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Abstract. Goyal and Kumar (STOC’18) recently introduced the notion of non-malleable
secret sharing. Very roughly, the guarantee they seek is the following: the adversary may
potentially tamper with all of the shares, and still, either the reconstruction procedure
outputs the original secret, or , the original secret is “destroyed” and the reconstruction
outputs a string which is completely “unrelated” to the original secret. Prior works
on non-malleable codes in the 2 split-state model imply constructions which can be
seen as 2-out-of-2 non-malleable secret sharing (NMSS) schemes. Goyal and Kumar
proposed constructions of t-out-of-n NMSS schemes. These constructions have already
been shown to have a number of applications in cryptography.
We continue this line of research and construct NMSS for more general access struc-
tures. We give a generic compiler that converts any statistical (resp. computational)
secret sharing scheme realizing any access structure into another statistical (resp. com-
putational) secret sharing scheme that not only realizes the same access structure but
also ensures statistical non-malleability against a computationally unbounded adversary
who tampers each of the shares arbitrarily and independently. Instantiating with known
schemes we get unconditional NMMS schemes that realize any access structures gener-
ated by polynomial size monotone span programs. Similarly, we also obtain conditional
NMMS schemes realizing access structure in monotone P (resp. monotone NP ) as-
suming one-way functions (resp. witness encryption).
Towards considering more general tampering models, we also propose a construction
of n-out-of-n NMSS. Our construction is secure even if the adversary could divide the
shares into any two (possibly overlapping) subsets and then arbitrarily tamper the
shares in each subset. Our construction is based on a property of inner product and an
observation that the inner-product based construction of Aggarwal, Dodis and Lovett
(STOC’14) is in fact secure against a tampering class that is stronger than 2 split-
states. We also show applications of our construction to the problem of non-malleable
message transmission.



1 Introduction

Secret sharing is a fundamental primitive in cryptography which allows a dealer to distribute shares
of a secret among several parties, such that only authorized subsets of parties can recover the secret;
the secret is “hidden” from all the unauthorized set of parties. Shamir [Sha79] and Blakley [Bla79]
initiated the study of secret sharing by constructing threshold secret sharing schemes that only
allows at least t-out-of-n parties to reconstruct the secret. A rich line of works have studied the
construction of secret sharing schemes for more advanced access structures [KW93, Bei, Bei11,
KNY14].

A number of works have studied the setting where the primary goal of the adversary is to
instead tamper with the secret. This relates to the line of works on error detecting codes such as
algebraic manipulation detection(AMD) codes [CDF+08], and, verifiable secret sharing [RBO89].
A more detailed overview of the related works can be found later in this section.

Non-malleable secret sharing. Very recently, Goyal and Kumar [GK18] initiated a systematic study
of what they call non-malleable secret sharing. Very roughly, the guarantee is the following: the ad-
versary may potentially tamper with all of the shares, and still, either the reconstruction procedure
outputs the original secret, or , the original secret is “destroyed” and the reconstruction outputs a
string which is completely “unrelated” to the original secret. This is a natural guarantee which is
inspired by applications in cryptography.

As noted by [GK18], 2-out-of-2 non-malleable secret sharing (NMSS) is equivalent to non-
malleable codes in the 2 split-state model. Constructing such split state non-malleable codes has
proven to be surprisingly hard. Though a brilliant line of works [DPW10, LL12, DKO13, ADL14,
CGL16, Li17], such 2-split-state codes have been constructed. However such an implication does
not hold if the number of shares is more than 2. To see this, consider a (contrived) example of
a 3 split-state non-malleable code where the encoding functions encodes the message using a 2
split-state non-malleable code to obtain the first two states and outputs the message (in the clear)
in the third state. The decoding function simply ignores the third state and uses the first two states
to decode the message. Such a construction is a valid 3 split-state non-malleable code that is not
a 3-out-of-3 secret sharing scheme (in fact, it has no secrecy at all). Towards that end, Goyal and
Kumar proposed a construction of t-out-of-n NMSS scheme where reconstruction could be done
given any t shares, any set of less than t shares has no information about the original secret, and,
non-malleability is guaranteed even if an adversary may tamper with each share.

Even though a relatively new primitive, non-malleable coding in the split state model (or 2-
out-of-2 NMSS) has already found a number of applications in cryptography including in tamper-
resilient cryptography [DPW10], designing multi-prover interactive proof systems [GJK15] and
obtaining efficient encryption schemes [CDTV16]. Very recently, non-malleable codes in the split-
state model were used as 2-out-of-2 non-malleable secret sharing scheme to obtain 3-round protocol
for non-malleable commitments [GPR16].

Our Question. We study the following natural question in this work:

Can we get non-malleable secret sharing schemes for access structures beyond threshold?

As noted before, known results on split state non-malleable codes provide 2-out-of-2 NMSS.
Goyal and Kumar [GK18] recently took a significant step forward by constructing t-out-of-n NMSS
schemes. However to our knowledge, NMSS are not known access structures beyond threshold. For
example, can we get NMSS schemes for access structures which can be represented using log depth

1



circuits or polynomial sized boolean formulas? Can we get a NMSS for all of monotone P ? Or
even better, can we get a NMSS for all of monotone NP ?

Existing secret-sharing schemes. As noted by Goyal and Kumar, most of the secret sharing schemes
known are linear [Bei, chapter 4] and have nice algebraic and geometric properties, which are
harnessed to obtain efficient sharing and reconstruction procedures. Non-malleable secret sharing
schemes on the other hand cannot be linear. As the secret is a linear combination of the shares in a
linear secret sharing scheme, the adversary can perform local operations on each of the shares and
encode any linear function of the secret. Indeed, the malleability of linear secret sharing schemes,
such as polynomials based Shamir’s secret sharing scheme [Sha79], forms the basis of secure multi-
party computation protocols [BOGW88]. For the purpose of constructing NMMS, any such alter-
ation is an “attack” and the goal is to build secret sharing schemes that necessarily prohibit any
such attacks.

1.1 Our Results

Generic compiler for individual tampering. Recall that an access structure A is a monotone collec-
tion of subsets of parties (such that every subsets of parties in this set are authorized to reconstruct
the secret; other subset of parties are unauthorized). Our first main result is the following:

Theorem 1. (informal) For any access structure A that does not contain singletons1, if there
exists an efficient statistical (resp. computational) secret sharing scheme realizing access structure
A, then there exists an efficient statistical (resp. computational) secret sharing scheme realizing A
that is statistically non-malleable against an adversary who tampers each of the shares arbitrarily
and independently.

Karchmer and Wigderson [KW93] gave an efficient2 secret sharing scheme for access structures
that can be described by a polynomial-size monotone span program. This is a general class for
which efficient secret sharing schemes are known and includes undirected connectivity in a graph.
Instantiating our compiler with their scheme, we obtain the following corollary.

Corollary 1. (informal) For any access structure that can be described by a polynomial-size mono-
tone span program and does not contain a singleton, there exists an efficient statistical secret shar-
ing scheme that is statistically non-malleable against an adversary who arbitrarily tampers each of
the shares independently.

In an unpublished work (mentioned in [Bei11,KNY14]), Yao constructed an efficient computa-
tional secret-sharing scheme for access structures whose characteristic function are computable by
monotone circuit of polynomial-size (assuming just one-way functions). Using this scheme, we get,

Corollary 2. (informal) If one-way functions exist, then for any access structure A that does not
contain singletons and is computable by monotone boolean circuits of polynomial size, there exists
an efficient computational secret sharing scheme that realizes A and is statistically non-malleable
against an adversary who arbitrarily tampers each of the shares independently.

1 We note that this is a necessary assumption, as otherwise the notion of non malleability becomes meaningless. A
single authorized party can recover the message and trivially encode any related message

2 A statistical secret sharing scheme is efficient if the sharing and reconstruction functions run in poly
(
n, k, log(1/ε)

)
time where k is the size of the message and ε > 0 is the statistical error.
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Observe that the secret sharing scheme resulting from the above theorem has statistical non-
malleability (even though the secrecy is computational). Furthermore, Komargodski et al. [KNY14],
constructed efficient computational secret sharing scheme for every monotone NP access structure
assuming one way functions and witness-encryption for NP [GGSW13]. This gives us the following:

Corollary 3. (informal) If one-way functions and witness-encryption for NP exist, then for every
monotone NP access structure A that does not contain singletons and supports efficient member-
ship queries, there exists an efficient computational secret sharing scheme that realizes A and is
statistically non-malleable against an adversary who arbitrarily tampers each of the shares indepen-
dently.

We say that an access structure supports efficient membership queries, if it is possible to effi-
ciently decide whether a given subset of parties is authorized or not. For t-out-of-n, this is trivial.
Similarly, for access structures based on polynomial sized monotone boolean circuits, one can exe-
cute the corresponding circuit to decide whether the input subset is authorized or not.

Towards Stronger Tampering Models. In addition to the individual tampering model, Goyal and
Kumar [GK18] also considered joint tampering where an adversary may divide the set of shares into
two disjoint sets and may tamper with the shares in each set jointly. They additionally required the
two subsets to have different cardinalities (i.e., both of them must not have equal number of shares).
This holds even for the basic case of n-out-of-n secret sharing. We present a new construction of
n-out-of-n NMSS against a significantly more general class of tampering functions. In particular,
the adversary may partition the shares into any two (possibly overlapping) sets having up to n− 1
shares. For example, the adversary may use the first n− 1 shares to produce the tampered version
of first n

2 shares, and uses the last n− 1 shares to produce the last n
2 shares.

Theorem 2. (informal) For any integer n ≥ 2, there exists an efficient statistical secret sharing
scheme that encodes a secret into n shares, allows for reconstruction of the secret only when all the
n shares are available, and is also statistically non-malleable against an adversary who partitions
the n shares into any two (possibly overlapping) non-empty subsets of its choice having up to n− 1
shares each, and then jointly tampers shares in each of the subsets arbitrarily and independently.

Our techniques in fact extend to allow the tampering of each share to depend on all the n
shares in a limited way (see Section 4 for more details).

Ito et al. [ISN89] showed that every access structure has a (possibly inefficient) secret sharing
scheme. In a manner similar to their construction, we can use the above n-out-of-n NMSS scheme
for every minimal authorized set and obtain the following existential result.

