
FairSwap: How to fairly exchange digital goods

Stefan Dziembowski∗1, Lisa Eckey†2 and Sebastian Faust†2

1Institute of Informatics, University of Warsaw
2Department of Computer Science, TU Darmstadt

Abstract

We introduce FairSwap – an efficient protocol for fair exchange of digital goods using smart
contracts. A fair exchange protocol allows a sender S to sell a digital commodity x for a fixed
price p to a receiver R. The protocol is said to be secure if R only pays if he receives the correct
x. Our solution guarantees fairness by relying on smart contracts executed over decentralized
cryptocurrencies, where the contract takes the role of an external judge that completes the
exchange in case of disagreement. While in the past there have been several proposals for
building fair exchange protocols over cryptocurrencies, our solution has two distinctive features
that makes it particular attractive when users deal with large commodities. These advantages
are: (1) minimizing the cost for running the smart contract on the blockchain, and (2) avoiding
expensive cryptographic tools such as zero-knowledge proofs. In addition to our new protocols,
we provide formal security definitions for smart contract based fair exchange, and prove security
of our construction. Finally, we illustrate several applications of our basic protocol and evaluate
practicality of our approach via a prototype implementation for fairly selling large files over the
cryptocurrency Ethereum.

1 Introduction

Consider a setting where a receiver R wishes to buy a digital commodity x from a sender S. The
receiver is willing to pay price p for x if it satisfies some predicate φ, i.e., if φ(x) = 1. For instance,
x may be a file (e.g., some movie) and φ outputs 1 if hashing x results into some fixed value h (i.e.,
H(x) = h). Suppose that the parties wish to execute the exchange over the Internet, where R and
S do not trust each other. A fundamental problem that arises in this setting is how to guarantee
that the exchange is executed in a fair way. That is, how can we make sure that S receives the
payment when he delivers x to R such that φ(x) = 1; and similarly, how can we guarantee that
R only needs to pay the money if x is indeed correct. Unfortunately, it has been shown that
without further assumptions it is impossible to design protocols that guarantee such strong fairness
properties [39]. A simple way to circumvent this impossibility is to introduce a trusted middleman
– in practice often referred to as an escrow service [32] – which waits to receive the money from R
and the commodity x from S, and only executes the exchange if φ(x) = 1 is satisfied. Unfortunately

∗This work has been co-funded by the Foundation for Polish Science grant TEAM/2016-1/4 founded within the
UE 2014-2020 Smart Growth Operational Program

†This work has been co-funded by the DFG as part of project S7 within the CRC 1119 CROSSING and by the
Emmy Noether Program FA 1320/1-1

1

such fully trusted middleman are often not available (e.g., there are countless examples of so-called
“bogus” escrow services), or if available, this serive is very costly.

A promising alternative for implementing escrow services over the Internet is offered by decen-
tralized cryptographic currencies. Cryptocurrencies replace the trusted middleman by a distributed
network, where so-called miners maintain a shared data structure – the blockchain – storing the
transactions of the system. In addition to simple payments many cryptocurrencies offer more com-
plex transactions, often referred to as smart contracts, that allow users to carry out payments
depending on the execution of a program. Using smart contracts one can easily design a straight-
forward solution for the problem of securely selling digital goods over the Internet. In an initial step
the two parties R and S set up a contract, where R blocks p coins in the underlying cryptocurrency
which guarantees the payment if S (within some time frame) sends a witness x to the contract such
that φ(x) = 1. Once the contract is deployed on the network, either S can trigger the payment of
p coins by publishing x to the contract, or R can get his coins back after the timeout has passed.
The underlying consensus mechanism of the cryptocurrency guarantees that the money transfer is
only executed if the conditions are met, i.e., if x satisfies the predicate φ, or the refund is valid.

While the above smart contract example achieves fairness from the point of view of S and R, it
has an important drawback if x is large. Since in cryptocurrencies users pay fees to the miners for
every step of executing a smart contract, storing and computing complex instructions results into
high costs due to fees. For instance, in the cryptocurrency Ethereum, which offers rich support
for smart contracts, the amount of gas (the currency unit used in Ethereum to pay fees) paid for
executing the smart contract strongly depends on two factors: (a) the complexity of the program φ
and (b) the size of x. Concretely, for storing a value x of size 1 MB in Ethereum the parties would
need to pay more than USD 500 in transaction fees1.

An appealing solution to the above problem called zero knowledge contingent payments (ZKCP)
has been proposed in [45]. ZKCP protocols use zero knowledge proofs [23], which guarantee that
a prover can convince a verifier of the correctness of a statement, e.g., φ(x) = 1, without revealing
the witness x to the verifier. More precisely a ZKCP protocol between S and R works as follows:
First, S encrypts x with key k. Moreover, it computes a commitment c = H(k) (where H is
a hash function) and a zero knowledge proof showing that computation of the ciphertext and
the commitment was indeed done with a witness x which satisfies φ(x) = 1. Next, S sends the
ciphertext, the hash and the zero knowledge proof to R, who verifies the correctness of the zero
knowledge proof, and deploys a smart contract that pays p coins to S when the key is published.
All the contract needs to do is then to verify that h = H(k). It can be shown that if the underlying
cryptographic primitives are secure, then the ZKCP smart contract scheme realizes a fair exchange
protocol.

From a financial point of view the ZKCP protocol is very cheap as it only requires the contract
to evaluate a hash function on a short input (the key). However, using the ZKCP unfortunately
puts significant computational burden on the players R and S. Indeed, despite impressive progress
on developing efficient zero knowledge proof system over the last few years, current state-of-the-art
schemes [19, 9, 40, 22] are still rather inefficient if either φ gets complex, or the witness x becomes
large. Hence, an important question is whether we can design smart contract based protocols for
fair exchange, which combine the benefits of both approaches. That is, the main goal of this work
is:

1. Design simple smart contracts that can be executed with low fees.

1Considering an exchange rate of 500 USD/Eth and a gas price of 3 Gwei.

2

2. Put low computational burdens on the players by avoiding the use of heavy zero-knowledge
proof systems.

In this work we develop a novel solution that achieves both goals simultaneously and enables efficient
general fair exchange of digital commodities at low costs.

1.1 Our contribution

Efficient fair exchange. Our main contribution is a novel protocol for carrying out fair exchange
by relying on smart contracts while avoiding costly zero-knowledge proofs. Our protocol works for
arbitrary predicate functions φ and witnesses x of large size. Concretely, we model φ as a circuit
with m gates taking as input a witness x = (x1, . . . , xn), where each xi is represented as a bit string
of length λ. We require that the gates of the circuit represent operations from some set of allowed
operations Γ. The main distinctive feature of our construction is its efficiency. Concretely, for a
circuit of size m our smart contract has asymptotic complexity of O(log(m)), where the hidden
constants in the asymptotic notation are small. In addition to small costs, the protocols that R and
S execute are very efficient and avoid the use of expensive zero knowledge proofs. More precisely,
in addition to evaluating φ the parties only have to compute O(m) hash values.

Proof of misbehavior. Our construction is based on the following observation. While for large
circuits φ and witnesses x proving that S behaves correctly is very costly, it is much cheaper to
instead prove that S behaved incorrectly. As we show such a proof of misbehavior can be short and
its verification involves only a small number of cryptographic operations. The proof can efficiently
be verified by the underlying smart contract, which upon receiving such a proof penalizes the
sender for cheating. At a technical level, we rely on ideas originally proposed in the context of
multiserver delegation of computation [18], but several technical challenges need to be addressed to
apply this idea in our setting. In particular, our construction is non-interactive and involves only
two parties (the sender and the receiver). Moreover, we have to provide privacy that guarantees
that the witness stays hidden until the receiver has committed coins into the contract for paying
the sender. We give a detailed description of our construction in Section 4.

Definitions and security analysis. A second contribution of our work is to provide a formal-
ization of contract-based or coin aided fair exchange protocols. To this end, we follow the universal
composability framework of Canetti [16] and develop a new ideal functionality that formally cap-
tures the security properties one would expect from a fair exchange protocol. Our model deviates
in two ways from the standard UC modeling. First, we take into account that protocol messages,
which relate to blockchain transactions, may take up to time ∆ to be processed due to the mining
process. To integrate these delays in our model, we let the adversary decide the exact duration of
a round, which can last at most time ∆. The second difference that is special to our modeling is
that we need to deal with coins. We deviate from earlier works by Bentov and Kumaresan [10],
who also model coins in a UC-like model, by introducing a global ideal functionality called ledger
L. The ledger functionality ensures that coins cannot be double spent and users cannot create new
money. In addition to providing a formal model, we also carry out a full security analysis of our
construction in the global random oracle model [17].

3

Applications. An appealing use case for our fair exchange protocol is selling files over the In-
ternet. Such file sharing protocols allow exchanging, e.g., software (like Linux, LATEX, Microsoft
Windows 10 updates [35]), archived Internet data [4], public governmental databases [44], scientific
data [34, 33], and movies [38], and are widely used in the Internet. In Section 5 we describe a
protocol, which allows a receiver to buy a large file x that matches with a particular hash value h.
Notice that in this application x may be many gigabytes large, but using our construction and the
proofs of misbehavior, we can reduce the data that has to be processed by the smart contract to a
few 100 bytes, while still guaranteeing fairness of the file exchange.

While our original motivation is to design efficient protocols for fair exchange, we emphasize that
our work has also other interesting applications in the context of cryptocurrencies. In particular,
we observe that our protocol offers an efficient and low-cost construction for realizing the “claim-
or-refund” functionality of [10]. Claim-or-refund is used to design fair protocols for multiparty
computation and works as follows. In an initial preparation phase a receiver can deposit some
coins p and a function φ into the contract. This preparation phase is followed by two stages. First,
in the claim phase, a party can claim the reward p by publishing an x such that φ(x) = 1. Finally,
in the refund phase the receiver can refund its p coins if nobody has claimed the reward yet. It
is easy to see that the above describes the fair exchange setting, where the reward corresponds to
the price paid for receiving x. Bentov and Kumaresan argue that claim-or-refund can be realized
with smart contracts, however, a naive implementation will result into large costs from fees when
φ is complex or x is large. Using our protocol claim-or-refund can be realized at significantly lower
costs.

Extensions. A first extension that we consider is to integrate penalties into our protocol to
mitigate the risk of denial of service attacks by the sender. This is realized by also letting the
sender S lock q coins into the contract, which will go to the receiver R if S is caught cheating.
Such financial penalties allow us to deal with the costs and fees for R, which naturally occur in
smart contract based protocols. Concretely, we want that when S is caught cheating, e.g., by
sending a wrong file, R gets compensated for its costs of interacting with the contract (e.g., for the
initial contract deployment) but also for the time where he blocked the p coins (collateral costs).
This addition enforces honest behavior of rational senders.

To further reduce the costs of our construction, we discuss how we can run it inside off-chain
state channels (see, e.g., [2, 36]), when sender and receiver wish to execute multiple recurring fair
exchanges. To illustrate this setting consider a sender that wishes to sell t commodities to a receiver.
In our original protocol from above this use case results into O(t) interactions with the contract
running on the blockchain. In contrast using state channels the parties can use the contract multiple
times without requiring interaction with the blockchain, thereby significantly reducing costs of our
construction. Once the state channel is open, the users can execute multiple fair exchanges between
each other, and in the optimistic case only need to interact with the blockchain during opening and
closing. This allows us to amortize the on-chain costs over multiple fair exchange executions.

Implementation. Besides our conceptual contributions, we also provide a proof-of-concept im-
plementation of our contract (c.f. github.com/lEthDev/FairSwap). In our implementation we
focus on the file sale application mentioned above and discuss the advantages of contracts special-
ized for this application in comparison to the general construction. Additionally, we benchmark the
costs for deploying this contract and running our protocol over Ethereum. For more information

4

on the details of the implementation we refer the reader to Section 5.

1.2 Related work

As mentioned above, the ZKCP protocols were introduced in [45]. Their first implementation
(for selling solutions of Sudoku puzzles) was presented in [12], and was subsequently broken by
Campanelli et al. [15]. The weakness discovered in [15] concerns all the ZKCP protocols that use
NIZKs protocols [11] where the verifier generates the common reference string. The authors of
[15] present a fix to this problem using a tool called Subversion-NIZK [8]. They also extend the
concept of ZKCP to protocols for paying for service (i.e.: not only for static data). ZKCP protocols
for cryptocurrencies that do not support contracts or scripts in the transactions were constructed
in [7].

Fair exchange is a well studied research problem. It has been shown that without further
assumptions fair exchange cannot be achieved without a Trusted Third Party (TTP) [39, 46, 24].
To circumvent this impossibility, research has studied weaker security models – most notably, the
optimistic model in, which a TTP is consulted only in case one party deviates from the expected
behavior [5, 13]. One may view smart-contract based solutions as a variant of optimistic protocols,
where the smart contract takes the role of the TTP. In particular [32] considers a similar use case
(file sharing), but the security guarantees it achieves are very different from our work: (a) the arbiter
uses a cut-and-choose approach and hence for a corrupted file the probability of not detecting a
cheater is non-negligible (and in fact quite high for some cases, see citation [13] in [32]); (b) due to
the cut-and-choose the workload of the arbiter is large, resulting into high fees in a smart contract
setting. In contrast our solution only has a negligible error rate, and the financial costs are small.
We also stress that the cost model of an arbiter and a smart contract is very different.

Very recently, there has been a large body of work on using cryptocurrencies such as Bitcoin
to achieve fairness in cryptographic protocols (see, e.g., [3, 10, 30, 31, 28] and many more). As
already discussed we emphasize that our protocol can be used to further reduce on-chain complexity
of these protocols by providing an efficient realization of the claim-or-refund functionality that is
heavily used in the protocols constructed in these works.

Finally, we point out that the concept of “proofs of misbehavior” used in our construction are
a frequently applied technique in practical smart contract based protocols. One notable example
is the scalability solution called TrueBit, developed by Teutsch and Reitwießner [43]. The idea is
to outsource the potentially resource intensive process of finding solutions for complicated compu-
tational puzzles. The system consists of provers, verifiers and judges where the provers are paid
for solving computationally hard tasks. Since the provers have the ability to lie about their results
and still claim the money, they are punished whenever a misbehavior is detected. This detection
is done by the verifiers, which are rewarded whenever they find bugs in the solution of the provers.
Again, the verifiers have the ability to lie about their results to get money, which is why there exist
the judges. A judge is a computationally bounded, trusted entity backed by the blockchain security
and can be implemented as a smart contract. This setting is similar to ours since we also rely on
the cryptocurrency and its smart contracts to judge a dispute between two parties by verifying
only a single operation instead of running complex computation off-chain. The main difference
is that their protocol requires all provers to publish their solutions and interact with the verifier
and judge in case they are challenged. In our case we need the verification of misbehavior to be
non-interactive and the result of the computation should stay secret to outside observers. These
restrictions add additional overhead to our protocol in comparison to a simple protocol which only

5

helps to resolve disputes.
Finally, with respect to TrueBit we point out that its current whitepaper [43] provides only

very little details on how such proofs are created at a technical level and no formal security analysis
is provided. Hence, one may view our construction of the subroutines Encode,Extract and Judge
described in Section 4 as a building block for TrueBit, and our formal security analysis as a first
step in formally analyzing the TrueBit system.

