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Abstract. Some features of Feistel structures have caused them to be
considered as an efficient structure for design of block ciphers. Although
several structures are proposed relied on Feistel structure, the type-II
generalized Feistel structures (GFS) based on SP-functions are more
prominent. Because of difference cancellation, which occurs in Feistel
structures, their resistance against differential and linear attack is not as
expected. Hitherto, to improve the immunity of Feistel structures against
differential and linear attack, two methods are proposed. One of them is
using multiple MDS matrices, and the other is using changing permuta-
tions of sub-blocks.
In this paper by using MILP and summation representation method,
a technique to count the active S-boxes is proposed. Moreover in some
cases, the results proposed by Shibutani at SAC 2010 are improved. Also
multiple MDS matrices are applied to GFS, and by relying on a new
proposed approach, the new inequalities related to using multiple MDS
matrices are extracted, and results of using the multiple MDS matrices in
type II GFS are evaluated. Finally results related to linear cryptanalysis
are presented. Our results show that using multiple MDS matrices leads
to 22% and 19% improvement in differential cryptanalysis of standard
and improved 8 sub-blocks structures, respectively, after 18 rounds.

Keywords: MILP, Generalized Feistel structure, Switching mechanism,
Differential cryptanalysis, Linear cryptanalysis.

1 Introduction

Nowadays, security is one of the most important components of information
transition, and cryptography is inseparable part of security. Block ciphers are
one of the most important tools, which are used in cryptography. These ciphers
must be resistant against the existing security cryptanalysis that the most im-
portant of them are differential and linear cryptanalysis.



Feistel structures are significant category of block ciphers, which have been
under several evaluation so far. Perhaps CAMELLIA [1] and CLEFIA [12] are
the most important block ciphers that are designed based on these structures.
The CLEFIA block cipher uses four sub-blocks Feistel structure with switching
mechanism [10]. In switching mechanism multiple MDS matrices with specified
properties are used. Using switching mechanism in CLEFIA provides 1.3 times
more active S-boxes rather than the structure with one matrix. Also as mentioned
in [10, 11], for two sub-blocks Feistel structure with multiple MDS matrices, the
total number of active S-boxes are 1.2 times more than two sub-blocks Feistel
structure with one MDS matrix.

Hitherto, a lot of method have been proposed to count the number of active
S-boxes of Feistel structures. The first method for Feistel structures with SPN
round functions is proposed in [4]. This method is able to offer a lower bound
for the number of differential and linear active S-boxes with branch number β.
In [9], a method is proposed to calculate the minimum number of active S-boxes
of block cipher Camellia, and the existing bound is improved for this block ci-
pher. Also in [13, 7], the number of active S-boxes is obtained by changing the
standard method, and proposing a particular algorithm. Although employing
multiple MDS matrices in GFS are discussed in [3, 8], accurate results are not
reported.

Probably, using linear programming method in calculating the number of
active S-boxes of block ciphers is one of the most important exciting methods.
This method is discussed in several papers such as [2, 5]. In order to evaluate
word-oriented block ciphers, however, a comprehensive method is proposed in
[5]. Also in [6] due to have better performance from the features of MDS matri-
ces, a method is proposed.

In this paper by using linear programming and the proposed idea in [6], first a
new method to count the number of differential and linear active S-boxes in Feis-
tel structures is presented, and the obtained results are compared with results
in [7]. Other major contribution of the paper is referring to inequalities that are
extracted from imposing switching mechanism, and results that are obtained by
imposing switching mechanism on generalized Feistel structures are presented.
Moreover, the results for the best 8 sub-blocks Feistel structures that employ 2
and 4 multiple MDS matrices are reported. Based on our researchs, the results

of using
l

4
MDS matrices and

l

2
MDS matrices in differential cryptanalysis of l

sub-blocks structures, are fairly close. Finally we analyze the switching mecha-
nism in linear attack. As far as we know, an accurate method for cryptanalyzing
the switching mechanism is not proposed so far. Instead, our method represents
the accurate cryptanalysis for switching mechanism.