Corollary 4. For any access structure A that does not contain singletons, there exists a (possibly
inefficient) statistical secret sharing scheme that realizes A and is statistically non-malleable against
an adversary who chooses any minimal authorized set, partitions it into two non-empty subset (pos-
sibly overlapping) and jointly tampers shares in each of the subsets arbitrarily and independently.

Interesting Corollaries of Our Techniques. We observe that the inner-product construction of non-
malleable codes of Aggarwal et al. [ADL14] can in fact withstand tampering which is stronger than
2 split state tampering.
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Corollary 5. (informal) The 2 split-state non-malleable code of Aggarwal et al. [ADL14] encodes
a message as two vectors L and R of length λ over prime field Zp. This scheme is even secure
against an adversary

L̃← f1(L)� g1(R)

R̃← f2(L)� g2(R)

where (f1, f2, g1, g2) are arbitrary tampering functions and � represents coordinate-wise multiplica-
tion of two vectors (that is L�R = (L1 ×R1, L2 ×R2, . . . , Lλ ×Rλ)).

Compared to leakage-resilient non-malleable codes where the tampering of the left share can
depend on a bounded amount of information about the the right share, in the above, the tampered
left share can be exactly equal to the right share.

As an application of NMSS, [GK18] initiated the study of non-malleable message transmission.
This guarantees that the receiver either receives the original message, or, the original message is
essentially destroyed and the receiver receives an “unrelated” message, when the network is under
the influence of an adversary who can execute arbitrary protocol on each of the nodes in the network
(apart from the sender and the receiver). The adversary is even allowed to add a bounded number of
arbitrary hidden links which it can use in addition to the original links for communicating amongst
corrupt nodes.

Our techniques allow us to obtain a strict improvement over the results in [GK18]. In fact,
our result is tight. We first informally define the notion of non-malleable paths. For a network
represented by an undirected graph G, let G′ be the induced subgraph of G with sender S and R
removed. We define a collection of paths from S to R to be non-malleable if in the induced subgraph
G′ any node is reachable by nodes present on at most one of these paths.

Corollary 6. In any network, with a designated sender S and receiver R, if there exists a collection
of n non-malleable paths from S to R, then non-malleable secure message transmission protocol is
possible with respect to an adversary which adds at most n−2 arbitrary hidden links in the network
and byzantinely corrupts all nodes other than S and R. Moreover, the bound of n− 2 is tight.

1.2 Our Techniques

First we briefly recall the construction of t-out-of-n NMSS secure against an adversary which
tampers each share independently [GK18].

Construction of [GK18]. Assume t ≥ 3. First they encode the secret m using a 2 split-state non-
malleable code to obtain l, r ← NMEnc(m). Then they share l using any t-out-of-n secret-sharing
scheme to obtain l1, . . . , ln, and, encode r using a 2-out-of-n leakage-resilient secret-sharing scheme
to obtain r1, . . . , rn. Final shares are of the form sharei = (li, ri). Given an adversary A who
tampers with each share sharei arbitrarily and independently, we would like to construct a split
state adversary (f, g) against the underlying non-malleable code. A (somewhat oversimplified) high
level structure of their proof is as follows:

1. Fix shares l1, . . . , lt−1 independent of the secret m. This can be done since l is shared using a
t-out-of-n secret-sharing and t ≥ 3. Shares l1, . . . , lt−1 are hardcoded in the description of f and
g.
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2. The function g gets r as input and must output r̃, the tampered version of r. Given r, g samples
r1, r2 and hence now has share1 = (l1, r1) and share2 = (l2, r2) (since l1 and l2 are hardcoded).

Use adversary A to compute s̃hare1 and s̃hare2, and hence, r̃1 and r̃2. Reconstruct r̃ using r̃1
and r̃2 (recall r was shared using a 2-out-of-n scheme) and output it.

3. The function f gets l as input and must output l̃. As the first step, f uses l to sample lt which is
consistent with the fixed shares l1, . . . , lt−1. Next, f must run adversary A to compute tampered

shares s̃hare1, . . . , s̃haret which would allow for recovery of l̃1, . . . , l̃t and hence l̃. However note
that f does not have (r1, . . . , rt) and therefore cannot even compute share1. In fact, it cannot
have any two shares of r, as the tampering function f needs to be independent of r. Towards
that end, [GK18] rely on the leakage resilience of the secret sharing scheme to compute l̃1, . . . , l̃t.

Note that the above proof structure does not work when t = 2. For this case, they device a
(completely separate) 2-out-of-n NMSS scheme by giving every pair an independent non-malleable
encoding of the secret m.

Getting NMSS for general access structures. The natural starting point would be to replace the
t-out-of-n secret sharing used to share l by the given secret sharing for the access structure in
question. Instantiating this with various computational and information theoretic secret sharing
schemes would presumably lead to NMSS for a variety of access structures including monotone P .
However this idea fails because of the following two basic issues.

Firstly, we have to deal with authorized sets of size two (‘pairs’) in the given access structure
(in case there are any). In case of [GK18], this was achieved by simply giving an entirely different
construction (with a separate proof) for the case of t = 2. However in the setting of general access
structures, the authorized set of size two may coexist with authorized sets of larger size. We solve this
issue by efficiently constructing another access structure that has all authorized sets that contain
an authorized subset of size two, in addition to the original access structure. Our hope would be
to run NMSS for both these access structures in “parallel” for the same message. However this
leads to additional difficulties in the proof of security related to composition: any authorized pair
of parties will now have the same message encoded under two different schemes, and the split-state
reduction to non-malleable codes fails.

Secondly, the construction in [GK18] heavily makes use of the fact that one can sample some
of the shares without having knowledge of the secret at all. Then once the secret is available, you
can “adjust” the remaining shares such that the resulting set of shares altogether is sampled from
the correct distribution. As an example, see how the share lt is sampled in step 3 (see the summary
of [GK18] construction above). Indeed, such sampling is not just done once but at multiple steps in
the [GK18] construction. In the computational case however, such an approach inherently breaks
down. Since each share may have complete information about the secret (the secret may only be
computationally hidden), one may not be able to sample a few shares independently of the secret
and then “adjust” the rest so that overall, they come from the correct distribution. One could try
to argue that even if the shares are sampled incorrectly, since the tampering function does not get
all of them as input, it may anyway be indistinguishable to the tampering functions. However, such
a guarantee is not sufficient for non-malleability. The tampering functions individually may not be
able to distinguish correct shares from incorrect ones, and yet, the distribution of their joint output
might change completely.

To solve these issues, we use two additional ideas to make our construction work.
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1. Introduce “limited” information theoretic secrecy: We first compile the underlying statistical
(resp. computational) secret sharing scheme into another which additionally guarantees that
any two shares hide the secret information theoretically (even if the secret sharing scheme was
computational to begin with). This not only solves the first issue, but also paves a way to the
solution of the second issue. For the first issue, this approach allows us to use non-malleable codes
in a black-box way, as opposed to an alternative approach, where we could have strengthened
the underlying split-state code to ensure non-malleability against “parallel” tamperings. For the
second issue, we are now allowed to fix up to two shares of l even for computational schemes.

2. We use a secret sharing scheme with stronger leakage resilience properties: For any two secrets,
suppose an adversary is given some valid shares of each of the secrets (potentially enough even
to reconstruct the secret). Additionally, the adversary is given individual leakage from the rest
of the shares of one secret. It should be statistically impossible for the adversary to identify
whether the leakage corresponds to the first or the second secret. This property is significantly
stronger than the one needed by Goyal and Kumar [GK18]. Unlike the proof of [GK18], this
allows our reduction to generate t shares that are statistically quite far from any valid set of t
shares, and still achieve statistical non-malleability.

Towards stronger tampering models. Let us try to construct n-out-of-n secret sharing schemes that
are non-malleable against an adversary that arbitrarily partitions the n shares into two non-empty
subsets and jointly tampers the shares in each of the these subsets independently.

First Attempt. Let us try to use a 2 split-state non-malleable code that encodes the message into
two parts, say l and r. We let l be the first share, and obtain the last n− 1 shares by secret sharing
r using a traditional (n-1)-out-of-(n-1) secret sharing scheme. However, if the adversary tampers
the first and last shares together, the tampered versions of last share (in particular r) may depend
of the first share l and we will be not be able to obtain a split-state reduction to the underlying
non-malleable code.

Second Attempt. What about a tree-based construction ? Consider, for example, a complete binary
tree with 2k leaves corresponding to 2k parties. To share a secret, we put the secret at the root of
this tree, and encode it using a non-malleable code to obtain the value of nodes at level 1 ( children
of root). We can recursively apply this process using several non-malleable codes to obtain the value
of all the 2k leaves, and these values correspond to the shares of 2k parties. While this seems like a
promising approach, the share size increases exponentially with the depth of the tree (as constant
rate statistical split-state non-malleable codes are not yet constructed). Even more fundamentally,
it is not clear how to prove that such a construction is secure against arbitrary joint tampering.
As a concrete example, consider a simple depth 2 tree having 4 leaves. Suppose adversary tampers
the first and the last leaf together, and independently tampers the second and the third leaf. It
seems that stronger notions of non-malleable codes (while maintaining constant rate) are needed.
Moreover, it appears that different properties might be needed for different choices of partitioning.

Third Attempt. Can we extend the techniques of [GK18] ? Unfortunately, when the two subsets are
of equal cardinality, their technique of using different degree polynomials no longer seems to work.

Our construction : We take a step back and construct n-out-of-n scheme in a manner similar to the
first attempt described above. Recall that we were struck while tyring to obtain a split-state reduc-
tion to the underlying non-malleable code. Nevertheless, we observe an underlying ‘multiplicative
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structure’ present in the code of Aggarwal et al. [ADL14] (hereby refered to as ADL construction)
to achieve split-state reduction avoiding the problem mentioned in the first attempt.

We begin by recalling the elegant inner-product based ADL construction. They prove an amaz-
ing property of inner product, which roughly states that any independent tampering of left and
right vector can be translated to an affine tampering of the output of inner product. This observa-
tion, reduces the problem to creating non-malleable codes against arbitrary split-state tampering
functions to creating non-malleable codes against arbitrary affine tampering functions. To this
end, they introduce affine evasive function, which ensures non-malleability against tampering by
affine functions. Their proof relies on the linearity property satisifed by inner-product and is highly
non-trivial relying on new results proved in additive combinatorics.

