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Abstract. We show how to build a practical, private data oblivious
genome variants search using Intel SGX. More precisely, we consider the
problem posed in Track 2 of the iDash Privacy and Security Workshop
2017 competition, which was to search for variants with high x? statistic
among certain genetic data over two populations. The winning solution of
this iDash competition (developed by Carpov and Tortech) is extremely
efficient, but not memory oblivious, which potentially made it vulner-
able to a whole host of memory- and cache-based side channel attacks
on SGX. In this paper, we adapt a framework in which we can exactly
quantify this leakage. We provide a memory oblivious implementation
with reasonable information leakage at the cost of some efficiency. Our
solution is roughly an order of magnitude slower than the non-memory
oblivious implementation, but still practical and much more efficient than
naive memory-oblivious solutions—it solves the iDash problem in approx-
imately 5 minutes. In order to do this, we develop novel definitions and
models for oblivious dictionary merging, which may be of independent
theoretical interest.

1 Introduction

A trusted execution environment (TEE) is a secure area of a main processor. In
particular, a TEE attempts to simulate a ‘black box’ environment: users (even
with physical access) of the main processor may only see the inputs to and
outputs from the TEE, and learn nothing about the data or processes inside the
TEE. This ‘black box’ premise potentially allows for private, secure distributed
or cloud-based computations on data that previously were only known to be
possible from very heavyweight, impractical cryptography (or even not known
to be possiblel!).

Examples of TEEs available today include Intel’s SGX (Software Guard Ex-
tensions), ARM’s TrustZone, AMD’s Secure Execution Environment, and Ap-
ple’s Secure Enclave. There are many different types of TEE in existence today,
but in this work we will focus on SGX, which is currently the most studied TEE.

TEEs are particularly exciting for applications where we want third parties
to perform computations on secret data. For instance, if we assume a secure
TEE, it is known how to build many powerful cryptographic primitives that run



with very small overhead when compared to native computations: fully homo-
morphic encryption [SCFT15], functional encryption [FVBG17], and even obfus-
cation [NFR™17] are all known to be practical with trusted hardware. Coupled
with other cryptographic techniques, these primitives implicitly allow a vast
range of functionality for TEEs: things like secure linux containers [ATGT16],
oblivious multi-party machine learning [OSF*16], and blockchain smart contract
messaging techniques [ZCCt16] are possible and efficient when TEEs are used.

1Dash Competition. To further illustrate the power of TEEs, consider the follow-
ing scenario: suppose a medical research institution wants to outsource aggrega-
tion and statistical computation on genome data to a TEE based cloud server.
Individuals would send their encrypted genome to the cloud server. TEE would
decrypt the encrypted data, perform statistical computation and send back the
end result to the research institute. With traditional cryptography, to achieve
comparable security we would require functional encryption for very complicated
functions, which is only known from indistinguisihability obfuscation (and is ex-
tremely inefficient). This scenario almost exactly describes the ‘track 2’ problem
given in this past year’s iDash competition [iDal7], which is a privacy and secu-
rity workshop devoted to using cryptographic techniques to help solve problems
in computational biology and genetics. In Section 3 we will describe the problem
in details. Among proposed solution, the best solution was due to Carpov and
Tortech [CT18], which performed the computation on 27.4 GB of data in only
65 seconds of client-side preprocessing time and 7 seconds of enclave time.

Side Channels. Unfortunately, it is easy to see that there are many ways a
potential adversary can learn about computations in the TEE—-even if the TEE
is ‘perfectly’ secure, as long as it has finite computational power, finite memory,
and connections to other outside systems, there are ways for an adversary to learn
things about secret information. For instance, an adversary could measure the
time that a particular computation takes and use that to infer things about secret
information involved in the computation. Often, the TEE does not have enough
internal memory to store all of the data needed for a particular computation. In
this case, it must store (encrypted) data in outside locations, like regular memory
or hard disks. When this happens, an adversary can observe the memory access
patterns of the program running inside the TEE and also potentially learn secret
information.