2 Preliminaries

Notation. In this section we present the notation, cryptographic building blocks, and the formal
abstraction of circuits, which we will use in our schemes. For further details the reader may also
consult Appendix B. By writing [n] we refer to the set of natural numbers {1, . . . , n}. We say
that two distribution ensembles X = {X(n)} and Y = {Y (n)} with n ∈ {0, 1}∗ are computationally
indistinguishable (denoted as X ≈c Y) if every probabilistic poly-time (ppt) algorithm Z cannot
distinguish X and Y except with negligible probability. In the following all parties are modeled as
probabilistic poly-time (ppt) Turing machines and we will often omit to explicitly mention it.

Cryptographic building blocks. The main cryptographic primitive used by our scheme are
cryptographic hash functions. A hash function H : {0, 1}∗ → {0, 1}µ maps stings of arbitrary
length to binary strings of a fixed length µ. We require that the hash function H satisfies standard
security guarantees such as collision resistance for sufficiently large µ. While in practice collision
resistant hash functions can be instantiated with constructions such as SHA3, for our security
analysis, we will assume that H is modeled as a global random oracle H [14]. We refer the reader
to Appendix A for further details on the global random oracle model.

A commitment scheme for input values x ∈ {0, 1}∗ is a pair of algorithms (Commit,Open),
where the (probabilistic) algorithm Commit(x) outputs a commitment c and an opening value d,
and the algorithm Open(c, d, x) = {0, 1} outputs 1 for a valid commitment (c, d) ← Commit(x).
Cryptographically secure commitment schemes have to satisfy the hiding and binding properties.
Hiding guarantees that for any two messages x, x′ and (c, d) = Commit(x) and (c′, d′) = Commit(x′),
we have that c ≈c c′. The binding property requires that it is computationally hard to find a triple
(c, d, d′) such that Open(c, d, x) = 1 and Open(c, d′, x′) = 1 with x 6= x′.

The symmetric encryption scheme used in this paper needs to satisfy indistinguishability under
chosen plaintext attacks (IND-CPA security). This means that for any ppt adversary that chooses
two messages x0, x1 and learns c = Enc(k, xb) for a randomly chosen b, it must be impossible to
guess b correctly except with negligible advantage.

We will also use a standard notion of Merkle trees. A Merkle tree of elements x1, . . . , xn ∈ {0, 1}∗
(where for simplicity n is an integer power of 2) is a labeled binary tree M = Mtree(x1, . . . , xn)
with the ith leaf labeled by xi. Moreover, a label vj of every non-leaf node Vj is the hash of the
labels vlj and vrj of its two child nodes V l

j and V r
j respectively (i.e. vj := H(vlj , v

r
j)). We call Vj

the parent of vlj and vrj . We say vlj is a sibling of vrj and vice versa. A Merkle tree of n elements
x1, . . . , xn is created with the Mtree algorithm (c.f. Algorithm 1).

The label at the root of a Merkle tree M is denoted by root(M). For efficiently proving that
an element xi is included in the Merkle tree (given by its root hash h), we use a Merkle proof ρ,
which is a vector (of length log2(n)) consisting of labels on all the siblings of elements on a path
from the ith leaf to the root of the Merkle tree. We denote the algorithm for generating a Merkle

6

Algorithm 1 Merkle tree hash Mtree

Input: (x1, . . . , xn)
set V . V will be the root node
if n = 1 then . If input is single value, V is a leaf

label(V) = x1 . assign label of leaf V as x1
else . otherwise recursively call Mtree algorithm again

vl0 = Mtree(x1, . . . , xdn/2e)
vr0 = Mtree(xdn/2e+1, . . . , xn)

label(V) = H(root(vl0)||root(vr0)) . label = hash of subtree

Output: Merkle tree M with root V

proof by Mproof , which on input a Merkle tree M and an index i outputs a Merkle proof ρ that xi
is the ith leaf of M (c.f. Algorithm 2).

Algorithm 2 Merkle tree proof Mproof

Input: Merkle tree M , index i
V = M [i] . let V be the i-th leaf node of M
for each j ∈ [log2(n)] do

set lj = label(sibling of v)
set v = parent of v

Output: Merkle Proof ρ = (l1, . . . , ld)

Finally, the algorithm Mvrfy takes as input an element xi, a Merkle proof ρ and a root of a
Merkle tree root(M). The algorithm Mvrfy verifies if the i-th leaf element x corresponds to a
Merkle tree with root r using proof ρ (generated with Algorithm 3). If the verification holds, the
algorithm outputs 1 if the verification fails, the algorithm outputs 0. If the root r of the tree is

Algorithm 3 Merkle tree proof verification Mvrfy

Input: i ∈ [n], x ∈ {0, 1}λ, ρ = (l1, . . . , ld), h ∈ {0, 1}µ
for each lj ∈ ρ do

if i/2j = 0 mod 2 then
x = H(lk||x)
if H(isPrgrmd(lk||x) then

Terminate and Output ⊥ . reject hash is programmed

else
x = H(x||lj)
if H(isPrgrmd(x||lj)) then

Terminate and Output ⊥ . reject hash is programmed

if x = h then
Output 1

else
Output 0

known beforehand, this algorithm can be used to verify that x is the i-th element of a Merkle Tree
with root r.

7

Circuits. In this work we will use circuits to model arbitrary program code over an admissible
instruction set Γ. A circuit φ is represented by a directed acyclic graph, where the edges carry values
from some set X and the nodes represent gates. We assume that gates evaluate some instruction
op : X` → X, where op ∈ Γ. A gate is evaluated by taking as input up to ` values from X,
carrying out the instruction op and sending the result on its outgoing wire. We limit fan-in of gates
to ` and model arbitrary fan-out by letting the output of a gate be an input to any number of
other gates. A special type of gate that we consider are input gates, which have no incoming edges
(i.e., in-degree 0) and model the initial input of the circuit. We will often use the notation φ(x)
to represent the output of evaluating a circuit φ on some input x, where the evaluation is done
layer-by-layer starting with the input gates.

Our construction requires a concise way to fully describe the topology and the operations of a
circuit φ. To this end, we assign to each gate g of φ a label represented by a tuple φi := (i, op, Ii).
Each such tuple consists of an instruction op : X` → X, which denotes the instruction carried out
by this gate and a unique identifier i ∈ N. The identifiers are chosen in the following way: All gates
in the jth layer of the circuit have identifiers that are larger than the identifiers used by gates in
layer j − 1. This means that the identifier of g is larger than the identifiers of all input gates to
g. Finally, the last element Ii is a set of identifiers, where Ii = ∅ if g is an input gate; otherwise Ii
is defined to be the set of identifiers of the input gates to g. In the following, we will often abuse
notation and sometimes use φ to present the circuit (e.g., when writing φ(x) for the evaluation of
φ on input x), or to represent the tuple of labels, i.e., φ = (φ1, . . . , φm).

It is well known that any deterministic program can be represented by a Boolean circuit. In
this case, we have X = {0, 1} and Γ = {AND,NOT} are the standard binary operations, where
each gate has an in-degree of at most ` = 2. For the purpose of this paper Γ will typically contain
more powerful operations that compute on larger bit strings {0, 1}λ. Examples of such higher-level
instructions are hash function evaluations or modulo multiplication. This models more closely
the capabilities that are offered by higher-level programming languages such as Solidity offered by
Ethereum.

Smart Contracts. Besides normal payments between users many cryptocurrencies support the
execution of smart contracts. Smart contracts bind money transfer to program code, and thereby
allow to execute transactions based on complex contractual agreements enforced by the miners of
the cryptocurrency. The most prominent system that supports expressive smart contracts is the
cryptocurrency Ethereum. In Ethereum smart contracts can be written in a script language (e.g.,
Solidity), which is then complied down to low-level Ethereum Virtual Machine (EVM) bytecode.
Once a contract is deployed its execution can be triggered via transactions, which are processed by
the miners. Miners are incentivized to process transactions and execute smart contracts through
transaction fees. In Ethereum these fees are paid in gas – an internal Ethereum currency – and the
value of these fees depends on the complexity of the program code, which is executed by processing
the transaction. Each EVM instruction has a fixed amount of gas assigned to it, but the exchange
rate between Ether – Ethereum’s currency – and gas may change depending on market demand.
For instance, the evaluation of a standard hash function is fixed to cost 27265 gas, which with the
current exchange rate translates to 0.06 USD. Of course, different currencies like Ethereum Classic
may have much cheaper costs for executing smart contracts depending on their current exchange
rate.

8

3 Our security model

In this section we give an introduction to the adversarial model and an overview of our system.
We start with a high-level introduction to the Universally Composable (UC) framework [16] and
show how to model a global ledger functionality L. Next, we present the ideal functionality FLcfe
for coin-aided fair exchange and discuss its security guarantees.

3.1 UC model for blockchain-based protocols

One of the most widely used methods to describe and analyze complex cryptographic protocols is
the universal composability (UC) framework of Canetti [16]. In the UC framework the security
of a cryptographic protocol Π is analyzed by comparing its real world execution with an idealized
protocol running in an ideal world. In the real world Π is executed amongst a set of parties
modeled as interactive poly-time Turing machines. A protocol is attacked by an adversary A, who
can corrupt some of these parties (for simplicity we consider static corruption), which means that
these parties – including their internal state and all their actions – are fully controlled by A. To
analyze the security of Π in the real world, we “compare” its execution with an ideal world. In the
ideal world, parties interact with an ideal functionality, which specifies the protocol’s interface and
can be viewed as an abstract specification of what security properties Π shall achieve. In the ideal
world, the ideal functionality can be “attacked” through its interface by an ideal world adversary
– often called the simulator Sim. In both the real and ideal world there is an additional special
party called the environment Z, which orchestrates both worlds by providing the inputs for all
parties, and receiving their outputs. Informally speaking, a protocol Π is said to be UC-secure if
the environment Z cannot distinguish whether it is interacting with the ideal or real world. This
implies that Π is at least as secure as the ideal functionality.

Hybrid world. A common method that is used in UC to modularize the design of a protocol is
to rely on hybrid ideal functionalities. To this end, we define a hybrid world where the protocol
has access to some set of idealized functionalities G1, . . . ,Gm. In our case, we will construct our
fair exchange protocol in a hybrid world where an idealized functionality realizing a judge smart
contract is available. We will explain this contract in more detail in Section 4.

The ledger functionality. In addition to the traditional UC model described above, our set-
ting requires us to handle coins that can be transferred between parties. To this end we use the
model of [20], which introduces a simple ledger functionality L to model the basic properties of
a cryptocurrency. Concretely, we allow parties to transfer coins between each other and support
contracts that lock coins. Since the ledger functionality is available both in the real and ideal
world, and moreover can be used over multiple protocol executions, we model L as a global ideal
functionality [17, 14].

Let us briefly describe the functionality L (cf. Figure 1), whose internal state is public and
consists of the balances pi ∈ N of parties Pi and a list of contracts. For the latter, we define a
partial function L : {0, 1}∗ → N that maps a contract identifier id to an amount of coins that is
locked for the execution of contract id . The ledger functionality offers the following interface to
the parties. The environment Z can update the account balance of the users via sending an update
message to L. The parties P1, . . . ,Pn cannot directly interact with L, but their balance can be
updated via freeze/unfreeze messages sent by other ideal functionalities, in which case we will write

9

Functionality L, running with a set of parties P1, . . . ,Pn stores the balance pi ∈ N for every
party Pi, i ∈ [n] and a partial function L for frozen cash. It accepts queries of the following
types:

Update Funds Upon receiving message (update,Pi, p) with p ≥ 0 from Z set pi = p and
send (updated ,Pi, p) to every entity.

Freeze Funds Upon receiving message (freeze, id ,Pi, p) from an ideal functionality of ses-
sion id check if pi > p. If this is not the case, reply with (nofunds,Pi, p). Otherwise
set pi = pi − p, store (id, p) in L and send (frozen, id ,Pi, p) to every entity.

Unfreeze Funds Upon receiving message (unfreeze, id ,Pj , p) from an ideal functionality
of session id , check if (id, p′) ∈ L with p′ ≥ p. If this check holds update (id, p′) to
(id, p′ − p), set pj = pj + p and send (unfrozen, id ,Pj , p) to every entity.

Figure 1: Global ledger functionality L

GL. More precisely, freeze transfers money from the balance of a party to a contract, while unfreeze
sends this money back to the user’s account. To simplify exposition, for a malicious party Pi we let
the simulator Sim decide how many coins are sent back to Pi’s account by an unfreeze message.2

Global random oracles. In addition to the global ledger functionality L, we will also use a
global random oracle H. Concretely, we will follow the recent formalism of [14] and model hash
functions as programmable and observable random oracles. Upon querying the oracle on some value
q it returns a random response r ∈ {0, 1}µ. If the same value is queried twice then for both queries
H returns the same response. In addition, we require that H has an interface for observing the all
input/output tuples, for which queries have been made to H, and an interface for programming
the H. For further details on the global random oracle model and the formalism of [14] we refer
the reader to Appendix A.

Communication model. We assume a synchronous communication model, where the protocol
is executed in rounds and all parties are always aware of the current round. Formally, this can
be modeled by a global clock functionality [27, 29, 6], but we omit the details here. We make
the following assumptions for the time it takes for parties to communicate with each other. If a
party (including the adversary) sends a message to another party in round i, then it is received by
that party at the beginning of round i + 1. For communication with the ideal functionalities, we
will explicitly specify when they are expecting inputs from the parties. The communication itself
however is instantaneous. Notice that in general when there is interaction with the ledger L or with
the smart contract, then the functionality will be prepared for this by expecting a message within
a certain round. We emphasize that this is only an abstraction and round times can be very large,
since in reality they correspond to communication with the blockchain which takes significantly

2Looking ahead this is needed to simulate the case when a malicious party in the real world decides to request a
refund and thus lock its coins in the contract. To simplify the functionalities, coins are unlocked automatically in the
ideal world.

10

The ideal functionality FLcfe (in session id) interacts with a receiver R, a sender S, the ideal
adversary Sim and the global ledger L.

Initialize

(Round 1) Upon receiving (sell , id , φ, p,x) with p ∈ N from S, leak (sell , id , φ, p,S) to
Sim, store witness x, circuit φ and price p.

(Round 2) Upon receiving (buy , id , φ, p) from receiver R in the next round, leak
(buy , id ,R) to Sim and send (freeze, id ,R, p) to L. If L responds with (frozen, id ,R, p)
go to Reveal phase.