The rest of paper is organized as follows. In Sect.2 we review the details
of GFS structures, and explain about summation representation, which is used
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in our MILP method. In Sect.3 first we present our method to calculate the
minimum number of differential active S-boxes of 2 sub-blocks Feistel structures,
and we generalize this method for structures with more number of sub-blocks.
In Sect.4 inequalities which describe switching mechanism are proposed, and in
the following in term of number of active S-boxes, the best generalized Feistel
structures are introduced. In Sect. 5 by expanding the proposed method, linear
cryptanalysis is evaluated. Finally, we conclude in Sect. 6.

2 Preliminaries

In this section we clarify that what type of Feistel structures exactly we aim to
evaluate, and point out that what is the difference between our method and well
known MILP method, which is proposed in [5].

2.1 GFS Structures

In GFS, a plaintext is divided to l sub-blocks, where l is an even integer. if
(X0, X1, ..., Xl−1) represents the l divided sub-blocks of a state, a single round
of l sub-blocks GFS follows a permutation over ({0, 1}mn

)l as:

(X0, X1, ..., Xl−1) → π(X0, F0(X0)⊕X1, X2, F1(X2)⊕X3, ..., F(l−2)/2(X0)⊕X1)
(1)

In relation (1) Fi : {0, 1}mn → {0, 1}mn
is the i-th round function, and

π : ({0, 1}mn
)l → ({0, 1}mn

)l is a deterministic permutation over l sub-blocks.
Throughout the paper, we consider each round function is SP-function, and each
sub-block is consisted of n S-boxes with size of m bits. Therefore, it is easy to
verify that a GFS with l sub-blocks is an lmn bit block cipher.

In this paper we assume that π is a word-based permutation. In the rest of
the paper, GFSstd

l is interpretted as a standard type-II GFS with l sub-blocks,

where π(X0, X1, ..., Xl−1) = (X1, X2, ..., Xl−1, X0), and GFSimp
l is interpretted

as an improved type-II GFS with l sub-blocks as pointed out by the authors of
[13]. For instance, the permutation in GFSimp

6 (No.1) is as π(X0, X1, ..., X5) =

(X3, X0, X1, X4, X5, X2), and the permutation inGFSimp
8 (No.1), which is one of

the most important evaluated structures in this paper, is as π(X0, X1, ..., X7) =
(X3, X0, X1, X4, X7, X2, X5, X6).

2.2 Summation Representation

As mentioned above, each round function in GFS contains an mn bit block as
an input, and each bijective S-box is m bits (n parallel m bit S-boxes), and
also P is an n × n matrix with m bit elements, where we assume that β is
branch number of this matrix. In order to count the number of active S-boxes,
the truncated method is used. Therefore, in this case, the S-box does not have
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any effect on truncated difference or mask. Because of using branch number, the
place of elements does not care to be zero or not, and just the number of them is
important. Hence for every n truncated vector bits, the summation of elements
of that vector are allocated (i.e. we replace an integer number between 0 to n
instead of a vector with size of n). From now on, we call this method ”summation
representation” [6]. We emphasize that in summation representation, 2n possible
representation reduces to n+1 possible representation. For instance, in relation
(2) the truncated representation and summation representation are shown for a
vector as an input of F-function with 4 8-bit elements:

6
15
0

158

 truncated−−−−−−→


1
1
0
1

 summation−−−−−−−−→ 3 (2)

In [5], due to count the differential and linear active S-boxes of word-oriented
block ciphers, the truncated method is used. In contrast, we use summation
method to count the differential and linear active S-boxes of word-oriented block
ciphers. Throughout this paper all of the inputs and outputs are shown in a sum-
mation representation. It is worth mentioning that, our method can be apllied
for both structures with MDS and non MDS matrices. However we prefer to
describe the inequalities, by considering the fact that all of applied matrices be
MDS.

3 Counting the Differential Active S-boxes

In cryptanalysis of Feistel structure (two sub-blocks or multiple sub-blocks) with
an SP-functions, we deal with two functions. One of them is SP-function and
the other is XOR function.

Hearafter, summation representation of a difference vector ”x” is denoted by
”xc”, where ”xc” is the number of non zero elements of ”x” shows the results for.

Equations Describing the SP-Function. According to Figure 1, assume
that input and output of the i-th SP-function are xc

i and zci , respectively, where
both of them are an integer number between 0 to n.