These kinds of atttacks are called side channel attacks and have been widely
known in the eryptographic community since Paul Kocher’s famous paper [Koc96]
which long predates modern trusted hardware. The history of side channel at-
tacks include things like observing how long a computation takes [Koc96], track-
ing the memory access patterns of a particular program [KSWH98,Pag02], and
measuring power consumption at given times when the program is run [MDS99].

Side channel attacks on SGX and other TEEs have been proposed for almost
as long as the TEEs themselves have existed. Most of the side channel attacks on
SGX have focused on the cache [GESM17,BMD*17]-in other words, the lack of



‘memory obliviousness’ of programs—but there have been other side channel at-
tacks, including attacks based on timing [WKPK16]. In addition, there has been
a lot of research done with the goal of mitigating these side channel attacks. Many
techniques, like oblivious RAM (ORAM) [Gol87] or path ORAM [SvDS*13b]
are very general and can do a lot to mitigate these side channel attacks. In
fact, there has been quite a bit of research lately on preventing certain classes
of side channel attacks in SGX [SLKP17,SCNS16,SLK™17]. Unfortunately, the
generality of many of these techniques typically implies a large overhead, and
thus the resulting TEE-based schemes are not very efficient. Oblivious B+ tree
implementations using shuffle index are also well known [VFP*15]. However, as
described in Section 3.1, in our context the optimal data structure is dictionary
or hash table.

Our Contributions. Like many other SGX-based protocols, all of the submissions
in ‘Track 2’ of the past year’s iDash competition were potentially vulnerable to
side channel attacks. In this paper, we show how to build a provably side channel
resistant variant of the fastest (and winning) submission [CT18]. We employ a
number of techniques, including oblivious shuffles and dictionary merging, as
well as clever cache management, in order to provide provable resistance to side
channel attacks.

While our side channel resistant construction massively outperforms what
generic solutions like ORAM would give, it is still not quite as efficient as the
native solution in [CT18]. While the solution of [CT18] takes 65 seconds of
preprocessing time and 7 seconds of enclave computation time, our memory
oblivious solution which only leaks aggregate intersection sizes among input
data (see Section 6 for details) takes 28 seconds of preprocessing time and about
5 minutes of enclave computation time-significantly less efficient than the non-
memory oblivious solution, but certainly practical.

In order to achieve memory obliviousness, we construct new definitions and
models for oblivious dictionary merging. These models help us to formally state
properties about memory obliviousness and may be of independent theoretical
interest.

Outline. The rest of the paper is as follows: in Section 2, we discuss the security
model we use around SGX. We next define the genomic search problem from
the iDash Track 2 that we have alluded to earlier in Section 3. We also explain
the (non-side channel resistant) winning solution in this section. In Section 4,
we discuss how to make the previously discussed solution memory oblivious
(and thus, side channel resistant). Then, in Section 5, we discuss how to merge
dictionaries in a memory-oblivious way, which is a critical component for our
overall solution. We discuss our experimental results in Section 6.

2 Security Model of SGX

A program is called data oblivious if its memory access trace can be simulated by
a simulator with access to only some observable information. In theory, one can



use Oblivious RAM implementations to make a program data oblivious. How-
ever, generic application of ORAM [SVDS'13a] techniques with small amount
of trusted memory has a large overhead, compared to native running time. But
what is trusted memory inside an SGX enclave? A conservative approach might
be to consider only the CPU registers as trusted memory. On the other end
of the spectrum, an optimistic approach can assume all available enclave mem-
ory (about 96 MB) as trusted memory. Taking this optimistic approach authors
in [EZ17,ZDB*17] showed many SQL like database operations can be performed
in an data oblivious manner with very little performance overhead.

A reasonable model of trusted memory lies somewhere in between. All data in
the Last Level Cache (LLC) remain unencrypted. So it’s quite natural to assume
the LLC is part of the trusted memory. However, the size of the LLC available
to the enclave program is controlled by the adversary with a 4KB (cache line)
granularity.

