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Abstract Online advertising is a multi-billion dollar industry, forming
the primary source of income for many publishers offering free web content.
Serving advertisements tailored to users’ interests greatly improves the
effectiveness of advertisements, which benefits both publishers and users.
The privacy of users, however, is threatened by the widespread collection
of data that is required for behavioural advertising. In this paper, we
present BAdASS, a novel privacy-preserving protocol for Online Behavi-
oural Advertising that achieves significant performance improvements
over the state of the art without disclosing any information about user
interests to any party. BAdASS ensures user privacy by processing data
within the secret-shared domain, using the heavily fragmented shape of
the online advertising landscape to its advantage and combining efficient
secret-sharing techniques with a machine learning method commonly
encountered in existing advertising systems. Our protocol serves advert-
isements within a fraction of a second, based on highly detailed user
profiles and widely used machine learning methods.

Keywords: Behavioural advertising · Machine learning · Secret sharing
· Privacy · Cryptography.

1 Introduction

Online advertising is forming one of the driving economic factors behind free web
services. With a global spend of $178 billion in 2016 [18], online advertising forms
a primary financial pillar supporting free web content by allowing publishers to
offer content to users free of charge [9]. In recent years, however, an increasing
number of people object to advertisements being shown on web pages they
visit, resulting in a sharp increase in the use of technological measures to block
advertisements. According to a 2017 report, an estimated 615 million devices
have ad blocking tools installed, amounting to 11% of the Internet population,
and the use of such tools is expected to grow further in the future [22]. The
consequence of the increased use of ad blockers is that publishers experience a
⋆ This paper is an extended version of a paper that will appear in the proceedings of
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significant loss of revenue from the advertising space they offer. The global loss of
advertising revenue due to ad blocking was estimated to be $41.4 billion in 2016,
or 23% of the total ad spend [23]. Some publishers request that users disable ad
blockers on their web pages, or deny access to ad blocker users altogether, in
an effort to limit revenue loss due to ad blocking [1]. The consequence of such
practices is an arms race between ad blocking technologies, and circumvention of
ad blockers. These developments pose a threat to the business models of many
free web services, necessitating measures to alleviate the objections against online
advertising in order to attain a sustainable advertisement-supported Internet
economy.

A major concern for the users is their privacy which is threatened by the
widespread data collection of advertising companies [30]. The collected data
is used in behavioural targeting to determine which advertisements are shown
to a user based on the user’s browsing behaviour. Although such behavioural
advertising is recognized as being beneficial to both users and publishers, a
mistrust of advertising companies and a lack of control hinders acceptance of
behavioural advertising [30]. In a recent survey among users of an ad blocking
tool, 32% of respondents indicated that privacy concerns were among the reasons
for their use of an ad blocker [1]. A similar survey on privacy and advertising
showed that 94% of respondents considered online privacy an important issue,
and 70% of respondents indicated that online advertising networks and online
advertisers should be responsible for users’ online privacy [29].

The practice of showing advertisements based on previously exhibited beha-
viour is known as Online Behavioural Advertising (OBA). In OBA, user interests
are inferred from data such as visited web pages, search queries, and online
purchases. Based on these user interests, advertisements are typically personal-
ized using campaign-specific supervised machine learning models that predict
users’ responses to advertisements. Behavioural advertising greatly improves
the expected advertising effectiveness by targeting advertisements at individual
users [33]. Users benefit from OBA by being served more relevant advertisements,
and advertisers can reach a specific desired audience by using accurate targeting.
Moreover, publishers benefit from an increased value of their advertising space.

OBA utilises the Real-Time Bidding (RTB) model of buying and selling ad-
vertisements [31]. RTB facilitates real-time auctions of advertising space through
marketplaces called ad exchanges (AdX), allowing buyers to determine bid values
for individual ad impressions. The real-time nature of such auctions, in which
bids are to be placed in a fraction of a second, allows fine-grained control over
allocation of advertising budgets, but also requires the whole auction process
to be carried out programmatically. Along with ad exchanges, other types of
platforms emerged to manage the added complexity of RTB. Demand-Side Plat-
forms (DSPs) provide advertisers, who may not possess the expertise required
to accurately estimate impression values, with technologies to bid on individual
impressions from multiple inventories. Likewise, Supply-Side Platforms (SSPs)
support publishers in optimizing advertising yield.
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In existing literature, a number of methods is proposed to address privacy
concerns in OBA. These methods include blocking advertisements altogether [20],
obfuscating browsing behaviour [8], and anonymization [24], as well as exposing
only generalized user profiles to advertising companies [28]. Limiting the data
that is available to advertising companies, however, is expected to decrease the
targeting accuracy [10], and thus the value of advertisements to users, advertisers,
and publishers. Other work proposes cryptographic approaches to aggregate click
statistics [28] or select advertisements using secure hardware [3]. These approaches,
however, are based on advertising models in which centralized networks perform
simple keyword-based advertisement selection, and as such are unsuitable for use
within the highly distributed RTB model. Recently, Helsloot et al. [17] proposed a
protocol that uses threshold homomorphic encryption to preserve privacy in OBA
within the RTB model. However, the use of expensive cryptographic operations
throughout the protocol results in prohibitively large computational costs.

In this paper, we present BAdASS, a novel privacy-preserving protocol for
OBA that is compatible with the RTB mechanism of buying ads and supports
behavioural targeting based on highly detailed user profiles. BAdASS achieves
significant performance improvements over the state of the art, using machine
learning on secret-shared data to preserve privacy in OBA tasks. Our protocol
uses the highly fragmented nature of the OBA landscape to distribute trust
between parties, such that no single party can obtain sensitive information. We
achieve performance multilinear in the size of user profiles and the number of
DSPs, and perform the highly time-sensitive advertisement selection task in a
fraction of a second.

In the rest of the paper, we summarize the preliminary methods in Section 2.
In Section 3 we explain BAdASS in detail. In Section 4 we provide the performance
analyses for our protocol based on communication and computation complexity
and real-time experiments. We analyze the security of BAdASS in Section 5 and,
we conclude the paper in Section 6.

