Supersingular Isogeny Diffie-Hellman
Authenticated Key Exchange

Atsushi FUJIOKA!, Katsuyuki TAKASHIMA?,
Shintaro TERADA3, and Kazuki YONEYAMA?3

! Kanagawa University, Kanagawa, Japan
fujioka@kanagawa-u.ac.jp
2 Mitsubishi Electric, Kanagawa, Japan
Takashima.Katsuyuki@aj.MitsubishiElectric.co. jp
3 Ibaraki University, Ibaraki, Japan
{17nm713n,kazuki.yoneyama.sec}@vc.ibaraki.ac. jp

Abstract. We propose two authenticated key exchange protocols from
supersingular isogenies. Our protocols are the first post-quantum one-
round Diffie-Hellman type authenticated key exchange ones in the fol-
lowing points: one is secure under the quantum random oracle model and
the other resists against maximum exposure where a non-trivial combi-
nation of secret keys is revealed. The security of the former and the
latter is proven under isogeny versions of the decisional and gap Diffie—
Hellman assumptions, respectively. We also propose a new approach for
invalidating the Galbraith—Vercauteren-type attack for the gap problem.

Keywords: One-round authenticated key exchange - Supersingular isogeny de-
cisional Diffie-Hellman assumption - Degree-insensitive supersingular isogeny
gap Diffie-Hellman assumption - CK model - CK™ model - Quantum adversary.

1 Introduction

All conventional cryptosystems from discrete logarithm and/or factorization in-
tractability assumptions would be totally broken by the emergence of quantum
computers, i.e., by Shor’s algorithm [28]. In the post-quantum era, it is impor-
tant to confirm whether classical cryptographic techniques are still secure against
quantum adversaries. Recently, strong security notions and constructions against
quantum computers have been intensively studied (e.g., [3, 36,35, 10, 1]). More-
over, National Institute of Standards and Technology has initiated a process to
standardize quantum-resistant public-key cryptographic algorithms [25], so, to
study quantum-resistant cryptosystems is a hot research area.

Key establishing over insecure channels is one of important cryptographic
techniques. In a key establishing protocol, two parties exchange some messages,
and then, they can share a key. Recent researches on this have lead to authenti-
cated key exchange (AKE). In the post-quantum era, it is preferable to have an
AKE protocol secure based on a problem which resists against quantum adver-
saries. We then propose two quantum-resistant AKE schemes from a (relatively)
new mathematical foundation, i.e., supersingular isogenies.

Supersingular Isogeny Diffie-Hellman (SIDH). Computing a sequence
of isogenies of elliptic curves is a new cryptographic basic operation in some
applications. For example, a cryptographic hash function from expander graphs,
proposed in [6], consists of computing an isogeny sequence, which is based on the
hardness of constructing an isogeny between two (randomly chosen) isogenous
curves. Diffie-Hellman (DH) type key exchange protocols based on isogenies
are given by Rostovtsev and Stolbunov [27] and De Feo et al. [11], which were
considered as candidates for post-quantum public-key primitives.

Childs et al. [7] considered the isogeny computation problem for ordinary
elliptic curves, and obtained a subexponential-time quantum algorithm. In con-
trast, the algorithm cannot be applied to the supersingular case (because of non-
commutativity of endomorphism rings). Therefore, both applications above, i.e.,
hash function and key exchange, need to employ supersingular elliptic curves
(and the graph consisting of them). In particular, supersingular isogeny Diffie—
Hellman (SIDH) protocol proposed by De Feo et al. [11] has short public keys
compared to other post-quantum candidates, and has been intensively studied
for serving as a drop-in replacement to existing Internet protocols [9, 2, 8].

Very recently, Petit [26] proposed a mathematical attack for the security of
SIDH, but also showed that the security is not affected by the attack if we use
appropriate public parameters as is given in Sect. 3.

Authenticated Key Exchange. In an AKE protocol, two parties have own
static public keys, exchange ephemeral public keys, and compute a session key
based on the public keys and the related secret keys. AKE protocols achieve
that honest parties can establish a session key, and any malicious party cannot
guess the session key. The latter condition is formulated in an indistinguishability
game.

Regarding to this security game, several models have been invented, and
the Canetti-Krawczyk (CK) model was proposed to capture leakage of the ses-
sion state [5]. After the proposal, several security requirements have been indi-
cated such as key compromise impersonation (KCI), weak perfect forward secrecy
(wPFS), and mazimal exposure attacks (MEX) (refer to [22] for KCI, wPFS, and
MEX). The CK model has been integrated with KCI, wPFS, and MEX to the
CK™ model [13].

Recently, several SIDH AKE protocols have been proposed [15, 24,23, 34].

Galbraith proposed a one-round* protocol (SIDH TS2) in [15] based on the
Unified Model DH protocol by Jeong, Katz, and Lee [19]. The protocol is CK-
secure under a decisional problem in classical random oracle model (ROM).

Longa shows a two-round SIDH AKE protocol (AKE-SIDH-SIKE) which is
CK™"-secure from a KEM scheme [24]. However, it is based on a generic con-
struction known already.

4 Galbraith claims that the protocol is one-round however the description shows that
it is two-round as the responder generates the response after receiving the first
message [15].

LeGrow, Jao, and Azarderakhsh defined a security model in which the ad-
versary is allowed to make quantum queries, and proposed a quantum CK secure
(qCK secure) protocol [23]. The protocol, we call it LJA, is secure in the quantum
random oracle model (QROM) however it is two-round.