To be reasonably conservative, in this paper we assume that all memory ac-
cesses are visible to the adversary. In particular, we follow the model of Chan
et al. [CGLS18], who introduced the notion of adaptive strongly oblivious simu-
lation security for arbitrary stateless functionalities and Oblivious Random Ac-
cess Machines (ORAM). Given a stateless functionality f, some leakage function
leakage, Alg, obliviously implements f with leakage leakage if

— Algy correctly computes the same function f except with negligible proba-
bility for all inputs,

— the sequence of addresses requested (and whether each request is read or
write) by Alg; do not reveal more information than the allowed leakage.

Formally,

Definition 1. 4lg;, obliviously implements the functionality f with leakage func-
tion leakagey, iff there exists a p.p.t. simulator Sim, such that for any non-
uniform p.p.t. adversary A, A’s view in the following two experiments are indis-
tinguishable or equivalently || Pr[breq; = 1] — Pr[bsin = 1]|| s negligible in terms
of security parameter .

Algorithm 1 Real Experiment Algorithm 2 Simulated Experiment
procedure Expr’y 7 (1) procedure Expr " (1Y)
A—1T A—1T
out, addresses < Alg,(I) out < f(I)
A(out, addresses) — brea1 € {0,1} addresses < Sim(leakage,([))
end procedure A(out,addresses) — bsin € {0,1}

end procedure

Here addresses in the real experiment denotes the sequence of addresses re-
quested by Alg, along with the information whether each access is read or write.

Case Study: Oblivious Sort. Traditional implementations of sort typically
proceed by repetitively comparing two values and swapping them or doing noth-
ing depending on the result of the comparison. This induces them to produce



different access patterns based on the data values themselves, and as such they
are not oblivious. However, some algorithms such as bitonic sorting [Bat68] are
data independent, and hence oblivious. In addition, “swap or not”-based sort-
ing algorithms can be made oblivious by accessing the same memory locations
regardless of the comparison outcome. In Section 4, we will use oblivious sort
primitives for oblivious implementation of genome variants search.

Case Study: Oblivious Shuffle. Oblivious shuffle is a simple but important
stateless oblivious primitive. As the name suggests, the shuffle algorithm takes a
sequence of n elements as input and outputs a uniformly random permutation of
the sequence. Consequently, an oblivious shuflle is an algorithm whose memory
accesses can be simulated irrespective of the input and the output, and hence
also the actual permutation that was employed. A natural way to do an oblivious
shuffle is to pair each entry with a uniformly random number and then oblivious
sort the pairs with respect to the random numbers. Other efficient algorithms
which are not based on sorting also exist [OGTU14]. In Section 5, we will use
oblivious shuffle primitives for realizing oblivious dictionary merging.

3 Whole Genome Variants Search

In this section we provide a very short introduction to genomics and describe the
Genome Variants Search algorithm which identifies genes responsible for certain
hereditary diseases.

DNA (Deoxyribonucleic acid) is a chain of nucleotides with the shape of a
double helix. It carries genetic information in all living organisms. The complete
genetic material of an organism is called its genome, and DNA is identical in
every cell of our body. A very long DNA chain forms what is called a chromo-
some. Humans have 23 pairs of chromosomes, and each pair has one chromosome
from the person’s father and one from the mother. Any two humans share about
99.9% of their DNA. The remaining 0.1% DNA tracks the difference between
two individuals. Most of these differences occur in the form of what is called
a Single Nucleotide Polymorphism (SNP). A SNP is a variation in a single nu-
cleotide that occurs at a specific position in the genome (compared to a reference
genome). Moreover, a SNP can be either heterozygous or homozygous, depend-
ing on whether a set of homologous chromosomes (pairs of choromosomes with
one coming from the father, another from mother) differ or are identical on that
particular position, respectively.