2 Preliminaries

2.1 Logistic Regression

Logistic regression is one possible technique for user response estimation which has
been commonly used by advertising companies such as Google [19], Facebook [16],
and Criteo [5]. Given a 𝑑-dimensional feature vector 𝑥 and model parameters 𝑤,
it estimates the probability of a binary outcome using the sigmoid function:

𝑦 = 𝜎(𝑤⊺𝑥) =
1

1 + 𝑒−𝑤⊺𝑥
. (1)

In the concept of OBA, 𝑥 contains the user profile while the binary output 𝑦
indicates click or no click. The model parameters are updated as 𝑤 ← 𝑤 − 𝜂𝑔
using the gradient of the logistic loss 𝑔 = (𝑦 − 𝑦)𝑥 as in [19]. 𝜂 in the update
function is the learning rate which can be a constant or can be set to decay per
iteration and per coordinate of the gradient vector.
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2.2 Feature Hashing

The feature space in logistic regression may become too large when categorical
features with high cardinality are used. To avoid a high dimensional user vector,
we use the hashing trick in [32] which enables to map the user profile into a
lower-dimensional vector 𝑥 by setting 𝑥𝑖 to a count of the values whose hash is 𝑖.
The resulting 𝑑-dimensional vector 𝑥 (in [5], 𝑑 = 224 is used) is the input feature
vector to the logistic regression model.

2.3 Shamir Secret Sharing

Shamir’s secret sharing scheme [26] is a 𝑡-out-of-𝑛 threshold scheme in which a
secret 𝑠 ∈ Z𝑝 for a prime 𝑝 is shared among 𝑛 parties, from which any subset of
size at least 𝑡 can reconstruct the secret. We use the notation ∐︀𝑠̃︀ to indicate a
(𝑡, 𝑛) Shamir secret sharing of a value 𝑠, for some predefined 𝑡 and 𝑛, and ∐︀𝑣̃︀
denotes an element-wise Shamir sharing of the vector 𝑣. Shamir’s secret sharing
scheme is additively homomorphic, such that ∐︀𝑠1̃︀+∐︀𝑠2̃︀ = ∐︀𝑠1+𝑠2̃︀. Parties holding
shares of two secret values can thus compute shares of the sum of the two values,
without interaction with other parties. Furthermore, a public value 𝑐 can be
added to a shared secret 𝑠 without interaction by adding 𝑐 to each of the shares,
i. e. ∐︀𝑠̃︀ + 𝑐 = ∐︀𝑠 + 𝑐̃︀. Likewise, a shared secret can be multiplied with a public
value 𝑐 by multiplying each of the shares with 𝑐, i. e. ∐︀𝑠̃︀ ⋅ 𝑐 = ∐︀𝑐𝑠̃︀.

Multiplication of the shares of two secret values 𝑠1 and 𝑠2 results in a
(2 (𝑡 − 1) , 𝑛) sharing of 𝑠1 ⋅ 𝑠2, thus requiring 2𝑡 − 1 shares to reconstruct the
secret. Ben-Or et al. [4] describe a multiplication protocol in which the resulting
polynomial is reduced to degree 𝑡 − 1 and randomized. Given a sharing of a
value 𝑠, where ∐︀𝑠̃︀𝑖 is held by party 𝑖, the degree reduction step is performed
by each party splitting their share ∐︀𝑠̃︀𝑖 into a new (𝑡, 𝑛) sharing ∐︀𝑠̃︀𝑖,1, . . . , ∐︀𝑠̃︀𝑖,𝑛.
Each party 𝑖 distributes their subshares among all parties, such that party 𝑗 is
given the subshare ∐︀𝑠̃︀𝑖,𝑗 . Each party 𝑗 then combines the received subshares
∐︀𝑠̃︀1,𝑗 , . . . , ∐︀𝑠̃︀𝑛,𝑗 into a new share ∐︀𝑠̃︀′𝑗 . The resulting sharing ∐︀𝑠̃︀′ is a new (𝑡, 𝑛)
sharing of the value 𝑠. Gennaro et al. [14] simplify the degree reduction and
randomization steps into a single step, requiring a single round per multiplication.
Note that 𝑛 needs to be at least 2𝑡 − 1 for degree reduction to work.

2.4 Universal Re-encryption

Universal re-encryption, presented as a technique for mix networks by Golle et
al. [15], allows re-randomization of a ciphertext without access to the public key
that was used during encryption. In BAdASS, we use the universal re-encryption
technique presented in [15], based on a multiplicatively homomorphic cryptosys-
tem such as ElGamal [12]. We use the notation J𝑥K𝑢 to denote the encryption of
a value 𝑥 under the public key of user 𝑢 using a universal re-encryption scheme.
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3 Protocol Design

In designing a privacy-preserving online advertising system, we aim to satisfy
three goals. The first goal is to ensure profile privacy, such that information
from which the interests of a user can be inferred is not revealed to any party
other than the user. Moreover, we aim to ensure model privacy, such that model
parameters used by a bidder are not revealed to any party other than the bidder.
Finally, the system must be applicable to the RTB model and integrated into
the online advertising landscape, allowing bidders to estimate the value of an ad
impression based on historic observations.

Our protocol is based on a semi-honest security model. Since some existing
companies act as both AdX and DSP, we assume that the AdX colludes with
DSPs. To assist in privacy-preserving computations in the presence of colluding
parties, we introduce an additional entity into our setting called Privacy Service
Provider (PSP). The PSP is not trusted with private data in unencrypted form,
but is assumed to follow the protocol specification without colluding with any
other party. We assume that targeting is performed only by DSPs, such that DSPs
are the only parties that operate on user data. The AdX only collect bids, and
from these bids select the winner. SSPs only offer advertising space to multiple
ad exchanges, and are not considered in our protocol.

Parties collaboratively compute bid values based on a logistic regression model
using secret-shared user profiles and model parameters. We define a DSP group
𝛤𝑖 to be a set of DSPs of size at least 𝑚 = 2𝑡 − 1 for a given reconstruction
threshold 𝑡. Computations on behalf of a DSP 𝛾𝑖,𝑗 ∈ 𝛤𝑖 are performed entirely
within 𝛤𝑖. In our protocol descriptions, any operations performed by DSPs on
secret-shared values are assumed to be performed by all DSPs in a DSP group
𝛤𝑖. Plaintext values and encrypted values are generated by the DSP responsible
for the campaign on which computations are performed and, where necessary,
published within 𝛤𝑖.

BAdASS is divided into four different phases: user profiling, bidding, auction,
and model update. Prior to protocol execution, advertisers set up campaigns
such that DSPs can bid on their behalf, and the PSP splits DSPs into groups
of at least 𝑚 parties. Moreover, each DSP shares campaign-specific parameters
among the DSPs in their group. Finally, each user generates a key pair using
any multiplicatively homomorphic asymmetric cryptosystem and publishes their
public key. In the following subsections, we explain the four phases of BAdASS.
A summary of symbols used in the description of the protocol design is provided
in Table 4 in Appendix A.