Given two equal length vectors over some finite field, the decoder of ADL computes the inner-
product and then applies the affine-evasive function to the output. Instead of viewing the first step
as inner-product, we take a more fine-grained approach, and consider coordinate-wise multiplication
of vectors to be the first step, followed by an addition of the coordinates. Our main observation is
that the set of equal length vectors containing non-zero coordinates forms a finite abelian group
under the operation of coordinate-wise multiplication of vectors. Next, we recall that Karnin et
al. [KGH83] have shown how to use any abelian group to construct a n-out-of-n secret sharing
scheme. The resulting scheme is quite simple, the reconstruction function will perform coordinate-
wise multiplication of all the n vectors to obtain the secret vector, and we can proceed as in ADL,
by computing sum of coordinates and then applying the affine evasive function to the sum.

We elaborated our scheme in the above fashion, instead of directly stating that we will use
generalized inner-product instead of inner-product, because it is more insightful in conveying our
proof ideas. In particular, we essentially use the associativity and commutativity of the mentioned
abelian group (formed by coordinate-wise multiplication of non-zero field elements) to handle arbi-
trary partitions. Given any paritioning of n vectors into two subsets, we can use the commutativity
of the abelian group to collect all the vectors of the first subset, and independently collect all
the vectors of the second subset together. After which we can use the associativity of the same
group to coordinate-wise multiply all the vectors in the first subset together, and independently
coordinate-wise multiply all the vectors of the second subset. Notice, that now we are left with
exactly two vectors corresponding to each of the two subsets, and we might be able to utilize the
non-malleability of the ADL construction which works for two vectors. If we did not rely on this
structure, we would have had to generalize the entire additive-combinatorics based proof of the
ADL construction.

Paper organization. We define various primitives in section 2. We give our generic compiler in
section 3. We give the construction of n-out-of-n schemes supporting joint-tampering in section 4.

Related Works. A number of works in the literature ensure that the correct secret is recovered
even when some number of shares are arbitrarily corrupted. Concepts from error correcting codes
have been useful in obtaining such schemes [Sha79,MS81]. In a seminal work [RBO89], Rabin and
Ben-Or introduced verifiable secret sharing, which allowed the adversary to tamper almost half the
shares, and still ensured that the adversary cannot cause the reconstruction procedure to output an
incorrect message (except with exponentially small error probability). Cramer et. al. [CDF+08], in a
beautiful work introduced algebraic manipulation detection(AMD) codes and gave almost optimal
constructions for them. These codes allow the adversary to “blindly” add any value to the codeword,
and ensure that any such algebraic tampering will be detected with high probability. They used
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such codes to construct robust secret sharing schemes, which allowed adversary to tamper with any
unauthorized subset of shares.

As already noted, 2 split state non-malleable codes can be seen as 2-out-of-2 non-malleable secret
sharing schemes in which both the shares can be independently tampered. Though a brilliant line of
works, such split-state non-malleable codes have been constructed [DPW10,LL12,DKO13,ADL14,
CGL16,Li17]. [GK18] construct t-out-of-n non-malleable secret sharing schemes.

2 Definitions

We use capital letters to denote distributions and their support, and corresponding small letters
to denote a sample from the distribution. Let [m] denote the set {1, 2, . . . ,m}, and Ur denote the
uniform distribution over {0, 1}r. Unless otherwise stated, Fp is a finite field of order prime (power)
p. For any set B ∈ [n], let ⊗i∈BSi denote the Cartesian product Si1 × Si2 × . . . × Si|B| , where
i1, i2 . . . i|B| are ordered elements of B, such that ij < ij+1.

Definition 1. (Statistical Distance) Let D1 and D2 be two distributions on a set S. The statis-
tical distance between D1 and D2 is defined to be :

|D1 −D2| = max
T⊆S
|D1(T )−D2(T )| = 1

2

∑
s∈S
|Pr[D1 = s]− Pr[D2 = s]|

We say D1 is ε-close to D2 if |D1 −D2| ≤ ε. Sometimes we represent the same using D1 ≈ε D2.

2.1 Non-Malleable Codes

Definition 2. (Coding Schemes)( [DPW10]). A coding scheme consists of two functions : an
encoding function (possibly randomized) Enc : M → C, and a deterministic decoding function
Dec : C →M∪{⊥} such that , for each m ∈M, Pr(Dec(Enc(m)) = m) = 1 (over the randomness
of the encoding function).

Definition 3. (Non-Malleable Codes) ( [DPW10]). Let F be some family of tampering func-
tions. For each f ∈ F , and m ∈M, define the tampering experiment

Tamperfm =


c← Enc(m)
c̃← f(c)

m̃← Dec(c̃)
Output : m̃


which is random variable over the randomness of the encoding function Enc. We say a coding
scheme (Enc,Dec) is ε-non-malleable w.r.t F if for each f ∈ F , there exists a distribution Df

(corresponding to the simulator) over M∪{same∗,⊥} such that, for all m ∈M, we have that the

statistical distance between Tamperfm and

Simf
m =

{
m̃← Df

Output : m if m̃ = same∗, or m̃, otherwise

}
is at most ε. Additionally, Df should be efficiently samplable given oracle access to f(.).
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2.2 Secret Sharing Schemes

The following definition is inspired from the survey [Bei11].

Definition 4. (Access Structure and Sharing function ) A collection A is called monotone
if B ∈ A and B ⊆ C, then C ∈ A. Let [n] = {1, 2, . . . , n} be a set of identities of n parties. An
access structure is a monotone collection A ⊆ 2{1,...,n} of non-empty subsets of [n]. Sets in A are
called authorized, and sets not in A are called unauthorized.

For any access structure A, we define minimal basis access structure of A, denoted by
Amin, as the the minimal subcollection of A , such that for all authorized set T ∈ A, there exists
an authorized subset B ⊆ T which is an element of Amin.

Let M be the domain of secrets. A sharing function Share is a randomized mapping from
M to S1 × S2 × . . . × Sn, where Si is called the domain of shares of party with identity j. A
dealer distributes a secret m ∈ M by computing the vector Share(m) = (s1, . . . , sn), and privately
communicating each share sj to the party j. For a set S ⊆ {p1, . . . , pn}, we denote Share(m)S to
be a restriction of Share(m) to its S entries.

Definition 5. (Secret Sharing Scheme [Bei11] ). Let M be a finite set of secrets, where |M| ≥
2. A sharing function Share with domain of secrets M is a (n, ε)-Secret Sharing Scheme real-
izing an access structure A if the following two properties hold :

1. Correctness. The secret can be reconstructed by any authorized set of parties. That is, for
any set B ∈ A, where B = {i1, . . . , i|B|}, there exists a deterministic reconstruction function

RecB : ⊗i∈BSi →M such that for every m ∈M,

Pr[RecB(Share(m)B) = m] = 1

(over the randomness of the Sharing function)
2. Statistical Privacy. Any collusion of unauthorized parties should have “almost” no informa-

tion about the underlying secret. More formally, for any unauthorized set T 6∈ A, and for every
pair of secrets a, b ∈M, for any distinguisher D with output in {0, 1}, the following holds :

|Prshares←Share(a)[D(sharesT ) = 1]− Prshares←Share(b)[D(sharesT ) = 1]| ≤ ε

The special case of ε = 0, is known as Perfect Privacy.

We use the definition of leakage-resilience from [GK18].

Definition 6. (Leakage-Resilient Secret Sharing Schemes) Let L be some family of leakage
functions. We say that the (n, ε)-secret sharing scheme, (Share,Rec), realizing access structure
A is ε′-leakage-resilient w.r.t L if for each f ∈ L, and for any two messages a, b ∈ M, any
distinguisher D with output in {0, 1}, the following holds :

|Prshares←Share(a)[D(f(shares)) = 1]− Prshares←Share(b)[D(f(shares)) = 1]| ≤ ε′

We generalize the definition of non-malleable secret sharing schemes of [GK18] to general access
structures.
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Definition 7. (Non-Malleable Secret Sharing Schemes) Let A be some access structure. Let
Amin be its corresponding minimal basis access structure. Let F be some family of tampering func-
tions. For each f ∈ F , m ∈M and authorized T ∈ Amin, define the tampering experiment

STamperf ,Tm =


shares← Share(m)

s̃hares← f(shares)

m̃← Rec(s̃haresT )
Output : m̃


which is a random variable over the randomness of the sharing function Share. We say that the
(n, ε)-secret sharing scheme, (Share,Rec), realizing access structure A is ε′-non-malleable w.r.t
F if for each f ∈ F and authorized T ∈ Amin, there exists a distribution SDf,T (corresponding to
the simulator) over M∪ {same∗,⊥} such that, for all m ∈ M and all authorized T ∈ Amin, we

have that the statistical distance between STamperf,Tm and

SSimf ,T
m =

{
m̃← SDf,T

Output : m if m̃ = same∗, or m̃, otherwise

}
is at most ε′.

2.3 Threshold Access Structure At
n

Apart from general access structure we will be interested in a special access structure which allows
any t-out-of-n parties to pool their secret and reconstruct the secret. This threshold access structure
can be formally represented as Atn = {B ⊆ [n] : |B| ≥ t}. We use the notation of (t, n, ε)-secret
sharing sharing schemefor denoting (n, ε)-secret sharing scheme realizing access structure Atn.

3 Non-Malleable Secret Sharing against Individual Tampering

In this section we show how to convert any secret sharing scheme into a non-malleable one against
an adversary who arbitrarily tampers each of the shares independently. We begin by recalling the
tampering family from [GK18]:

Split-State Tampering Family Fsplit
n :

Let Share be a sharing function that takes as input a message m ∈ M and outputs a shares
shares ∈ ⊗i∈[n]Si. Parse the output shares into n blocks, namely share1, share2, . . . , sharen where
each sharei ∈ Si. For each i ∈ [n], let fi : Si → Si be an arbitrary tampering function, that takes

as input sharei, the ith share. Let Fsplitn be a family of such n functions (f1, f2, . . . , fn).
Note that above definition is written with respect to a sharing function. It is just for ease of

presentation, we can use this family of tampering functions with respect to a coding scheme, by
treating the encoding procedure as a sharing function. We also recall a lemma, which can be used
to show that every 2 split-state non-malleable code is a 2-out-of-2 non-malleable secret sharing
scheme.