Reveal

(Round 3) Upon receiving (abort , id) from the corrupted sender S∗ in round 3, send
(unfreeze, id , p,R) to L in the next round and terminate. Otherwise if you do not
receive such message in round 3, then send (bought , id ,x) to R and go to Payout
phase.

Payout

(Round 4) Upon receiving (abort , id) from the corrupted receiver R∗, wait until round 5
to send (sold , id) to S, (unfreeze, id , p,S) to L and terminate. Otherwise, if no such
message was received:

• If φ(x) = 1, send messages (unfreeze, id , p,S) to L and (sold , id) to S,

• If φ(x) 6= 1, send messages (unfreeze, id , p,R) to L and (not sold , id) to S.

Figure 2: Ideal functionality FLcfe for coin aided fair exchange

more time than interaction between parties.

Simplifications in comparison to full UC To simplify our presentation, we omit session
identifiers and the sub-session identifiers (typically denoted with sid and ssid) and use instead
the contract identifier id to uniquely distinguish sessions. In practice, the contract identifier may
correspond to the contract address.

3.2 Ideal functionality for fair exchange

Our ideal functionality FLcfe (cf. Figure 2) describes a setting where S sells a witness x to a receiver
R and obtains p coins if this witness was correct. Correctness of the witness is defined through
a predicate function φ, which for a valid input x outputs 1, and 0 otherwise. Internally, FLcfe will
interact with the global ledger functionality L to maintain the balance of the parties during the
fair exchange (for instance, when a witness was successfully sold then p coins are unfrozen in S’s
favor).

The functionality FLcfe has three phases, which we first describe for the case when the parties
are honest. During the initialization phase the ideal functionality receives inputs from both S and

11

R. S sends the input x and a description of the predicate circuit φ to FLcfe. If R confirms this
request, the functionality FLcfe instructs L to freeze p coins from R. If this is not possible due to
insufficient funds, the functionality ends the fair exchange protocol. During the reveal phase, the
receiver will learn x after which the payout phase is started. In the payout phase we consider two
cases. If φ(x) = 1, then the sender S receives the coins as a payment; otherwise if φ(x) 6= 1, the
functionality instructs L to send the coins back to R.

In addition to the above, malicious parties can abort the execution of FLcfe in both the reveal
phase and the payout phase. Concretely, during the reveal phase a malicious sender S∗ may abort,
which results into sending the funds back to R. On the other hand a malicious receiver R∗ may
abort the exchange during the payout phase, which results into S receiving the coins. Both these
aborts model that in the protocol a malicious party may abort its execution by not sending a
required message.3

Security properties Let us now discuss what security properties are guaranteed by our ideal
functionality. Since our protocol realizes the ideal functionality these security properties are also
achieved by our protocol in the real world.

Termination. If at least one party is honest, the fair exchange protocol terminates within at most
5 rounds and unlock all coins from the contract.

Sender Fairness. An honest sender S is guaranteed that the receiver R only learns the witness
iff he pays p coins.

Receiver Fairness. An honest receiver R is ensured that he only pays p coins iff the sender
delivers the correct witness in exchange.

Consider first the case of a malicious receiver R∗. The ideal functionality Π only proceeds to the
reveal phase if the receiver has locked p coins into the contract during initialization. Then, in the
payout phase these coins are only given to R∗ iff φ(x) 6= 1. In all other cases (i.e., if φ(x) = 1 or
a malicious R∗ aborts), S receives p coins as required by sender fairness. Now assume instead a
malicious sender S∗, who only receives a payment during the payout phase if either φ(x) = 1 (i.e.,
the witness was valid), or the receiver aborts in Step (4∗), which an honest receiver never would do.
This implies receiver fairness. Finally, it is easy to see that the ideal functionality will terminate
after at most 5 rounds, which may happen during payout when a malicious receiver R aborts.4.

UC Definition of security. Consider a protocol Π with access to the judge contract functionality
Gjc, the global random oracleH and the global ledger functionality L. The output of an environment
Z interacting with a protocol Π and an adversary A on input 1κ and auxiliary input x ∈ {0, 1}∗ is
denoted as

REAL
Gjc,L,H
Π,A,Z (κ, x).

3Looking ahead, in the protocol a malicious sender S∗ may not reveal the key to the contract resulting into R
receiving back his locked funds. On the other hand a malicious receiver R∗ may not complain during the payout
phase, even though he received a witness x with φ(x) 6= 1. In this case the funds must go to S because from the
contract’s point of view the case when a malicious receiver did not complain even though φ(X) 6= 1 is indistinguishable
from the case when φ(X) = 1.

4Note, the ideal functionality does not provide any fairness or termination guarantees for two corrupted parties.

12

(1a) sell

(1b) initialize

(2) accept

(3) reveal

(4) ok/complain

(5) finalize

initialized

accepted

revealed

sold

sold

S R

Judge
Smart Contract

GL,H
jc

if R aborts

Figure 3: Outline of fair exchange with judge contract

In the ideal world the parties do not interact with each other but only forward their inputs to an
ideal functionality FLcfe. In this setting we will call the adversary a simulator Sim and denote the
above output as

IDEALFcfe,L,H
Sim,Z (κ, x).

Given these two random variables, we can now define the security of our protocol Π as follows.

Definition 1 (GUC security of Π). Let κ ∈ N be a security parameter, Π be a protocol in the
(Gjc,L,H)-hybrid world. Π is said to GUC realize FLcfe in the (Gjc,L,H)-hybrid world if for every
ppt adversary A attacking Π there exists a ppt algorithm Sim, such that the following holds for all
ppt environments Z and for all x ∈ {0, 1}∗:

IDEALFcfe,L,H
Sim,Z (κ, x) ≈c REAL

Gjc,L,H
Π,A,Z (κ, x)

4 Our main construction

As highlighted in the introduction, we will solve the disagreement where the sender S claims that
he sent a witness x such that φ(x) = 1 to the receiver R, while R claims the contrary. To resolve
this conflict, we will use a smart contract to act as a judge and can decide, which of both cases
occurred. In order to minimize costs for the execution of this contract we do not want the judge
contract to learn φ, x nor require it to run φ(x). Instead, we outsource the heavy work of evaluating
the circuit to S and R, respectively. The judge contract will only need to verify a concise proof
of misbehavior, which R generates if he wants to complain about the fact that φ(x) 6= 1. We
will show in this section how to generate such a proof, whose size is logarithmic in the circuit size
representing φ. This is an important property, since we allow the witness x and therefore also φ
to be large, i.e., x may consist of n elements, x = (x1 . . . , xn), with xi ∈ {0, 1}λ. The circuit φ
takes as input x and has m > n gates, which are evaluated according to the topology of the circuit
where gate gm is the output gate of the overall circuit. If the operation of gate gm outputs 1, the
circuit φ accepts the witness x, otherwise the witness is rejected.

13

We propose a new scheme that at a high-level works as follows (cf. also Figure 3). In the first
round the sender S encrypts x and auxiliary information about the computation of φ(x) and sends
these ciphertexts to the receiver R (Step 1a). In the same round it sends a commitment of the
key k used for the encryption to the judge contact (Step 1b). The receiver does some preliminary
consistency checks in the next round and (if he accepts) sends p coins to the judge contract (Step
2). In the third round, the sender is supposed to reveal the secret key k to the judge contract (Step
3). This enables R to decrypt x and verify the computation of φ(x). If x was not correct, i.e.,
φ(x) 6= 1, then R has the chance to complain about the invalid x in the fourth round via a concise
proof of misbehavior (Step 4). In this case the p coins locked by R in the contract get refunded.
Finally, in case R was malicious and did no react in round 4, S can finalize the smart contract in
round 5 (Step 5).

4.1 Concise proofs of misbehavior

Before we describe our main protocol in detail, we start by taking a closer look on how R can
generate the complaint for the judge smart contract. The key idea is that checking if some part of
the claimed computation was carried out incorrectly is much easier than verifying the correctness
of the entire computation. In our construction we let the judge validate only the operation and the
result of a single incorrectly computed gate of φ. This is done via a concise proof of misbehavior.
Such a proof includes the inputs and output of the gate to allow verification of this particular gate.
In addition, in order to prevent R from sending wrong inputs and outputs, the judge contract has
to be ensured that the values used for the proof of misbehavior were originally sent by S. This is
guaranteed in an efficient way using Merkle proofs.

We present our protocol in a modular way using the subroutines Encode, Extract and Judge
shown in Algorithms 1-3. In our protocol S uses the algorithm Extract to encrypt x and the
intermediate values that are produced during the evaluation of φ(x) (c.f., Algorithm 1). The
output z of this encoding procedure is sent to the receiver R. Moreover, as described above S
sends a commitment of the key k to the smart contract.

Algorithm 4 Encode(φ,x, k)

for each i ∈ [n] do
out i = xi . Assign witness to input wires
zi = Enc(k, out i) . Encrypt input values

for each i ∈ {n+ 1, . . . ,m} do
parse φi = (i, opi, Ii)
out i = opi(outIi[1], . . . , outIi[`]) . Compute the i-th operation
zi = Enc(k, out i) . Encode output values

Output: z = (z1, . . . , zm)

Once S reveals the encryption key k, R can run the extraction subroutine Extract (cf. Algo-
rithm 2) and recover x. The algorithm gets as input the encryption z, the circuit φ, the key k and
outputs a tuple, where the first element is the decoding of the witness x and the second is either
⊥ (if φ(x) = 1) or a concise proof of misbehavior π (if φ(x) 6= 1). The proof π is used later to
convince the judge/contract that some step of the computation of φ(x) is incorrect.

On input the decoding key k, the root elements rz and rφ, and the proof π the algorithm Judge
outputs 1 if the complaint succeeds or 0 otherwise (cf. Algorithm 3). In order to verify the i−th

14

Algorithm 5 Extract(φ, z, k)

parse φ = φ1, . . . , φm
for each i ∈ [n] do

out i = Dec(k, zi) . Decrypt first n outputs
xi = out i . Extract witness

Mz = Mtree(z) . Compute Merkle tree over z
Mφ = Mtree(φ) . Compute Merkle tree over φ
for each i ∈ {n+ 1, . . . ,m} do

parse φi = (i, opi, Ii)
out i = opi(outIi[1], . . . , outIi[`]) . Compute output of i-th gate
if Dec(k, zi) 6= out i or (i = m and out i 6= 1) then

πφ = Mproof (i,Mφ) . Proof that φi ∈ φ
πout = Mproof (i,Mz) . Proof that zi ∈ z
for each k ∈ [`] do

set j = Ii[k] . j is the k-th index in set Ii
πkin = Mproof (j,Mz) . Proof that zj ∈ z

set π = (πφ, πout , π
1
in , . . . , π

`
in)

Output: ((x1, . . . , xn), π)

Output: ((x1, . . . , xn),⊥)

step of φ(x), the judge needs to know the label φi = (opi, i, Ii), all values outIi[1], . . . , outIi[`] on its
input wires and the value of its output wire out i. Using this information the algorithm computes
the output of the i-th gate and compares it with the value out i. If both values are the same,
then the computation was carried out correctly, and the algorithm outputs 0 (i.e., it rejects the
complain). Otherwise, it outputs 1 and we say that the judge algorithm accepts the complain.

To guarantee that R can only complain about values that he has indeed received from S and
that violate the predicate function φ on which both S and R have agreed on, we require that
the Merkle roots rz = root(Mtree(z)) and rφ = root(Mtree(φ)) are stored in the judge contract.
Concretely, S sends rz and rφ to the contract in the first round, and R will only deposit p coins
into the contract if these values are consistent with z. When later Judge receives a concise proof
of misbehavior Judge checks if the containing Merkle proofs are consistent with rz and rφ. Only if
this is the case a complaint is accepted by the contract.

This concise proof of misbehavior π consists in total of ` + 2 Merkle proofs, and hence the
complexity of the Judge is O(` log(m)). The first element πφ ∈ π includes the Merkle proof that
shows that label φi is indeed the label corresponding to the i-th gate in φ. The second element
πout includes a Merkle proof ρout , which is required to verify that zi is indeed the i-th element in
z. Finally, π contains Merkle proof π1

in , . . . , π
`
in for the ` encrypted input values of the gate with

label φi. Given these Merkle proofs the judge algorithm verifies their correctness, decrypts zi of
the i-th operation φi into the output value out i. Then, it checks whether opi evaluated on the `
inputs yields into out i. If all these checks pass it outputs 1; otherwise it outputs 0.

4.2 The witness selling protocol

Now we can formally construct our protocol Π by using the three algorithms Encode, Extract and
Judge. The protocol consists of the judge contract and the specification of the behavior of the two
honest parties S and R. In order to formally define the functions provided by the judge smart

15

Algorithm 6 Judge(k, rz, rφ, π)

parse π = (πφ, πout , π
1
in , . . . , π

`
in)

parse πφ = (φi, ρφ)
parse φi = (i, opi, Ii) . Reject if φi not i-th step of φ(x)
if Mvrfy(φi, ρφ, rφ) 6= 1 output: 0
parse πout = (zi, ρout) . Reject if zi not i-th element of z
if Mvrfy(zi, ρout , rz) 6= 1 output: 0
out i = Dec(k, zi)
if i = m and out i 6= 1 output: 1 . Accept if φ(x) 6= 1
for each j ∈ [`] do . j is the k-th index in set I

parse πjin = (zj , ρj) . Reject if zj not z[j]
if Mvrfy(zj , ρj , rz) 6= 1 output: 0
outIi[j] = Dec(k, zj)

if opi(outIi[1], . . . , outIi[`]) 6= out i output: 1 . Accept
Else Output: 0 . Reject complaint if evaluation correct

contract GL,Hjc , we model it as an ideal functionality GL,Hjc . The full description of GL,Hjc can be found
in Figure 4 and the specification of the protocol is given in Figure 5.

Our protocol proceeds in three phases thereby closely following the structure of the smart
contract GL,Hjc . In the first round in the initialization phase, GL,Hjc takes as input from S the root
elements rz and rφ as well as the commitment c. R receives z directly from S, and rz, rφ from
GL,Hjc . If these roots are computed correctly, then R accepts the contract. Additionally, if both
parties agree and R has sufficient funds, p coins are blocked for this execution of the fair exchange
protocol. Only after this phase is successfully executed, the judge contract is considered active. If
during this phase, some party decides to abort the execution, this is not considered malicious.

In the reveal key phase, the contract expects S to reveal the key k, which allows to verify
the commitment c. If S fails to send the reveal message, he is considered malicious and R can
get his money back. Otherwise, if S revealed the key, R can decode the witness x by running
(x, π) = Extract(z, φ, k).

In the next phase the payout of the coins can be triggered. If the witness is valid (i.e, π = 0)
R sends message (finalize, id) to GL,Hjc , which will trigger the smart contract to unfreeze the coins
in S’s favor. If instead Extract output a valid complaint, R sends a message (complain, id , π) to
GL,Hjc . If the extracted φ(x) 6= 1, the verification algorithm Judge(k, rz, rφ, π) will output 1 and
thus accept the complaint and all coins are payed to R. If R sends neither message, S can call the
judge contract in round 5, to trigger the payout of coins.