The branch number of matrix P is β. Therefore, we have:{
zci = 0 if xc

i = 0
xc
i + zci ≥ β otherwise

(3)

The function is conditional. Considering [5], we need to introduce a new
binary dummy variable bi to convert the condition into inequality, where bi ∈
{0, 1}. Then we have: xc

i + zci ≥ βbi
bi ≤ xc

i ≤ nbi
bi ≤ zci ≤ nbi

. (4)
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xc
i

SP
zci ⊕

Fig. 1. Summation variables related to the SP-function of Feistel structure

Note that we assumed that an employed matrix be MDS, and this leads
to β = n + 1. In this case if xc

i be nonzero, certainly zci is nonzero, since the
maximum amount of xc

i is n, and xc
i + zci ≥ n+ 1 causes that zci ≥ 1. Therefore

inequality bi ≤ zci is redundant and it could be eliminated. As a rule, for an
SP-function, inequalities are turned as follows:


0 ≤ xc

i ≤ n
0 ≤ zci ≤ n
xc
i + zci ≥ (n+ 1)bi

bi ≤ xc
i ≤ nbi

zci ≤ nbi

(5)

Equations Describing the XOR operation. For describing the XOR
operation consider Figure 2. To evaluate XOR operation in summation structure,
regard to yi = xi ⊕ zi, it is clear that the maximum amount of yci is equal to
summation of two inputs. Also the minimum amount of yci won’t be less than
subtract of absolute value of two inputs.

⊕
xc
i

yc
i

zci

Fig. 2. Summation variables related to XOR operation of Feistel structure

For instance, if xc
i and zci are equal to 3 and 1, respectively, the maximum

amount that zci can eliminate from 3 nonzero elements of xc
i is 1, and the min-

imum amount of yci will be 2. Also in best case zci is nonzero in a place that
xc
i is zero and in this case the result of XOR has 4 nonzero elements. Under

this notation, for converting XOR relation in to Inequality, the following three
Inequalities are obtained:
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{
xc
i + zci ≥ yci

∥xc
i − zci ∥ ≤ yci

=⇒

xc
i + zci ≥ yci

xc
i − zci ≤ yci

zci − xc
i ≤ yci

(6)

Therefore, for each round of Feistel structure with an SP-type F-function,
where matrix P be an MDS matrix, we need 4 variables and 11 inequalities.
More precisely 8 inequalities are derived from SP-function, and 3 inequalities
are derived from XOR operation. Needless to say, if we wanted to describe such
a structure, which contains n S-boxes in its F-functions, with prior well known
MILP model, we needed to define 4n variables. Also 2n + 1 inequalities are
needed to describe the SP-function, and 4n inequalities was needed to describe
the XOR operation. Besides that, we need just 1 binary dummy variable for
SP-function in our model, whereas we need 1 and n binary dummy variables for
SP-function and XOR operation in prior model, respectively.

We know that, counting the number of nonzero inputs of SP-functions is
equivalent to count the number of active S-boxes. According to the way of defin-
ing variables in our method, xi variable denotes the number of active S-boxes
in the i-th SP-function. Therefore, to calculate the minimum number of active
S-boxes, the summation of xi variables must be minimized.

3.1 Evaluating Two Sub-Blocks Feistel Structure

Figure 3 shows the details of two sub-blocks Feistel structure that is started from
the first round.

xc
0

SP
zc0 ⊕

xc
1

SP
zc1 ⊕

xc
2

SP
zc2 ⊕

b

bb

b

Fig. 3. The way of defining summation variables in two sub-blocks Feistel structure
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According to indices of variables in Figure 3, and inequalities (5) and (6), for
each round with an MDS matrix we have:


0 ≤ xc

i ≤ n
0 ≤ zci ≤ n
xc
i + zci ≥ (n+ 1)bi

bi ≤ xc
i ≤ nbi

zci ≤ nbi

and (for i ≥ 1)

xc
i−2 + zci−1 ≥ xc

i

xc
i−2 − zci−1 ≤ xc

i

zci−1 − xc
i−2 ≤ xc

i

(7)

It is worth noting that, the variable corresponded to plain text (xc
−1 + xc

0)
must be nonzero. Thus the inequality xc

−1 + xc
0 ≥ 1 must be added. Finally by

organizing inequalities system and calculating the minimum amount of
∑n−1

j=0 xc
j

and solving it by IBM-CPLEX, the minimum number of active S-boxes for n = 4

and n = 8 for r rounds with branch number β are obtained as ⌊r
4
⌋(β + 1) +

(r)mod4−1. Table 1 shows the results for two sub-blocks Feistel with n = 4 and
n = 8 and β = n+ 1.

