the protocol.

Parties Results Parties Results Parties Results

10 5.01 60 18.42 110 33.84
20 7.42 70 22.57 120 36.23
30 9.73 80 25.13 130 40.20
40 14.08 90 27.35 140 41.97
50 15.99 100 31.34 150 44.18

Table 2: Results of the statistics experiment with a 31-bit prime (sec)

Different field sizes and comparison to [10]. We also ran a circuit of 1,000,000
multiplication gates and depth 20 for different field sizes with HyperMPC; see Table 3
and Figure 13 for the results. As is expected, the running-time of the protocol is lower for
smaller fields since the communication is lower. This is unlike previous protocols like [21, 10]
that require repetition to reduce the statistical error when the field is small. In addition,
we compared the running times of HyperMPC to [10] for the same large field Mersenne61.
Observe that the running times are almost the same (this can be clearly seen in Figure 13),
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Figure 12: Statistics experiment with 6,000,000 multiplication gates; 10–150 parties

which is as expected by the theoretical analysis since [10] sends 12 field elements per gate
and HyperMPC sends 13 field elements per gate. We stress, however, that HyperMPC
would be much faster than [10] for smaller fields since [10] would require multiple repetitions
of the protocol in order to obtain the required security. For example, [10] would require 5
repetitions of the protocol in the case of GF [28] (the small-field version of [10] was never
implemented and so we cannot compare to it for actual running times). We stress that
HyperMPC requires t < n/3 versus [10] that only requires t < n/2. Thus, this does not
mean that HyperMPC is a “better” protocol, but rather that when one can assume t < n/3
then it provides better performance. This makes it an excellent choice for MPSaaS.
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Figure 13: Graph of results in Table 3. Top two lines are [10] and HyperMPC on the same
61-bit Mersenne prime field; next line is HyperMPC with Mersenne-31, and bottom line is
HyperMPC with GF [28].

Parties [10] HyperMPC HyperMPC HyperMPC
(Mers61) (Mers61) (Mers31) (GF [28])

10 906 941 569 283
20 1643 1609 822 606
30 2361 2185 1189 419
40 3049 3165 1853 625
50 3721 3866 2090 677
60 4503 4203 2481 745
70 4965 5341 3057 865
80 6069 6022 3228 954
90 7315 6603 3447 1018
100 8431 7399 4169 1337
110 8259 4915 1289
120 8698 4942 1511
130 10010 5663
140 10371 5959
150 10665 6419

Table 3: Executions in AWS (same region) on c5.xlarge machines on a circuit with
1,000,000 multiplication gates and depth 20; time in ms. (GF [28] run only up to 120
parties since HyperMPC requires |F| > 2n.)
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Deeper circuits. We ran the same experiment as described in Table 3 for HyperMPC
on a circuit with 1,000,000 multiplication gates and depth 100 (instead of depth 20). The
results appear in Table 4. Observe that the running times are not much slower than for the
depth-20 circuit. This is due to the fact that the majority of the work in HyperMPC is the
preparation of double-random sharings and this is computed in parallel for all gates at the
beginning of the execution. Then, each multiplication is very cheap, and so when running
on a fast network, the difference between depth-20 and depth-100 is only about 10-20%
for most cases (indeed, the penalty is higher for GF [28]; we do not know why there is a
difference between this field and the others on this issue). This experiment demonstrates
that even quite deep circuits can be effectively run on fast networks.

Parties HyperMPC HyperMPC HyperMPC
(Mers61) (Mers31) (GF [28])

10 1151 691 355
20 1737 1003 435
30 2647 1391 579
40 3739 2269 948
50 4422 2600 1113
60 5106 3165 1225
70 6002 3826 1782
80 6238 3714 1984
90 6929 4169 1913
100 7874 5554 2666
110 8982 5536 1289
120 9702 7020 2510
130 11259 7379
140 11910 8018
150 12909 8918

Table 4: Executions in AWS (same region) on c5.xlarge machines on a circuit with
1,000,000 multiplication gates and depth 100; time in ms. (GF [28] run only up to 120
parties since HyperMPC requires |F| > 2n.)