3.1 User Profiling Phase

To preserve privacy during the user profiling phase, browsing behaviour is recor-
ded locally within the user’s web browser using an existing technique such as
RePriv [11]. The resulting profile is captured in a 𝑑-dimensional feature vector
𝑥 using feature hashing. To reduce the communication costs associated with
sending the full 𝑑-dimensional feature vector for each request, feature vectors are
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cached at DSPs. Caching allows periodic background updates of feature vectors,
minimizing delays experienced by the user during the time-sensitive advertisement
selection phase. To securely share a feature vector among DSPs without knowing
the topology of the OBA landscape, the user splits their profile into two additive
shares, one of which is given to the ad exchange, the other to the PSP. Both
the ad exchange and the PSP, in turn, create Shamir shares from their additive
shares, which are distributed among the DSP groups for which the profile update
is intended. Every DSP within the group thus receives two Shamir shares, one
from each additive share created by the user, which are combined into a single
Shamir share of the original value by calculating the sum of the two shares.

Depending on the feature hashing method used, the feature vector 𝑥 is either
binary or contains only small values. Assuming the use of a binary feature
vector, it would be ideal from the user’s perspective to create additive shares of
the feature vector in Z2, rather than Z𝑝, as smaller shares reduce the required
communication bandwidth. Subsequent computations on the user profile, however,
must be performed in Z𝑝 to represent real values with sufficient precision. In our
setting with two additive shares, securely converting shares in Z2 to shares in
Z𝑝 requires an invocation of the multiplication protocol for every feature vector
dimension, resulting in high computation and communication costs for DSPs. We
therefore favour sharing the user profile in Z𝑝.

3.2 Bidding Phase

The bidding phase starts when a users contacts an AdX with an ad request.
Receiving the ad request, AdX sends a bid request to DSP groups each of which
cooperatively calculates the bidding prices for the campaigns they are responsible
for. For each campaign, the user response 𝑦 is estimated using a logistic regression
model, and bidding values are derived from response estimations using linear
bidding functions 𝐵(𝑦) = 𝑐1𝑦 + 𝑐2 for campaign-specific constants 𝑐1 and 𝑐2. A
challenge in logistic regression is to compute sigmoid function within the secret-
shared domain. In existing literature the sigmoid function is computed either by
approximation [34,6] or in clear [21,2,17]. In this work, we let the PSP compute
the sigmoid function in the clear, as approximation leads to a degradation of
predictive performance and incurs additional computational costs. The input
to the sigmoid function 𝑤⊺𝑥 is thus revealed to the PSP. In our setting, this
is acceptable as the PSP knows neither the user, nor the campaign a value is
associated with. Therefore, the PSP cannot infer any more information than that
there exists a user who is interested in a topic. Moreover, a DSP group could
submit additional randomly generated values to mask real inputs.

Protocol 1 outlines the bidding protocol. The model parameters 𝑤𝑘 for
campaigns 𝑘 ∈𝐾𝛤𝑖 , where 𝐾𝛤𝑖 is the set of campaigns run within 𝛤𝑖, and the user
profile 𝑥𝑢 of a user 𝑢, are shared within 𝛤𝑖. The multiplications that are required
for the calculation of the inner product of 𝑤𝑘 and 𝑥𝑢 in line 3 are performed
locally, without degree reduction. Since the results of these local multiplications
are not used in further multiplications, the sum of all multiplied values is a single
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sharing ∐︀𝑠𝑘̃︀ of degree 2𝑡 − 2. As the PSP subsequently collects and combines all
𝑚 ≥ 2𝑡 − 1 shares of 𝑠𝑘, no degree reduction step is required in calculating 𝑤⊺𝑥.

Protocol 1 Bidding protocol, executed jointly by a DSP group 𝛤𝑖 and the PSP,
and invoked by the ad exchange for a user 𝑢 at every DSP group.
1: procedure dsp:calculate-bid({∐︀𝑤𝑘̃︀, ∐︀𝑐𝑘̃︀ ⋃︀ 𝑘 ∈𝐾𝛤𝑖}, 𝑢)
2: for all 𝑘 ∈𝐾𝛤𝑖 do

3: ∐︀𝑠𝑘̃︀←
𝑑

∑

𝑖=1
∐︀𝑥𝑢,𝑖̃︀ ⋅ ∐︀𝑤𝑘,𝑖̃︀

4: Pick a unique random value 𝑟𝑘
5: Store mapping 𝑟𝑘 → (J𝑎𝑘K𝑢, 𝛤𝑖) at PSP via AdX
6: end for
7: Pick random permutation function 𝜋(⋅)
8: ∐︀𝑠′̃︀← 𝜋(∐︀𝑠̃︀)
9: invoke ∐︀𝑦′̃︀← psp:calculate-sigma(∐︀𝑠′̃︀) at PSP

10: ∐︀𝑦̃︀← 𝜋−1(∐︀𝑦′̃︀)
11: for all 𝑘 ∈𝐾𝛤𝑖 do
12: ∐︀𝑏𝑘̃︀← ∐︀𝑐𝑘,1̃︀ ⋅ ∐︀𝑦𝑘̃︀ + ∐︀𝑐𝑘,2̃︀
13: end for
14: end procedure

15: procedure psp:calculate-sigma(∐︀𝑠̃︀)
16: 𝑠← combine ∐︀𝑠̃︀
17: for all 𝑠𝑖 ∈ 𝑠 do
18: 𝑦𝑖 ← 𝜎(𝑠𝑖)
19: end for
20: return ∐︀𝑦̃︀
21: end procedure

Since campaign parameters 𝑐𝑘,1 and 𝑐𝑘,2 are private to the DSP responsible
for campaign 𝑘, they are secret-shared among the parties in the DSP group.
Calculation of the bid price 𝑏𝑘 = 𝑐𝑘,1𝑦𝑘 +𝑐𝑘,2 therefore requires a single invocation
of the multiplication protocol for every campaign, which can be parallelized such
that all bid values are calculated in a single round of communication. To ensure
profile privacy, each advertisement 𝑎𝑘 is encrypted using the user’s public key.
The encrypted advertisement is submitted to the PSP, via the AdX such that the
PSP cannot link the submission to a specific DSP, along with a random number 𝑟𝑘
and the group descriptor 𝛤𝑖. Finally, the PSP stores a mapping 𝑟𝑘 → (J𝑎𝑘K𝑢, 𝛤𝑖),
which is used in the auction phase to retrieve the advertisement.

3.3 Auction Phase

The auction protocol uses a hierarchical auction in which each DSP group engages
in a secure comparison protocol to select the highest of the bids within the DSP
group, along with associated information that is used in the model update phase.
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Shares of the information associated with the highest bid are stored for later
use, after which each DSP group submits their highest bid to a global auction to
select the final winner. Note that, due to the use of secret sharing, the global
auction cannot be performed by the ad exchange alone. In order to maintain the
same level of trust as in the bidding protocol, at least 𝑚 parties are required in
the auction protocol. Therefore, the global auction is not performed by the ad
exchange, but by a randomly selected DSP group 𝛤 ∗.