Lemma 1. ( [ADKO15]) Let Enc :M→ C2 be the encoding function, and Dec : C2 →M∪ {⊥}
be a deterministic decoding function. If a coding scheme (Enc,Dec) is ε-non-malleable w.r.t Fsplit2

then (Enc,Dec) is also a (2, 2ε)-secret sharing scheme that is ε-non-malleable w.r.t Fsplit2 , where
Enc acts as a sharing function.
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Access Structures Based Definitions. As our building blocks, we will use secret-sharing schemes
that allow any authorized “pair” to reconstruct the secret. We formally define such “paired” access
structures below.

Definition 8. (Paired Access Structures) An access structure A is called a paired access
structure, if each authorized set contains an authorized subset of size two. Formally, for all B ∈ A,
there exists a subset C ⊆ B such that C is authorized and has cardinality two.

Notice that, if A is a paired access structure then its corresponding minimal basis access structure
Amin will only contain authorized sets of size two.

Definition 9. (Authorized Paired Access Structures) For any access structure A, we call
a paired access structure Apairs an authorized paired access structure corresponding to A if
Apairs is the maximal subcollection of A. Formally,

Apairs = {B ∈ A : ∃C ⊆ B, (C ∈ A) ∧ (|C| = 2)}

Notice that Aminpairs will be equal to the set of all the authorized sets of size two in A .

Efficient membership queries. We say that an access structure supports efficient membership
queries, if we can decide whether the given set is authorized or not. As an example, given any
access structure, we can check every pair to see if the pair in hand is authorized or not, and there-
fore efficiently construct the corresponding paired access structure. Another way to model this is
via a membership oracle.

Leakage Family. We also use a 2-out-of-n leakage-resilient secret sharing scheme. While in [GK18]
split state family of leakage-resilience was needed, we require leakage-resilience against the following
stronger leakage family.

Leakage Family Lpairµ :
Let (LRShare,LRRec) be any (2, n, ε)-secret sharing scheme with message space M. For any
i, j ∈ [n], for each k ∈ [n] \ {i, j}, let fk be an arbitrary function that takes sharei as input and
outputs µ bits of information about its input. For any collection of such functions, any pair of
message a0, a1 ∈M, any independently chosen bit b ∈ {0, 1}, we define the leakage experiment as,

Leaka0,a1

b =


a01, . . . , a

0
n ← LRShare(a0)

a11, . . . , a
1
n ← LRShare(a1)

Output : a0i , a
0
j , a

1
i , a

1
j ,⊗k∈[n]\{i,j}fk(abk)


We say that the scheme (LRShare,LRRec) is ε-leakage-resilient w.r.t. Lpairµ if for every pair of
message a0, a1 ∈M, we have that

Leaka0,a1

0 ≈ε Leaka0,a1

1

The proof of the construction of [GK18] can be adapted to show that it is also in fact leakage-
resilient against Lpairµ .
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Pruning Compiler. As a building block towards our generic compiler, we need another compiler
that given any statistical (resp. computational) secret sharing scheme realizing any access structure,
outputs another secret sharing scheme that deauthorizes all authorized pairs while preserving the
underlying statistical/computational secrecy. That is, it additionally guarantees that any two shares
perfectly hide the secret.

Lemma 2. For any efficient statistical (resp. computational) secret sharing scheme (AShare,
ARec) realizing access structure A that does not contain singletons, there exists another efficient
statistical (resp. computational) secret sharing scheme (APShare,APRec) which satisfies the fol-
lowing properties.

1. (APShare,APRec) realizes the access structure A with authorized pairs removed. The statis-
tical error remains the same if the input is a statistical scheme.

2. (APShare,APRec) ensures that given any two shares, the secret is perfectly hidden.

Proof. Let n be the number of parties, and F be the secret space. Let AShare share an element of F
into n elements of field F1. Let (TShare3n,TRec3n) and (TShare22,TRec22) be two threshold secret
sharing scheme instantiated with Shamir’s Secret Sharing scheme [Sha79] mapping an element of
F1 into shares in F1 having theshold 2 and 3 respectively.

– Sharing function APShare. On input m ∈ F , share m using AShare to obtain m1, . . . ,
mn ← AShare(m). For each i ∈ [n], share mi using TShare22 to obtain li, ri ← TShare22(mi)
and share ri using TShare3n to obtain r1i , . . . , r

n
i ← TShare3n (ri). For each i ∈ [n] construct

sharei as li, r
i
1, . . . , r

i
n. Output share1, . . . , sharen.

– Reconstruction Function APRec. On input the shares ⊗i∈T sharei corresponding to autho-
rized set T ∈ A with |T | ≥ 3, for each i ∈ T , parse sharei as li, r

i
1, . . . , r

i
n. For each i ∈ [n],

reconstruct ri ← TRec3n (⊗i∈T ri). For each i ∈ T , reconstruct mi ← TRec22(li, ri). Reconstruct
m← ARec(⊗i∈Tmi). Output m.

Correctness and Efficiency : Trivially follows from the construction.

Statistical (resp. Computational) Privacy : Perfect secrecy of any two shares, which is
proved below, proves that computational secrecy against any pair of shares. Assume towards con-
tradiction that there exists B 6∈ A, a, b ∈ F, with |B| ≥ 3, and a distinguisher D that some ad-
vantage, then we give another distinguisher D1 for the underlying secret sharing scheme (AShare,
ARec) having the same advantage. The description of D1 follows.

On input ⊗i∈Bmi, for each i ∈ [n]\B, fix ri randomly. For each i ∈ B, share mi using TShare22
to obtain li, ri ← TShare22(mi) and share ri using TShare3n to obtain r1i , . . . , r

n
i ← TShare3n

(ri). For each i ∈ B construct sharei as li, r
i
1, . . . , r

i
n. Output D(⊗i∈Bsharei), the output of the

distinguisher D.

It is straightforward to see that the distribution of the shares created by the reduction is
identical to the distribution of shares created by the sharing function APShare. The distinguishing
advantage of D1 is identical to the distinguishing advantage of D and we arrive at the contradiction
to the computational secrecy of (AShare,ARec) .

Perfect Secrecy from any two shares. It is easy to see that, for any i, j ∈ [n], the distri-
bution of the shares sharei and sharej , is independent of the underlying message. sharei, sharej
is distributed as Li, R

i
1, . . . , R

i
n, Lj , R

j
1, . . . , R

j
n. By the perfect secrecy of Shamir’s (3, n, 0)-secret

sharing scheme, we get that, for any k ∈ [n], rk is perfectly hidden and Rik, R
j
k is uniformly dis-
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tributed. For any k ∈ {i, j}, as rk is perfectly hidden, lk is uniformly distributed by the perfect
secrecy of Shamir’s (2, 2, 0)-secret sharing scheme. As the sharing is done independently using fresh
randomness , we get that Li, R

i
1, . . . , R

i
n, Lj , R

j
1, . . . , R

j
n is uniformly distributed in F2n+2

1 irrespec-
tive of the underlying secret. ut

As our compiler also works with computational schemes, we first define them. Please refer to
the book by Goldreich [Gol07] for definition of computaional indistinguishability.

Definition 10. (Computational Secret Sharing). LetM be a finite set of secrets, where |M| ≥
2. An efficient sharing function Share with domain of secrets M is a Computational Secret
Sharing Scheme realizing an access structure A if the following two properties hold :

1. Correctness. The secret m can be reconstructed by any authorized set of parties. That is, for
any set B ∈ A(where B = {pi1 , . . . , pi|B|}), there exists an efficient deterministic reconstruction

function ReconstructB : Si1 × Si2 × . . . Si|B| →M such that for every m ∈M,

Pr[ReconstructB(Share(m)B) = m] = 1

(over the randomness of the Sharing function)
2. Computational Privacy. An unauthorized set of parties should be unable to distinguish

whether the hidden secret is m0 or m1 for all m0,m1 ∈ M. More formally, for any set T /∈ A,
for every two secrets a, b ∈M, any PPT adversary should not be able to distinguish between,

Share(a)T ≈ Share(b)T

where the two distributions are computationally indistinguishable.

Main Result for General Access Structures. We are now in position to give our main result.

Theorem 3. For any number of parties n, and any access structure A that does not contain sin-
gletons. If we have the following primitives :

1. For any ε1 ≥ 0, let (NMEnc,NMDec) be any coding scheme that is ε1-non-malleable wrt

Fsplit2 , which encodes an element of the set F0 into two elements of the field F1.
2. For any ε2 ≥ 0, let (AShare,ARec) be any (n, ε2)-secret sharing scheme (resp. computational)

realizing access structure A, which shares an element of field F1 into n elements of the field F2.
3. Let µ ← log |F2|. For any ε3 ≥ 0, let (LRShare,LRRec), be any (2, n, ε3)-secret sharing

scheme that is ε3-leakage-resilient w.r.t. Lpairµ , which shares an element of the field F1 into n
elements of the field F3.

4. For any ε4 ≥ 0, let (PNMShare,PNMRec), be any (n, ε4)-secret sharing scheme realizing

the authorized paired access structure Apairs that is ε4-non-malleable wrt Fsplitn , which shares
an element of the set F0 into n elements of the field F4.

then there exists (n, 2ε1 + ε2 + ε4)-secret sharing scheme (resp. computational) realizing ac-

cess structure A that is (2ε1 + ε2 + ε3 + ε4)-non-malleable w.r.t Fsplitn . The resulting scheme,
(NMShare,NMRec), shares an element of the set F0 into n shares where each share is an element
of (F2×F3×F4). Further, if the four primitives have efficient construction (polynomial time shar-
ing and reconstruction functions) and the access structure A supports efficient membership queries,
then the constructed scheme is also efficient.
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Proof. In our constructions, we need a method to find a minimal authorized set given any autho-
rized set. For any access structure A not containing singletons, we define a deterministic procedure
FindMinSet : A → Amin, which takes an authorized set and outputs a minimal authorized set
contained in that set. The description follows :

FindMinSetA(S) : On input an authorized set S for an access structure A, if there exists an
i ∈ S and j ∈ S such that i 6= j and {i, j} ∈ A, then return the lexicographical smallest pair {i, j}
satisfying these conditions, otherwise initialize T ← D and execute the following loop : let T be an
ordered set of t elements i1, i2, . . . , it. For j ∈ [t], check if T \ {ij} belongs to A, in which case set
T ← T \ {ij} and go the beginning of the loop. If no such j exists, then break from the loop and
output T .

We now describe our construction of the desired non-malleable secret sharing scheme. Apply
Lemma 2 to the computational secret sharing scheme (AShare,ARec) to obtain a pruned secret
sharing scheme (APShare,APRec) .