One important aspect of modern day genomics is identifying genes or SNPs
responsible for certain diseases. Given SNPs from two groups of users—case (in-
dividuals showing traits of the disease) and control (individuals representing
healthy population)—one can perform Pearson’s x? test of association to deter-
mine whether presence of certain SNP is associated to disease susceptibility or
not. SNPs with high y? statistic are thought to be responsible for the disease.



3.1 Track 2 of the iDASH 2017 Challenge: x2? Test for Whole
Genome Variants Search

The goal of Track 2 of the iDASH Privacy & Security Workshop 2017 compe-
tition [iDal7] was to develop a scalable and secure solution using SGX tech-
nology for whole genome variants search among multiple individuals. The input
data is Variant Call Format (VCF) files containing sensitive SNP information
from case and control groups of users. Logically, a single VCF file corresponds
to a single individual and is a collection of SNPs, along with the information
whether the SNPs are homozygous or heterozygous. Suppose we have ny case
users and ny control users. To evaluate x? statistic for a particular SNP s, one
needs to find out how many times it is present among case and control users
by single counting heterozygous occurrences and double counting homozygous
occurrences. Suppose as is the count of SNP s among case users and a), among
control users. Note, (2n; — as) and (2ne — a),) are the absence counts of SNP s
among case and control users. Now, for the SNP s observed frequencies Oy, and
expected frequencies (assuming no association) E; can be stated as

Os = [as,a’,2ny — ag,2ny — a’
Es =[r(as +al), (1 —7r)(as + a.),2n; — r(as + al),2ns — (1 —r)(as + al)],

where the ratio r = nl’j}m. From the observed and expected frequencies the x?2

test statistic for SNP s can be calculated as

3 0.1 — E.[j])?

Jj=0

The p-value for the SNP s is the probability that a random variable following
a x? distribution with degree of freedom one® attains a value larger than the
computed test statistic. To find the top k most significant SNPs, one needs to
compute p-values for all SNPs present in the genome data set and output k¥ SNPs
with least p-values or equivalently output & SNPs with highest x2 test statistic.

In the iDash competition pre-processing and compression of individual VCF
files were allowed, with the constraint that any operation involving multiple VCF
files cannot be performed at the pre-processing stage. It must be done inside the
SGX enclave. This constraint correctly depicts the real life use case, where each
VCF file is owned by the corresponding human individual. They can pre-process
and compress their own information and send it to remote SGX enclave running
on a possibly adversarial computational server. Honest individuals following the
protocol are not expected to communicate among them, they are only supposed
to send their information to the SGX enclave running in the computational
server.

3 %2 distribution with degree of freedom d is defined as sum of square of d independent
standard normal variables.



The computationally expensive step in the above calculation is finding out
‘count’ of every SNP among case and control users. The natural way to evaluate
these count values is as follows.

— represent individual VCF files as dictionaries (collection of (key, value) pairs)
as follows:

e For an user u belonging to the Case group, for all SNPs s present in its
VCF file we have

Dicty[s].Case _ {1, if s is heterozygous for user u

2, if s is homozygous for user u

Dict,,[s].Cont =0

e For user v in the Control group it is exactly the opposite. That is for all
SNP s present in user v’s VCF file Dict, [s].Case = 0 and Dict,[s].Cont
is either one or two depending whether s is heterozygous or homozygous
for user w.

If we query the dictionary Dict,, with any SNP not present in user u’s VCF
file, it returns zero in both case and control counters. In other words s’ &
Dict,,.Keys, we have Dict,[s'].Case = Dict,[s'].Cont = 0.