The auction protocol is shown in Protocol 3 in Appendix B. The protocol
relies on a secure comparison protocol that takes as input shares of two values 𝑎
and 𝑏, and gives as output shares of 1 if 𝑎 ≥ 𝑏, and shares of 0 otherwise. Such
a protocol is described by e. g. Reistad and Toft [25]. During the procedure to
find the maximum bid, shares of the highest bid and additional information
associated with the highest bid are obtained via multiplication with the result
of the comparison. After the global comparison, shares of a random identifier 𝑟
associated with the highest bid are sent to the PSP, where the shares are combined
to retrieve the encrypted advertisement and group descriptor associated with
the highest bid. To ensure unlinkability between the encrypted advertisement
retrieved from the PSP after the auction and the values submitted prior to the
auction, the PSP performs re-randomization of the encrypted advertisement on
line 30 using universal re-encryption. Finally, the encrypted ad and the group
descriptor, as well as the bid request identifier 𝑣, are sent via the ad exchange to
the user, who decrypts and displays the advertisement.

3.4 Model Update Phase

During the model update phase, the response prediction model associated with
the shown advertisement is updated using the update rule from Section 2.1. In
order to ensure unlinkability between users and campaigns, the model update
protocol is split into three stages. During the first stage, the user identifier is
revealed to the DSP group responsible for the shown advertisement in order
to calculate shares of the update gradient 𝑔 = 𝜂(𝑦 − 𝑦)𝑥. In the second stage,
each DSP submits a set of multiple gradient shares to the PSP, which mixes the
received shares via random rotation. The PSP then re-shares the set of gradient
shares among the DSP group. In the final stage, the campaign identifiers of the
set of gradients are revealed to the DSP group, allowing the DSP group to apply
the gradients calculated in the first stage to the correct parameter vector. Since
the gradient shares have been mixed, the DSP group cannot link values revealed
in the third phase to values revealed in the first phase.

The model update protocol, described in detail in Protocol 4 in Appendix B,
is initiated by a user 𝑢, who reports shares of their response 𝑦 directly to the
responsible DSP group based on the group descriptor 𝛤𝑖 received along with the
advertisement. In the first phase, each DSP in 𝛤𝑖 calculates shares of 𝛿 = 𝜂(𝑦 − 𝑦),
which is multiplied with each element of the user profile to form 𝑔. These
multiplications are performed locally, without reducing the degree of the result.
The update gradient shares, bid value shares, and campaign identifier shares are
locally stored as lists ∐︀𝐺̃︀, ∐︀𝐵̃︀, and ∐︀𝐾̃︀ until sufficient values are aggregated for
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mixing. When sufficient values are accumulated, each DSP sends its shares to the
PSP for mixing. To prevent recombination of shares by the PSP, each DSP 𝛾𝑖,𝑗
rotates their lists of shares by a random number 𝑟𝑖,𝑗 . Given a sufficiently large
aggregation threshold, the average number of attempts needed for the PSP to
successfully combine the received shares becomes prohibitively large. The PSP
subsequently picks a random number 𝑟𝑃𝑆𝑃 , and rotates each of the lists of shares
𝑟𝑃𝑆𝑃 times, such that the positions of output values cannot be linked to the
positions of input values.

The share values themselves need also be randomized before being sent back
to the DSPs to prevent linking input values to output values. Since the PSP does
not know which received shares belong to the same value due to the rotation
by DSPs, randomization cannot be performed by adding shares of zero. Instead,
the PSP splits each received share ∐︀𝑠̃︀𝑖 into a new sharing ∐︀𝑠̃︀𝑖,1, . . . , ∐︀𝑠̃︀𝑖,𝑛. These
subshares are distributed among the DSPs in 𝛤𝑖 in a manner analogous to the
degree reduction step described in Section 2.3, such that each party 𝑗 receives
subshares ∐︀𝑠̃︀1,𝑗 , . . . , ∐︀𝑠̃︀𝑛,𝑗 . The DSPs then recombine the received subshares to
obtain new shares of the original values ∐︀𝑠̃︀𝑖. To match subshares originating
from the same value, each DSP rotates the subshares originating from DSP 𝛾𝑖,𝑗
back 𝑟𝑖,𝑗 times. After recombining the rotated subshares, each DSP has lists ∐︀𝐺′̃︀,
∐︀𝐵′̃︀, and ∐︀𝐾 ′̃︀, where each of the lists contains shares of the same values as were
submitted to the PSP, rotated 𝑟𝑃𝑆𝑃 times.

The DSPs combine ∐︀𝐾 ′̃︀ to reveal the list of campaign identifiers to which the
gradient and bid shares belong. Due to the mixing of the lists, DSPs cannot link
the campaign identifiers revealed in the third phase to user identifiers revealed in
the first phase, provided a sufficiently large mixing threshold is chosen. Finally,
each DSP locally updates their shares of the model parameter vectors with the list
of gradient shares, and adds the received bid shares to the bid value aggregates.

4 Performance Analysis

To evaluate the performance of BAdASS, we provide both a theoretical analysis
of the computational and communication complexities of the subprotocols, and a
set of measurements obtained from a proof-of-concept implementation.

4.1 Computational Complexity

The computational complexity of BAdASS depends on a number of variables, in
particular the user profile dimensionality 𝑑, the number of campaigns 𝐾, and the
update aggregation threshold 𝜁. The used variables are summarized in Table 5 in
Appendix A. In the profile update protocol, the user creates 𝑑 additive sharings,
and the ad exchange and PSP both create 𝑑 Shamir sharings. Moreover, each DSP
performs 𝑑 additions. If the profile update protocol is invoked for all DSP groups
at once, the computational complexity is therefore 𝑂(𝑑𝑛), where 𝑛 is the total
number of DSPs. In the bidding protocol, each DSP performs a multiplication
for every campaign within its DSP group to calculate the bid value, and an
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encryption of the advertisement for all its own campaigns. Calculation of shares
of the inner product ∐︀𝑤⊺𝑥̃︀ is performed locally, as explained in Section 3.2, and
since the resulting value is reconstructed by the PSP, no degree reduction step is
necessary. The multiplications involved in calculating the inner product are thus
‘free’. In the auction protocol, each DSP group 𝛤𝑖 performs 𝐾𝑖 − 1 comparisons,
where 𝐾𝑖 is the number of campaigns of 𝛤𝑖, followed by a single DSP group
𝛤 ∗ performing 𝑔 − 1 comparisons, where 𝑔 is the number of groups. Since the
group 𝛤 ∗ is chosen at random out of 𝑔 groups for every auction, the amortized
complexity of the the auction phase is 𝑂(𝐾). In the model update protocol,
the 𝑑 multiplications to compute the update gradient need no degree reduction
step because the shares are mixed at the PSP, and are thus ‘free’. The mixing
step is performed for a batch of 𝜁 updates once every 𝜁 invocations, resulting
in an amortized cost equal to that of processing a single update. To process
a single update, the PSP re-shares all 𝑚 shares of the 𝑑-dimensional update
gradients, where 𝑚 is the size of DSP groups, followed by the DSP performing 𝑑
local recombinations of the created subshares. The total cost of the re-sharing, in
terms of sharing and reconstructing secrets, is equal to that of 𝑑𝑚 multiplications.
The group size 𝑚, however, can be considered a constant determined by the
recombination threshold, resulting in an amortized complexity of 𝑂(𝑑) for the
model update phase.