Xu et al. proposed a two-round protocol (AKEgipp-2) in [34], and the proto-
col is CK™-secure under a decisional problem in classical random oracle model
(ROM).

It is worth to note here that all the existing SIDH AKE protocols shown
above only achieve two-pass protocols except the SIDH TS2 protocol. In a one-
round protocol, two parties can simultaneously exchange their ephemeral keys,
while in a two-pass one, a party has to wait for the ephemeral key from the other
party. Moreover, a one-round AKE protocol has several advantages of efficiency,
e.g., each party can pre-compute ephemeral keys in advance.

Supersingular Isogeny Gap DH Problem. Traditional DH AKE proto-
cols have been constructed from several forms of DH assumptions, i.e., com-
putational, decisional and gap DH assumptions, for attaining various trade-offs
between security and efficiency. Recently, Galbraith and Vercauteren [17] and
Thormarker [31] independently proposed attacks, called GV-type attack in this
paper, on the supersingular isogeny computational DH (SI-CDH) problem with
access to decision degree oracle, which determines whether two supersingular
curves are isogenous of some specific degree or not. While the attack can be
extended to some form of SI version of gap DH (SI-GDH) problem, still, there
exist possible approaches to formulate a secure form of SI-GDH problem (and
assumption) for which the above attack is ineffective. Therefore, it is impor-
tant to find and establish such secure SI-GDH assumptions to rescue (a wide
range of) SIDH-based AKE schemes on the gap assumptions. (For surveys on
SIDH-related computational problems, refer to [17,32].)

Contributions. We propose two one-round authenticated key exchange pro-
tocols from supersingular isogenies: one is a protocol secure in the CK model
with a quantum adversary under a supersingular isogeny version of the DDH as-
sumption, and the other is a protocol secure in the CK™ model with a classical
adversary under a supersingular isogeny version of the gap DH assumption.

We call the latter assumption degree-insensitive (di-)SI-GDH assumption in
which an adversary has access to a degree-insensitive SI-DDH oracle, and then
cannot employ the GV-type attack for which degree distinction is crucial. We
expect that the new assumption is of independent interest. Then, both protocols
have several advantages of efficiency and wide applicability in practical situations
as they retain a simple one-round Diffie-Hellman structure, and are realized in
exchanging a single elliptic curve with an auxiliary smooth-order torsion basis,
which can be efficiently compressed [2,8]. We give a comparison table of the
existing SIDH AKE protocols and our proposals in Table 1.

Table 1. Comparison of SIDH AKE protocols.

assumption | model action proof

SIDH TS2 [15] SI-CDH CK | oneround? | ROM
AKE-SIDH-SIKE [24] SI-DDH CK™' | two-round | ROM
LJA [23] SI-DDH qCK | two-round | QROM
AKEsipn-2 [34] SI-DDH | CK™' | two-round | ROM
SIDH UM SI-DDH CK one-round | QROM
biclique SIDH di-SI-GDH | CK*' | one-round | ROM

Notations. When A is a set, y €g A denotes that y is uniformly selected from
A. When A is a random variable, y <—r A denotes that y is randomly selected
from A according to its distribution. We denote the finite field of order g by F,.

2 Security Models: CK-security and CKT-security

This section outlines the CK and CK™ security definitions for two-pass PKI-
based authenticated key exchange protocols. Note that, in our post-quantum CK
and CK™ models, all parties are modeled by probabilistic polynomial-time (ppt)
Turing machines while the adversary is modeled by a polynomial time quantum
machine. For further CK and CK™ details and explanations, see [22,12]. It is
worth to note here that the proposed protocols are one-round and thus, it is
enough to describe the security model as for two-pass AKE because a two-pass
model includes a one-round one.

We denote a party’s identity 121, B, C’, ..., where the ID space is IDS. A
party honestly generates its own keys, static public and static secret ones, and
the static public key is linked with the party’s identity in some systems like
PKI.® The maximum numbers of parties and sessions are polynomially bound
in the security parameter.

We outline our models for a two-pass AKE protocol where parties, A and B
exchange ephemeral public keys, X and Y, i.e., A sends X to B and B sends
Y to A, and thereafter derive a session key. The session key depends on the
exchanged ephemeral keys, identifiers of the parties, the static keys, and the
protocol instance that is used.

Keys. The public key owned by each party and its secret key are called static
public key and static secret key, respectively. The one-time use session informa-
tion exchanged in the protocol is called ephemeral public key as the information
is generated from a temporary secret called ephemeral secret key.

Session. An invocation of a protocol is called a session. A session is activated
via an incoming message of the forms (11, Z, A, B) or (II, R, A, B, Y), where

® Static public keys must be known to both parties in advance. They can be obtained
by exchanging them before starting the protocol or by receiving them from a certifi-
cate authority. This situation is common for all PKI-based AKE protocols.

II € PRS is a protocol identifier in the protocol ID space, PRS. If A is activated
with (11, Z, A, B), then A is the session initiator, otherwise it is the session
responder. We say that A is the owner (resp. peer) of session sid if the third
(resp. fourth) coordinate of sid is A. After activation, session initiator A creates
ephemeral public key X and a new session identified with (17, Z, A, B, X, 1),
and sends (IT, R, B, A, X) to the session responder B, who then prepares
ephemeral public key Y and a new session identified with (IT, R, B, A, X, Y),
computes the session key and sends (I, Z, fl, B, X,Y) to A. Upon receiving
(11, 7, A, B, X, Y), A updates the session identifier (11, Z, A, B, X, 1) with
(I1, 7, 1217 37 X,Y) and computes a session key for that session. We say that a
session is completed if its owner computes a session key.