Table 1. Minimum number of active S-boxes of two sub-blocks Feistel

round Feistel Feistel
with n=4 with n=8

1 0 0
2 1 1
3 2 2
4 5 9
5 6 10
6 7 11
7 8 12
8 11 19
9 12 20
10 13 21
11 14 22
12 17 29
13 18 30
14 19 31
15 20 32
16 23 39
17 24 40
18 25 41
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3.2 Evaluating Generalized Feistel Structures

The process that has described for two sub-blocks Feistel structure can be ex-
panded to type I and type II GFS. In the following the inequalities are described
for GFSstd

8 . Figure 4 shows summation variables for the first three rounds of
GFSstd

8 .

SP
xc
3 zc3⊕SP

xc
1 zc1⊕ SP

xc
2 zc2⊕SP

xc
0 zc0⊕

SP
xc
7 zc7⊕SP

xc
5 zc5⊕ SP

xc
6 zc6⊕SP

xc
4 zc4⊕

SP
xc
11 zc11⊕SP

xc
9 zc9⊕ SP

xc
10 zc10⊕SP

xc
8 zc8⊕

xc
−4 xc

−3 xc
−2 xc

−1

Fig. 4. The way of defining summation variables in standard eight sub-blocks Feistel
structure

According to the above rules, GFSstd
8 is subjected to:

0 ≤ xc
i ≤ n

0 ≤ zci ≤ n
xc
i + zci ≥ (n+ 1)bi

bi ≤ xc
i ≤ nbi

zci ≤ nbi

(8)

(for 4 ≤ i ≤ 7)

xc
i−8 + zci−4 ≥ xc

i

xc
i−8 − zci−4 ≤ xc

i

zci−8 − xc
i−4 ≤ xc

i

(for i ≥ 8)


xc
i−8+(i+1)mod4−(i)mod4 + zci−4 ≥ xi

xc
i−8+(i+1)mod4−(i)mod4 − zci−4 ≤ xc

i

zci−4 − xc
i−8+(i+1)mod4−(i)mod4 ≤ xc

i

(9)

Our results for n = 4 are summarized for standard and improved generalized
Feistel structures from l = 4 sub-blocks till l = 16 sub-blocks in Table 2 and 3,
respectively. In these tables results are compared with [7]. In these tables our
different results are bold.
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Table 2. The Minimum Number of Active S-boxes in GFSstd
l with n=4, the columns

marked by ”*” are our results

GFSstd
4 GFSstd

6 GFSstd
8 GFSstd

10 GFSstd
12 GFSstd

14 GFSstd
16

round * [7] * [7] * [7] * [7] * [7] * [7] * [7]

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 6 6 6 6 6 6 6 6 6 6 6 6 6 6
5 8 8 8 8 8 8 8 8 8 8 8 8 8 8
6 12 12 12 12 12 12 12 12 12 12 12 12 12 12
7 12 12 14 14 14 14 14 14 14 14 14 14 14 14
8 13 13 18 18 18 18 18 18 18 18 18 18 18 18
9 14 14 21 21 21 21 21 21 21 21 21 21 21 21
10 18 18 25 25 25 25 25 25 25 25 25 25 25 25
11 20 20 27 27 28 28 28 28 28 28 28 28 28 28
12 24 24 30 30 36 36 36 36 36 36 36 36 36 36
13 24 24 31 31 36 36 39 39 39 39 39 39 39 39
14 25 25 35 35 37 37 43 43 43 43 43 43 43 43
15 26 26 37 37 38 38 47 47 47 47 47 47 47 47
16 30 30 41 41 42 42 54 54 54 54 54 54 54 54
17 32 32 43 43 44 44 58 58 58 58 58 58 52 52
18 36 36 47 47 48 48 62 58 62 62 62 62 62 62