4.2 Communication Complexity

Table 1 lists the amortized number of bits transmitted by each party for each
subprotocol, as well as the number of rounds of communication required by each
subprotocol. The round complexities of the profile update and bidding protocols
are constant. Since the group size 𝑚 is bounded by a constant, and the share
size 𝜎 is constant, the communication complexity of the profile update phase
can be considered linear with respect to the profile size 𝑑. Note that if the user
profile is distributed among multiple DSP groups, the complexity of the user
profiling phase becomes multilinear in the profile size and the number of DSPs.
During the bidding phase, the ad exchange acts as a proxy to transmit a total
of 𝐾 advertisement tuples, and the PSP transmits 𝐾 sharings of the estimated
user response. Each DSP performs 𝐾𝑖 multiplications, each requiring 𝑚 shares
to be transmitted, sends 𝐾𝑖 shares of inner products to the PSP, and sends
an advertisement tuple for each of its 𝜅 own campaigns to the PSP via the ad
exchange. The total communication complexity of the bidding phase is thus
𝑂(𝐾), or linear in the number of campaigns.

The auction protocol consists of 𝜆 comparisons, where 𝜆 is logarithmic with
respect to the number of campaigns within a group and the number of groups.

The round complexity of the auction phase is thus 𝑂(log2𝐾), or logarithmic
in the number of campaigns, provided the round complexity of the comparison
protocol is constant. Since each DSP performs an average of 𝐾𝑖 comparisons per
invocation of the auction protocol and transmits a fixed number of shares for
each multiplication, the communication complexity of the auction protocol is
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Table 1. Communication bandwidth in bits and number of rounds of communication
per invocation of each subprotocol of BAdASS. 𝜖 denotes the size of a ciphertext, and 𝛾
and 𝜏 the number of bits transferred in the comparison and truncation protocols. 𝜌 is
the round complexity of the comparison protocol, and 𝑇 is the round complexity of the
truncation protocol.

Protocol Rounds User AdX DSP PSP

Profiling 2 2𝑑𝜎 𝑑𝑚𝜎 𝑑𝑚𝜎
Bidding 2 𝐾𝜉 (𝑚 + 1)𝐾𝑖𝜎 + 𝜅𝜉 𝐾𝑚𝜎
Auction 𝜆(𝜌 + 1) + 3 𝜉 (5𝐾𝑖 − 3)𝑚𝜎 +𝐾𝑖𝛾 + 2 1

𝑔
𝜎 𝜉

Update 𝑇 + 1 3
𝜁

𝑚𝜎 (𝑑 + 1)𝑚𝜎 + 𝜏 + (𝑑 + 3)𝜎 (𝑑 + 2)𝑚2𝜎

linear in the number of campaigns, provided the communication complexity of
the comparison protocol is constant.

The model update protocol contains a single invocation of the truncation
protocol, of which the number of rounds is considered constant, as well as one
round of multiplication. Every 𝜁 invocations, three more rounds for mixing and
combining are performed. The amortized round complexity of the model update
protocol is therefore constant. Although the amount of bits transmitted by the
PSP contains a factor 𝑚2, we can assume this to be a small constant due to the
small upper bound on 𝑚. The average communication complexity of the is 𝑂(𝑑),
provided the communication complexity of the truncation protocol is constant
and the group size 𝑚 is bounded by a constant.

4.3 Implementation

To measure the runtime of BAdASS, we made a proof-of-concept implementation
of the protocol in C++. The secure comparison protocol is based on the protocol
by Reistad and Toft [25] as implemented in VIFF1 [13]. Real values, such as
model weights, are represented as 16-bit fixed-point numbers. All operations
using Shamir shares are performed in a prime field of order 𝑝 = 231 − 1, such that
share values can be represented as 32-bit integers. The reconstruction threshold 𝑡
is set to 3, resulting in a DSP group size 𝑚 of 5. The key length for the ElGamal
cryptosystem is set to 2048 bits to achieve a sufficiently high security level2.

The setup used for runtime measurements is similar to that used in [17].
The tests were executed on a mobile workstation running Arch Linux on an
Intel® Core™ i7-3610QM 2.3 GHz quad-core processor with 8 GB RAM. Similar
to [17], all parties are simulated within a single process thread, thus performing
all operations sequentially. Figure 1 shows a comparison between the runtimes
of BAdASS and the state-of-the-art AHEad protocol for the different protocol

1 Virtual Ideal Functionality Framework. Available online at https://github.com/
kljensen/viff/blob/master/viff/comparison.py

2 See e. g. https://www.keylength.com for key lengths as recommended by various
organizations. The NIST considers a key length of 2048 sufficiently secure until 2030.

https://github.com/kljensen/viff/blob/master/viff/comparison.py
https://github.com/kljensen/viff/blob/master/viff/comparison.py
https://www.keylength.com
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Figure 1. Performance comparison between BAdASS and the state-of-the-art AHEad
protocol. The runtimes are measured in similar settings, using profile dimensionality
𝑑 = 220 for both protocols. Note that the runtime measurements for AHEad are performed
using a single DSP running a single campaign, whereas 5 DSPs with a total of 5 campaigns
are simulated on a single process thread for BAdASS due to the recombination threshold.

phases. The comparison makes it evident that, for a realistically large profile
size 𝑑 = 220, BAdASS provides significant performance improvements over AHEad
for every subprotocol, with the time-sensitive bidding phase requiring less than
150 ms for a DSP group. The computation time required by the model update
protocol of BAdASS far exceeds that of the profile update, bidding, and auction
protocols, due to the large number of subshare recombinations performed by the
DSPs as well as the large number of sharings created by the PSP. Note that the
computation time of the model update protocol is averaged, since the expensive
mixing and update steps are only performed once every 𝜁 = 10 invocations of the
protocol. Specifically, as shown in Table 2, one invocation of these steps is more

Table 2. Runtime measurements for each step of each model update for BAdASS in
ms. Mix shares and update model steps are executed once every 𝜁 = 10 invocations
while the update preparation step is performed for every viewed ad. The total shows
the average of 𝜁 invocations.