If A is the initiator of a session, the session is identified via sid = (1, Z, A,
B, X, 1) or sid = (II, Z, A, B, X, Y). If B is the responder of a session, the
session is identified via sid = (11, R, B, 121, X, Y). The matching session of the
session identified via (11, Z, A, B, X, Y) is a session with identifier (IT, R, B,
A, X, Y') and vice versa.

Adversary. Adversary M is modeled as a probabilistic Turing machine that
controls all communications including session activation. Activation is performed
via a Send(MESSAGE) query. The MESSAGE has one of the following forms: (I,
I, A, B), (II, R, A, B, X), or (I, Z, A, B, X, Y). Bach party submits its
responses to adversary M, who decides the global delivery order.

The secret information of a party is not accessible to adversary M; however,
leakage of secret information is obtained via the following adversary queries.

— SessionKeyReveal(sid): M obtains the session key for the session with session
identifier sid, provided that the session is completed.

— SessionStateReveal(sid): M obtains the session state of the owner of ses-
sion sid if the session is not completed (the session key is not established
yet). The session state includes all ephemeral secret keys and intermediate
computation results except for immediately erased information but does not
include the static secret key.

— Corrupt(A): The query allows M to obtain all information of party A. If a

party, A, is corrupted by a Corrupt(A) query issued by M, then we call the

party, A, dishonest. If not, we call the party honest.

Definition 1 (Freshness). Let sid* be the session identifier of a completed
session, owned by an honest party A with an honest peer B. If the matching
session exists, then let sid* be the session identifier of the matching session of
sid*. Define sid* to be fresh if none of the following conditions hold:

— M issues SessionKeyReveal(sid*), or SessionKeyReveal(sid*) if sid* exists.
— sid* exists and M makes either of the following queries

e SessionStateReveal(sid*) or SessionStateReveal(sid*),
— sid* does not exist and M makes the following query

e SessionStateReveal(sid*).

Security Experiment. Initially, adversary M is given a set of honest par-
ties, for whom M selects identifiers. Then the adversary makes any sequence of
the queries described above. During the experiment, M makes a special query
Test(sid*), where sid* is the session identifier of a fresh session, and is given
with equal probability either the session key held by sid* or a random key; the
query does not terminate the experiment. The experiment continues until M
makes a guess whether the key is random or not. The adversary wins the game
if the test session sid* is still fresh and if the guess by M was correct. The
advantage of quantum adversary M in the AKE experiment with AKE protocol
11 is defined as

AdvEE(M) = Pr[M wins] — %

Definition 2 (Post-quantum CK security). We say that an AKE protocol
11 is post-quantum secure in the CK model if the following conditions hold:

1. If two honest parties complete matching sessions, then, except with negligible
probability, they both compute the same session key.
2. For any polynomial-time quantum adversary M, AdV%KE(M) s negligible
in security parameter \ for the test session sid*,
(a) if sid* does not exist, or
(b) if sid* emists, and the static secret key of the owner of sid* and the
static secret key of the owner of sid* are given to M.

Definition 3 (Post-quantum CK™ security). We say that an AKE protocol
IT is post-quantum secure in the CKt model if the following conditions hold:

1. If two honest parties complete matching sessions, then, except with negligible
probability, they both compute the same session key.
2. For any polynomial-time quantum adversary M, AdvﬁKE(M) is negligible
in security parameter \ for the test session sid*,
(a) if sid* does not exist, and the static secret key of the owner of sid* is
given to M,
(b) if sid* does not exist, and the ephemeral secret key of the owner of sid*
1s given to M,
(c) if sid* emists, and the static secret key of the owner of sid* and the
static secret key of the owner of sid* are given to M,
(d) if sid* exists, and the ephemeral secret key of the owner of sid* and the
ephemeral secret key of the owner of sid* are given to M,
(e) if sid* ewists, and the static secret key of the owner of sid* and the
ephemeral secret key of the owner of sid* are given to M, or
(f) if sid* exists, and the ephemeral secret key of the owner of sid* and the
static secret key of the owner of sid* are given to M.

The static and ephemeral public keys of our schemes include supersingular
curves and points on them. We can test supersingularity of curves in polynomial
time, e.g., [30]. We make an important remark: While Krawczyk mentions a
strong adversary model where a corrupted party can choose to register any public

key of its choice at any point during the protocol as a variant of the CK (") model
in [22], we do not allow the re-registration of static public key (similar to the
CK(™) model), and the initial public key is honestly generated and has been
used until the end of the protocol. It is because that an active attack which
Galbraith et al. [16] proposed for revealing static keys might be considered as
an effective attack when we adopt the above flexible key re-registration.

3 Supersingular Isogeny Diffie-Hellman (SIDH)

We describe the SIDH protocol, whose implementation is investigated in de-
tail in [9] and subsequently in [2,21, 20, 4, 8]. The security is studied in [16, 26].
For making user secret keys short, we follow the description in the SIKE doc-
ument [18], that is, the user key is given as just one scalar, e.g., ky € Z/{*7Z.
Refer to Appendix C for notations on elliptic curves.

3.1 Original (Concrete) Description of SIDH

For two small primes ¢,, g (e.g., £y = 2,63 = 3), we choose a large prime p such
that p4 1 = f - 5445 for a small f and £* ~ (5 = 29N where) is a security
parameter. Then, we also choose a random supersingular elliptic curve E over
Fp2 with E(Fp2) ~ (Z/(p £ 1)Z)* D (Z/l3Z)* & (Z/l5PZ)*. We use isogenies,
¢a and ¢p, with kernels of orders, £3* and /3, respectively, and the following
commutative diagram for the SIDH key exchange between Alice and Bob.