— Merge all user dictionaries. Where the dictionary merging operation is de-
fined as follows. For all s € Dict 4.Keys U Dict g.Keys,

(Dict 4 U Dictg)[s].Case = Dict 4[s].Case + Dictp[s].Case
(Dict 4 U Dictg)[s].Cont = Dict 4[s].Cont + Dict z[s].Cont

After merging we have the merged dictionary

DiCtMerge = Uyecase usersucontrol usersPictu
DiCtMerge contains count of SNPs among case and control users. After build-

ing the dictionary rest of the calculation is relatively straight—forward. The whole
process is described in Algorithm 3, where Merge is the functionality that takes
dictionaries (containing SNPs as keys and corresponding counter as value) as
input, and the merged dictionary as output. In other words

Merge(Dicty, - - - , Dict,, ) — Dicty U - - - U, Dict,,.
CalcChiSquare is a function that takes
(number of case users, number of control users, (snp, (Case, Cont)))
as input and outputs (snp, x?-statistic) where y2-statistic is calculated according

to Equation (1). ForEach/(V) is a functionality which outputs the list {f(v) :
veV}



Algorithm 3 Genome variants search to find top & SNPs

INPUT: : User set U = uCase UuCont and SNP dictionaries Dict,, for all u € U, size
of case and control user groups.

OUTPUT: : Top k SNPs (snp1,--- ,snpx)

1: procedure GVS({Dict, : Vu € U}, n1 = [Ucgell, P2 = Ucont 1)

2 Dictpjerge Merge({Dict, : u € U})

3 Listsnp + ForEachCALCC’“SQUARE("1’"2")(DictMerge)

4: Listsn p.SORT() > Sorts the list in a decreasing order based on chisquare value
5 return Listsyp[l : k].snp > Output top k SNPs
6: end procedure

3.2 The Winning Solution of the iDash Track 2 Challenge [CT18]

The main challenge in the above computation is memory access optimization.
The input data size is in the order of tens of gigabytes, whereas SGX enclaves
are limited to about 96 MegaBytes of usable memory without paging. Moreover,
inside SGX enclaves, the last level cache (LLC) miss penalty is considerably
higher compared to native execution because this requires an extra round of
encryption/decryption. This extra cost is by design, because in SGX architecture
the main random access memory (RAM) always remains encrypted.

In Algorithm 3 the size of the Dictcase and Dicteqyt dictionaries become
the bottleneck. Even if we compress the SNPs and keep a single dictionary with
separate case and control counters, we need at least 4 bytes to encode a SNP
and 2 + 2 = 4 bytes to store the two counters. However, in the sample data
set provided in the competition there were about 5.5 Million unique SNPs. This
means a trivial lower bound for the total size of the merged dictionaries is (4 +
4)%5.5 = 44 MB. Even though, this lower bound is well short of the 96 MB limit
to avoid page faults, this is far bigger than typical LLC size which is 6 or 8 MB. A
typical memory efficient dictionary or hash-map implementation usually involves
a random memory access for each key access. This leads to an almost mandatory
cache fault for every dictionary access if we cannot fit the dictionary inside the
LLC. As aresult, any SGX implementation of the Section 3.1 algorithm typically
incurs about a factor of two slowdown compared to native execution. To address
this issue Carpov and Tortech [CT18] adopted an ingenious yet simple horizontal
partitioning technique to reduce the memory requirement so that everything
could be done within the LLC. The key observation is instead of building the
large dictionary containing all SNPs and then finding the top k& SNPs among
them, we can partition the SNPs in various batches and process each batch
independently while updating a global list of the top & SNPs.

We can divide the key space K (all possible values of SNPs) of the dictionaries
into n disjoint parts Ky, -+, /C,,. This in turn divides each user dictionary Dict,,
into n disjoint smaller dictionaries Dict,, 1, - -, Dict, , such that

Dict,, = Dicty, 1 U--- U Dicty, .



Algorithm 4 Cache friendly Genome variants search to find top & SNPs
INPUT: : User set U = MCase U Z’{Cont and SNP dictionaries Dict,, ; for all v € U
and ¢ € [1,n], size of case and control user groups.