Table 3. The Minimum Number of Active S-boxes in GFSimp
l with n=4, the columns

marked by ”*” are our results

GFSimp
6 GFSimp

8 GFSimp
10 GFSimp

12 GFSimp
14 GFSimp

16

round * [7] * [7] * [7] * [7] * [7] * [7]

1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 1 1 1
3 2 2 2 2 2 2 2 2 2 2 2 2
4 6 6 6 6 6 6 6 6 6 6 6 6
5 8 8 8 8 8 8 8 8 8 8 8 8
6 12 12 12 12 12 12 12 12 12 12 12 12
7 14 14 14 14 14 14 14 14 14 14 14 14
8 23 22 23 23 26 23 18 18 26 23 26 23
9 24 24 26 26 29 29 21 21 29 29 31 31
10 26 26 29 29 35 34 29 29 37 37 43 40
11 28 28 32 32 36 36 32 32 40 40 48 48
12 32 32 39 39 43 45 42 39 52 49 57 54
13 34 33 42 40 44 44 45 45 54 54 60 60
14 38 38 45 44 48 48 54 53 64 60 66 63
15 40 40 46 46 50 50 57 57 66 63 69 70
16 48 46 50 50 54 54 61 60 77 71 76 76
17 48 48 52 52 56 56 64 64 82 76 78 78
18 50 50 56 56 68 65 70 68 84 83 87 87
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4 Evaluating Switching Mechanism

In switching mechanism instead of using one matrix, multiple matrices are used
in a way that the number of differential and linear active S-boxes will be signifi-
cantly more than the case of using one matrix. In this section, at first inequalities
related to switching properties for two sub-blocks structure are described, and
then for four sub-blocks. Finally inequalities for six and eight sub-blocks struc-
ture are listed.

In Figure 5 switching mechanism is imposed on two sub-blocks Feistel struc-
ture. In this structure, two MDS matrices M1 and M2 are used, where the
branch number of matrix

[
M1 M2

]
n×2n

is n+ 1. In order to count the number
of active S-boxes of this block cipher, some inequalities must be added to prior
corresponded model, which has only one matrix in its structure.

xc
i−4

M1

zci−4⊕

xc
i−1

M1

zci−1⊕

xc
i−3

M2

zci−3⊕

xc
i−2

M2

zci−2⊕

xc
i

M1
zci ⊕

Fig. 5. The way of defining summation variables in two sub-blocks Feistel structure,
imposed by switching mechanism

According to Figure 5, relations between inputs and outputs of five consec-
utive rounds are as follows:
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{
xi = zi−1 ⊕ xi−2

xi−2 = zi−3 ⊕ xi−4
=⇒ xi = zi−1 ⊕ zi−3 ⊕ xi−4 (10)

More precisely, according to effect of S-box on truncated method, above
relation can described as follows:

[
M1 M2

] [xi−1

xi−3

]
= xi ⊕ xi−4 or

[
M2 M1

] [xi−1

xi−3

]
= xi ⊕ xi−4 (11)

Now converting switching mechanism into inequalities contains two steps: the
first step refers to the way of interpreting the relation (10), and the second step
refers to guaranteeing at least one of amounts xi−1 and xi−3 must be nonzero.
In the following, the above two steps are elaborated, respectively.

Firstly, according to feature of switching, the matrix
[
M1 M2

]
n×2n

has

branch number n+1. Thus, if in a relation
[
M1 M2

] [a
b

]
= c⊕d, at least one of

amounts a and b be nonzero, the relation ac+ bc+ cc+dc ≥ n+1 is established.
To be more specific, ac + bc + ∥c ⊕ d∥ ≥ n + 1 is correct, and since it is easy
to verify that cc + dc ≥ ∥c⊕ d∥, consequently the relation is described as men-
tioned. It is remarkable that, this relation corresponds with proposed lemmatta
in [11]. If all the variables ac, bc, cc, dc be zero, a paradox occurs in the inequlity.
In order to avoid this paradox, a new binary dummy variable is needed to define.