E % By = E/(Ry) for ker ¢y = (Ry) C E[¢5],
ker ¢g = (Rp) C E[(5*],
%l l@m ker ¢pa = (ds(14)) C Eg(}"],
By = E/(Rs) Po E/(Ry, Rs) ker gpp = (da(1s)) C Ea[(5"].

Below we first choose generators Py, Qu, P, @p such that E[(;*] = (P, Qy),
Ellg?] = (P, Qp) and then set the random curve E/F,. and the above gen-
erators as public parameters, i.e., we define the generator as kaidh = (g =
(E; Py, Qu, Bs, Q), ¢ = ({y, s, en,68)) <R GenSidh(l)‘). Secret-key spaces for
Alice and Bob are given as SK, = Z/{;*7Z and SKy = Z /{5 Z, respectively. DH-
type key exchange is given as below (Fig. 1). Here, since (¢g(Py)+ka ¢s(Qn)) =
(¢s(Ra)) = kerdpa and (pa(Fs) + ks ¢a(@s)) = (da(Rs)) = ker ¢yp hold, we
have the equality of the j-invariants Kpyice = j(Eg/ ker ¢py) = j(E/{(Ra, Rp)) =
J(Ey/ker ¢pp) = Kpon, and K = Kj1ice = Kpop is a shared key. Alice’s output in-
cludes ¢, (Pg) and ¢, (Q3p) as well as Ej, and the security is based on the hardness
of isogeny problem with the auxiliary inputs.

3.2 Crypto-friendly Description of SIDH

We prepare an alternative crypto-friendly description of SIDH for a simple pre-
sentation of our proposed AKE.

Alice Bob

ks €r SKy : ke €r SKg :

Alice’s secret key, Br, 68(Ps), 6a(Qs) Bob’s secret key,
Ry = Py + kaQu, " Rp=DP+ksQs,
oo E— Ey=E/(R), “ooWa@) g By = E/(Rs),
Ren = ¢p(Pa) + ka d5(Qn), Rup = ¢u(Bs) + ks da(Qs),
Kuiice = j(Es/{Rea)). Kpopb = j(Ex/(Ruz))-

Fig. 1. Outline of SIDH Protocol (Original Description).

We set
g= (E’ PAa QA7 PBa QB)7 a= kA) and b = kB'
Let the sets of supersingular curves and those with an auxiliary torsion basis be

SSEC,, = {supersingular elliptic curve E over F

with B(F2) = (Z/(p =)Z)? 2 (Z/60T) © (Z/627)%),
SSEC,x = {(E; Py, Qy) | E € SSEC,,, (Py, Q) : basis of E[(g*]},
SSEC,s ={(E; P, Qy) | E € SSEC,, (P,, Q,) : basis of E[(;*]}.

Thus, SIDH public keys of A and B are given elements of SSEC, , and SSEC, 3,
respectively. Then, we define

0% = (En; oa(Bs), #a(Qp)) € SSEC, 4,
where Ry = Py + k‘AQA, ¢A B — E, = E/<RA>,
0" = (Es; ¢s(Pa), ¢5(Qa)) € SSEC) g,
where RB = PB + kBQBy d)B E— EB = E/<RB>,
(Qb)a = j(Ega),
where Rgy = ¢p(Py) + kae(Qa), ¢ea : Es — Eppy = Eg/(Rea),
(0°)" = j(Ea),
where Ry = ¢u(FPs) + ksda(Qs), dup : En — Epg = Ey/(Rys)-

We describe SIDH using this notation below (Fig. 2). Public parameters are
9= (E; Py, Qu, Pp, Q) and ¢ = ({3, 0p, ey, e5). Here, shared secret is given as
Kitice = (g[’)a = (g°‘)b = Kpgop, which shows correctness of the SIDH protocol.

4 Post-Quantum Assumptions from SIDH

We define SI-CDH, SI-DDH, ds- and di-SI-GDH assumptions against quantum
adversaries based on the notation in Sect. 3.2. The SI-DDH assumption is needed
for indistinguishability security of SIDH shared keys. Moreover, all of the follow-
ing assumptions excluding ds-SI-GDH (see Prop. 1) are considered reasonable
at present.

Alice Bob

a €r SKy: Alice's secret key, N b €r SKs: Bob's secret key,
compute g%, ot compute g°,
Kpice = (g")u . Kgop = (g“)b .

Fig. 2. Outline of SIDH Protocol (Crypto-friendly Description).

Definition 4 (SI-CDH Assumption). Let S be a quantum machine adver-
sary. For PkSidh = (9= (&; Py, Qa, D3, Qs), ¢ = ({n,ls,ep,¢8)) <R Gensmh(l/\)
and a € SKy, b €r SKg, S receives (pksidh g g°), and S outputs h € Fpa.
Ifh = (ga)b (= (g[’)a), S wins. We define the advantage of S for the SI-CDH
problem as Advil;CDH(S) = Pr[S wins|]. The SI-CDH assumption is: For any
polynomial-time quantum machine adversary S, the advantage of S for the SI-
CDH problem is negligible in security parameter \.