OUTPUT: : Top k SNPs (snp1,--- , snpx)

1: procedure GVS({Dicty,: : Vu € U,i € [1,n]},m1 = [Ucgsell: m2 = [Ucont )
2: Listsnp < @

3 for all i € [1,n] do

4 Dictyferge,; Merge({Dictu,; : u € U})

5: Listremp < ForEachCALCCHISQUARE("l’"2")(DictMergeyi)

6

7

LiStSNp.INSERT(LiStTemp)
Listsnp.SORT() > Sorts the list in a decreasing order based on chisquare

value
8: Listsnp < Listsnp[l : k] > Only keep top k elements of the list
9: end for
10: return Listsyp > Qutput top k SNPs

11: end procedure

4 Oblivious Genome Variants Search

Algorithms described in the previous section are not memory oblivious in gen-

eral. In this section, we show under certain conditions the algorithms can be
implemented in a memory oblivious way. Non memory oblivious SGX imple-
mentations might leak some non trivial information such as number of common
SNPs among any two persons. Moreover, if some of the individuals are malicious
and they collude with the server they can figure out exactly which SNPs are
present in other individual’s VCF files. U, 4o be the set of users belonging to
the case group and Uc,,¢ be the set of users belonging to the control group.
Every user u € Ugiygo UUCopt sends their input [, to a centralized server S,
which runs a Genome Variants Search algorithm inside its SGX enclave. It’s
worth mentioning that every user u must

— perform a remote attestation with S, to ensure it is running the appropriate
executable inside SGX enclave and

— perform a key exchange with the enclave and send I, by encrypting and
authenticating with the exchanged key,

to ensure the data can only be accessed by the enclave. I, is some encoding
of the VCF data corresponding to user u. In Algorithm 3 we have I, = Dict,,,
where as in Algorithm 4 we have I,, = {Dict,,; : ¢ € [1,n]}. GV.S be the function
which takes I,,’s as input and outputs top k SNPs.

From a high level perspective the Genome Variant Search algorithms de-
scribed in previous section have three distinct steps:

1. Merge input dictionaries to form a merged dictionary.
2. Calculate chi-Square statistic for each entry.
3. Sort the dictionary entries based on the chi-square statistic.



Chi-square statistic calculation is trivially memory oblivious (can be imple-
mented by an arithmetic circuit). There are many well known perfectly memory
oblivious sorting [AKS83,CGLS18,Bat68,Gool4] techniques which do not leak
any side information. In Section 5 we discuss how to obliviously implement the
dictionary Merge routine under various reasonable leakage functions. Once we
have oblivious implementations of the dictionary merge routine and sort routine,
next theorems show we can quantify the leakage in Algorithm 3 and Algorithm 4.

Theorem 1. If the Merge routine in Algorithm 8 is implemented obliviously
with leakage function ZeakageMerge and the Sort routine in line 3 is imple-
mented by some perfect oblivious sort implementation, then Algorithm 3 becomes
an oblivious tmplementation of GV S with leakage function leakages, g, where

leakagesy g ({Dict, : Yu € U})
= ZeakageMerge({Dictu Yu elU}) U {”DiCtMergeH’ UCasells [Ucont Il }-

Proof Sketch. We construct a simulator for GV'S, given a simulator for Merge,
given as Algorithm 5. We can show that the real algorithm is indistinguishable
from the simulator by hopping over a single hybrid. In the hybrid, we replace
the merging step with the corresponding simulator, which just takes the leakage
due to the merge as input. In the next hop, which is to the final simulator, we
sample Dict,, from random, instead of using the real input Dict,,. The sampling
is done as follows: first ”DiCtMerge” number of unique keys are sampled from the
domain of keys. Then the values of Dict,, at those keys are assigned arbitrarily.
We recall that the in construction of the merged list the input array is scanned
linearly and the number of positions scanned only depends on the number of
entries, i.e., ||Dict,]|, and not their values. Hence the addresses utilized in this
part of the simulator would be indistinguishable from the hybrid.