– Sharing function NMShare: Encode the secret input m ∈ F1 using the encoding func-
tion of the non-malleable code. Let l, r ← NMEnc(m). Share l using a APShare to obtain
l1, . . . , ln ← APShare(l). Share r using a 2-out-of-n leakage-resilient secret sharing scheme.
Let r1, . . . , rn ← LRRec(r). Use the sharing procedure PNMShare to share m. Let (p1, . . . ,
pn)← PNMShare(m). Then for each i ∈ [n], construct sharei as li, ri, pi.

– Reconstruction function NMRec: On input the shares ⊗i∈Dsharei corresponding to autho-
rized set D, for each i ∈ D, parse sharei as (li, ri, pi). Find the minimal authorized set T ∈ Amin
by running the procedure FindMinSet with input D. Let T be a set containing t indices {i1,
i2, . . . , it} such that ij < ij+1 for each j ∈ [t − 1]. If D ∈ Apairs, use the decoding procedure
PNMRec{i1,i2} to obtain the hidden secret m← PNMRec{i1,i2}(pi1 , pi2). Otherwise, run the
reconstruction procedure APRec on t shares of l, to obtain l ← APRec(⊗i∈T li). Run the
reconstruction procedure of the leakage-resilient secret sharing scheme on the first 2 shares of
r, to obtain r ← LRRec{i1,i2}(ri1 , ri2). Decode l and r using decoding process of underlying
non-malleable code to obtain : m← NMDec(l, r). Output m.

Correctness and Efficiency : Correctness trivially follows. For efficiency, note that FindMinSet
performs at most O(n2) membership query accesses, because in each iteration of the loop it removes
one element from the set T , whose size is upper bounded by the number of parties n. Therefore,
there can be at most n iterations of the loop.

Statistical (resp. Computational Privacy) : We prove statistical privacy using hybrid
argument. For ease of understanding, let sharei be of the form ali, ari, api when the secret a is
encoded by the sharing procedure NMShare. Similarly, let sharei be of the form bli, bri, bpi when
the secret b is encoded. Let T be an unauthorized set containing t indices {i1, i2, . . . , it} such that
ij < ij+1 for each j ∈ [t− 1]. We describe the hybrids below :

1. Hybrid1 : for each i ∈ T , sharei is of the form ali, ari, api. The distribution of these t shares is
identical to distribution obtained on running the NMShare on input a. Output ⊗i∈T sharei.

2. Hybrid2 : Sample the shares as in Hybrid1, the previous hybrid. For each i ∈ T , replace ali
with bli to obtain share of the form bli, ari, api. Output ⊗i∈T sharei.

3. Hybrid3 : Sample the shares as in Hybrid2, the previous hybrid. For each i ∈ T , replace ari
with bri to obtain share of the form bli, bri, api. Output ⊗i∈T sharei.
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4. Hybrid4 : Sample the shares as in Hybrid3, the previous hybrid. For each i ∈ T , replace api
with bpi to obtain share of the form bli, bri, bpi. Output ⊗i∈T sharei. The distribution of these
t shares is identical to distribution obtained on running the NMShare on input b. Output
⊗i∈T sharei.

Claim: For any pair of secrets a, b ∈ F0, any unauthorized T 6∈ A, the statistical distance be-
tween Hybrid1 and Hybrid2 is at most ε2 (resp. Hybrid1 and Hybrid2 are computationally
indistinguishable).

Proof: The two hybrids only differ in the shares of l. As T is unauthorized in A, the claim follows
from the statistical (resp. computational ) privacy of the secret scheme (AShare,ARec). �

Claim: For any pair of secrets a, b ∈ F0, any unauthorized T 6∈ A, the statistical distance between
Hybrid2 and Hybrid3 is at most 2ε1.

Proof: As in [GK18], the two hybrids are statistically indistinguishable by the (2, 2ε1)-secrecy satis-
fied by the non-malleable code (NMEnc,NMDec) (as in lemma 1), by utilizing that fact knowing
only r reveals nothing about the underlying message m. �

Claim: For any pair of secrets a, b ∈ F0, any unauthorized T 6∈ A, the statistical distance between
Hybrid3 and Hybrid4 is at most ε4.

Proof: T 6∈ A, implies that T 6∈ Apairs. The two hybrids only differ in the shares corresponding to
output of PNMShare. The claim follows from the statistical privacy of (PNMShare,PNMRec).
�

By repeated application of triangle inequality, we get that for any a, b ∈ F0, any unauthorized
T 6∈ A, the statistical distance between Hybrid1 and Hybrid4 is at most 2ε1 + ε2 + ε4 (resp. the
hybrids Hybrid1 and Hybrid4 are computationally indistinguishable). This proves the statistical
(resp. computational) privacy of our scheme.

Statistical Non Malleability : To prove non-malleability of the current secret sharing scheme,
we give a simulator for every admissible tampering attack on our scheme by using the simulator of
the underlying non-malleable code after we have given an equivalent split-state tampering attack.

Let us begin with the intuition for the procedure FindMinSet. Notice that for general ac-
cess structures, it is possible that the given authorized set has an authorized subset of size two,
and another disjoint (minimal) authorized set of size three. Moreover, in our construction different
schemes are being used to encode for these subsets. In case our output depends on all these five
shares, we cannot hope to achieve a reduction to the underlying non-malleable code (because by
definition, non-malleability holds only when the adversary is given one encoding of the message,
and it tampers to produce only one encoding. In the present case it gets two encodings of the
same message). We solve such an issue by giving the procedure FindMinSet in subsection 3,
which prunes the given authorized set efficiently and ensures that no proper subset of the output
(minimal) authorized set is authorized. It is easy to see that this procedure needs to be determin-
istic for us to be able to argue that share reconstructed in real experiment is equal to the one in
reduction. Given this observation, without loss of generality we can assume that adversary chooses
an authorized set T ∈ Amin to be used for reconstruction of the secret, as otherwise we can use
the function FindMinSet to compute T ∈ Amin from any D ∈ A. As the adversary belongs to
Fsplitn , it also specifies a set of n tampering functions {fi : i ∈ [n]}. All these functions act on
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their respective shares independently of the other shares, i.e. every fi takes sharei as input and

outputs the tampered s̃harei. We can also assume without loss of generality that all these tam-
pering functions are deterministic, as the computationally unbounded adversary can compute the
optimal randomness. Unlike [GK18], depending on the cardinality of T , we use these tampering
functions to create explicit split-state function to tamper with either non-malleable code or paired
non-malleable secret-sharing. :

Case 1 (|T | = 2) :
Let i1 and i2 be the two indices of T such that i1 < i2. In this case, we use the tampering functions
fi1 and fi2 for the scheme (NMShare,NMRec) to create explicit tampering functions Fi1 and Fi2

for the underlying scheme (PNMShare,PNMRec). The reduction is described below :

1. (Initial Setup) : Randomly choose a messagem$ ∈M, and run the sharing function NMShare
with input m$ to obtain temporary shares. That is, (tShare1, . . . , tSharen)← NMShare(m$).
For each i ∈ [n], parse tSharei as tli, tri, tpi.

2. The tampering function Fi1 is defined as follows : On input pi1 ∈ F4, replace tpi1 by pi1 in

tSharei1 to obtain sharei1 . Run fi1 on sharei1 to obtain ˜sharei1 . Parse ˜sharei1 as l̃i1 , r̃i1 , p̃i1 .
Output p̃i1 .

3. The tampering function Fi2 is defined as follows : On input pi2 ∈ F4, replace tpi2 by pi2 in

tSharei2 to obtain sharei2 . Run fi2 on sharei2 to obtain ˜sharei2 . Parse ˜sharei2 as l̃i2 , r̃i2 , p̃i2 .
Output p̃i2 .

The functions Fi1 and Fi2 have been defined in this way to ensure that the secret hidden by
the shares li1 and li2 of the scheme (PNMShare,PNMRec) is the same as the secret hidden by
sharei1 and sharei2 of the scheme (NMShare, NMRec). We also need to argue that the reduction
generates sharei1 and share2 from the right distribution, as otherwise the functions fi1 and fi2 may
detect the change in distribution and stop working. Similar to the proof of statistical privacy, we can
use hybrid argument to show that, for any pi1 and pi2 encoding message m← PNMRec{i1,i2}(pi1 ,
pi2), the statistical distance between the distribution of sharei1 , sharei2 generated while executing
NMShare(m) and the two shares generated by the reduction is at most 2ε1. We rely on 2-out-of-2
secrecy property satisfied by non-malleable codes to show that even after learning r from the two
shares, we learn nothing about the underlying secret. We also relied on the fact that two shares of
l reveal nothing about l by the property of the pruning compiler (as in lemma 2). Note that here
we relied on the pruning compiler to ensure that any authorized pair will only get the encoding of
the message under the pair-wise scheme (PNMShare,PNMRec) and not the other scheme.

For all i ∈ [n]\{i1, i2}, let Fi be the identity function. The created set of functions {Fi : i ∈ [n]}
belongs to Fsplitn . Therefore, the tampering experiments of the two non-malleable secret-sharing
scheme (see definition 7) are statistically indistinguishable, specifically,

STamperf ,Tm ≈2ε1 STamperF,Tm

By the ε4-non malleability of the scheme (PNMShare,PNMRec), there exists a simulator
SSimF,T

m such that STamperF,Tm ≈ε4 SSimF,T
m . We use the underlying simulator as our simulator,

and let SSimf ,T
m ≡ SSimF,T

m . Applying triangle inequality to the above relations we prove the
statistical non malleability for this case.

STamperf ,Tm ≈2ε1+ε4 SSimf ,T
m
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Case 2 (|T | ≥ 3) :
Let T = {i1, i2 . . . it} be an ordered set of t indices, such that ij < ij+1. In this case, we use the
tampering functions {fi : i ∈ T} that tamper the shares of the scheme (NMShare,NMRec) to
create explicit tampering functions F and G which tamper the two parts of non-malleable code.
Note that as Fsplit2 allows arbitrary computation, the functions F and G are allowed to brute force

over any finite subset. The reduction giving explicit (F,G) ∈ Fsplit2 is described below.