Definition 5 (SI-DDH Assumption). Let S be a quantum machine adver-
sary. For k™™ = (g = (B; Pa, Qu, Bo, Qz), ¢ = (la, Lo, ex, €5)) +p Gen™™ (1Y)
and a,v € SK,, b,s €g SKg, S receives X, for b €g {0,1}, that is defined by

Xo = (pk¥™, g% g% (g%)°) and Ay = (pk™", g% g¢° (g9)°),

S outputs a guess bit b'. If b=V, S wins. We define the advantage of S for the
SI-DDH problem as Advif;DDH(S) = Pr[S wins]—1/2. The SI-DDH assumption
1s: For any polynomial-time quantum machine adversary S, the advantage of S

for the SI-DDH problem is negligible in security parameter X.

Definition 6 (ds- and di-SI-GDH Assumption). Let S be a quantum ma-
chine adversary. For pk®4" = (g=(E; Py, Qa, Pp, Qgp), ¢ = (ly,lp,€p,€8)) <R
Gen®"(1%) and a €p SK,, b €r SKg, S receives (pk®", g, g% g°), and
S access SI-DDH oracle for any input X = (pk™", (EL; Pls, Qis), (EL; Pl
Qtn), B') where Py, Qyp (resp. Piy, Q) are points in Ey(Fp2) (resp. E{(Fp2))
and b’ € F 2, and then outputs h € F2. If h = (ga)b (= (gb)a), S wins. Accord-
ing to the behavior of SI-DDH oracle, we have two types of SI-GDH problem,
i.e.,

— degree-sensitive SI-GDH (ds-SI-GDH) problem The ds-SI-DDH ora-
cle answers true if there exist a supersingular elliptic curve Eyy and isogenies
(Phs Dy Phps Ppa) among E, Ey, B}, Eip which form a commutative diagram
as in Fig. 3 such that

o degree dy of &) (and ¢y,) is equal to €5 and degree dy of ¢p (and ¢jg)
is equal to g and
* Bip = ¢i(Bs), Qug = ¢4(Qp) and By = ¢5(Fa), Quy = ¢d5(Qn) where
points (Py, Qu, Ps, Qs) are given in public key pk®", and § = j(Elg),
and false otherwise. We call this case degree-sensitive SI-GDH (ds-SI-GDH)
problem.

— degree-insensitive SI-GDH (di-SI-GDH) problem The di-SI-DDH or-
acle answers true if there exist a supersingular elliptic curve E,g and iso-
genies (¢, Pp, Prp, Pha) among E, Ey, EL, Eiy which form a commutative
diagram as in Fig. 3 such that

o degree dy of ¢y (and ¢g,) is a power of £y and degree d of ¢ (and ¢)g)
1s a power of fg and
o P = ¢y(F%), Qi = da(Qs) and Py = ¢5(Pa), Qpy = d5(Qn) where
points (Py, Qu, P, Qs) are given in public key pk¥", and b’ = j(E}z),
and false otherwise. We call this case degree-insensitive SI-GDH (di-SI-
GDH) problem.

We define the advantage of adversary S for the ds—SI-GDH and di-SI-GDH prob-
lems as Advg?;SI'GDH(S) = Pr[S wins] and Advcgl%;SI'GDH(S) = Pr[S wing], re-
spectively. The ds-SI-GDH (resp. di-SI-GDH) assumption is: For any polynomial-
time quantum machine adversary S, the advantage of S for the ds-SI-GDH

(resp. di-SI-GDH) problem is negligible in security parameter \.

Pa

E—2— dj = deg(¢p) = deg(¢pa)
¢’Bl l a8 4y = deg(py) = deg(bss)
Eg— " Enp
d)BA

Fig. 3. Commutative diagram for true instances of SI-DDH oracles, in which it holds

that ker(¢g,) = ¢g(ker(¢))) and ker(¢ys) = ¢y (ker(ég)).

Proposition 1 (adapted from [17]). The ds-SI-GDH assumption does not
hold, i.e., there exists a ppt adversary against the ds-SI-GDH problem.

proof sketch. Very recently, Galbraith and Vercauteren proposed an attack on
the SI-CDH problem with access to the decision degree (DD) oracle [17], which
determines whether two supersingular curves are isogenous of some specific de-
gree or not. As a basic building block, first, we describe an attack on the SI-
CDH problem using the DD oracle. The input of the problem is (kaidh =(g=
(E; Py, Qa, Ps, Qs), ¢ = ({n,lp,ep,¢8)), By, Pap,Qap), where ¢y : E — E, is
an {p*-isogeny, Py = ¢2(Pp), and Qxp = ¢u(Qz). The goal of the adversary S is
to reveal ¢,. For that, S calculates integer u such that - ¢y, =1 (mod fg), and
then one {y-isogeny ¢ : £y — E’. S send

Pk = (g, €= (la lo s — 1,en), B i (Pag), - 1(Qas)

to the DD oracle. Here, we note that the exponent e, — 1 is used instead of ey
for the implicitly defined £,-power isogeny. That is, the oracle distinguishes the
degree (or length) of the isogeny, in other words, whether E’ is ££*~ *-isogenous to
FE or Ei““—isogenous to E. See the left hand side of Fig. 4. Then, the adversary
reveals all the isogeny by repeating this ¢,-backtracking decision.