Algorithm 5 Simulator for GV S
INPUT: leakageMerge({Dictu :Yu € UP) U (HDictMergeH,nl = Ucgagelln2e =

HuContH)'
OUTPUT: addresses.
procedure SIM-GVS(leakageMerge({Dictu YuelU}) U (HDictMergeH, ni,n2))
Listsyp < 0.
addresses-dict-merge « SIM—MERGE(leakageMerge({Dictu :Yu e U}))

1:
2
3
4: Sample Dictp[erge randomly, constrained by ”DiCtMergeH‘
5
6

Listsnp ForEaChCALCCHISQUARE(nl,n2,~)(DiCtMerge)
Listsnp.SORT() > Sorts the list in a decreasing order based on chisquare
value
7 addresses-extra « Addresses used in Steps 5-6.
8: return addresses-dict-merge, addresses-extra > Output all addresses
9: end procedure

10



Theorem 2. If the Merge routine in Algorithm 4 is implemented obliviously
with leakage function Zea,ka.geMerge and the Sort routine in line 6 is imple-
mented by some perfect oblivious sort implementation, then Algorithm 4 becomes
an oblivious implementation of GV S with leakage function leakagesy g, where

leakagesy g({Dict, ; : Yu € U,i € [1,n]},)
= (Zeaka,geMerge({Dictu,l YuelUy),- -, Lea,ka,geMerge({Dictu,n Vu e U}))
U{lIDictpferge 1 lls -+ s [IDictyferge o > 1casells [Ucont |y

The proof of this theorem is fairly similar to the last one: instead of simulating
the merge monolithically, the simulation is done partition by partition. The
arguments for the rest of the algorithm carry over straightforwardly.

5 Oblivious Dictionary Merging

In the previous section, we showed that given a procedure to obliviously merge
multiple dictionaries we can obliviously implement the Genome Variants Search
algorithms. In this section show how oblivious dictionary merging can be done.

In Section 3.1, we defined the notion of dictionary merging in the context
of genome variants search. However, the algorithms described in this section
work for generic dictionary merging operations. A dictionary or associative array
Dict is a dynamic collection of (key,value) pairs, such that each possible key
appears only once in the collection. It usually supports insert, delete, update
and lookup operations based on the key. The operator [ ] is used as an access
operator. That is if (key,value) € Dict, then Dict[key] returns a reference to
value. Let Dict.Keys denote the set of all keys in the dictionary. For any key ¢
Dict . Keys,

— as rvalue Dict[key] returns Null. In other words value = Dict[key] sets the
variable value to Null.

— as lvalue Dict[key] inserts a pair (key, value) to the dictionary and returns
a reference to the variable value. In other words Dict[key] = value inserts
(key, value) into the dictionary Dict.

Let V be the set of all possible values excluding Null. & be a binary operator
over V. It can be naturally extended to VU{Null} as follows. For any value € V,

value © Null = value, Null @ value = value, Null @ Null = Null.

For the Genome Variants Search application described in Section 3.1, & operator
over (Case, Cont) pairs is defined as a @ b = (a.Case + b.Case, a.Cont + b.Cont).
For any two dictionaries Dict; and Dicte, the Merge operation (also repre-
sented by the operator U) is defined as follows. First (Dicty U Dicty).Keys =
Dict;.Keys U Dicte.Keys. Second for all key € (Dict; U Dicte).Keys, we have
(Dicty U Dicts)[key] = Dicty [key] @ Dicta[key].

11



For more than two dictionaries the Merge operation is defined inductively.
For n > 2, we have

Dicty U - - - U Dict,, = (Dictq U - - - U Dict,,—1) U Dict,,.

Dictionaries or hash tables are usually implemented either by chaining or by
open addressing. [Chel7] is a short summary and comparison of various hash ta-
ble implementations. It suggests open address based hash table implementation
Robin Hood[CLMS5] is probably the fastest memory efficient implementation.
For the purpose of this paper, we will assume the hash table memory is con-
tiguous, which is the case for all open addressing based hash tables. This means
we can sequentially access all elements of the hash table by a linear sweep. The
memory addresses accessed in this operation are independent of the hash table
content.