1. (Initial Setup) : Fix an arbitrary m$ and let l$, r$ ← NMEnc(m$). Run the sharing function
APShare with input l$ to obtain ⊗i∈[n]tli. Run the sharing function LRShare2n(r$) to obtain
⊗i∈[n]tri. Run the sharing function PNMShare(m$) to obtain ⊗i∈[n]tpi. For each i ∈ [n], create
tsharei as tli, tri, tpi. For all i ∈ T , fix pi ← tpi. For each i ∈ {i1, i2}, run fi on tSharei to

obtain ˜tSharei ← fi(tSharei). Parse ˜tsharei as t̃li, t̃ri, t̃pi. Fix li ← tli and l̃i ← t̃li. For i ∈ {i3,
. . . , it}, fix ri ← tri. (Note that, here we rely on our pruning compiler for a different purpose:
fixing li1 , li2 is allowed by property 2 of lemma 2. We would not have been able to do the same
with a computational secret sharing directly. Also note that we depart significantly from initial
step of [GK18], where t− 1 shares of l and only the last share of r was fixed. This was allowed
because any t − 1 shares (resp. one share ) does not reveal anything about the underlying l
(resp. r). We on the other hand have fixed t − 2 shares of r, which encode a random value of
r$).

2. The tampering function F is defined as follows : On input l, sample the value of li3 , . . . ,
lit such that the shares {li : i ∈ T} hide the secret l under (APShare,APRec) and the
distribution of sampled lit is identical to the distribution produced on running APShare with
input l conditioned on fixing {li : i ∈ {i1, i2}}. In case such a sampling is not possible, then
abort. Otherwise, for each i ∈ T \ {i1, i2}, construct sharei as li, ri, pi using the fixed values of

ri and pi. Run the tampering function fi on sharei to obtain tampered s̃harei. Parse s̃harei
as l̃i, r̃i, p̃i. Run the reconstruction function APRec with input ⊗i∈T l̃i to obtain l̃. Output l̃.
(Note that unlike [GK18] we invoked the tampering functions with ‘incorrect’ shares of r).

3. The tampering function G is defined as follows : On input r, sample the values of first two
shares of r, namely {ri1 , ri2} satisfying the following constraints :-
– The two shares {ri1 , ri2} encode the secret r under the (LRShare,LRRec). Moreover, the

two shares should be distributed according to the output distribution of scheme (LRShare,LRRec).

– For each i ∈ {i1, i2}, let Sharei be li, ri, pi, run fi on sharei to obtain s̃harei. Parse s̃harei
as ñli, ñri, ñpi. The value of ñli should be equal to l̃i (the value that was fixed in the initial
step of reduction). This can be achieved via brute force over the all the possibilities.

In case such a sampling is not possible, then abort. Otherwise, run the reconstruction procedure
of the leakage-resilient scheme to obtain r̃, using the tampered values of first 2 shares of r. That
is r̃ ← LRRec{i1,i2}(ñri1 , ñri2). Output r̃. (Unlike [GK18], we now only ensure that the first
two shares are from the correct distribution.)

The reduction given above creates t shares corresponding to indices in T . Unlike the proof
of [GK18], here the distribution of the t shares is not close to the distribution of the t shares during
actual sharing (in fact statistically it is quite far). Nevertheless, we show that an adversary cannot
notice this change without violating the leakage resilience of the (LRShare,LRRec).

We achieve this using hybrid argument, however, instead of outputting t shares ⊗i∈T sharei
as in [GK18], we output NMRec(⊗i∈T fi(sharei)), the output of the tampering experiment. For
ease of understanding, let sharei be of the form ali, ari, api when the shares are produced by the
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reduction on input l and r, with the fixing of l$ and r$. Similarly, let sharei be of the form bli, bri,
bpi when the secret m is encoded by the sharing procedure NMShare conditioned on output of
NMEnc(m) being l, r.

1. Hybrid1 : for each i ∈ T , sharei is of the form ali, ari, api. The distribution of these t shares
is identical to distribution of the shares produced by the reduction on input l and r, with the
fixing of l$ and r$. Output NMRec(⊗i∈T fi(sharei)).

2. Hybrid2 : In the initial setup phase of the reduction, for each i ∈ T , fix bpi instead of api. Pro-
ceed with the reduction to create t shares of the form ali, ari, bpi. Output NMRec(⊗i∈T fi(sharei)).

3. Hybrid3 : Fix l$ ← l in the initial setup phase. Fix shares of p like Hybrid2. Output
NMRec(⊗i∈T fi(sharei)).

4. Hybrid4 : Fix l$ ← l and fix r$ ← r in the initial setup phase. Fix the shares of p as in previous
hybrid Hybrid3. Proceed with the reduction to create the t shares. Output NMRec(⊗i∈T fi(sharei)).

5. Hybrid5 : For each i ∈ [n], let sharei be of the form bli, bri, bpi. The distribution of these t
shares is identical to distribution obtained on running the NMShare conditioned on output of
NMEnc(m) being l, r. Output NMRec(⊗i∈T fi(sharei)).

Claim: For any authorized T ∈ Amin with cardinality greater than 2, the statistical distance between
Hybrid1 and Hybrid2 is at most ε4.

Proof: As |T | ≥ 3, T does not belong to Apairs. The two hybrids only differ in the shares correspond-
ing to output of PNMShare. The claim follows from the statistical privacy of (PNMShare,PNMRec).
�

Claim: For any l, l$, any authorized T ∈ Amin, Hybrid2 is identical to Hybrid3.

Proof: The two hybrids differ in the intial setup phase. In Hybrid2, 2 shares of l$ are fixed, while
in Hybrid3 2 shares of l are fixed. Lemma 2 ensures that the secret is perfectly hidden even when
two shares of APShare are revealed. �

The above also shows that the function F in the reduction never aborts.

Claim: For any r, r$, any authorized T ∈ Amin with cardinality greater than 2, the statistical
distance between Hybrid3 and Hybrid4 is at most ε3.

Proof: Assume towards contradiction that there exists r, r$ ∈ F1, T ∈ Amin and a distinguisher D
that is successful in distinguishing Hybrid3 and Hybrid4 with probability greater than ε3. We use
distinguisher D to construct another distinguisher D1 and a leak function g ∈ Lpairµ which violates
the property of leakage-resilience satisfied by the scheme (LRShare2n,LRRec2n) for the secrets
r, r$. The reduction is described below :

1. (Initial Setup) : Run the sharing function APRec with input l to obtain ⊗i∈[n]tli. Run the
sharing function PNMShare(m) to obtain ⊗i∈[n]tpi. For all i ∈ T , fix pi ← tpi and li ← tli.

Give r, r$ to the adversary, who then specifies r1, r2, r
$
1, r

$
2. Use l1, r1, p1 and l2, r2, p2 to create

the first two shares share1 and share2. Tamper the shares using f1 and f2 to obtain l̃1, r̃1, p̃1
and l̃2, r̃2, p̃2. Compute r̃ ← LRRec(r̃1, r̃2). Fix l̃1, l̃2.

2. (Leak function g) : We define a specific leakage function g = {gi : i ∈ T \{i1, i2}} which leaks
µ bits independently from each of the t− 2 shares.

– For each i ∈ T \ {i1, i2}, define gi as the following function which takes ri as input. Create

tSharei as li, ri, pi. Run fi on tSharei to obtain ˜tSharei ← fi(tSharei). Parse ˜tsharei as
t̃li, t̃ri, t̃pi. Output t̃li.
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As t̃li is an element of F2, it can be represented by at most log |F2| bits, which is equal to µ.
This shows that the above leak function g belongs to the class Lpairµ .

3. (Distinguisher D1) : The distinguisher D1 is defined as follows : On input g(r3, . . . , rt), parse

it as t̃li3 , . . . , t̃lit . Compute l̃ ← APRec(l̃1, . . . , l̃t). Compute m̃ ← NMDec(l̃, r̃). Invoke the
distinguisher D with m̃ and output its output.
Notice, in the case the secret hidden by the leakage-resilient scheme was r$, D will be invoked

with input distributed according to Hybrid2. In the other case, in which r was hidden, D will
be invoked with distributed according to Hybrid3. Therefore the success probability of D1 will
be equal to the advantage of D in distinguishing these two hybrids, which is greater than ε3 by
assumption. Hence, we have arrived at a contradiction to statistical leakage-resilience property of
the scheme (LRShare,LRRec). �

The above also shows that the function G in the reduction aborts with probability less than ε3.
Claim: For any l, r, Hybrid4 is identical to Hybrid5.
Proof: In Hybrid4, the shares of r$ (resp. l$) that are sampled in the initial setup already encode
the value r (resp. l). Therefore, all the t shares created in Hybrid4 will be identically distributed
to the ones produced while executing NMShare with the output of NMEnc being (l, r). �

By repeated application of triangle inequality, we get that for any a, b ∈ F0, the statistical
distance between Hybrid1 and Hybrid5 is at most ε2 + ε3 + ε4. This proves that the set of shares
created by our reduction is statistically close the set of shares created during the real sharing by
the scheme, and thus the tampering functions f = {fi : i ∈ T} can be successfully invoked.

From our construction of F and G, it is clear that for any l and r, if the reduction is successful
in creating the t shares, then the secret hidden is these t shares is the same as the message encoded
by l and r (under non-malleable code). That is,

NMRec({sharei : i ∈ T}) = NMDec(l, r)

Similarly, we can say that the secret hidden is the t tampered shares is the same as the message
encoded by tampered l̃ and tampered r̃. That is,

NMRec({fi(sharei) : i ∈ T}) = NMDec(F(l),G(r))

Therefore, the tampering experiments of non-malleable codes (see definition 3) and non-malleable
secret-sharing schemes (see definition 7) are statistically indistinguishable, specifically,

STamperf ,Tm ≈ε2+ε3+ε4 TamperF,Gm

By the ε1-non malleability of the scheme (NMEnc,NMDec), there exists a simulator SimF,G
m

such that TamperF,Gm ≈ε1 SimF,G
m . We use the underlying simulator as our simulator and let

SSimf ,T
m ≡ SimF,G

m . Applying triangle inequality to the above relations we prove the statistical
non malleability.

STamperf ,Tm ≈ε1+ε2+ε3+ε4 SSimf ,T
m

As the the statistical distances between STamperf ,Tm and SSimf ,T
m in the two cases are (2ε1+ε4)

and (ε1 + ε2 + ε3 + ε4), we take (2ε1 + ε2 + ε3 + ε4) as the worst case statistical error of our scheme
(NMShare,NMRec).

ut
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4 n-out-of-n NMSS against Joint Tampering

Tampering family. We now formally define the supported tampering family, in which, we allow the
tampered value of each share to depend on all the n shares in a restricted fashion.