10

Next, we extend the above strategy to solve the ds-SI-GDH problem. Namely,
an ds-SI-GDH adversary obtains an input (pk®" = (g = (E; Py, Qa, Ps, Qg), ¢ =
(L, lp,ep,€8)), Ep, Pap, Qpg, - -), where ¢y : E — E, is an fj*-isogeny, Pyp =
oa(Fe), and Qp = ¢u(@s). The goal of the adversary S is to reveal ¢,. For that,
S calculates one £4-isogeny 1) : By — E’ as before. Moreover, S calculates degree
lgi-isogenies E — FE} and E' — Ejp that makes commutative SIDH diagram
(E,E',El, E}g). Then, S send

~ sidh - X
(kaI = (ga ¢ = (gAa€B76A - 13 eB)7Ela E],37 s a](El,\B))

to the ds-SI-DDH oracle and determine whether v is a backtracking step in ¢,
or not. See the right hand side of Fig. 4. From here on, repeating this procedure,
S can reveal ¢,. Also, S can compute E,g by using Eg and ¢,, which solves the
ds-SI-GDH problem. a

Fig. 4. Diagrams for the GV-type attack. The right (resp.left) hand side shows the
strategy for the ds-SI-GDH problem (resp.the SI-CDH problem with access to the
DD oracle). The attacker distinguishes which one of the ey + 1 red fj-isogenies is
backtracking by using the ds-SI-DDH (resp. the DD) oracle.

As described in the above proof, to distinguish the degree of isogeny (or
distance between two elliptic curves in the ¢;-isogeny graph) is crucial for the
GV-type attack. Since the ability for the distinction is given by the ds-SI-DDH
oracle, the GV-type attack adversaries have no advantages in the di-SI-GDH
problem. Therefore, in contrast to the ds-SI-GDH problem, we may assume that
the di-SI-GDH problem cannot be solved by any efficient adversaries, and can
be used for the basis of the security of our biclique scheme.

Note that auxiliary points ¢y (Fs), ¢y(@s), d5(Ps), dp(Qa) in true instance X
for di-SI-DDH oracle impose some restrictions on implicitly defined isogenies
&h, ¢ (and ¢jg, dga) used in Fig. 3. However, since degrees dj and dy of ¢
and ¢ can be chosen as any powers of ¢, and ¢ respectively, a wide range
of tuples (Fj, Ef, E;5) can be accepted for forming the commutative diagram
in Fig. 3. Therefore, as an extreme possible case, any tuple of supersingular
elliptic curves (E}, By, Ejg) might form the commutative diagram in Fig. 3, that
is, any tuple of such curves would be true instances in the hypothetical case. We
cannot exclude such possibility from our present knowledge of the di-SI-GDH
problem. A satisfiable analysis of the di-SI-GDH problem seems to need more
understanding of the Ramanujan graph of /-isogenies of supersingular curves.

11

Lemma 3.2 and Theorem 3.3 in [32] also show some interesting connection
between computational and decisional SIDH problems. However, we notice that
answers of all the oracles (Og,1)se, (Op,2)ee and (Op,3)ee (for £¢ = £7" or (5?) are
related to isogenies of degrees dividing £¢, which is defined by public parameters.
In particular, all the isogeny degrees have smaller or equal than ¢¢. Our di-SI-
GDH problem is related to unbounded degrees which are just a power of £. Thus,
Lemma 3.2 and Theorem 3.3 in [32] are now unrelated with our situation, but,
we think seeking relationships between the di-SI-GDH problem and the results
in [32] is an interesting research direction.

5 Proposed SIDH UM Protocol

In this section, we propose the SIDH UM protocol, where it can be proved in
the quantum random oracle model under the SI-DDH assumption.

Before describing the protocol, we explain that each party needs to have two
static public keys. The public parameter, g, contains two parameters, (P, (1)
and (P, Q2). A party has a key on (P, Q1) and the other key on (P, Q).
Then, (P, Q1) is used to generate the ephemeral public key of the initiator and
(P2, Q2) is used to generate the ephemeral public key of the responder. When
the role is exchanged, each party uses the other static key which is not used
before.

This double construction in public parameter and static public keys gives
resistance to reflection attacks. To the best of our knowledge, the previous re-
searches of key exchange on supersingular isogenies have lacked this considera-
tion.

5.1 Useful Techniques for Quantum Random Oracle Model

A problem on security proofs in the quantum random oracle model is how to
generate random values for exponentially many positions in order to simulate
outputs of the hash function. For a hash function H : Dom — Rng, in the quan-
tum random oracle model, the adversary poses a superposition |¢) = Y, |x) and
the oracle returns Yo, |H(z)). If Rng is large for a quantum polynomial-time
simulator, it is difficult to generate all random output values of H to compute
Yo |H(x)). Zhandry [36] showed a solution with the notion of k-wise indepen-
dent function.

A weight assignment on a set X is a function D : X — R such that
YrexD(x) = 1. A distribution on X is a weight-assignment D such that D(z) >
0 for all x € X. Consider the set of functions H : X — Y for sets X and),
denoted by Hyx,y. We define the marginal weight assignment Dy, of D on Hy)y
where the weight of a function Hyy : W —) is equal to the sum of the weights
of all H € Hy y that agree with Hyy on W.

Definition 7 (k-wise equivalence). We call two weight assignments D1 and
Dy on Hxy k-wise equivalent if for all W C X of size k, the marginal weight
assignments D1 vy and Doy (of D1 and Ds) over Hx y are identical.

12

Definition 8 (k-wise independent function). We call a function f k-wise
independent function if f is k-wise equivalent to a random function.

Lemma 1 (Theorem 3.1 in [36]). Let A be a quantum algorithm making q
quantum queries to an oracle H : X — Y. If we draw H from some weight
assignment D, then for every z, the quantity Pry. p[A"() = z] is a linear
combination of the quantities Pry p[H (x;) = r;Vi € 1,...,2q] for all possible
settings of the x; and r;.

Lemma 2 (Theorem 6.1 in [36]). If there exists 2q;-wise independent func-
tion, then any quantum algorithm A making q; quantum queries to random or-
acles O; can be efficiently simulated by a quantum algorithm B, which has the
same output distribution, but makes no queries.