The location of any (key, value) pair in the contiguous memory is determined
by hash(key). We will assume the function hash is a random oracle [BR93], to
ensure that the pair (key, value) gets stored in a random location independent of
the variable key. The idea behind an almost ideal (in terms of leakage) dictionary
merging is pretty simple and can be described in three high level steps:

1. Sequentially access all (key,value) pairs of all input dictionaries Dicty,
.-+, Dict,, and store them in a large array Array of size ||Dict{|| + --- +
|| Dicty,]|.

2. Obliviously shuffle Array and generate Array’.

3. Build the new dictionary DictMerge by sequentially traversing Array’.

The memory access pattern in first two steps are completely independent
of the input data. However, the last step leaks some non trivial information. A
resourceful adversary can track how the memory locations within the contiguous
storage are being accessed. The location of a dictionary entry corresponding to
key gets determined by hash(key). By the random oracle property of the hash
function, the location does not reveal anything about the content of key. Also,
because of the oblivious shuffle this address does not reveal from which input
dictionary Dict; the key is coming from. But the adversary can observe how
many times each address location is getting accessed. This in turn leaks the
collision distribution of the input dictionaries, which is essentially the following
information.

n
> IIDict;[l, > [[Dict; N Dicty]|, > |Dict; N Dict; N Dict|,
=1

1<i<j<n 1<i<j<k<n
-+« ,||Dicty; N Dicta N - -+ N Dicty,||.

6 Experimental Results

For our experimental results, we use the public dataset available as part of
the iDash 2017 competition [iDal7]. The dataset consists of VCF files from
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two groups of individuals, case group Case whose members show symptoms of
some particular disease and control group Cont consisting of healthy individuals.
The total size of the two thousand VCF files is about 27.4 GB. We ran our
experiments on an Intel NUC6i7KYK, which has 6 MB of LLC. In comparison,
the platform used in [CT18] had 8 MB LLC size. Our baseline implementation
takes 28 seconds for pre-processing (or total time for client side computation).
In the baseline non oblivious implementation of Algorithm 4, the computation
time inside the SGX enclave is 16 seconds. On the other hand, the winning
candidate from [CT18] reports about 65 seconds of pre-processing time and 7
seconds of enclave runing time. The pre-processing is mainly bounded by the
SSD read write speed. Our pre-processing is faster because we used a larger block
size (every VCF file is divided only in 15 parts). On the other hand, [CT18]’s
enclave running time is almost half that of ours for two main reasons: first,
our enclave is single threaded, as opposed to 8 threads in [CT18]. In fact, our
dictionary implementation is not thread safe. Second, we have only 6 MB of
cache memory. [CT18] had 8 MB.

The oblivious dictionary merging algorithm described in Section 5 has a cru-
cial drawback. It requires oblivious shuffling of a very large array containing all
the input data. After compression the total size of input data is about 4.5 GB. In
the baseline implementation we partitioned the data in 15 parts, to fit individual
dictionaries inside the LLC. After this partitioning, the output of each Merge
call in Algorithm 4 fits well within the LLC, but the input is still large: about
4.5GB /15 = 300 MB. For an efficient memory oblivious shuffle we needed to fit
the input data within LLC. To address this we can further partition the input
data and shuffle each partition independently. This partitioning actually leaks
more information, such as the collision patterns among different partitions. In
our implementation in every partition we take 256 SNPs each from 16 users and
shuffle them together. We used Batcher’s bitonic merge sort algorithm [Bat68]
for oblivious shuffling. We also used SipHash [AB12] as our choice of random
oracle. To our knowledge, this is the fastest known pseudorandom function for
short input sizes. In this parameter setting the enclave running time is about 5
minutes. This shows even though memory oblivious implementation is practical
if we are willing to leak some amount of collision distributions, it is still consider-
ably slower than the non oblivious implementation. One thing to note is that the
performance of the scheme is dependent upon the choice of data partitioning and
hence information leakage. Finding a better data partitioning technique which
would allow minimal leakage and the fastest possible performance remains an
open problem.
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