Tampering Family Fgeneral
n :

Assume that input shares are of equal length vectors over some finite field of prime order. The
adversary specifies four subsets of [n], namely Bin

f , B
out
f , Bin

g , B
out
g and also specifies four arbitrary

tampering functions f1, g1, f2, g2 such that

f1 : {sharei : i ∈ Bin
f } → {f̃ sharei : i ∈ Bout

f }

g1 : {sharei : i ∈ Bin
g } → {g̃sharei : i ∈ Bout

f }

f2 : {sharei : i ∈ Bin
f } → {f̃ sharei : i ∈ Bout

g }

g2 : {sharei : i ∈ Bin
g } → {g̃sharei : i ∈ Bout

g }

such that for all i ∈ [n], the final tampered share is of the form

s̃harei ← f̃ sharei � g̃sharei

where � represents element wise multiplication of the two vectors over the given finite field. Here
Bin
f ⊂ [n] denotes the set of identities of parties whose shares are available as input to function f1

and f2. Similarly, Bout
f denotes the set of identities of parties whose tampered shares are produced

by functions f1 and g1. B
in
g and Bout

f are analogous. The four subsets can be arbitrarily chosen by
the adversary as long as they satisfy the following natural constraints :

– The input to tampering function f1 contains atleast one share, which does not occur as the
input of the tampering function g1 and vice versa. That is, |Bin

f \Bin
g | ≥ 1 and |Bin

g \Bin
f | ≥ 1.

– The output sets Bout
f and Bout

g are disjoint. For the sake of simplicity, we further assume w.l.o.g

that Bout
f ∪Bout

g = [n].

Construction of [ADL14]. As we use the construction of Aggarwal et al. [ADL14] in a non-black-box
way, we recall it for convenience :

Definition 11. ( [ADL14]) Affine Evasive Function : A surjective function h : Fp →M∪{⊥}
is called (γ, δ)-affine-evasive if for any a, b ∈ Fp such that a 6= 0, and (a, b) 6= (1, 0), and for any
m ∈M,

– Pr(h(aU + b) 6= ⊥) ≤ γ
– Pr(h(aU + b) 6= ⊥|h(U) = m) ≤ δ
– A uniformly random X such that h(X) = m is efficiently samplable.

Using these affine evasive functions, they arrive at the construction of split-state non-malleable
codes by composing it with inner product. For L,R ∈ F λp , let 〈L,R〉 represent the inner product

〈L,R〉 =
∑λ

i=1 L[i]×R[i]. Their scheme is as follows :

– The decoding function ADLDec : F λp × F λp → M ∪ {⊥} is defined using affine evasive
function h as follows : ADLDec(L,R) := h(〈L,R〉)
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– The encoding function ADLEnc :M→ F λp ×F λp is defined as ADLEnc(m) = (L,R) where

L,R are chosen uniformly at random from F λp × F λp conditioned on the fact that ADLDec(L,
R) = m.

Theorem 4. ( [ADL14]) Let M = {1, 2, . . . ,K} and let p ≥ (4Kε )ρ log log(4K/ε) be a prime. Let λ be

(d2 log pc e)
6. Let ADLEnc :M→ F λp × F λp ,ADLDec : F λp × F λp →M∪ {⊥} be as defined above.

Then the scheme (ADLEnc,ADLDec) is ε-non-malleable w.r.t Fsplit2 .

Multiplicative secret sharing scheme of [KGH83]. We recall the result of Karnin et al. [KGH83],
in which they construct (n, 0)-secret sharing scheme realizing access structure Ann over arbitrary
Abelian group. Let (Fp,+,×) be a finite field. Let F∗p be the set of non zero elements of the field
Fp, and this set along with the operation × forms an abelian group.

– MultSharen : Let MultSharen : F∗p → ⊗i∈[n]F∗p be a randomized sharing function. On input a
secret s ∈ F∗p, sample the first n−1 shares, namely s1, s2, . . . , sn−1, randomly from F∗p. Compute

the last share using the secret s and the sampled shares as sn ← x/
∏n−1
i=1 si Output s1, . . . , sn.

– MultRecn : Let MultRecn : ⊗i∈[n]F∗p → F∗p be a deterministic function for reconstruction. On
input n shares, namely s1, s2, . . . , sn, compute s←

∏n
i=1 si and output the result s.

Theorem 5. ( [KGH83]) MultSharen,MultRecn is an (n, 0)-secret sharing scheme realizing
access structure Ann.

Our n-out-of-n non-malleable secret sharing scheme :

Theorem 6. Let the message space M , prime p and vector length λ be as in the construction
of (ADLEnc,ADLDec), the coding scheme of Aggarwal et al. [ADL14] that is ε-non-malleable

against Fsplitn . Then for any number of parties n ≥ 2, there exists an efficient construction of(
n, n, 2ε+ 2λ

p )
)
-secret sharing scheme that is

(
ε+ 2λ

p

)
-non-malleable w.r.t Fgeneraln

Corollary 7. The coding scheme of Aggarwal et al. [ADL14] is also statistically-non-malleable

w.r.t. Fgeneral2 . (which allows the tampering of left share to partially depend on the right share)

Proof. (of theorem)

We begin with the description of our secret sharing scheme :

– The reconstruction function JNMRecn : F λ×np →M∪ {⊥} is defined using affine evasive
function h as follows :

JNMRecn(sh1, sh2 . . . shn) := h(〈sh1, sh2 . . . shn〉)

where 〈a1, a2 . . . an〉 =
∑λ

i=1

∏n
j=1 aj [i] is the generalized inner product function.

– The sharing function JNMSharen : M→ F λ×np is defined as follows. On input m, output

(sh1, sh2 . . . shn) where sh1, sh2 . . . shn are chosen uniformly at random from F λ×np conditioned
on the fact that JNMRecn(sh1, sh2 . . . shn) = m.

Correctness, Efficiency, and Statistical Privacy :Correctness and efficiency trivially fol-
lows from the construction. Statistical privacy follows from the non-malleability proved below (in
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a manner similar to lemma 1).

Statistical Non Malleability : We transform an attack on our scheme to an attack on the
underlying split-state non-malleable code. Let the adversary choose a four tampering functions (f1,
g1, f2, g2) and corresponding four subsets (Bin

f , B
out
f , Bout

g , Bin
g ) from the allowed tampering class

Fgeneraln . Let nf ← |Bin
f | and ng ← |Bin

g | denote the cardinality of input set of indices of function

f and g respectively. Similarly, let noutf ← |Bout
f | and noutg ← |Bout

g | denote the cardinality of output
set of indices of function f and g respectively. Using these tampering functions, we give explicit
pair of tampering function (F,G) ∈ Fsplit2 . The description of the reduction follows :
– (Initial Setup) : Start with fixing the shares which occurs as input of both the tampering

functions. Let Bfix ← Bin
f ∩Bin

g . Let nfix ← |Bfix| denote the cardinality of this common set.

For each i ∈ Bfix, fix sharei ← ai1, a
i
2, . . . , a

i
λ randomly such that each aji ∈ F∗p.

– The tampering function F(l)
• On input a vector l ∈ F λp , parse it as l1, l2 . . . lλ such that li ∈ Fp for each i ∈ [λ]. If

there exists an i ∈ [λ] such that li = 0, then abort. Otherwise, for each i ∈ [λ], calculate
prodi ← (li/(

∏
j∈Boutf ∩Bfix a

j
i )) and use multiplicative sharing to share prodi into nf − nfix

shares. That is, let {aji : j ∈ Bin
f \ Bfix} ←MultSharenf−nfix

(prodi). Construct sharei as

ai1, a
i
2, . . . , a

i
λ for each i ∈ Bin

f \Bfix. (We are excluding shares in Bfix as they have already
been fixed earlier)
• Tamper the shares by executing the adversary specified function f1.

{f̃ sharej : j ∈ Bout
f } ← f1({sharej : j ∈ Bin

f })

Similarly, compute the tampered shares using f2.

{f̃ sharej : j ∈ Bout
g } ← f2({sharej : j ∈ Bin

f })

• Parse the tampered shares as f̃ sharei = (ãi1, ã
i
2 . . . ã

i
λ) for each i ∈ [n] (recall [n] = Bin

f ∪Bout
f

by assumption). Reconstruct the tampered value of li for each i ∈ [λ] using the reconstruction
function of multiplicative sharing. Let l̃i ←MultRecnout

f
({ãji : j ∈ [n]}).

• Then construct the tampered vector l̃ as (l̃1, l̃2, . . . , l̃λ) and output l̃.

– The tampering function G(r)
• On input a vector r ∈ F λp , parse it as r1, r2 . . . rλ such that ri ∈ Fp for each i ∈ [λ]. If

there exists an i ∈ [λ] such that ri = 0, then abort. Otherwise, for each i ∈ [λ], calculate
prodi ← (ri/(

∏
j∈Boutf ∩Bfix a

j
i )) and use multiplicative sharing to share prodi into ng − nfix

shares. That is, let {aji : j ∈ Bin
g \Bfix} ←MultShareng−nfix

(prodi). Construct sharei as
ai1, a

i
2, . . . , a

i
λ for each i ∈ Bin

g \Bfix. (We are excluding shares in Bfix as they have already
been fixed earlier)
• Tamper the shares by executing the adversary specified function g1.

{g̃sharej : j ∈ Bout
g } ← g1({sharej : j ∈ Bin

g })

Similarly, compute the tampered shares using g2.

{g̃sharej : j ∈ Bout
f } ← g2({sharej : j ∈ Bin

g })
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• Parse the tampered shares as g̃sharei = b̃i1, b̃
i
2 . . . b̃

i
λ for each i ∈ [n]. Reconstruct the tam-

pered value of ri for each i ∈ [λ] using the reconstruction function of multiplicative sharing.
Let r̃i ←MultRecnout

g
({b̃ji : j ∈ [n]}).

• Then construct the tampered vector r̃ as (r̃1, r̃2, . . . , r̃λ) and output r̃.

It is easy to see that the reduction does not terminate with probability at least
(
1− 2λ

p

)
.

Claim: For any l and r, if the reduction is successful in creating the n shares, then the secret hidden
is these n shares is the same as the message encoded by l and r.