Hence, a quantum algorithm B can simulate quantum random oracles in a
polynomial-time. We use this simulation technique to simulate outputs of the
hash function in the security proof of the SIDH UM protocol.

On the other hand, the other problem on security proofs in the quantum
random oracle model is how to insert intended random values as the outputs of
corresponding oracle inputs. Zhandry [36] showed a solution with the notion of
semi-constant distributions SC,,.

Definition 9 (Semi-constant distribution). Define SC,,, the semi-constant
distribution, as the distribution over Hy y resulting from the following process:

— First, pick a random element y from).

— For each x € X, do one of the following:
o With probability w, set H(x) =y. We call x a distinguished input to H.
e Otherwise, set H(x) to be a random element in).

Lemma 3 (Corollary 4.3 in [36]). The distribution of outputs of a quantum
algorithm making h queries to an oracle drawn from SC,, is at most a distance
%h"‘oﬂ away from the case when the oracle is drawn from the uniform distribu-
tion.

We suppose that the simulation succeeds with probability e if the adversary
uses an inserted random value as the outputs of corresponding oracle inputs.
If the probability that the adversary uses one of the points is w, then the sim-
ulation succeeds with probability ew — %h4w2. By choosing w to maximize the
success probability, the simulation succeeds with probability O(e?/h*). We use
this simulation technique to insert a SI-DDH instance into the hash function in
the security proof of the SIDH UM protocol.

5.2 Description of SIDH UM Protocol

We give our SIDH UM protocol using the notation in Sect. 3.2. Public parameters
are g = (E; P, Q1, P>, Q2) and e = ({1,03,e1,e3). We set IT = SIDHUM, that
is, the protocol ID is “SIDHUM.” Static and ephemeral keys are the same as our

13

Al = g“l B, = gbl

Al — gal Bl — gbl A2 — ga2 32 — gbg
Ap = g™ By = g™ X =g X Yy =g
X=¢g¢ 5 Y=g R
&£ Zy=Y" Zy = Ay
Zl g 3201 Z1 = A1[’2 ZQ = B2}‘ Z2 = Xb2
Zo=Y? Zy = X" Z3 = Byt Z3 = A"2
K =H(II,Z,Zs,A B, X,Y) Zs=Y* Zy=X"

K = H(Il, Z1, Z>, Z3, Zs, A, B, X, Y)
Fig. 5. Outline of SIDH UM Protocol.
Fig. 6. Outline of Biclique SIDH Protocol.

biclique SIDH protocol. Let two secret-key spaces for initiators and responders
be given as SK1 = Z/{$*Z and SK o = Z /05?7, respectively.

User A has two static public keys, A1 = gt and Ay = g%, where a; = kx 1 €R
SK1, ag = ka2 €r SKo, and a; and ay are A’s static secret keys. User B, also,
has two static public keys, B; = g® and By = g°2, where b; = kg1 €r SK1,
by = kg2 €r SK», and by and by are B’s static secret keys. Here, ephemeral
secret keys for A and B are given as

x:kx €ER SKl, and U:ky €R SK27

respectively. A sends a ephemeral public key X as X = ¢* to B, B sends back
a ephemeral public key Y as Y = ¢" to A.

A computes Z; = B3', and Zy = Y*, and then, obtains the session key K as
K = H(II, Zy, Z5,A, B, X,Y), where H is a hash function.

B can computes the session key K as K = H(I, Zl,Zg,A,E,X,Y) from
Zy = A% and Z, = XV.

It is clear that the session keys of both parties are equal (Fig. 5).

5.3 Security

Theorem 1. Suppose that H is modeled as a quantum random oracle and that
the SI-DDH assumption hold for (g,e¢). Then the SIDH UM protocol is a post-
quantum CK-secure authenticated key exchange protocol in the quantum random
oracle model.

In particular, for any AKE quantum adversary M against the SIDH UM pro-
tocol that runs in time at most t, involves at most n honest parties and activates
at most s sessions, and makes at most h queries to the quantum random oracle
and q SessionKeyReveal queries, there exists an SI-DDH quantum adversary S
such that

AdvS-PPH(S) > 2AdvE S hum(M)?
8¢ ~ n?s%2(8hg + 3(h+ g+ 1)%)’

where S runs in time t plus time to perform (’)((n + s))\) low-degree isogeny
operations.

An intuition of the security proof is given in Sect. 5.1. The SI-DDH assump-
tion used in Theorem 1 can be degree-sensitive. Hence, it implies security under

14

the SI-CDH assumption by using the reduction in Proposition 1. However, an
additional reduction cost is necessary. It is not trivial to directly prove security
under the SI-CDH assumption because of the no-cloning theorem. Specifically,
in the reduction to the CK security, the SI-CDH solver wants to extract the an-
swer of the SI-CDH problem from a random oracle query by the AKE adversary.
However, the query is a quantum state, and the solver cannot record a copy
of the input. Thus, this proof strategy does not work. Recently, Zhandry [37]
introduced a technique to record quantum queries. How to apply this technique
to the proof is an open problem.

6 Proposed Biclique SIDH Protocol

In this section, we propose the biclique SIDH protocol, where it can be proved
in the random oracle model under the di-SI-GDH assumption.

It is worth to note here that the SIDH UM protocol is secure in the quantum
random oracle model under the SI-DDH assumption, and therefore, the SIDH
UM protocol is superior than the biclique SIDH protocol in the following points:
the computational model of adversaries and the assumption relaying to the se-
curity. However, the biclique SIDH protocol can be shown to be secure in the
CK™ model, that is, the protocol resists against maximum exposure where a
non-trivial combination of secret keys is revealed. This shows that the biclique
SIDH protocol is superior than the SIDH UM protocol in this sense.