4.3 Security

It remains to analyze the security of our protocol and provide an intuition why either party cannot
break the fairness property for the other party as defined in Section 3.2.

Termination The protocol terminates either after four rounds, in the payout phase, after R
sends the finalize; or complain message or in the fifth round after S sent finalize. We distinguish
the following termination cases for the protocol with an active judge contract and at least one
honest party:

16

The ideal functionality GL,Hjc acts as a judge smart contract for session id id and interacts
with the global L functionality and the parties S and R. It locally stores addresses
pkS and pkR, price p, commitment c, decryption key k, Merkle tree root hashes rz, rφ
and state s.

Initialize

(Round 1) Upon receiving (init , id , p, c, rφ, rz) from S with p ∈ N, store rφ, rz, p, c, output
(initialized , id , p, rφ, rz, c), set s = initialized and proceed to the reveal phase.

(Round 2) Upon receiving (accept , id) from R when s = initialized , send (freeze, id ,R, p)
to L. If it responds with (frozen, id , R, p), set s = active and output (accepted, id).

Reveal

(Round 3) Upon receiving (reveal , id , d, k) from sender S when s = active and
Open(c, d, k) = 1, send (revealed , id , d, k) to all parties and set s = revealed . Then
proceed to the payout phase.

Otherwise if no such message from S was received, send message (unfreeze, id , p,R) to L
and abort.

Payout

(Round 4) Upon receiving a message m from the receiver R when s = revealed set s =
finalized and do the following:

• If m = (complain, id , π) s.t. Judge(k, rz, rφ, π) = 1 send (unfreeze, id , p,R) to L,
(not sold , id) to S and terminate.

• Otherwise, send (unfreeze, id , p,S) to L, (sold , id) to S and terminate.

(Round 5) Upon receiving message (finalize, id) from the sender S, when s = revealed ,
send message (unfreeze, id , p, S) to L. Then output (sold , id) to S and terminate.

Figure 4: Ideal functionality GL,Hjc for the judge contract

No abort: This case occurs when both parties act honestly. In this case, the protocol terminates
in the payout phase, after R sends the finalize or complain message to GL,Hjc .

S aborts: In case S does not reveal the key k, GL,Hjc will terminate in the reveal phase and make
sure that L assigns all coins to R.

R aborts: This case occurs when R does not react anymore after the key was revealed. In the
fifth round S will then send (finalize, id) to GL,Hjc and the coins will be sent to S.

Sender Fairness Sender fairness means that R shall not be able to learn the witness x unless
the honest sender S is guaranteed to be payed. From the secrecy property of our encoding scheme
and the hiding property of the commitment, it follows directly that R cannot read the content of

17

The protocol consists of descriptions of the behavior of the honest sender S and receiver R.
Initialize

S: Upon receiving input (sell , id , φ, p,x) in round 1, S samples k ← Gen(1κ), computes
(c, d) ← Commit(k) and z = Encode(φ,x, k). Then he sends (sell , id , z, φ, c) to R
and (init , id , p, c, rφ, rz) to GL,Hjc , where rφ = root(Mtree(φ)) and rz = root(Mtree(z)).
Then he continues to the reveal phase.

R: Upon receiving input (buy , id , φ), R checks if he received message (sell , id , z, c) from S in
round 1 and computes rz = root(Mtree(z)) and rφ = root(Mtree(φ)). Upon receiving
(init , id , p, c, rφ, rz) from GL,Hjc , R responds with (accept , id) and proceeds to the reveal
phase.

Reveal

S: Upon receiving (active, id) from GL,Hjc , S responds with (reveal , id , d, k) and proceeds to
the payout phase. If no (active, id) message was received from GL,Hjc in the third round,
he instead terminates the protocol.

R : Upon receiving (revealed , id , d, k) from GL,Hjc , R proceeds to the payout phase. Otherwise,
if no (revealed , id , d, k) message was received from GL,Hjc in round 4, R terminates the
protocol.

Payout

R: The receiver runs (x, π) = Extract(φ, z, k). If π = ⊥, he sends message (finalize, id)
to GL,Hjc , otherwise he sends (complain, id , π) instead. Then he outputs (bought , id ,x)
and terminates the protocol execution.

S: Upon receiving (sold , id) or (not sold , id) from GL,Hjc , S outputs this message and termi-
nates the protocol. If no message has been received in round 4, he sends (finalize, id)
to GL,Hjc .

Figure 5: Formal protocol description for honest S and R

the encrypted witness before S publishes the decryption key k. At the point, when k is revealed,
the coins have been successfully frozen for the execution of the smart contract GL,Hjc . Now, that the
exchange of the witness is initiated, an honest S is guaranteed to receive the payment, even if R
aborts. Lastly it remains to show that a malicious R cannot forge a proof π, which is accepted by
the judge contract, although S behaved honestly and φ(x) = 1. Forging such a proof would require
R to forge a Merkle proof over a false element of z. Informally speaking, this is not possible unless
he finds a collision in the hash function H.

Receiver Fairness. If S sends the encoding z, R continues with the protocol until the coins
are frozen for the execution of the smart contract GL,Hjc . To prove fairness for an honest receiver
R, we have to show that a malicious sender S cannot send a wrong witness x′ /∈ L such that R

18

is not able to generate a correct proof of misbehavior, which is accepted by the GL,Hjc contract.
In order to successfully execute such an attack, S must be able to find an encoding z such that
Extract(z, k, φ) = (x′, π′) but the judge on input of π does not accept the complaint. The probabil-
ity of S finding such values is negligible, since this would require him to break collision resistance
of the underlying hash function. Therefore, R is guaranteed, that as soon as S publishes k he will
either receive the witness x with φ(x) = 1, or he has the guarantee that by executing GL,Hjc on a
valid proof of misbehavior he will get p+ q coins. Therefore Π satisfies receiver fairness.

Formal security definition In order to formally state the security of our protocol Π we use the
previously introduced GUC-style security notion.

Theorem 1. There exists an efficient two party protocol Π, which GUC-realizes the ideal fair
exchange functionality FLcfe in the judge smart contract (Gjc,L,H)-hybrid world, where H is modeled
as a global programmable random oracle.

In the Appendix we formally prove the Theorem 1 in the global UC model using the judge smart
contract GL,Hjc and a global programmable random oracle H. We start by giving some background
on the global programmable random oracle model (c.f. Appendix A) and provide definitions of
the cryptographic building blocks and explain how to construct them in the programmable random
oracle (c.f. Appendix B). In Appendix C follows a brief overview about simulation in the UC Model
and a detailed description of the four simulators that are needed to prove the above theorem.

5 Application and performance

The efficiency of the protocol Π can vary for different circuits φ, where circuits with small instruction
alphabets Γ and fan-in ` are the most promising candidates. For such circuits the overhead of the
encoding is small and the judge contract can run at low costs. In this section we show how to use
our general protocol for digital file sale and highlight its use for distributed peer-to-peer file sharing.
Additionally, we will give performance indicators for our protocol and costs of our implementation
for the judge contract in Ethereum.

Efficient and fair file transfer Our protocol can be used whenever two parties want to exchange
data that is identified via its Merkle hash. In this case the witness that the receiver wants to buy
would be the file x = (x1, . . . , xn), which is split up into n parts, where each xi is of some short
length and the circuit φ checks if the Merkle Hash root of this file equals some given value h (i.e.,
φ(x) = 1, iffMtree(x) = h). The instruction alphabet of φ consists of the operations H(x, y) and
eq(x, h), where H is the Hash function used for the Merkle tree and eq(x, y) is a function that
outputs 1 if x = y. Figure 6 shows such a circuit for a file with n = 8 elements of size λ. Let
us next provide some further details on the application of our protocol for fair file exchange with
coins.

Instantiated with the above “file hashing” circuit our protocol provides an elegant solution for
the so-called free-riders problem, which is a major drawback in distributed file sharing systems.
The free-riding problem states that a system for digital file exchange suffers if enough peers only
benefit without providing content. Surveys like [41, 42] show that free-riding is a common problem
in decentralized systems whenever creating identities is cheap and users can dynamically join and
leave the system. In [1] researchers found that at one point 75% of users of the popular platform

19

g1

x1

g2

x2

g3

x3

g4

x4

g5

x5

g6

x6

g7

x7

g8

x8
λ

λ

λ

λ

λ

λ

λ

λ g9

H(·, ·)

g10

H(·, ·)

g11

H(·, ·)

g12

H(·, ·)

32

32

32

32

g13

H(·, ·)

g14

H(·, ·)
32

32

g15

H(·, ·)

g16

eq(·, h)
32 1

Figure 6: Exemplary circuit φ for exchange of x = (x1, . . . , x8) with hash h = root(Mtree(x))

gnutella were free-riders. Some incentive mechanisms have been proposed to make free-riding less
attractive [26], e.g., by introducing payments and let users pay small fees to the senders of files.
However, such approaches do not address the case when a malicious user offers content that is
incorrect (i.e., it does not belong to the file that the receiver intends to download).

A natural solution to the free-rider problem is to use cryptocurrencies that support smart
contracts since they provide a decentralized trust platform which handles payments. One possible
solution already discussed in the introduction is to use ZKCP, but this only works well for small
inputs as otherwise the users would suffer from huge efficiency penalties. For instance, in [25]
the authors show that proving in zero knowledge the correctness of a single evaluation of a hash
function (SHA256) on a witness of 64 bytes requires 3 MB of additional data transfer between the
parties. On the other hand our protocols also solves the fairness problems of digital file exchange,
but results only in small overheads for the users in terms of computation and data transfer.

5.1 Implementation

To benchmark the runtime and execution costs of our protocol, we implemented the protocol for
the file sale application5 using the file sale circuit (cf. Figure 6). A nice property of this circuit is
the small size of the instruction alphabet (|Γ| = 2), and the small fan-in of operations (` = 2). This
allows us to provide a highly efficient smart contract implementation for this particular use case.
The advantage of the small instruction alphabet is that the contract can derive the operation of
gate gi from the index i (indeed there is only one operation in the entire circuit φ except for the
very last instruction). This allows us to implement the verification without committing, sending
and verifying φi. Additionally, for the special case of a Merkle tree circuit we have that the input

5The sourcecode of the solidity contract can be found at github.com/lEthDev/FairSwap

20

to all gates (i.e., hash function evaluations) are natural siblings in the encoding in z. This means
that in the concise proof of misbehavior to verify the correct evaluation of one hash functions on
two inputs, we only need one (slightly modified) Merkle proof verification, which verifies both input
values in one step. Thus, the proof π only includes two input values of at most length λ, one output
hash of length µ and two Merkle proofs – one for the two input elements and one for the output of
the gate.

In our implementation the users have the ability to change the parameters of the protocol,
namely the number of file chunks n, which directly relates to two other parameters in our applica-
tion: the length of each file chunk |xi| = λ and the depth of the Merkle Tree δ (again we assume a
full tree for simplicity). We can observe the following relation of the parameters:

λ =
|x|
n

=
|x|
2δ

The hash function optimized in the Ethereum virtual machine language is keccak256, which outputs
hashes of size µ = 32 bytes. Since the instruction set of Solidity is currently limited, but provides
a relatively cheap (in gas costs) and easy hashing, we use this hash function to implement our
encryption scheme. Since the judge contract needs the possibility to decrypt each element zi ∈ z
without knowledge of the whole vector z we use a variant of the plain counter mode for symmetric
encryption, for which keccak256 is evaluated on input of a key k and index i, and the ciphertext
is the bitwise XOR of the plaintext with this hash output taking as input the key and the current
counter. From the construction of the encryption scheme, it follows that the file chunk length λ
should be a multiple of 32 bytes to allow efficient encryption and decryption.

The judge contract implementations offers four different options for R to call during the payout
phase. The function nocomplain allows R to accept the file transfer and directly send p coins
to S, the copmlainAboutRoot function is used whenever R complains about a false output of the
circuit, namely that zm 6= h. The functions complainAboutLeaf and complainAboutNode allow R
to complain about the computation of two input gates gi, gi+1, i ∈ 1 . . . , n or the computation of
some other gates gi, gj+1 where n < j ≤ m respectively. The reason for these different complain
functions is that each of them requires a differently sized input.

5.2 Benchmarks

The costs for running the protocol consist of the fees, which need to be payed to the miners of the
cryptocurrency – in case of our implementation this will be Ethereum. In the first round the sender
deploys the FairSwap contract including the Ethereum addresses of S and R, the price value p,
the commitment c and the roots rφ and rz. The main gas costs result from this deployment, which
costs roughly 1050000 gas, which for a gas price of 3 GWei translates to 0.00315 Ether or 1.57 USD
for an exchange rate of 500 USD/Ether. The price for the execution of the functions deploy, accept,
reveal, refund and no complain stays almost constant for different parameters, but the cost of the
complain function varies highly, depending on the kind of complaint, the choice of the file chunk
size λ and the Merkle depth δ. The data, which needs to be sent to the blockchain (as part of π)
increases with the size of λ. Figure 7 shows the costs for optimistic (green) and pessimistic (red)
execution costs for different file chunk lengths for a file of one GByte size. Optimistic means, that
the protocol continues until the payout phase, where R accepts the encoding without complaint,
whereas pessimistic means, that R complains to the judge contract about the wrong computation of

21

102 103 104
0

2

4

6

8

10

12

14

File Chunk Size λ [Byte]

G
as

C
o
st

s
[U

S
D

]

Optimistic costs
Pessimistic costs

1

1.2

1.4

1.6

1.8

2

E
n

co
d

in
g

O
ve

rh
ea

d
|z
|/
|x
|

Figure 7: Costs and encoding size for different values of λ

some input. The costs for the complain originate from the length of the concise proof of misbehavior
π, which needs to be sent to the contract and evaluated on-chain:

|π| = |zin1|+ |zin1|+ |zout |+ |ρin |+ |ρout |
≤ 2µ× λ+ µ+ 2δ × µ

Figure 7 illustrates that even for very large file chunk sizes, the costs for optimistic execution is
close to constant around 1.73 USD, where the cost for pessimistic execution increases linearly in the
length of the file chunks. We highlight that using different cryptocurrencies can decrease the price
for execution even further. In Ethereum classic6, a well known fork of the Ethereum blockchain,
the cost for optimistic execution is only fractions of cents.