Proof: The reduction constructs an instance of the secret sharing scheme using l and r in a split-
state manner. Basically , for all i ∈ [λ], it creates parts of shares such that

(∏
j∈Boutf

aji
)

= li and(∏
j∈Boutg

aji
)

= ri. In this way, it is ensured that the secret hidden by n shares is the same as the

message encoded by challenge shares l and r of the underlying non-malleable code. This can be
seen by the following calculation :

JNMRecn
(
{sharei : i ∈ [n]}

)
= h

( λ∑
i=1

n∏
j=1

aji
)

= h

( λ∑
i=1

( ∏
j∈Boutf

aji
)
×
( ∏
j∈Boutg

aji
))

= h
( λ∑
i=1

li × ri
)

= h(〈l, r〉)

= ADLDec(l, r)

�

Claim: For any l and r, if the reduction is successful in creating the t shares, then the secret hidden
is the t tampered shares is the same as the message encoded by the tampered l and the tampered
r.

Proof: Let {s̃harei : i ∈ [n]} be the disjoint union of outputs of two tampering functions f({sharei :
i ∈ Bin

f }) and g({sharei : i ∈ Bin
g }). Now the reduction transforms the tampered shares back to

two tampered parts of non-malleable code. Let (F,G) be as defined in the reduction.

ADLDec
(
F(l),G(r)

)
= h

(
〈F(l),G(r)〉

)
= h

(
〈l̃, r̃〉

)
= h

( λ∑
i=1

l̃i × r̃i
)

= h

( λ∑
i=1

( ∏
j∈[n]

ãji
)
×
( ∏
j∈[n]

b̃ji
))

= h
( λ∑
i=1

n∏
j=1

(ãji × b̃
j
i )
)
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= h
( λ∑
i=1

n∏
j=1

(s̃harej [i])
)

= JNMRecn
(
{s̃harej : j ∈ [n]}

)
�

By design the tampering functions F and G belongs to Fsplit2 . By the ε-non malleability of the
scheme (ADLEnc,ADLDec), we know that there exists a distribution DF,G such that

SimF,G
m ≈ε TamperF,Gm

Using the observation about the equivalence of tampering, and assuming that the adversary succeeds
in case the reduction terminates by executing abort, we get that

STamperf ,Tm ≈ε+ 2λ
p

SSimf ,T
m

This proves the non malleability of our scheme. ut
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A Secret Sharing Schemes for Paired Access Structures

A.1 Non-Malleable Secret Sharing for Paired Access Structures

Theorem 7. For any number of parties n, and any paired access structure A, if for any ε1 ≥ 0,
there exists (NMEnc,NMDec) a coding scheme that is ε1-non-malleable wrt Fsplit2 , which encodes
an element of set F0 into two elements of the field F1.

then there exists (n, 2n2ε1)-secret sharing scheme realizing paired access structure A that is

(2nε1)-non-malleable w.r.t Fsplitn . The resulting scheme, (PNMShare,PNMRec), shares an ele-
ment of the set F0 into n shares where each share is an element of (F0)

n. Further, if the underlying
non-malleable code is efficient (polynomial time sharing and reconstruction functions), then the
constructed scheme is also explicit.

Proof. The construction of the scheme (PNMShare,PNMRec) is given below :
1. Sharing Function(PNMShare)

For each {i1, i2} ∈ Amin such that i1 < i2, encode m using the encoding procedure of non-
malleable code to obtain vi2i1 , v

i1
i2
← NMEnc(m). For each {i, j} 6∈ Amin such that i ≤ j, let

vji , v
i
j ← 0. For each i ∈ [n], construct the ith share of the scheme as follows : sharei = (v1i , . . . ,

vni ). Output (share1, . . . , sharen)

2. Reconstruction Function(PNMRecD)
Find the minimal authorized set T ∈ Amin by running the procedure findMinSet with input
D. Let i1 and i2 be the two indices of T such that i1 < i2. On input the shares ⊗i∈Dsharei
corresponding to authorized set D, for each i ∈ D, parse sharei as v1i , . . . , v

n
i . Use the decoding

procedure NMDec to obtain the hidden secret m← NMDec(vi2i1 , v
i1
i2

). Output m.
Correctness trivially follows from the construction. Using an hybrid argument similar to one

employed in proving statistical privacy of leakage-resilient scheme (LRShare,LRRec), we can
show that the for any messages a, b ∈ F0, any unauthorized set of shares U 6∈ A, the distribution
of the unauthorized shares when encoding a is (2n2ε1)-close to the distribution of the unauthorized
shares when encoding b.

Statistical Non Malleability : Using the tampering functions {fi : i ∈ [n]} belonging to

Fsplitn , we give a reduction, by creating explicit function (F,G) ∈ Fsplit2 that tampers with the two
shares of the split-state non-malleable code.

Let T be an authorized set containing two elements i1 and i2 such that i1 < i2. The reduction
giving explicit (F,G) ∈ Fsplit2 is described below.
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1. (Initial Setup) : Randomly choose a messagem$ ∈ F0, and run the sharing function PNMShare
to obtain temporary shares. That is, (tShare1, . . . , tSharen) ← PNMShare(m$). For each
i ∈ [n], parse tSharei as tv1i , . . . , tv

n
i .

2. The tampering function F is defined as follows : On input l ∈ F1, replace tvi2i1 by l in tSharei1

to obtain sharei1 . Run fi1 on sharei1 to obtain ˜sharei1 . Parse ˜sharei1 as ṽ1i1 , . . . , ṽ
n
i1

. Let l̃← ṽi2i1 .

Output l̃.
3. The tampering function G is defined as follows : On input r, replace tvi1i2 by r in tSharei2 to

obtain sharei2 . Run fi2 on sharei2 to obtain ˜sharei2 . Parse ˜sharei2 as l̃i2 , r̃i2 , ṽ
1
i2
, . . . , ṽni2 . Let

r̃ ← ṽi1i2 . Output r̃.
The functions F and G have been defined in this way to ensure that the message encoded by

l and r of the coding cheme (NMEnc,NMDec) is the same as the secret hidden by sharei1 and
sharei2 of the secret sharing scheme (PNMShare,PNMRec).

We also need to argue that the reduction generates sharei1 and share2 from the right distribu-
tion, as otherwise the functions fi1 and fi2 may detect the change in distribution and stop working.
In a manner similar to the proof of statistical privacy, we can use hybrid argument to show that, for
any l and r encoding message m← NMDec(l, r), the statistical distance between the distribution
of sharei1 , sharei2 generated while executing PNMShare(m) and the two shares generated by
the reduction is at most 2(n − 1)ε1. We count this towards the error of the reduction. Otherwise,
the reduction ensures that the secret hidden by tampered version of shares of the two schemes is
the same. Therefore, the tampering experiments (definition 7) for the two schemes are statistically
indistinguishable, specifically,

STamperf ,Tm ≈2(n−1)ε1 TamperF,Gm

By the ε1-non malleability of the coding scheme (NMEnc,NMDec), we know that there
exits a distribution DF,G such that SSimF,G

m ≈ε1 TamperF,Gm . Using the observation about the
equivalence of tampering, and applying triangle inequality, we get that there exits a distribution
SDf,T such that

STamperf ,Tm ≈2nε1 SimF,G
m

Hence, for this case statistical non malleability has been proved .

A.2 2-out-of-n Leakage-Resilient Secret Sharing Schemes

In this subsection, we show how to use a (2, 2, ε)-secret sharing scheme of [GK18] to construct a
(2, n, ε′)-secret sharing scheme that is leakage-resilient wrt Lpairµ . Let us recall a definition and and
a result from [GK18].

Leakage Family Lsplitµ [GK18] Lsplitµ consists of the family of all leakage functions of the form
f = (f1, f2, . . . , fn) and any index j ∈ [n]. Specifically, for the chosen j ∈ [n], the function fj on input
sharej outputs the whole sharej . While for each i ∈ [n] \ {j}, function fi computes an arbitrary
function of input sharei and outputs at most µ bits.

Lemma 3. [GK18] For ε > 0, any leak function (f, g) ∈ Lsplitµ , there exists efficient (2, ε)-secret

sharing scheme realizing access structure A2
2 that is (ε)-leakage-resilient wrt Lsplitµ . The resulting

scheme, (Share,Rec) , shares a m bit secret into two n bit shares, where n = m+ µ+ 3 log 4
ε .
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We now prove that the construction of 2-out-of-n leakage-resilient secret sharing scheme of
[GK18] is infact leakage-resilient against Lpairµ .

Theorem 8. Assume that for any ε > 0, let (Share,Rec), be any efficient (2, 2, ε)-secret sharing

scheme that is ε-leakage-resilient wrt Lsplitµ and encodes an element of M into two elements of F.
Then for any number of parties n, there exists an efficient (2, n, nε)-secret sharing scheme that

is (nε)-leakage-resilient wrt Lpairµ . The resulting scheme, (LRShare2n,LRRec2n), shares an element
of M into n shares, where each share is an element of (F)n.

Proof. The efficient construction of (LRShare2n,LRRec2n) is given below:
– Sharing function (LRShare2n).

On input a secret message m ∈ M, for each {i, j} ∈ Amin such that i < j, share m using
the sharing procedure of underlying leakage-resilient scheme, as uji , u

i
j ← Share(m). For each

i ∈ [n], let uii ← 0. Finally, for each i ∈ [n], construct sharei as u1i , u
2
i , . . . , u

n
i .

– Reconstruction function (LRRec2n).
Let i and j be the first two indices of T such that i < j. Parse sharei as u1i , u

2
i , . . . , u

n
i and

parse sharej as u1j , u
2
j , . . . , u

n
j . Using the reconstruction procedure of underlying leakage resilient

scheme compute, m← Rec(uji , u
i
j). Output m.

Correctness, Efficiency and Statistical Privacy: Correctness and efficiency trivially fol-
lows from construction. Statistical privacy follows as a corollary to leakage-resilience proved below.

Leakage-Resilience: (Proof Sketch): Can be proven via hybrid argument in which we swap
the values of shares corresponding to every pair from encoding of one secret to another for unfixed
shares. There are couple of possibilities. Both shares are fully leaked then nothing needs to be
swapped. Only one of the two shares is fully leaked, then we can rely on the leakage resilience of
the lemma 3 for achieving this swapping. This lemma also suffices for the case when none of the
two shares is fully leaked.

ut
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