Protocol DSP PSP

Prepare update 16.87 —
Mix shares — 2399.67
Update model 23406.70 —

Total 2597.51

expensive than the preparation step by a factor of 140 and 1400, respectively.
The cost of performing the model update protocol when the computation time is
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averaged becomes

10 × 16.87 + 2399.67 + 23406.70

10
= 2597.51 ms, (2)

which is approximately 2.6 seconds, as shown in Figure 1. Based on our meas-
urements, we estimate that if the computations performed by the DSPs are
parallelized, the average time spent on the model update protocol for a profile
dimensionality of 𝑑 = 220 drops from 2.6 seconds to about 750 ms per invoca-
tion. The computation times of the bidding and auction phase and the profile
update phase are both below 150 ms for large profile sizes, even when DSPs
are simulated sequentially, and thus seem very well suited for use in a real-time
setting as required by the RTB advertising model. The relatively large amount of
computation performed in the model update phase is less time sensitive, and can
thus be periodically performed as a background task without harming the user
experience.

In Table 3, we list the average communication bandwidth of our protocol for
specific parameters used in our implementation. We use a share size 𝜎 = 32 bits,
and a group size of 𝑚 = 5 DSPs. Each DSP is responsible for 𝜅 = 10 campaigns,
and with two groups the total number of campaigns is 𝐾 = 100. The profile
dimensionality is 𝑑 = 220, and the size of an advertisement descriptor is assumed
to be 4160 bits, of which 4096 bits are the encrypted advertisement, 32 bits
the random identifier, and 32 bits the group descriptor. From the table, it is
evident that the profile update and model update require a significant amount
of communication, with up to 100MiB per invocation, on average, of the model
update protocol. The time-sensitive bidding and auction protocols, however,
require very little bandwidth. Moreover, very little bandwidth is used by the
user, with only the periodically executed profile update protocol requiring more
than a few dozen bytes at 8MiB per invocation, making the bandwidth use of
the user very acceptable for modern unmetered connections.

Table 3. Bandwidth usage of BAdASS in KiB per invocation of each subprotocol, based
on realistic parameters used in our implementation of BAdASS.

Protocol Rounds User AdX DSP PSP

Profiling 2 8192 20480 0 20480
Bidding 2 — 51 6.25 2
Auction 𝜆(𝜌 + 1) + 3 — 0.5 5 +𝐾𝑖𝛾 0.5
Update 𝑇 + 1 3

𝜁
0.02 — 24576 + 𝜏 102400

5 Security of BAdASS

The security requirements of BAdASS are satisfied by the security of the underlying
secret-sharing and encryption schemes in the semi-honest setting. In the non-
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interactive phases of the protocol, both the user profile and model parameters are
shared among a DSP group using Shamir’s secret sharing scheme, which provides
information-theoretic security as long as no more than 𝑡 − 1 parties collude.

In the profile update protocol, the user profile is shared between the PSP
and the AdX using a two-party additive secret sharing scheme, which, given the
assumption that the PSP does not collude with any party, provides information-
theoretic security. The additive shares are split into Shamir shares before being
sent to a DSP group, where the additive shares are combined into a single Shamir
share. Since the PSP and the AdX only receive additive shares, and DSPs obtain
a single Shamir share of each additive share, the PSP, AdX and DSPs gain no
knowledge of the contents of user profiles.

In the bidding protocol, the PSP obtains values 𝑤⊺

𝑘𝑥𝑢 and 𝑦𝑘 from DSP
groups, but does not know the campaign 𝑘 or user 𝑢 to which the values belong,
nor the specific DSP responsible for the campaign. Since the PSP knows neither
𝑤𝑘 nor 𝑥𝑢, inferring the individual values of 𝑤𝑘 or 𝑥𝑢 from 𝑤⊺

𝑘𝑥𝑢 is equivalent
to the hardness of solving the subset-sum problem. Given a set of positive integers
𝑆 = {𝑎1, 𝑎2,⋯𝑎𝑛} and an integer 𝑏, the subset-sum problem aims to find whether
there exist a subset of 𝑆, for which the summation equals to 𝑏 [7]. Finding such
a subset, however, is an NP-complete problem. In BAdASS, 𝑥𝑢 is a vector with
binary or small values, and 𝑤𝑘 contains 16-bit fixed-point numbers. Assuming a
binary 𝑥𝑢 the multiplication 𝑤⊺

𝑘𝑥𝑢 is actually a selection of indices of 𝑤𝑘 based
on the value in every index of 𝑥𝑢. Finding a subset of 𝑤𝑘, where the sum of the
subset is equal to 𝑤⊺

𝑘𝑥𝑢 is hard, when 𝑤𝑘 and 𝑥𝑢 are private and both of them
have size 𝑑 = 220.

If the PSP receives multiple values of 𝑤⊺

𝑘𝑥𝑢 for the same 𝑤𝑘 and 𝑥𝑢, the PSP
can link these values to the same user, but cannot learn any information about
the user’s interests as the PSP cannot link response predictions to campaigns.
The PSP also receives a mapping between a randomly generated number and
an advertisement encrypted using the universal re-encryption scheme, which
is semantically secure under the DDH assumption [15]. The use of universal
re-encryption provides key privacy, such that the PSP does not learn the identity
of the user, and the randomization of ciphertexts in the ElGamal cryptosystem
ensures that different submissions of the same advertisement cannot be linked.
During the auction protocol, the PSP learns the random number associated with
the winning bid in order to retrieve the winning advertisement, but since the
mappings are anonymized by the AdX, the PSP cannot link this value to a DSP.

In the model update protocol, the PSP obtains rotated shares of update
gradients, bid values, and campaign identifiers. Given unbounded computational
power, the PSP can perform an exhaustive search of rotation coefficients until
recombination of shares results in likely values. Choosing sufficiently large values
for the update period 𝜁 and recombination threshold 𝑡 makes exhaustive searches
infeasible. After the PSP mixes the shares, DSPs receive shares of the same values
submitted earlier in the model update phase. Since the shares are re-shared by
the PSP, however, DSPs cannot link the shares received after mixing to shares
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submitted before mixing. Moreover, the random rotation performed by the PSP
prevents DSPs from linking inputs to outputs.

6 Conclusion

In this paper we present a novel protocol using machine learning over secret-
shared data to preserve privacy in OBA with minimal user-noticeable delays.
Trust is distributed among DSPs using threshold secret sharing, allowing DSPs
to collaboratively compute bid prices and determine the highest bid without
gaining any knowledge of a user’s interests. Reports of individual clicks and
views of advertisements are secret-shared among DSPs, where they are used to
privately update model parameters via a mixing step at the PSP. At no point are
the contents of user profiles, shown advertisements, and actual user responses
revealed to any party other than the user, nor are model parameters revealed to
any party other than the DSP responsible for the campaign. Individual bid prices
are not revealed to any party, but are aggregated for billing purposes. Finally,
the protocols are integrated into the RTB setting by forming DSP groups from
existing DSPs, with the addition of a single new party.