The heavy computation of the protocol is executed in round 1 and 3, by both the sender and
the receiver in the two algorithms Extract and Encode. We will only take a closer look at the
performance of the sender, since the receiver will perform almost identical computations only in
reverse order. To encode file x = (x1, . . . , xn), S needs to first generate M = Mtree(x) and store
all intermediate hashes. The result is n − 1 elements of size µ. Next, he encrypts each file chunk
(which requires n × λ hashes in total) and each hash from the Merkle tree M (n − 1 hashes). It
remains to compute the Merkle root of the combined encoding rz = Mtree(z1, . . . , zm), for which
he needs to hash 2m Elements. Therefore we get the following estimates:

|z| = |x|+ (n− 1)32 Bytes = n× λ× 32 Bytes

Runtime of Extract = n× λ×O(H)

6https://ethereumclassic.github.io/

22

The size of z therefore can be used as an indicator for the performance of the algorithm Extract
and additionally affects the communication complexity, since it needs to be transfered in the first
protocol message which is the longest message in the protocol. We did not optimize the imple-
mentation of the algorithms Encode,Extract for runtime but it shall be noted that we reach an
encoding throughput of approximately 2 MB per second in a straightforward node.js implementa-
tion running on single core of a 2.67 GHz Intel©Core i7 CPU with 8 GB of RAM. Clearly, these
estimations indicate that the performance of the protocol is optimal for small λ. Figure 7 illustrates
his trade-off between the costs of the protocol and its performance, measured in the overhead of
encoding size in comparison to file length |z||x| .

The protocol can be executed in 4 rounds, where each round requires sending a message to
the blockchain. The round ends, when the message is accepted by the miners and included in a
block. Cryptocurrencies ensure, that a correct message (with sufficient fees) is eventually included
in the blockchain, but this process might take some time. We denote this maximal round duration
with ∆, therefore the judge contract will have timeouts ∆ to measure whether some message has
been sent or not. The exact value of this parameters is chosen by the parties and depend on the
congestion of the blockchain, the amount of fees, they are willing to pay, their availability and the
number of blocks they require to succeed a transaction in order to consider it valid. We note that
the minimum duration of the protocol is 4 rounds, which in Ethereum can be executed in only a
few minutes, as long both parties agree.

5.3 Repeated fair exchange

For reasonably small values of λ the main cost for running fair file sale consists of the deployment
costs. Whenever two parties want to repeatedly run protocol Π, they can save costs by slightly
modifying the contract to decouple deployment of code and the initialization function. This allows
them to re-use the same contract for repeated executions of file sale. Deploying such a modified
contract costs 0.20 USD more than the same step in the standalone file sale, but every following
repetition of the protocol re-using same contract only costs 1.60 USD to execute. But even 1.60
USD is a high price to pay for fees in e.g. the distributed file sharing case, where these fees would
have to be payed for every file transfer. Another problem is that the execution of the protocol
requires four slow blockchain interactions. For distributed file sharing this means the execution of
the protocol will probably last at least a few minutes.

To minimize gas costs and confirmation time for repeated execution, we propose to run the judge
contract described above off-chain in a so called state-channel. State channels are an extension of
payment channels and allow users to execute arbitrary smart contracts off-chain without requiring
interaction with the blockchain. Constructions for state channels have been proposed in earlier
works, e.g., in [36, 20]. Hence, we only describe here how they can be used for our application, and
provide a more technical specification in Appendix D. In our basic system, the seller and the buyer
open a state channel by blocking money in a contract such that the money can only be payed out
(before some timeout) if both parties agree or by forcing the execution of the judge contract. Since
the parties want to execute multiple file sales, they freeze enough money in the channel.

Now the users can run multiple fair exchange executions without costly and time consuming
interactions with the blockchain. If however at some point one of the parties starts to behave
maliciously (e.g., a sender does not provide the secret key for the i-th repetition of the protocol)
the parties can always execute the contract for this repetition on-chain and settle their disagreement
in a fair way. That is, the contract is executed on the blockchain and the funds are distributed to

23

the parties within some predefined time.
The above approach suffers from the drawback that when S and R want to run a fair exchange,

they first need to open a state channel between each other on the blockchain. When a system
has many senders and receivers that moreover may take different roles during the lifetime of the
system, this would result into large overheads because opening a state channel requires a costly
interaction with the blockchain. To minimize these costs, we may integrate our system into a state
channel network. A state channel network allows to compose multiple state channels into new
longer state channels without the need to interact with the blockchain. For illustration, suppose
that Alice has a state channel opened with Bob, and Bob has a state channel opened wit Carol.
In a state channel network, Alice then also has an “implicit” state channel with Carol, which is
executed via the intermediate Bob. Notice that using the state channel between Alice and Carol
does not require any on-chain transactions. Using state channel networks, a sender Alice may thus
execute a fair exchange with Carol instantaneously via the intermediate Bob without the need to
explicitly open a state channel with Carol on the blockchain. We notice however that state channel
networks are currently only under development and no fully functioning system has been deployed
yet. We leave it as an interesting direction for future research to integrate fair file sale within a
state channel network.

5.4 Fault Attribution and Denial of Service Attacks

As soon as the judge contract is active, S can abort the protocol execution without being penalized.
Note that in the simplified version of the protocol which we considered so far, this does not hold
for sending a false witness. This allows the sender to force R to freeze coins. The sender S could
initiate the protocol without knowing the actual file which is sold. This cannot be prevented
because R is only allowed to learn the file at the end of the protocol, when the key is revealed.
But he needs to freeze his money in the beginning. A solution for this problem is to penalize S
when he misbehaves. This can be achieved by letting S also freeze some money for the execution
of the contract. If he behaves correctly (i.e. follows the protocol description and provides a correct
circuit) the money will be send back to him but if he does not, the money is instead sent to R.
This means the contract itself allows fault attribution and compensates attacked parties.

But even when penalties are added, we face the problem that R could run a Denial of Service
(DoS) attack towards S. This way DoS attacks cannot be prevented but it will make them more
expensive and the attacked parties will be compensated. The receiver can request multiple files from
senders without then accepting the execution of the contract, which forces the sender to (a) deploy
and initialize the contract on the blockchain and (b) force him to compute z = Extract(φ(x)). The
financial risk of the sender can be mitigated by changing the protocol to let R deploy the contract
and thus pay the fees but this only shifts the risk to R. In order to mitigate the risk of attack (b),
we propose that the sender precomputes z and uses the same encoding/key combination for all
protocol executions (as long as the key was not revealed). Therefore if R repeatedly aborts after
the first round, S only has the overhead of computing z once.

6 Conclusion

In this paper we presented a protocol, which allows fair sale of a witness where a judge smart
contract verifies concise proofs of misbehavior. These proofs are short statements which a re-

24

ceiver generates if the delivered witness does not satisfy a circuit φ. We present three algorithms,
Encode,Extract and Judge where Encode is used by the sender S to generate an encoding of x
and each step of the evaluation of the circuit φ(x). Using this encoding and the decryption key
k, the receiver can run Extract to learn the witness x. If this witness does not satisfy the circuit,
namely φ(x) 6= 1, Extract outputs a concise proof of misbehavior, which can be sent to the judge
contract. We show that the verification of this proof reveals if φ(x) 6= 1, and the contract uses
this information to pay out the money correctly. We argue why our protocol satisfies sender and
receiver fairness and terminates after at most 5 rounds. In the appendix we provide a formal proof
of security in the GUC model and show that our construction securely realizes the ideal function-
ality for fair exchange FLcfe. We provide an implementation of the judge contracts and show that
our protocol works efficiently for large files and can be executed at low costs.

References

[1] Eytan Adar and Bernardo A Huberman. Free riding on gnutella. First monday, 5(10), 2000.

[2] Ian Allison. Ethereum’s vitalik buterin explains how state channels address privacy and scal-
ability, July 2016. https://tinyurl.com/n6pggct.

[3] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Lukasz Mazurek. Secure
multiparty computations on bitcoin. In 2014 IEEE Symposium on Security and Privacy, pages
443–458, Berkeley, California, USA, May 18–21, 2014. IEEE Computer Society Press.

[4] The Internet Archive. Over 1,000,000 torrents of downloadable books, music, and movies,
2012. https://blog.archive.org/2012/08/07/over-1000000-torrents-of-downloadable
-books-music-and-movies/.

[5] N. Asokan, Victor Shoup, and Michael Waidner. Optimistic fair exchange of digital signatures
(extended abstract). In Kaisa Nyberg, editor, Advances in Cryptology – EUROCRYPT’98,
volume 1403 of Lecture Notes in Computer Science, pages 591–606, Espoo, Finland, May 31 –
June 4, 1998. Springer, Heidelberg, Germany.

[6] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a transac-
tion ledger: A composable treatment. In CRYPTO 2017, pages 324–356, 2017.

[7] Waclaw Banasik, Stefan Dziembowski, and Daniel Malinowski. Efficient zero-knowledge con-
tingent payments in cryptocurrencies without scripts. In ESORICS 2016: 21st European
Symposium on Research in Computer Security, Part II, Lecture Notes in Computer Science,
pages 261–280. Springer, Heidelberg, Germany, September 2016.

[8] Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an untrusted CRS:
Security in the face of parameter subversion. In Advances in Cryptology – ASIACRYPT 2016,
Part II, Lecture Notes in Computer Science, pages 777–804. Springer, Heidelberg, Germany,
December 2016.

[9] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero knowledge
via cycles of elliptic curves. In Juan A. Garay and Rosario Gennaro, editors, Advances in
Cryptology – CRYPTO 2014, Part II, volume 8617 of Lecture Notes in Computer Science,
pages 276–294, Santa Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

25

[10] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In Juan A.
Garay and Rosario Gennaro, editors, Advances in Cryptology – CRYPTO 2014, Part II, vol-
ume 8617 of Lecture Notes in Computer Science, pages 421–439, Santa Barbara, CA, USA,
August 17–21, 2014. Springer, Heidelberg, Germany.

[11] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its appli-
cations (extended abstract). In 20th Annual ACM Symposium on Theory of Computing, pages
103–112, Chicago, Illinois, USA, May 2–4, 1988. ACM Press.

[12] Sean Bowe. Pay-to-sudoku, 2016.

[13] Christian Cachin and Jan Camenisch. Optimistic fair secure computation. In Mihir Bellare,
editor, Advances in Cryptology – CRYPTO 2000, volume 1880 of Lecture Notes in Computer
Science, pages 93–111, Santa Barbara, CA, USA, August 20–24, 2000. Springer, Heidelberg,
Germany.

[14] Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gregory Neven.
The wonderful world of global random oracles. Cryptology ePrint Archive, Report 2018/165,
2018. https://eprint.iacr.org/2018/165.

[15] Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Nizzardo. Zero-knowledge
contingent payments revisited: Attacks and payments for services. In ACM CCS 17: 24th
Conference on Computer and Communications Security, pages 229–243. ACM Press, 2017.

[16] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of
Cryptology, 13(1):143–202, 2000.

[17] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with a global
random oracle. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 14: 21st
Conference on Computer and Communications Security, pages 597–608, Scottsdale, AZ, USA,
November 3–7, 2014. ACM Press.

[18] Ran Canetti, Ben Riva, and Guy N. Rothblum. Practical delegation of computation using
multiple servers. In ACM Conference on Computer and Communications Security, pages 445–
454. ACM, 2011.

[19] Alessandro Chiesa, Eran Tromer, and Madars Virza. Cluster computing in zero knowledge. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015,
Part II, volume 9057 of Lecture Notes in Computer Science, pages 371–403, Sofia, Bulgaria,
April 26–30, 2015. Springer, Heidelberg, Germany.

[20] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. Perun: Virtual
payment hubs over cryptocurrencies. Cryptology ePrint Archive, Report 2017/635, 2017.
https://eprint.iacr.org/2017/635, accepted to IEEE S&P 2019.

[21] Marc Fischlin, Anja Lehmann, Thomas Ristenpart, Thomas Shrimpton, Martijn Stam, and
Stefano Tessaro. Random oracles with(out) programmability. In Masayuki Abe, editor, Ad-
vances in Cryptology – ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science,
pages 303–320, Singapore, December 5–9, 2010. Springer, Heidelberg, Germany.

26

[22] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster zero-knowledge for
boolean circuits. In USENIX Security Symposium, pages 1069–1083. USENIX Association,
2016.

[23] Oded Goldreich. Foundations of Cryptography: Volume 1. Cambridge University Press, New
York, NY, USA, 2006.

[24] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th Annual
ACM Symposium on Theory of Computing, pages 218–229, New York City,, New York, USA,
May 25–27, 1987. ACM Press.

[25] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using garbled
circuits: how to prove non-algebraic statements efficiently. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM CCS 13: 20th Conference on Computer and Communi-
cations Security, pages 955–966, Berlin, Germany, November 4–8, 2013. ACM Press.

[26] Murat Karakaya, İbrahim Körpeoğlu, and Özgür Ulusoy. Counteracting free riding in peer-to-
peer networks. Computer Networks, 52(3):675–694, 2008.

[27] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally composable
synchronous computation. In Amit Sahai, editor, TCC 2013: 10th Theory of Cryptography
Conference, volume 7785 of Lecture Notes in Computer Science, pages 477–498, Tokyo, Japan,
March 3–6, 2013. Springer, Heidelberg, Germany.

[28] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party compu-
tation using a global transaction ledger. Cryptology ePrint Archive, Report 2015/574, 2015.
Accepted to EUROCRYPT’16, http://eprint.iacr.org/.

[29] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party computa-
tion using a global transaction ledger. In EUROCRYPT 2016, pages 705–734, 2016.

[30] Ranjit Kumaresan and Iddo Bentov. Amortizing secure computation with penalties. In ACM
CCS 16: 23rd Conference on Computer and Communications Security, pages 418–429. ACM
Press, 2016.

[31] Ranjit Kumaresan, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan. Improvements
to secure computation with penalties. In ACM CCS 16: 23rd Conference on Computer and
Communications Security, pages 406–417. ACM Press, 2016.

[32] Alptekin Küpçü and Anna Lysyanskaya. Usable optimistic fair exchange. Computer Networks,
56(1):50–63, 2012.

[33] Morgan G. I. Langille and Jonathan A. Eisen. Biotorrents: A file sharing service for scientific
data. PLoS ONE, 5(4):1–5, 04 2010.

[34] Henry Z. Lo and Joseph Paul Cohen. Academic torrents: Scalable data distribution. CoRR,
abs/1603.04395, 2016.

[35] Lee Mathews. Windows 10 lets you torrent updates and apps, 2015. http://www.geek.com/

microsoft/windows- 10-lets-you-torrent-updates-and-apps -1618036.

27

[36] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry. Sprites: Payment
channels that go faster than lightning. CoRR, abs/1702.05812, 2017.

[37] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In Moti Yung, editor, Advances in Cryptology –
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 111–126, Santa
Barbara, CA, USA, August 18–22, 2002. Springer, Heidelberg, Germany.

[38] Chris O’Falt. Bittorrent to now offer legal movie downloads, 2015. http://www.

hollywoodreporter.com/news/bittorrent-offer-legal-movie-downloads-769733.

[39] Henning Pagnia and Felix C Gärtner. On the impossibility of fair exchange without a trusted
third party. Technical report, Technical Report TUD-BS-1999-02, Darmstadt University of
Technology, Department of Computer Science, Darmstadt, Germany, 1999.

[40] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In 2013 IEEE Symposium on Security and Privacy, pages 238–252,
Berkeley, California, USA, May 19–22, 2013. IEEE Computer Society Press.