HyperMPC with many parties. Finally, we demonstrated that HyperMPC can sup-
port MPC with a very large number of parties. We considered a scenario (like that of
PrivatePoll) where many parties compute mean and variance over their inputs. We tested
this for 250 parties (with a circuit size of 2253 multiplication gates) and 500 parties (with a
circuit size of 4503 multiplication gates). We ran this experiment on c4.large machines in
AWS, in a single region. The execution for 250 parties took 2:30 minutes and the execution
of 500 parties took 6:15 minutes. Although not extremely fast, these results do demon-
strate that it is possible to run MPC with a very large number of parties. To the best of
our knowledge, this is the largest number of parties run in any MPC experiment to date.
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A Challenges for End-User Implementation

We list the challenges we found and solved for running in each platform:

ARM for Raspberry Pi IOT and Mobile: We used a Raspberry Pi3 with a quad-core
1.2Ghz ARM 7a processor, and Android mobiles. These are common and cheap devices
used widely. Deploying MPC on this platform involved solving the following issues:

1. No Intel SIMD: Existing MPC code heavily uses SIMD instructions from SSE2, SSE4,
and AVX2 extensions for fast operations; e.g., fast OT implementations use _mm_movemask_epi8
and _mm_slli_epi64 for Bit Matrix Transposition. We used an open source library
SSE2NEON to bridge the gap, and extended SSE2NEON to support missing instruc-
tions with good performance.
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2. Limited compiler support: ARM compilers are limited in some of the advanced features of
C++ 14, for example with template instantiations. We backported code from C++14 to
C+11 to make these libraries work correctly. We also built a cross-compile environment
to compile our code simultaneously to all platforms in a Linux build environment.

3. Limited library support: Typical MPC code uses gmp, NTL, libmiracl math libraries
and in some cased boost for communication. We created valid builds for these libraries.
However, not all NTL functionality (used by our code) is available on all platforms (we
ported up to NTL 9.7).

We are now working on ports to energy-constraint IOT environments with even less pow-
erful boards.

MPC In-The-Browser: As the browser is becoming the new OS for end users, additional
features and capabilities are constantly added, such as access to device (orientation, loca-
tion), new Web Cryptography API [30], and WebAssembly [29]. These open the possibility
of achieving high performance MPC directly in the browser. While writing plain Javascript
code is an option, it would require a major rewrite to MPC protcols. Our solution is to
cross-compile MPC code to WebAssembly. We have achieved this for the HyperMPC
protocol described in Section 3.1.3 and all required libraries. WebAssembly (abbreviated
Wasm) is a binary instruction format for a stack-based virtual machine. Wasm is designed
as a portable target for compilation of high-level languages like C/C++/Rust, enabling
deployment on the web for client and server applications. Wasm is currently supported
by all major browsers. The design goal of Wasm is a 2x Slowdown compared to native
code. Wasm can interact with additional Javascript libraries, and is executed under the
Same-Origin-Policy of the page from which it loaded. We dealt with the following issues:

1. Code porting: We ported our C++ code to Wasm using Emscripten 1.37 without in-
troducing design changes to the protocol. Our method is generic and can be applied
to any additional MPC protocol. Emscripten is a compiler that runs as a backend to
the LLVM compiler and produces a asm.js / WebAssembly. Emscripten has been used
to port Python, Lua, libsodium, SQLite, Unreal Engine 3 and several other code bases.
To run our MPC code in the browser, we ported the relevant math libraries (NTL,
gmp, mpir) and our protocol code. The compiled JavaScript code executes either in the
browser, or in a Node.js server. Integration into Node.js is also an important outcome,
as MPC can now be delivered through the NPM package manager.

2. Asynchronous communication: Emscripten automatically ports C/C++ sockets to the
WebSockets protocol [31], and we tweaked this to work for our scenario. However, most
open source implementations of MPC use synchronous socket communication, with a
thread-per-peer model, and with “send”–“receive” pairs representing round exchanges,
with send-receive replaced with receive-send based on a role or id in order to avoid
deadlock. This simplistic model is not applicable in a Web Browser, as all socket and I/O
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in general is asynchronous. Javascript is asynchronous by-design, and we were unable to
use the standard MPC send-receive pattern, even using Web Workers [32]. We therefore
had to re-design our protocol code to use a state-machine and asynchronous-IO, with
a state-machine per-peer. We use the Emscripten capability to create a Virtual File
System in memory to load circuit, input and configuration files in the same manner as
used today by our protocol.

3. SIMD instructions: WebAssembly does not currently support SIMD instructions. Thus,
these instructions need to be replaced.

See Figure 14 for a screen-shot of the protocol of Section 3.1.3 running in a browser.

Figure 14: The MPC in the browser view.
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