Secondly, at least one of amounts a and b are supposed to be nonzero. To-
wards this end, the addition of ac and bc must be grater-equal than 1. Also, it
is obvious that the addition of ac and bc is not more than 2n. As a result, the
relation 1 ≤ ac + bc ≤ 2n is attained. It is easy to verify that the paradox in
prior step is appeared again. In order to overcome the aforementioned problem,
the same dummy variable, which is defined in previous step, is used.

With all these taken to account, by defining the new binary dummy variable
called bbi, the description of switching properties for five consecutive rounds of
two sub-blocks Feistel structure is as follows:

xc
i + xc

i−1 + xc
i−3 + xc

i−4 ≥ (n+ 1)bbi

bbi ≤ xc
i−1 + xc

i−3 ≤ 2nbbi
(12)

Therefore, for the fifth round to next, for each five consecutive rounds, in-
equalities related to switching mechanism must be added.

Figure 6 shows the structure of four sub-blocks type II GFS (CLEFIA), which
two matrices M1 and M2 are used in it:

As mentioned above, in CLEFIA two MDS matrices are used. Patterning
the process that was done for two sub-blocks structure, for adding inequalities
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xc
i−9

M1

zci−9⊕

xc
i−3

M1

zci−3⊕

xc
i−7

M1

zci−7⊕

xc
i−8

M2

zci−8⊕

xc
i−5

M1

zci−5⊕

xc
i−1

M1

zci−1⊕
xc
i

M2
zci ⊕

xc
i−6

M2

zci−6⊕

xc
i−4

M2

zci−4⊕

xc
i−2

M2

zci−2⊕

Fig. 6. The way of defining summation variables in CLEFIA

related to switching mechanism, relation between inputs and outputs of five
consecutive round is as follows:{

xi−1 = zi−3 ⊕ zi−6 ⊕ xi−9

xi = zi−2 ⊕ zi−7 ⊕ xi−8
(13)

By following the same process which was done for two sub-blocks structure,
we have:

xc
i−1 + xc

i−3 + xc
i−6 + xc

i−9 ≥ (n+ 1)bbi−1

bbi−1 ≤ xc
i−3 + xc

i−6 ≤ 2nbbi−1

xc
i + xc

i−2 + xc
i−7 + xc

i−8 ≥ (n+ 1)bbi

bbi ≤ xc
i−2 + xc

i−7 ≤ 2nbbi

(14)

Therefore, for the fifth round to next, for each five consecutive rounds, switch-
ing feature must be added. We stress that, the obtained results exactly match
with [12].

In six sub-blocks type II GFS which consists of standard and improved struc-
ture [13], in order to have the best performance, three MDS matrices M1, M2
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and M3 must be used. More matrices have not considerable influence. Inequali-
ties that are obtained for switching feature inGFSstd

6 are generalized of CLEFIA.
For GFSimp

6 (No.1), one of the relations between inputs and outputs for each
seven consecutive round is as follows:

xi−2 = zi−5 ⊕ zi−9 ⊕ zi−16 ⊕ xi−20 (15)

And finally we have:

xc
i−2 + xc

i−5 + xc
i−9 + xc

i−16 + xc
i−20 ≥ (n+ 1)bbi−2

bbi−2 ≤ xc
i−5 + xc

i−9 + xc
i−16 ≤ 3nbbi−2 (16)

Therefore, for the seventh round to next for each seven consecutive rounds
switching feature must be added.

In eight sub-blocks type II GFS that consists of standard and improved struc-
ture [13], four MDS matrices M1, M2, M3 and M4 are recommended to apply.
Inequalities that are obtained for switching feature in GFSstd

8 are generalized of
prior structure, and for GFSimp

8 (No.1), one of the relations between inputs and
outputs for each nine consecutive round is as follows:

xc
i−3 + xc

i−7 + xc
i−13 + xc

i−20 + xc
i−30 + xc

i−35 ≥ (n+ 1)bbi−3

bbi−3 ≤ xc
i−7 + xc

i−13 + xc
i−20 + xc

i−30 ≤ 4nbbi−3 (17)

Table 4, shows the results for standard and improved generalized Feistel
structures with n = 4, by considering switching properties. We point out that

in l sub-blocks structures, in order to have more powerful structure
l

2
differ-

ent MDS matrices must be applied. However, this process negatively impacts
the costs on generalized Feistel structures with larger sub-blocks. Fortunately,
although using less matrices in structures with larger sub-blocks makes them a
bit weaker, such these structures are still efficient, and instead lead to reduce
the costs significantly. The obtained results for GFSimp

8 with 2 MDS matrices

and GFSimp
12 with 3 MDS matrices, which are listed in Table 4, are enough to

emphasis our claim.