[41] Muntasir Raihan Rahman. A survey of incentive mechanisms in peer-to-peer systems. Cheriton
School of Computer Science, University of Waterloo, Tech. Rep. CS-2009-22, 2009.

[42] Lakshmish Ramaswamy and Ling Liu. Free riding: A new challenge to peer-to-peer file sharing
systems. In System Sciences, 2003. Proceedings of the 36th Annual Hawaii International
Conference on, pages 10–pp. IEEE, 2003.

[43] Jason Teutsch and Christian Reitwiessner. TrueBit – a scalable verification solution for
blockchains, 2018. https://truebit.io/.

[44] Torrentfreak. UK Government uses Bittorrent to Share Public Spending Data,
2014. https://torrentfreak.com/uk-government- uses-bittorrent- to-share-public-

spending-data-100604/.

[45] Bitcoin Wiki. Zero Knowledge Contingent Payment, 2018. https://en.bitcoin.it/wiki/

Zero_Knowledge_Contingent_Payment.

[46] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th
Annual Symposium on Foundations of Computer Science, pages 162–167, Toronto, Ontario,
Canada, October 27–29, 1986. IEEE Computer Society Press.

28

A Programmable global random oracle

A common model for crpytographic proofs is the random oracle model. This model assumes that
hash functions can be modeled to return perfectly random values, which can not be predicted. For
this reason hash functions are instantiated with random oracles. For proving security in the UC-
model, we use a random oracle ideal functionality H which (unless otherwise instructed) responds
to all queries with uniformly random sampled values r ← {0, 1}µ and stores all query response pairs
(q, r) in the set Q. If the query value q has been answered before, such that (q, r) ∈ Q is stored, H
responds with r.

It is common for UC security proofs to work with a programmable random oracle. Programma-
bility means that the ideal UC adversary Sim can control the random oracle and program its hashes
to specific responses. Additionally, it can see all queries made by the environment Z to the random
oracle. Traditionally, such a random oracle is modeled as a local functionality, which is in control
of the Simulator. This again implies that every unique protocol execution has its own local disjunct
hash function. Since we want to explicitly allow composition of multiple protocols, we follow the
argument of [17, 14] that such local functionalities are not a good model for standard hash function
like keccak. A global functionality would respond to all queries in all sessions with the same values,
which cannot be done with local random oracle functionalities.

Our construction models as a global functionality H following the works of [17, 14]. Every
party in this model has oracle access to a global functionality H which represents our idealized
hash function. Since we require programmability in the GUC model, we follow the work of [14]
and model H as a restricted programmable and observable random oracle as defined in Figure 8.
This functionality allows parties to simulate and observe only queries made from their own session
(denoted with session and contract identifier id).

The first feature of the random oracle is that parties can query it on some value q, by calling
(query, id , q). For simplicity we will write r ← H(q). The random oracle will return a uniformly
sampled value or an already existing value r from the set Q.

But next to this straightforward functionality, we require programmability, which is a special
property needed for proving security in the UC model. Programmability means that the adversary
is allowed to fix the response of the oracle for certain queries if they have not been queried before
by sending (program, q, r) (we say the adversary programs the random oracle).

Programmable random oracles are a useful and practical tool in many UC simulations, which
has been studied intensively before in the non global setting [37, 21]. In the local UC model,
the adversary is always the simulator, who requires these properties to simulate indistinguishable
commitments. In the global UC model, there might be multiple executions that all interact with
the same global random oracle. Note, that the influence of any global functionality is not only for
the simulator of a single execution, but also applies for all adversaries from different executions7.

Intuitively, this adversarial power seems to break security of schemes that are based on this
functionality since any adversary is allowed to program collisions, but we will show that this is not
true. As protection against this adversarial power parties have the ability to verify if some response
of the random oracle has been programmed by calling H(isPrgrmd, r). If H responds with 1, the
parties know that the values is programmed and reject the value.

Additionally to the restricted programmability the functionality H allows leakage of all illegiti-

7In our case the the environment could access the global random oracle through the adversary of another session
or protocol execution and program collisions.

29

The H functionality is the global random oracle with restricted programming and observ-
ability, which takes as input queries q ∈ {0, 1}∗ and outputs values r ∈ {0, 1}µ. Internally it
stores initially empty sets Q,P and a set Qid for all sessions id .

Query

Upon receiving message (query, id , q) from a party of session id ′ proceed as follows:

• If (id , q, r) ∈ Q respond with (query, q, r).

• If (id , q, r) /∈ Q sample r ∈ {0, 1}µ, store (id , q, r) in Q and respond with (query, q, r).

• If the query is made from a wrong session (id 6= id ′), store (q, r) in Qid .

Program

Upon receiving message (program, id , q, r) by the adversary A check if (id , q, r′) is defined in
Q. If this is the case, abort. Otherwise, if r ∈ {0, 1}µ store (id , q, r) in Q and (id , q) in P .
Upon receiving message (isPrgrmd, q) from a party of session id check if (id , q) ∈ P . If this
is the case respond with (isPrgrmd, 1).

Observe

Upon receiving message (observe) from the adversary of session id respond with
(observe, Qid).

Figure 8: The ideal restricted programmable and observable random oracle functionality H [14]

mate queries, which were made by the environment over the adversary, by sending H(observe). The
functionality H will respond with the set Qid which contains all illegitimate queries made from that
session. This includes all queries from adversaries that are not from the desired session. For more
information about the construction and properties of this ideal functionality we refer the reader
to [14].

B Cryptographic building blocks

In this section, we give a detailed explanation of the properties we need from the encryption and
commitment functions used in our protocol. Additionally, we will construct these schemes in the
programmable random oracle model and show why they provide the required equivocability and
extractability properties.

Note, that it is not easily possible to use a UC-style commitment and encryption functionalities
here, since our smart contract hybrid functionality needs to run the open/decrypt procedure. Since
in the UC-model functionalities are permitted from interacting with other functionalities, this
prevents us from using ideal functionalities here.

Commitment Scheme. Let κ be the security parameter and (a||b) denote the concatenation
of two values a and b. Then we construct a commitment scheme (Commit,Open) in the global
programmable random oracle model as follows:

30

Algorithm 7 Algorithm Commit

Input: x ∈ {0, 1}∗
d← {0, 1}κ s.t. H(isPrgrmd, x||d) 6= 1 . choose d uniformly at random
c← H(x||d) . query the oracle on x||d

Output: (c, d)

To show that this scheme is hiding, it needs to hold that any ppt algorithm A cannot distin-
guish two commitments. From the randomness of the outputs of H it follows that this construction
is hiding because the output of H(x) ≈c H(y) is indistinguishable if the A does not know (or
programmed) H(x) or H(y) (which by chance only happens with a negligible probability for com-
putationally bounded distinguishers). If d is chosen uniformly at random from domain {0, 1}κ and
κ large enough, any A cannot distinguish Commit(x) from Commit(y) if he does not know the
opening d.

Algorithm 8 Algorithm Open

Input: c ∈ {0, 1}µ, d ∈ {0, 1}κ
c′ ← H(x||d) . query the oracle on x||d
if c == c′ and H(isPrgrmd, x||d) 6= 1 then

b = 1 . ensure that the commitment was not programmed

b = 0 . otherwise reject the opening
Output: b

In order to break the binding property, an adversary A needs to find a collision H(x) = H(y),
without programming H. Since the outputs of H are uniformly distributed, the best strategy for
A is to guess values and query H on them. If µ is large, this is hard for computationally bounded
adversaries, since they can only make a polynomial in κ number of queries to H. Thus, the scheme
is computationally binding.

Encryption Scheme. The second cryptographic building block, which we need to construct for
our protocol is a symmetric encryption scheme, which satisfies the IND-CPA security property. We
instantiate our encryption scheme as follows. To encrypt to a tuple x = (x1, . . . , xm) randomly
chose k ← {0, 1}κ. Then compute z = z1, . . . , zn as follows:

Algorithm 9 Algorithm Enc

Input: x = (x1, . . . , xm), s.t. ∀i ∈ [m] : |xi| = λ
k ← {0, 1}κ s.t. ∀i ∈ [m] : H(isPrgrmd(k||i)) 6= 1 . choose k uniformly at random
for each xi ∈ x do

ki = H(k||i) . generate i-th key
zi = ki ⊕ xi . xor key and plaintext

Output: z = (z1, . . . , zn)

The decryption is only accepted by the receiver if none of the results of H were programmed.
Therefore, the receiver queries H(isPrgrmd(k||i)) and rejects the result if for any i the random
oracle responds with true.

This scheme is correct, i.e. Dec(k,Enc(k,x)) = x since for all xi ∈ x it holds that H(k||i)⊕zi =
H(k||i)⊕H(k||i)⊕ xi = xi. As long as all outputs of the random oracle are uniformly distributed

31

Algorithm 10 Algorithm Dec

Input: z = (z1, . . . , zm), s.t. |zi| = λ and k ∈ {0, 1}κ
for each zi ∈ z do

ki = H(k||i) . generate i-th key
if H(isPrgrmd(k||i)) then

Terminate and Output ⊥ . reject if any key is programmed
else

xi = ki ⊕ zi . xor key and ciphertext

Output x = (x1, . . . , xn)

over {0, 1}µ, the ciphertexts are indistinguishable, which means that the scheme satisfies the chosen
plaintext indistinguishability (IND-CPA). This property holds for as long as no programmed values
are queried, which does not happen when the encryption was done honestly.

In our protocol we consider the special case where we commit to the key for the encryption. The
authors of [37] show how to construct a non committing encryption scheme in the programmable
random oracle model, but also state the danger that a commitment to the key in this construction
might lead to a leakage of the plaintext. In our implementation, we make sure this is not the case,
by letting the commitment be Commit(k) = (H(k), k). Note, that even with knowledge of H(k) it is
not possible to distinguish xi⊕H(k||i) from xi⊕H(k′||i) for computationally bounded adversaries.

B.1 Extending Merkle Trees to Commitments

For the our protocol Π we need that both parties S and R jointly commit to the values x using
a Merkle tree commitment towards the smart contract. The commitment on the values x =
(x1, . . . , xn) is generated using randomly sampled d = (d1, . . . dn), di ∈ {0, 1}κ as follows:

let x′ = (x1||d1, . . . , xn||dn))

Commit(x) = (root(Mtree(x′)), d) = (c, d)

Open(c,x, d) =

{
x, if root(Mtree(x′)) = c

0, otherwise

The scheme is hiding, as long as the randomness r ∈ {0, 1}κ is chosen uniformly at random
because then the commitments are indistinguishable for any ppt adversary. Note, that this commit-
ment scheme does not satisfy the binding property if the random oracle is programmable, since the
adversary has the power to program two values x, y to result in the same response H(x) = H(y). In
our protocol we do not need classical hiding when at least on of the parties S or R is honest (which
is the only case in which our protocol satisfies fairness). In our case S generates the commitment
(which he will do correctly if he is honest) and sends it together with the committed values to
R. The receiver R recomputes the commitment and additionally checks if any of the labels of the
Merkle tree are programmed in H. If he encounters any programmed value, an honest R will reject
the root r and abort the protocol execution. This ensures that (as long as there is one honest
party) the commitment is binding.

32

GL,Hjc H

A

Z

S Rsecure channel

in
S

o
u

t S

in
R

o
u

t R

(Gjc,L,H)-Hybrid World

in
fl

u
en

ce

le
a
k
a
g
e

leakage

influence

(a) (Gjc,L,H)-hybrid world execution of Π with
S,R and A

FLcfe

Sim

Z

Ideal World

in
fl

u
en

ce

le
a
k
a
g
e

in
S

ou
tS

inR

outR

S̃ R̃

(b) Execution of FL
cfe with dummy parties S̃ and

R̃ and Sim

Figure 9: Setup of a Simulation with honest parties

C GUC security proof

In order to prove Theorem 1 we need to show that the ideal world (the execution of FLcfe with
dummy parties S̃ and R̃ and the ideal adversary Sim) is indistinguishable from the hybrid world.
In our case the hybrid world is the execution of Π with parties S, R and an adversary A where
each party interacts with the hybrid functionalities GL,Hjc and H. Figure 9 depicts the setup of the
security proof. The environment Z acts as a ppt algorithm, which distinguishes whether it interacts
with the hybrid world execution of the protocol Π (c.f. Figure 9 (a)) or the with the ideal execution
of the functionality FLcfe (c.f. Figure 9 (b)). In the ideal world the parties R̃ and S̃ are so called
dummy parties which only forward the in- and outputs of Z to the ideal functionality FLcfe whereas
in the hybrid world the parties run the code of protocol Π. Z can use the leakage information
from the adversary A (respectively the ideal adversary Sim) or actively influence the execution to
distinguish the two worlds. Additionally, it selects the inputs for the two parties and learns its
outputs. Lastly Z can corrupt any of the parties (using the adversary) to learn any internal values,
and all messages send to and from the party. We will consider these cases in detail later.

To prevent Z from distinguishing the executions we need to construct a simulator, that outputs
all messages such that it looks like the hybrid world execution to the Environment Z. Specifically,
Sim needs to ensure that the outputs of the parties are identical in the hybrid world and the
simulation. Even with corrupted parties he needs to generate an indistinguishable transcript of
the real world execution while ensuring that the global functionality L blocks or unblocks money
in the same rounds. In order to formally prove Theorem 1 we need to consider four cases, the
protocol execution with two honest parties, execution with a malicious sender S∗, execution with a
dishonest receiver R∗ and the case where both parties are corrupt. All of the described termination
cases (c.f. Section 4) provide seller and buyer fairness as defined in section 3.2.

33

Simplifications and Notation. Whenever the simulator Sim simulates the execution of GL,Hjc

on some input of message m we write m′ ← GL,Hjc (m) to indicate that the m′ is the output of GL,Hjc

after m was received. Simulation of this execution includes leaking these message m,m′ to the
environment and sending m′ to the corrupted parties according to the behavior of GL,Hjc . Note, that
GL,Hjc is only internally simulated by Sim and does not freeze/unfreeze coins in L.

Whenever parties send messages to FLcfe and GL,Hjc , the environment (over the adversary) has
the power to delay these messages by time ∆. We won’t argue about this power in detail during
the simulation since we make the following simplifying assumption. In every round (1) - (5) the
adversary may instruct the ideal functionality (over the influence port) by how much time the
message is delayed. Using this knowledge Sim will ensure that FLcfe is always delayed by the same
amount of time as the GL,Hjc functionality would be. This ensures that Z cannot distinguish the
real world for the simulation, using this influence. This simplification allows us to construct the
simulators without mentioning this influence explicitly in every step.