BAdASS achieves significant performance improvements over previous work.
The AHEad protocol presented in [17] requires more than 100 seconds of compu-
tation time to calculate a single bid value in the time-sensitive bidding phase. In
comparison, BAdASS simulates the calculation of 5 bid values in less than 150
milliseconds in a similar setup, even without parallelization across DSPs. BAdASS
is even efficient enough to serve advertisements in real time as required by the
RTB model, provided the communication between DSPs incurs minimal latency.
Despite the overhead of the model update protocol, the results obtained with
BAdASS show that by applying secret sharing techniques a level of performance
can be achieved in the time-sensitive bidding and auction phases that does not
degrade the perceived responsiveness.

To the best of our knowledge, BAdASS is the first protocol to allow sub-second
behavioural targeting of advertisements while preserving user privacy. The heavily
fragmented shape of the online advertising landscape lends itself particularly well
to the use of efficient secret-sharing techniques, giving advertising companies
the opportunity to cooperatively move towards acceptable forms of behavioural
advertising. Although the presented protocol should be adapted to the malicious
setting, as DSPs may have an incentive to modify competitors’ bid values, the
results obtained with BAdASS show that it is possible to serve behaviourally
targeted advertisements without disclosing those interests to any party, all within
a fraction of a second. We believe that these results provide a first step towards
adoption of privacy-preserving methods in the online advertising ecosystem.
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A Notation Tables

Table 4. Explanation of symbols used in BAdASS

Symbol Explanation

𝑢 Unique user identifier.
𝑣 Unique bid request identifier.
𝑘 Unique campaign identifier.
𝛤𝑖 DSP group 𝑖.
𝛾𝑖,𝑗 Unique DSP identifier, where 𝛾𝑖,𝑗 is the 𝑗

th
DSP of DSP group 𝛤𝑖

𝐾𝛤𝑖 Set of campaigns run by DSP group 𝛤𝑖.
𝑥 Input feature vector obtained by feature hashing.
𝑤𝑘 Model parameter vector for a campaign 𝑘, where 𝑤𝑘,𝑖 is the 𝑖th coordinate

of 𝑤𝑘.
𝑐𝑘 Bidding function parameters for a campaign 𝑘.
𝜂𝑘 Learning rate parameter for campaign 𝑘.
𝑏𝑘 Bid value for campaign 𝑘.
𝑎𝑘 Advertisement associated with campaign 𝑘.
𝜋(𝑥) Random permutation function, which re-orders the elements of vector 𝑥.
𝜋−1(⋅) Inverse permutation of 𝜋(⋅), such that 𝜋−1(𝜋(𝑥)) = 𝑥.
𝑀 List of vectors containing information associated with bid values for use in

the auction protocol.
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Table 5. Symbols used in the computational analysis of BAdASS.

Symbol Description

𝑑 Dimensionality of user profiles.
𝑛 Number of DSPs.
𝑔 Number of DSP groups.
𝑚 Size of a DSP group.
𝜅 Number of campaigns of a DSP.
𝐾 Total number of campaigns.
𝐾𝑖 Number of campaigns within a DSP group 𝛤𝑖.
𝜁 Number of model updates accumulated per DSP group.
𝜎 Size in bits of a secret share.
𝜉 Size in bits of an advertisement tuple, consisting of an encrypted advertise-

ment, a group descriptor, and a random identifier.
𝜆 Total number of comparisons required to find the maximum bid. Equal to

]︂log2 (𝐾𝑖 − 1){︂ + ]︂log2 (𝑔 − 1){︂.
𝜌 Number of rounds required by a single run of the comparison protocol.
𝛾 Number of bits transmitted in a single run of the comparison protocol.
𝑇 Number of rounds required by a single run of the truncation protocol.
𝜏 Number of bits transmitted in a single run of the truncation protocol.
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B Protocols

Protocol 2 Profile update protocol, executed jointly between a user, ad exchange,
PSP and DSP group, and initiated periodically by every user.
1: procedure user:send-profile-share(𝑥, 𝑢)
2: Pick 𝑟 ∈𝑅 Z𝑑

𝑝

3: ⎷𝑥⌄1 ← 𝑥 − 𝑟
4: ⎷𝑥⌄2 ← 𝑟
5: invoke share-profile(𝑢,⎷𝑥⌄1) at AdX
6: invoke share-profile(𝑢,⎷𝑥⌄2) at PSP
7: end procedure

8: procedure share-profile(𝑢,⎷𝑥⌄𝑚)
9: ∐︀⎷𝑥⌄𝑚̃︀← shamir-share(⎷𝑥⌄𝑚)

10: for all 𝛾𝑖,𝑗 ∈ 𝛤𝑖 do
11: invoke dsp:combine-profile(𝑢, ∐︀⎷𝑥⌄𝑚̃︀𝛾𝑖,𝑗 ) at DSP 𝛾𝑖,𝑗
12: end for
13: end procedure

14: procedure dsp:combine-profile(𝑢, ∐︀⎷𝑥⌄𝑚̃︀)
15: store ∐︀⎷𝑥⌄𝑚̃︀ for user 𝑢
16: if ∐︀⎷𝑥⌄1̃︀ and ∐︀⎷𝑥⌄2̃︀ are both stored then
17: ∐︀𝑥𝑢̃︀← ∐︀⎷𝑥⌄1̃︀ + ∐︀⎷𝑥⌄2̃︀
18: end if
19: end procedure
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Protocol 3 Auction protocol, executed jointly by every DSP group 𝛤𝑖, an auction
group 𝛤 ∗, and the PSP.
1: procedure dsp:prepare-auction(𝑣, ∐︀𝑏̃︀, ∐︀𝑟̃︀, ∐︀𝑦̃︀, ∐︀𝜂̃︀, ∐︀𝑘̃︀)
2: for all 𝛤𝑖 do
3: ∐︀𝑀𝑖̃︀← (∐︀𝑟𝑖̃︀, ∐︀𝑦𝑖̃︀, ∐︀𝜂𝑖̃︀, ∐︀𝑘𝑖̃︀)

4: (∐︀𝑏𝑚𝑎𝑥
𝑖 ̃︀, ∐︀𝑟𝑚𝑎𝑥

𝑖 ̃︀, ∐︀𝑦𝑚𝑎𝑥
𝑖 ̃︀, ∐︀𝜂𝑚𝑎𝑥

𝑖 ̃︀, ∐︀𝑘𝑚𝑎𝑥
𝑖 ̃︀)← max-bid(∐︀𝑏𝑖̃︀, ∐︀𝑀𝑖̃︀)