5 Counting the Linear Active S-boxes

It is well known that, because of duality between differential and linear attack,
the method of counting the linear active S-boxes is identical to differential ac-
tive S-boxes in many regards. As shown in [4, 11], counting the linear active
S-boxes could be calculated by using the simple transformation in Figure 7.

13



Table 4. Minimum number of differential active S-boxes of generalized Feistel struc-
tures imposed by switching properties with n=4

2 MDS 3 MDS 4 MDS 5 MDS 6 MDS
matrices matrices matrices matrices matrices

roundFeistelCLEFIAGFSimp
8 GFSstd

6 GFSimp
6 GFSimp

12 GFSstd
8 GFSimp

8 GFSstd
10 GFSimp

10 GFSstd
12 GFSimp

12

1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 1 1 1
3 2 2 2 2 2 2 2 2 2 2 2 2
4 5 6 6 6 6 6 6 6 6 6 6 6
5 6 8 8 8 8 8 8 8 8 8 8 8
6 10 12 12 12 12 12 12 12 12 12 12 12
7 10 14 14 14 14 14 14 14 14 14 14 14
8 11 18 26 18 25 26 18 23 18 26 18 26
9 12 20 29 21 27 29 21 26 21 29 21 29
10 15 22 34 25 31 41 26 32 25 37 25 37
11 16 24 37 28 33 44 31 36 28 40 28 42
12 20 28 42 34 36 56 36 44 36 49 36 50
13 20 30 43 37 38 61 41 46 39 51 39 54
14 21 34 47 38 43 67 48 49 47 54 45 65
15 22 36 49 42 46 69 50 52 51 56 50 72
16 25 38 53 44 52 72 53 56 58 62 56 77
17 26 40 55 48 55 75 56 60 64 66 62 79
18 30 44 64 50 59 79 59 67 68 70 67 85
19 30 46 67 54 61 81 62 69 72 78 75 88
20 31 50 72 57 64 92 66 77 74 83 85 ..
21 32 52 74 61 67 .. 69 80 78 88 88 ..
22 35 55 83 64 72 .. 73 86 80 95 92 ..
23 36 56 84 69 76 .. 76 88 84 97 94 ..
24 40 59 88 73 81 .. 80 91 87 .. .. ..
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We emphasize that, in linear cryptanalysis, Feistel structures with SP-functions
convert to Feistel structures with PS-functions, and xc denotes the summation
representation of vector Γ.x.

xc
i

M
zci xc

i
(MT )−1 zci⊕ ⊕

Fig. 7. transforming differential vectors to linear masks

Regardless of switching mechanism, if the matrix M be an MDS matrix, the
number of linear active S-boxes for both standard and improved structures will
be equal to differential active S-boxes. In case of using switching mechanism, in
order to clarify, consider Figure 8 as a special example.

(MT
4 )−1

xc
3 zc3⊕(MT

2 )−1
xc
1 zc1⊕ (MT

3 )−1
xc
2 zc2⊕(MT

1 )−1
xc
0 zc0⊕

(MT
4 )−1

xc
7 zc7⊕(MT

2 )−1
xc
5 zc5⊕ (MT

3 )−1
xc
6 zc6⊕(MT

1 )−1
xc
4 zc4⊕

(MT
4 )−1

xc
11 zc11⊕(MT

2 )−1
xc
9 zc9⊕ (MT

3 )−1
xc
10 zc10⊕(MT

1 )−1
xc
8 zc8⊕

xc
−4 xc

−3 xc
−2 xc

−1

Fig. 8. Defining summation variables in GFSstd
8 imposed by switching mechanism

The inequalities related to switching mechanism in linear cryptanalysis read-
ily can be extracted from Theorem 3 in [11]. The relation (18) shows one of 4
relations between inputs and outputs of three consecutive round, in Figure 8:

Γ.x5 = (MT
2 )

−1Γ.x1 ⊕ (MT
1 )

−1Γ.x8 =
[
(MT

1 )
−1 (MT

2 )
−1

] [Γ.x1

Γ.x8

]
(18)

Without loss of generality, under the assumption that at least one of amounts
x1 and x8 must be nonzero, by defining a new binary dummy variable bbi,
the relations (19) are obtained, based on the same process which was done for
extracting the relations (12).
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xc
1 + xc

5 + xc
8 ≥ (n+ 1)bbi

bbi ≤ xc
1 + xc

8 ≤ 2nbbi
(19)

Due to obtained inequalities in (19), other inequalities can be obtained in a
similar way. The results for standard and improved generalized Feistel structures
with n = 4 by considering switching properties are listed in Table 5.

Table 5. Minimum number of linear active S-boxes of standard and improved gener-
alized Feistel structures imposed by switching properties with n=4

roundFeistel CLEFIAGFSstd
6 GFSimp

6 GFSstd
8 GFSimp

8 GFSstd
10 GFSimp

10 GFSstd
12 GFSimp

12

1 0 0 0 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1 1 1
3 5 5 5 5 5 5 5 5 5 5
4 5 8 8 8 8 8 8 8 8 8
5 7 10 10 10 10 10 10 11 10 11
6 10 15 16 16 16 16 16 16 16 16
7 11 16 18 22 18 22 18 22 18 22
8 12 19 24 27 24 30 24 30 24 30
9 15 21 26 30 26 32 26 38 26 38
10 16 24 32 33 34 38 34 43 34 43
11 17 26 35 35 39 43 39 50 39 51
12 20 31 37 38 45 49 45 53 45 59
13 21 32 40 40 48 51 50 55 50 65
14 22 35 42 46 51 54 58 58 58 72
15 25 37 47 52 53 56 63 61 63 74
16 26 40 50 56 56 62 69 66 69 77
17 27 42 55 60 58 66 73 72 74 79
18 30 47 58 63 64 72 75 78 85 85
19 31 48 63 65 66 77 78 86 92 91
20 32 51 67 68 72 82 80 91 99 99
21 35 53 69 71 74 88 86 97 101 107
22 36 56 72 76 82 94 88 103 104 112
23 37 58 74 82 87 97 94 105 106 120
24 40 63 79 86 93 100 96 108 112 ..

6 Conclusion

In this paper, by relying on MILP and summation representation, we introduced
an efficient approach to calculate the number of differential and linear active S-
boxes until 24 rounds. We first explained, how XOR relation and SP-function
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can be converted to inequalities. Then we listed the tables related to standard,
and improved generalized Feistel structures. Moreover, we clarified the way of
constructing inequalities related to employing multiple MDS matrices in gener-
alized Feistel structures type II, and presented the results. Finally, we confirmed
the effect of switching mechanism on linear cryptanalysis. Due to obtained re-
sults for linear cryptanalysis, it is clear that switching is more effective on linear
cryptanalysis. Since, influence of switching on each GFS starts from third round
to next, in linear cryptanalysis. Aside from the fact that our method does not
apply for structures such as AES (because of shiftrow operation), our approach
significantly reduces the number of inequalities for other structures Compared
with the previous approach based on MILP.

We would like to point out that, employing the multiple MDS matrices in
improved 8 sub-blocks structures leads to enhance the number of active S-boxes
almost 20 % for 18 rounds, and creates a structure so close to RIJNDAEL.
Moreover, such a structure is appropriate to resist against quantum algorithms.
For larger blocks, switching can not diffuse until 18 rounds, in differential crypt-
analysis.

Besides that, in differential cryptanalysis, we have confirmed that in im-
proved 8 sub-blocks structure, if we apply 2 different MDS matrices, only 3
differential active S-boxes is lower than applying 4 matrices after 24 rounds (91
for 4 matrices and 88 for 2 matrices). By doing so, we not only benefit from
switching features, but also apply fewer resources. It is worth mentioning that,
our approach can be generalized for other Feistel structures, and is usable in
designing future block ciphers.
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