To simplify complex steps in our proofs we sometimes use a sequence of simulation games. This
technique is often used in simulation based proofs that show indistinguishability. Instead of showing
indistinguishability of the real world execution Π and ideal world simulation with Sim immediately,
we construct the experiments Game0, . . . ,Gamen. We call the real world execution Game0 and
Gamen is the final UC simulation. The intermediate games are hybrid simulations, where each
Game is one step closer to the ideal world simulation, but the Simulator in these intermediate
games additionally controls the in- and outputs of the honest parties. By showing that for each
i ∈ [n − 1] that Gamei is computationally indistinguishable from Gamei+1 we show that the real
world execution is indistinguishable from the ideal world simulation, i.e. Game0 ≈c Gamen.

C.1 Simulation without corruptions

Simulation of the protocol execution with an honest seller and honest receiver is special case, in
which the dummy parties S̃ and R̃ will forward all messages from Z to FLcfe in the ideal world (as
depicted in Figure 9 (a)). The simulation in this case is straight forward since Simhonest will be
only required to generate a transcript of all messages of the execution of Π towards the adversary
and thus Z. This includes the simulation of the first protocol message, send from S to R and all
following interactions with GL,Hjc and H. Note, that the communication between the honest S and
R is private and Z cannot read the content of this message, but only see if a message was sent.

Claim 1. There exists a efficient algorithm Simhonest such that for all ppt environments Z, that do
not corrupt any party it holds that the execution of Π in the (Gjc,L,H)-hybrid world in presence
of adversary A is computationally indistinguishable from the ideal world execution of FLcfe with the
ideal adversary Simhonest.

Proof. We define a simulator Simhonest, which internally runs GL,Hjc and has oracle access to H.

Simulator Simhonest without corruptions

1. If S starts the execution in with FLcfe in the first round Simhonest learns id , p, φ from FLcfe.
Then Simhonest, selects k ← {0, 1}µ, sets x∗ = 1n×λ and computes Encode(x∗, k, φ) = z. He
computes rφ = root(Mtree(φ)), rz = root(Mtree(z)) and (c, d)← Commit(k). Now he sim-
ulates the execution of Π by running (initialized , id , p, c, rφ, rz)← GL,Hjc (init , id , p, c, rφ, rz).

2. If R sends (buy , id ,R) in the execution with FLcfe in the second round, Simhonest runs

34

GL,HjcH

A

Z

RS secure channel

in
R

o
u

t R

(Gjc,L,H)-Hybrid World

in
fl

u
en

ce

le
a
k
a
g
e

leakage

influence

(a) (Gjc,L,H)-hybrid world execution of Π with
S,R and A

FLcfe

SimS

Z

Ideal World

in
fl

u
en

ce

le
a
k
a
g
e

inR
outR

inS

outS

R̃S̃∗

(b) Execution of FL
cfe with dummy parties S̃ and

R̃ and SimS

Figure 10: Simulation against Z with corrupted sender S∗ and honest receiver R

(fl, id)← GL,Hjc (accept , id) to simulate the acceptance by R. If instead R does not send this
message in the ideal world, Simhonest simulates the automatic refund of p coins in GL,Hjc and
terminates the simulation.

3. In the reveal phase, Simhonest runs (revealed , id , d, k)← GL,Hjc (reveal , id , d, k).

4. In the payout phase, Simhonest waits for FLcfe to unfreeze the coins. If FLcfe unfroze them
in favor of S, Simhonest simulates the execution of (sold , id) ← GL,Hjc (finalize, id). On the
other hand, if the coins are unfrozen in the name of R, Simhonest simulates a complain by
R. Specifically, he generates a complain about the output of φ i.e., that the output of gm
does not equal 1a. Then terminate the simulation.

aSpecifically, π = ((φm,Mproof (m,φm,Mtree(φ))) , (0,Mproof (m, 0,Mtree(z))))

Running Simhonest in the FLcfe ideal world is indistinguishable from the (Gjc,L,H)-hybrid world
execution to Z unless Z learns z and decrypts it to X ′ 6= X (using k, which he learns in the reveal
phase). But we can show that this only happens if z breaks the hiding property of the Merkle tree
commitment, which is computationally hard, as explained in Section B. This way z does not learn
any decryption of z, except for the last element which equals 0 if Simhonest simulates a complaint
by R.

C.2 Simulation with a malicious sender

Simulation with a corrupted sender is slightly more tricky than the simulation with two honest
parties. The simulator in this case needs to simulate the transcript of Π and additionally all
outputs of the corrupted sender towards FLcfe and Z. This means whenever the Z sends a message

35

through the corrupted dummy party S̃∗ it is send to SimS directly. Using these inputs SimS

internally simulates the execution of Π while interacting with FLcfe in the name of S∗. Figure 10
shows the setup of this simulation.

Claim 2. There exists a efficient algorithm SimS such that for all ppt environments Z, that only
corrupt the sender it holds that the execution of Π in the (Gjc,L,H)-hybrid world in presence
of adversary A is computationally indistinguishable from the ideal world execution of FLcfe with the
ideal adversary SimS.

Proof. Since the simulation in presence of a corrupted sender is not straight forward, we construct
a sequence of two simulation games Game1 and Game2, where the simulator of Game2 equals
the simulator SimS from the ideal world execution. But before we construct this ideal adversary,
we will start with a slightly modified Experiment Game1, in which the simulator SimS1 holds the
private inputs of the honest receiver and generates messages on his behalf. We will first sketch this
simulator SimS1 and argue that the execution of Π in the (Gjc,L,H)-hybrid world is indistinguish-
able to the execution of Game1 and then show how to change the simulator, such that it runs in
the ideal world (Game2) and again show indistinguishability.

Simulator SimS1

1. Upon receiving message (init , id , p, c, rz, rφ) in the first round, SimS simulates the execution
of the hybrid functionality by sending (initialized , p, c, rφ, rz) = GL,Hjc (init , id , p, c, rz, rφ) to
S̃∗. If S∗ did not send the message (init), SimS aborts the simulation. Otherwise, if message
(sell , id , z, φ, c) was also received from S̃∗ in the first round, SimS1 sets x∗ = 1n×λ and sends
(init , id , φ, p,x∗) to FLcfe.

2. In the second round SimS1 waits to receives (buy , id ,R) from FLcfe, which means that the p
coins were frozen in L. To simulate that this was performed by the judge smart contract,
SimS1 runs (active, id) = GL,Hjc (accept , id). If no message from FLcfe was received in round 2,
SimS1 terminates the simulation.

3. Upon receiving (reveal , id , d, k) from S̃∗ in round 3, such that Open(c, d, k) = 1, SimS1 triggers
FLcfe to output of x∗ to R. Additionally SimS1 runs (revealed , id , d, k)← GL,Hjc (reveal , id , d, k)
to simulate the execution of Π. Since SimS1 controls the in- and outputs of R, he will exchange
the output message to the environment from (bought , id ,x∗) to (bought , id ,x), where x is the
extracted witness (x, π)← Extract(φ, z, k). If no message (reveal , id , d, k) from S̃∗ is received,
send (abort , id) to FLcfe in the name of S∗ and simulate the refund in the hybrid world by
running GL,Hjc until it terminates.

4. If π = ⊥, SimS1 simulates the acceptance by an honest receiver by running (sold , id) ←
GL,Hjc (finalize, id) and send (abort , id) to FLcfe. He immediately triggers the unfreezing of S
coins in the ledger L and outputs (sold , id) to S̃∗. If instead π = 1, SimS1 needs to simulate
a complaint. He does this by running (not sold , id)← GL,Hjc (complain, id , π) and letting FLcfe
terminate normally. Then SimS1 outputs (not sold , id) to S̃∗ and terminates.

The output (bought , id ,x) of R in step (3) is is identical to the real world execution, since it
is computed in the same way, as the extraction of z using key k. The same holds for the outputs

36

to S̃∗ in round (1), (2) and (4) since they are generated by the simulation of GL,Hjc , which the
honestly generated inputs of R. The environment Z will only be able to distinguish the real world
execution from the execution of Game1 if messages are sent in different rounds or coins are frozen/
unfrozen differently in L. SimS1 makes sure to simulate messages of GL,Hjc and FLcfe in the same
round as Z instructs him on the influence port. Only in the case where an honest receiver would
send the finalize message, SimS makes sure that the abort is received by FLcfe in the same round
as it unfreezes the coins for S. This is necessary, since the input to FLcfe is not correct and upon
checking, FLcfe would not assign the coins to S. But by immediately aborting and triggering the
unfreeze, SimS can successfully simulate the case of no complaint.

Since Game1 does not capture the full functionality of SimS , we need to adapt SimS1 further to
work in the FLcfe world. Mainly, it must not be able to control inputs and outputs of honest parties
like depicted in Figure 10. Instead it needs to utilize the observability functions of the random
oracle and learn the witness x from the messages send by S in the first round of the protocol and
input this witness to the ideal functionality FLcfe. Instead of constructing a new simulator we will
only highlight the differences to the previous simulator SimS1 .

Simulator SimS for corrupted sender

1. Upon receiving message (sell , id , z, φ, c) over S̃∗ in the first round, SimS learns Qid from
querying H(observe) and checks if (k||d, c) ∈ Qid . If such a query exists in Q SimS runs
(x, π) = Extract(φ, z, k). If no such query exists, or S̃∗ never send sell , set x = 1n×λ.

Upon receiving (init , id , p, q, c, rz, rφ) through S̃∗ in the first round, send
(init , id , φ, p, q,x) to FLcfe. Simulate the execution of the hybrid functionality by
sending (initialized , p, c, rφ, rz) = GL,Hjc (init , id , p, c, rz, rφ) to S̃∗.

If S̃∗ did not send both messages sell and init , SimS aborts the simulation.

2. When SimS receives (buy , id ,R) from FLcfe, it means that the p coins were frozen in L. To
simulate that this was performed by the judge smart contract, SimS1 runs (active, id) =
GL,Hjc (accept , id). If no message from FLcfe was received until round 3, SimS1 terminates the
simulation.

3. Upon receiving (reveal , id , d, k) from S̃∗ in round 3, such that Open(c, d, k) = 1, SimS1
triggers FLcfe to output of x∗ to R. Additionally SimS1 runs (revealed , id , d, k) ←
GL,Hjc (reveal , id , d, k) to simulate the execution of Π.

If no message (reveal , id , d, k) from S̃∗ is received, send (abort , id) to FLcfe in the name of
S∗ and simulate the refund in the hybrid world by running GL,Hjc until it terminates.

4. Upon receiving (sold , id)from FLcfe, SimS simulates the execution of GL,Hjc by outputting
(sold , id)← GL,Hjc (finalize, id) to S̃∗. Then SimS terminates.

If instead he receives (not sold , id) from FLcfe, SimS runs (not sold , id) ←
GL,Hjc (complain, id , π) and terminates.

Since SimS cannot control the output of R anymore, it needs to guarantee that FLcfe outputs
(bought , id ,x) in step (3) to the honest receiver R. Therefore, SimS has to input x to FLcfe in the
fist step of the execution. But since SimS does not know x he has to learn it from the inputs of S∗.
Specifically, he uses the observability property of the global random oracle H to get a list Qid of all

37

GL,Hjc H

A

Z

S Rsecure channel

in
S

o
u

t S

(Gjc,L,H)-Hybrid World

in
fl

u
en

ce

le
a
k
a
g
e

leakage

influence

(a) (Gjc,L,H)-hybrid world execution of Π with
S,R∗ and A

FLcfe

SimR

Z

Ideal World

in
fl

u
en

ce

le
a
k
a
g
e

in
S

ou
tS

inR

outR

S̃ R̃∗

(b) Execution of FL
cfe with dummy parties S̃ and

R̃∗ and SimR

Figure 11: Simulation against Z with honest sender S and malicious receiver R∗

queries to H that were made by the environment (directly or over some adversary). We distinguish
the following cases now: (a) Either the commitment is not correct, in this case SimS cannot learn
k from Qid (this is identical to the case that k was programmed, which makes the commitment
invalid), or (b) the commitment was done correctly. In case (a) the execution of the real world
protocol will fail just as the simulation with overwhelming probability, since Z will not be able to
provide a opening to commitment c, such that the opening is accepted by GL,Hjc , except if Z guesses
c, d such that later H upon being queried k||d responds with exactly with c. Since H selects the
query response randomly from {0, 1}µ this only happens with probability 1

2µ , which is negligible
for large µ. Case (b) occurs when the tuple (k||d, c) is stored in the set Qid . This allows SimS to
run the extraction algorithm, just like the honest sender will and recover x. If the commitment is
opened correctly in step (3), the honest receiver in the real world would output x, just as in the
interaction with FLcfe in our case. It is only possible to distinguish these two cases if Z managed to
find a collision, i.e, Z must commit to one key and open to another key, i.e., find a (k, d), (k′, d′)
such that Open(c, d, k) = Open(c, d′, k′) = 1 But from the binding property of the commitment
scheme follows that this is not possible except with negligible probability. Thus, we have shown
that the hybrid and ideal world are indistinguishable to the environment Z if the commitment of
the key is binding. This concludes the proof for the case of a malicious sender.

C.3 Simulation with a malicious receiver

Next, we will show security against malicious receivers (denoted asR∗). The setup of the simulation
is symmetrical to the one with malicious sender and is depicted in Figure 11.

Claim 3. There exists a efficient algorithm SimR such that for all ppt environments Z, that only
corrupt the receiver it holds that the execution of Π in the (Gjc,L,H)-hybrid world in presence
of adversary A is computationally indistinguishable from the ideal world execution of FLcfe with the

38

ideal adversary SimR.

Proof. The main challenge for SimR in this proof is to provide the encoding z without knowledge
of the witness x in the first round and to present key k in the third step such that the decryption
of z yields x. Additionally, the key he provides during the reveal phase has to correctly open a
commitment c, which SimR has to output in the first step. In order to construct this simulator,
we will mainly utilize the programmability property of the global random oracle H. Again, we
construct the simulator using multiple experiments Game1,Game2 and Game3, which represents
the ideal world execution with FLcfe.

We start with the first experiment Game1, in which we give the adversary SimR1 the extra power
to learn all inputs and give all outputs to honest parties. In our case we require that it can read the
input of the dummy party S̃ in the first round, which is the message (sell , id , φ, p,x). Specifically
SimR1 learns x in this round, which he would not know otherwise. Now we sketch the algorithm of
our simulator SimR1 with knowledge of x

Simulator SimR1

1. The simulation starts when S̃ sends (sell , id , φ, p,x) to FLcfe. SimR1 simulates the execution of
Π by randomly sampling a key k, encoding φ(x) to z and sending (sell , id , z∗, φ, c∗) to R∗.
When the functionality outputs (sell , id , φ, p,S) to the corrupted receiver SimR internally
runs GL,Hjc and outputs (init , id , p, c∗, rφ, rz) instead (where c is the commitment and rφ and
rz are the Merkle root hashes as defined in the protocol).

2. If the corrupt receiver accepts the exchange, SimR1 receives a message (accept , id) from R̃∗
in round 2. In this case SimR1 sends message (buy , id , φ, p) to FLcfe and simulates the judge
contract by sending (active, id)← GL,Hjc (accept , id) to R∗.