5: Store mapping 𝑣 → (∐︀𝑏𝑚𝑎𝑥
𝑖 ̃︀, ∐︀𝑦𝑚𝑎𝑥

𝑖 ̃︀, ∐︀𝜂𝑚𝑎𝑥
𝑖 ̃︀, ∐︀𝑘𝑚𝑎𝑥

𝑖 ̃︀)

6: end for
7: invoke perform-auction(𝑣, ∐︀𝑏𝑚𝑎𝑥

̃︀, ∐︀𝑟𝑚𝑎𝑥
̃︀) at 𝛤 ∗

8: end procedure

9: procedure perform-auction(𝑣, ∐︀𝑏̃︀, ∐︀𝑟̃︀)
10: (⊥, ∐︀𝑟𝑚𝑎𝑥

̃︀)← max-bid(∐︀𝑏̃︀, ∐︀𝑟̃︀)
11: invoke psp:send-ad(∐︀𝑟𝑚𝑎𝑥

̃︀) at PSP
12: end procedure

13: procedure max-bid(∐︀𝑏̃︀, ∐︀𝑀̃︀)
14: ∐︀�̂�̃︀← ∐︀𝑏1̃︀
15: for 𝑗 ← 1, ⋂︀∐︀𝑀̃︀⋂︀ do
16: ∐︀�̂�𝑗̃︀← ∐︀𝑀𝑗,1̃︀

17: end for
18: for 𝑖← 2, ⋂︀∐︀𝑏̃︀⋂︀ do
19: ∐︀𝜌̃︀← ∐︀𝑏𝑖̃︀ ≥ ∐︀�̂�̃︀
20: ∐︀�̂�̃︀← ∐︀𝜌̃︀ ⋅ ∐︀𝑏𝑖̃︀ + (1 − ∐︀𝜌̃︀) ⋅ ∐︀�̂�̃︀
21: for 𝑗 ← 1,⋂︀∐︀𝑀̃︀⋂︀ do
22: ∐︀�̂�𝑗̃︀← ∐︀𝜌̃︀ ⋅ ∐︀𝑀𝑗,𝑖̃︀ + (1 − ∐︀𝜌̃︀) ⋅ ∐︀�̂�𝑗̃︀

23: end for
24: end for
25: return ∐︀�̂�̃︀, ∐︀�̂�̃︀
26: end procedure

27: procedure psp:send-ad(∐︀𝑟̃︀)
28: 𝑟 ← combine ∐︀𝑟̃︀
29: (J𝑎K𝑢, 𝛤𝑖)← lookup 𝑟
30: Re-randomize J𝑎K𝑢
31: Send (J𝑎K𝑢, 𝛤𝑖) to user via AdX
32: end procedure
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Protocol 4 Model update protocol, invoked by the user at the DSP group
responsible for the displayed advertisement.
1: procedure dsp:prepare-model-update(𝑣, 𝑢,𝛤𝑖, ∐︀𝑦̃︀)
2: (∐︀𝑏̃︀, ∐︀𝑦̃︀, ∐︀𝜂̃︀, ∐︀𝑘̃︀)← lookup 𝑣
3: ∐︀𝛿̃︀← truncate(∐︀𝜂̃︀ ⋅ (∐︀𝑦̃︀ − ∐︀𝑦̃︀))
4: for 𝑖← 1, 𝑑 do
5: ∐︀𝑔𝑖̃︀← ∐︀𝑥𝑢,𝑖̃︀ ⋅ ∐︀𝛿̃︀
6: end for
7: (∐︀𝐺̃︀, ∐︀𝐵̃︀, ∐︀𝐾̃︀)← (∐︀𝐺̃︀ ∪ ∐︀𝑔̃︀, ∐︀𝐵̃︀ ∪ ∐︀𝑏̃︀, ∐︀𝐾̃︀ ∪ ∐︀𝑘̃︀)
8: if sufficient values are accumulated then
9: for all 𝛾𝑖,𝑗 ∈ 𝛤𝑖 do

10: Pick random 𝑟𝑖,𝑗
11: Rotate (∐︀𝐺̃︀𝑖,𝑗 , ∐︀𝐵̃︀𝑖,𝑗 , ∐︀𝐾̃︀𝑖,𝑗) 𝑟𝑖,𝑗 times
12: end for
13: invoke psp:mix-shares(𝛤𝑖, ∐︀𝐺̃︀, ∐︀𝐵̃︀, ∐︀𝐾̃︀) at PSP
14: end if
15: end procedure

16: procedure psp:mix-shares(𝛤𝑖, ∐︀𝐺̃︀, ∐︀𝐵̃︀, ∐︀𝐾̃︀)
17: if shares from all 𝛾𝑖,𝑗 ∈ 𝛤𝑖 have been received then
18: Rotate (∐︀𝐺̃︀, ∐︀𝐵̃︀, ∐︀𝐾̃︀) by a random value
19: Re-share (∐︀𝐺̃︀, ∐︀𝐵̃︀, ∐︀𝐾̃︀) as (∐︀𝐺′

̃︀, ∐︀𝐵′
̃︀, ∐︀𝐾′

̃︀)

20: invoke update-model(∐︀𝐺′
̃︀, ∐︀𝐵′

̃︀, ∐︀𝐾′
̃︀) at 𝛤𝑖

21: end if
22: end procedure

23: procedure dsp:update-model(∐︀𝐺′
̃︀, ∐︀𝐵′

̃︀, ∐︀𝐾′
̃︀)

24: for all 𝛾𝑖,𝑗 ∈ 𝛤𝑖 do
25: Rotate (∐︀𝐺′

̃︀𝑖,𝑗 , ∐︀𝐵
′
̃︀𝑖,𝑗 , ∐︀𝐾

′
̃︀𝑖,𝑗) back 𝑟𝑖,𝑗 times

26: end for
27: 𝐾 ← combine ∐︀𝐾′

̃︀

28: for all ∐︀𝑔′̃︀ ∈ ∐︀𝐺′
̃︀, ∐︀𝑏′̃︀ ∈ ∐︀𝐵′

̃︀, 𝑘 ∈𝐾 do
29: for 𝑖← 1, 𝑑 do
30: ∐︀𝑤𝑘,𝑖̃︀← ∐︀𝑤𝑘,𝑖̃︀ − ∐︀𝑔

′

𝑖̃︀

31: end for
32: ∐︀�̃�𝑘̃︀← ∐︀�̃�𝑘̃︀ + ∐︀𝑏

′
̃︀

33: end for
34: end procedure
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