3. In the reveal phase SimR1 simulates the honest sender by outputting (revealed , id , d, k) ←
GL,Hjc (reveal , id , d, k) to R∗.

4. In the payout phase the corrupt sender can either accept the file, complain or abort the
protocol execution altogether. SimR1 waits for the message of R̃∗ in the next round. If he
receives a message (complain, id , π) where π is a valid complain, SimR1 lets FLcfe continue,
this way the output of FLcfe and GL,Hjc (complain, id , π) will be identical, namely (sold , id) if
φ(x) = 1 or (not sold , id) otherwise. If SimR instead receives a message (finalize, id), he
sends (abort ,R∗) to FLcfe and immediately triggers the unfreezing of p coins. This way the
output of (sold , id) and the unfreezing of coins will be indistinguishable to Z, even when
the sent witness is false, i.e., φ(x) = 1. The third case occurs when SimR1 does not receive
any valid message from R̃∗ in round 4. In this case, he sends (abort ,R∗) to FLcfe and waits
one round before he triggers the unfreezing of coins. This way, the behavior of FLcfe will be
indistinguishable from the judge smart contract of input of (finalize, id), which an honest
sender would always send in round 5.

Thus, the execution of Experiment Game1 running with adversary SimR1 is indistinguishable
form the real world execution of Π with the judge smart contract GL,Hjc . Note, that this simulation
is only possible, since SimR1 learns x in the first round.

39

We will now show how to construct a simulator that does not require this additional input of
x but uses the programmability of the random oracle to simulate this knowledge. We will do this
in two steps, first we simulate the key commitment without using the ”real” encryption key and
in a third experiment also simulate the encoding of z without knowledge of x. We only sketch the
main differences to the previous simulator and later give a detailed construction of SimR, which is
the ideal adversary in the execution of FLcfe. The Simulator of Experiment Game2 is very similar
to SimR1 and only differs in the following way:

Simulator SimR2

1. In the first round, SimR2 does not generate a commitment (c, d)← Commit(k) but randomly
samples c∗ ← {0, 1}µ and outputs c∗ instead of c to the corrupted receiver. At this point Z
cannot distinguish if it received c or c∗, as long as c∗ was sampled uniformly at random from
the same domain that the random oracle H uses.

3. In the reveal phase, SimR2 now needs to open the commitment and present and opening
value d, such that Open(c∗, k, d∗) = 1. SimR2 randomly chooses d∗ ← {0, 1}κ and sends
(program, id , k||d∗, c∗) to H to program the random oracle to respond to all oracle queries of
k||d∗ with c∗.

This will succeed if H was not queried or programmed on x||r before. Since Z is computationally
bounded, it can only guess r and program or query H on polynomial many points. Additionally, if
SimR2 chooses a opening value such that the programming fails, he can try again with a different
value. Now when Z checks the opening Open(c∗, k, d∗), it will try to detect this programming
behavior in the simulation, by querying H(isPrgrmd, x||r) from this session either over the ideal
adversary or a corrupted party. Since SimR1 is the ideal adversary and controls all corrupted
parties, he can interject all queries to H from this session and simply send back a false response,
to lie about the programmed values. Therefore the result of the simulation of the commitment
will be indistinguishable to Z with overwhelming probability. Therefore the environment cannot
distinguish the execution of experiment Game2 from the execution of Game3, except with negligible
probability.

It remains to show that SimR can simulate the encoding z∗ without knowledge of x in the
first round, such that it is indistinguishable towards Z. This is possible since the construction of
encryption scheme using the programmable random oracle makes it non-committing for only the
ideal adversary SimR. He proceeds as follows:

In the first round he simulates the encoding z by sampling it uniformly at random, i.e. z =
(z1, . . . , zm) ← {0, 1}µ×m. Upon learning the actual plaintext x = (xi, . . . , xn) SimR needs to
output a key k such that Dec(k,z) = (x). Knowing x, he samples k ← {0, 1}κ and programs the
random oracle H to open all decryption queries as follows:

∀i ∈ m : H(program(k||i, oi ⊕ zi)

Should Z request the response of (isPrgrmd, k||i) for any i ∈ n the simulator SimR lies to Z
and claims that it was not programmed. This simulation is indistinguishable from the real world
execution as long as the programming is not detected by Z, which happens if it queries H(k||i) for
any i ∈ [n] or programmed any of these values himself before the programming took place. If the

40

adversary does not know k this happens only with negligible probability since he can only make
polynomially many queries or programming requests to H. Therefore the execution of experiment
Game2 is computationally indistinguishable from experiment Game3. For a detailed proof about
how these properties in the global random oracle model can be achieved for encryption, we refer
the reader to [14].

By showing that SimR can simulate the encoding z without the knowledge of x, we have
completed all necessary steps of the simulation and can construct the ideal world simulator SimR

and concluded the proof. To give the reader a complete overview of the final simulator for the
ideal world execution we formalize it in detail below, combining the steps of the tree experiments
above.

Simulator SimR

1. Upon receiving (sell , id , φ, p,S) from FLcfe in the first round SimR randomly samples
z∗ ← {0, 1}m×µ. Additionally, he simulates the commitment as c∗ ← {0, 1}µ and
sends the message (sell , id , z∗, φ, c∗) to R∗. Next he computes rφ = root(Mtree(φ) and
rz = root(Mtree(z∗), runs GL,Hjc on input (init , id , p, c∗, rφ, rz) and sends the output to R∗.

2. Wait to receive (accept , id) from R∗ in the third round.

• If no such message is received, SimR simulates the refund the blocked coins in GL,Hjc

and terminates the simulation.

• If SimR receives the accept message he sends message (buy , id , φ, p) to FLcfe and simulate
the activation of GL,Hjc by sending (active, id)← GL,Hjc (accept , id) to R∗.

3. In the reveal phase SimR learns x from the message (bought , id ,x), which FLcfe sends to R∗.
Then he needs to simulate the messages of the honest sender in protocol.

• SimR selects k uniformly at random from {0, 1}κ and for all i ∈ [n] set oi := xi and
for all j ∈ {0, . . . ,m− n} and φj := (i, opi, Ii) computes on+i := opi({oj}j∈Ii).

• Then map the encryption of z∗ and k to the correct values by programming the random
oracle H in the following way: for all i ∈ m send the messages (program(k||i, oi ⊕ zi)
to H. From now on querying H(k||i) results in ri = z∗i ⊕ oi such that for all i ∈ n
Enc(k, z∗i) = zi ⊕H(k||i) = oi will decrypt z∗i to oi.

• To generate the correct opening for the commitment, SimR samples d ← {0, 1}κ and
programs the random oracle by sending H(program(k||d, c∗)).

Whenever Z queries H (over R∗ or SimR) on the programmed values, SimR interjects
these queries and instead of forwarding them to H, responds to them himself so he can
pretend that the values are not programmed. Finally, SimR runs (revealed , id , d, k) ←
GL,Hjc (reveal , id , d, k).

4. SimR waits to receive a message from R∗ in round 4.

• If the message is a valid complaint (complain, id , π) SimR runs GL,Hjc on input of this
message. If the judge contract accepts the complaint, he lets FLcfe continue and termi-
nates.

41

• If the message is a false complaint or (finalize, id) SimR instead sends (abort , id) to
FLcfe and immediately trigger the following execution including the unfreezing og coins.
Then SimR terminates.

• If instead R∗ does not send a message, SimR also sends (abort , id) but waits for one
round before he triggers the further execution, including the payout of coins. Then
SimR terminates.

C.4 Simulation with two malicious parties

It remains to prove security for th last case, where Z corrupts both, the sender and the receiver.
The case of malicious sender and receiver does not guarantee any fairness and might not even
terminate. Recall, that we allow any malicious party to loose money if it does not follow to the
protocol execution, aborts and declines the unfreezing request made by ledger (c.f. Section 3). A
simple example of such a case is when S∗ does not trigger the finalize message when interacting
with GL,Hjc . This will result in his money staying blocked forever. But even if the standalone case
of two dishonest parties does not make much sense for the proposed applications, we still need to
prove indistinguishability of the real and hybrid world, to guarantee security when composed with
other protocols.

Claim 4. There exists a efficient algorithm SimSR such that for all ppt environments Z, that
corrupt both, sender and receiver it holds that the execution of Π in the (Gjc,L,H)-hybrid world
in presence of adversary A is computationally indistinguishable from the ideal world execution of
FLcfe with the ideal adversary SimSR.

Proof. The simulation of the case with both malicious sender and receiver, is a mixture of the two
previous simulations. The simulator runs in the FLcfe world and needs to simulate the execution of Π
in the real world, using the inputs of S∗ and R∗. Additionally, it needs to execute the functionality
FLcfe on behalf of S̃∗ and R̃∗ to ensure the correct blockage of coins in L. Since this case repeats the
steps of the simulations with one malicious parties, we will only give a high level sketch of SimSR.
Whenever R∗ or S∗ instruct L not to pay out the coins, SimSR forwards this message to L to
enforce the identical behavior in the real and ideal world.

Simulator SimSR

1. Upon receiving message (init , id , p, c, rz, rφ) in the first round, SimSR simulates the execu-
tion of the hybrid functionality by sending (initialized , p, c, rφ, rz) = GL,Hjc (init , id , p, c, rz, rφ)
to S̃∗.

If S∗ did not send the message (init), SimSR aborts the simulation.

Otherwise, if message (sell , id , z, φ, c) was also received from S̃∗ in the first round, SimSR

sets x∗ = 1n×λ and sends (init , id , φ, p,x∗) to FLcfe.

2. When SimSR receives (accept , id) by S∗ he sends (buy , id ,R) to FLcfe. Additionally he runs
(active, id) = GL,Hjc (accept , id). If no message from R∗ was received, SimSR terminates the
simulation.

3. Upon receiving (reveal , id , d, k) from S̃∗ in round 3, such that Open(c, d, k) = 1, SimSR

42

triggers FLcfe to output of x∗ to R. Additionally SimSR runs (revealed , id , d, k) ←
GL,Hjc (reveal , id , d, k) to simulate the execution of Π.

If no message (reveal , id , d, k) from S̃∗ is received, send (abort , id) to FLcfe in the name of
S∗ and simulate the refund in the hybrid world by running GL,Hjc until it terminates.

4. SimSR waits to receive a message from R∗.

• If the message is a valid complaint (complain, id , π) SimSR runs GL,Hjc on input of
this message. If the judge contract accepts the complaint, he lets FLcfe continue and
terminates.

• If the message is a false complaint or (finalize, id) SimSR instead sends (abort , id) to
FLcfe and immediately trigger the following execution including the unfreezing og coins.
Then SimSR terminates.

• If instead R∗ does not send a message in the fourth round, SimSR waits for S∗ to
send (finalize, id) in round 5. If S∗ sends this message, SimSR triggers the further
execution, including the payout of coins. Then SimSR terminates. If S∗ on the other
hand does not send this message, SimSR also triggers the further execution of FLcfe but
when L request the payout of the coins to S∗, he refuses the request in the name of
S∗.

The simulator ensures that the coins are unfrozen correctly in L by submitting a wrong file x∗ to
FLcfe. This allows him to wait for the payout phase and simulate the outcome of GL,Hjc accordingly. If
the receiver can produce a valid complain, which will trigger GL,Hjc to output the coins to R, SimSR

triggers the verification of the file, which will conclude that φ(x) 6= 1. Otherwise, if R does not
produce a valid complaint, SimSR triggers the payout to S in FLcfe without checking if φ(x) = 1 by
sending (abort , id). Now he waits for S∗ to send the finalize message. If this message is received
within the expected time, he simulates the payout of coins. Otherwise, he needs to simulate that
the coins are frozen in L. He does this by refusing the payout of coins in L when FLcfe instructs it
to send the payment of p coins to S∗. This will block the execution and the money is frozen.

Since SimSR controls all outputs to the corrupted parties, it does not matter, that FLcfe outputs
a wrong file x, since SimSR could easily simulate the correct output from the internal execution
of GL,Hjc . This ensures that the execution of FLcfe with SimSR is indistinguishable from the hybrid
world execution to Z.

D Formal background of state channels

Formally, a channel can always be described by its state γ, which is as an tuple with the following
parameters:

γ = (id ,R,S, p, q,nc, cashnc , τ)

If γ is a channel between the users S and R we call the users γ.owners = {S,R}. In this
scenario, we use the identifier id to reference the channel instead of the contract. For every owner,
the channel stores the values γ.q and γ.p, which denote the amount of coins that are controlled by
the channel. Some of these coins (denoted as γ.cashnc) can be saved for a specific use, and will be
handled by so called nanocontracts. The overall money that can be spend through the channel is

43

γ.cash = γ.q + γ.p + γ.cashnc . State Channels can contain nanocontracts, which are represented
in the state as γ.nc. This value can either be empty γ.nc = ⊥, which means that the channel
currently does not contain a nanocontract, or γ.nc = nc, which means the contract nc is run as a
nanocontract. A nanocontract is defined by its code and internal storage stateinit , must have an
initiating function nc.init(stateinit) and outputs a distribution of coins (outR, outS). For simplicity
we only consider one nanocontract nc per state channel but it could without loss of generality
also contain multiple internal contracts. Before sending this message, both parties should verify
whether it is possible to execute C without involvement of the other party within time τ and that
it has the expected function. If this check is not performed, their coins reserved for the execution
of id might get lost.

Whenever the parties want to update the money distribution or other internal values in a
channel γ they agree on a new channel γ∗ with the updated parameters. We say that γ∗ is a
successor of γ when the following checks hold:

• γ∗.id = γ.id ,

• γ∗.owners = γ.owners,

• γ∗.cash = γ.cash and

• γ∗.nc ∈ {nc,⊥}.

In short we write γ 7→ γ∗.
To create the channel, both S and R have to agree on a channel with state γ. Then both

send a message containing γ to the ideal channel contract functionality FLChan(C)8. If some party
aborts during this step or the funds are insufficient, the deposited money can be refunded after the
timeout through FLChan(C). Otherwise, a channel is created with state γ. It can now be updated
an arbitrary number of times as long as both parties agree. For this S and R update the state to
γ∗ with γ 7→ γ∗.

If S and R want to run a nanocontract nc in the channel, they use its state parameters
γ.cashnc , γ.nc, γ.τ . Both parties should verify beforehand whether it is possible to execute nc
without involvement of the other party within time γ.τ and that it has the expected function. If
this check is not performed, the coins γ.cashnc reserved for the execution of γ.nc might get lost.

As long as both parties agree, they can update the channel whenever they want to run nanocon-
tract nc. If they also agree on the outcome of the nanocontract execution, they update the channel
state again, such that it contains the correct redistribution of coins and the nanocontract is deleted.
Should they not agree on the outcome of the nanocontract, either party can enforce the execution
of the internal nanocontract and terminate the channel. The execution of the nanocontract works
analogue to the deployment and execution of a contract in the contract hybrid world.

8For more information how this ideal functionality is constructed refer to [20]

44