As our SIDH UM protocol in Sect. 5, the public parameter, g, contains two
parameters, (P, Q1) and (P, Q2) in our biclique SIDH protocol. A party has
a key on (P, Q1) and the other key on (P, Q2).

6.1 Description of Biclique SIDH Protocol

We give our biclique SIDH protocol using the notation in Sect. 3.2. Public param-
eters are g = (F; P, Q1, P2, Q2) and e = ({1, 2, e1,e2). We set [T = BCSIDH,
that is, the protocol ID is “BCSIDH.” Let two secret-key spaces for initiators
and responders be given as SK1 = Z/{{'Z and SKo = Z /5?7, respectively.

User A has two static public keys, A1 = g“l and Ay = g2, wherea; = ka1 €ER
SK1, ag = ka2 €r SKo, and a; and ay are A’s static secret keys. User B also,
has two static public keys, By = g"* and By = g%, where b; = kg1 €r SK;,
by = kg2 €r SKy, and b; and by are B’s static secret keys. Here, ephemeral
secret, keys for A and B are given as

xzk’x €ER SKl, and U:k’y €ER SK27

respectively. A sends an ephemeral public key X as X = ¢* to B, B sends back
an ephemeral public key Y as Y = ¢V to A.

A computes the non-trivial combinations of the ephemeral and static public
keys as Z3 = Y™, Zy = B3, Z3 = B3', and Z; = Y¥, and then, obtains

15

the session key K as K = H(II, Zy, Za, Z3, Zs, A, B, X,Y), where H is a hash
function.

B can computes the session key K as K = H(II, Z1, Zs, Zs, Zs, A, B, X, Y)
from Z, = A), Zy = X, Z3 = A% and Z, = X.

It is clear that the session keys of both parties are equal (Fig. 6).

Charles et al. [6] proposed a hash function secure against quantum adversaries
from the isogeny computation intractability. Hence, we can use the isogeny-based
hash function in the real implementation for H, however, H is modeled as a
random oracle in the security proof below.

6.2 Security

Theorem 2. Suppose that H is modeled as a random oracle and that the di-
SI-GDH assumption hold for (g,e). Then the biclique SIDH protocol is a post-
quantum CK'-secure authenticated key exchange protocol in the random oracle
model.

In particular, for any AKE quantum adversary M against the biclique SIDH
protocol that runs in time at most t, involves at most n honest parties and
activate at most s sessions, and makes at most h queries to the random oracle,
there exists a di-SI-GDH quantum adversary S such that

. 1 1 1
Adv3SEEPH(SY > min { — } - AdvisSpa(M),

g9¢ sn n2’ s

where S runs in time t plus time to perform (’)((n + s))\) low-degree isogeny
operations and make O(h + s) queries to di-SI-DDH oracle.

As we consider a case where the security model is CK*, an adversary may
access to a non-trivial combination of secret keys. However, it means that the
adversary cannot access to the other combination of the secret key. Thus, the
di-SI-GDH solver can embedded an instance to the public keys where secret key
are not revealed. As we assume the random oracle model, the adversary has to
make a query which contains the di-SI-GDH answer, and then, the theorem can
be proved. Note here that the di-SI-DDH oracle is necessary to keep consistency
between the answers by the di-SI-GDH solver on adversary’s questions.

We consider how to extend our security proof in the random oracle model
to that in the quantum random oracle model as in the SIDH UM protocol.
For completing the simulation, we need to extend the di-SI-GDH assumption
(Definition 6). Namely, in random oracle simulation, S first checks compatibility
of input elements using di-SI-DDH oracle. Hence, in the quantum ROM situation,
since inputs are given in quantum superposition form, we should extend the di-
SI-DDH oracle to take as input the superpositions. If the di-SI-GDH quantum
adversary allows the extended di-SI-DDH oracle access, then our security proof
can be converted to quantum ROM secure one.

16

7 Conclusion

We proposed two authenticated key exchange protocols from supersingular iso-
genies: SIDH UM and biclique SIDH. We also discussed a new approach for
invalidating the Galbraith—Vercauteren attack for the gap problem on the su-
persingular isogeny Diffie-Hellman, and defined the di-SI-GDH assumption.

The SIDH UM protocol is secure in the CK and quantum random oracle
models under the SI-DDH assumption. The biclique SIDH protocol is secure in
the CKT and random oracle models under the di-SI-GDH assumption.

Our protocols are the first post-quantum one-round Diffie-Hellman type au-
thenticated key exchange ones in the following points: one is secure under the
quantum random oracle model and the other resists against maximum exposure
where a non-trivial combination of secret keys is revealed.

References

1. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof sys-
tems: The hardness of quantum rewinding. In: FOCS 2014. pp. 474-483 (2014)

2. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression
for isogeny-based cryptosystems. In: AsiaPKC 2016. pp. 1-10 (2016)

3. Boneh, D., Dagdelen, 0., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: ASTACRYPT 2011. pp. 41-69 (2011)

4. Bos, J.W., Friedberger, S.: Fast arithmetic modulo 2% p¥ + 1. In: ARITH 2017.
pp. 148-155 (2017)

5. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: EUROCRYPT 2001. pp. 453-474 (2001)

6. Charles, D., Lauter, K., Goren, E.: Cryptographic hash functions from expander
graphs. J. Crypt. 22(1), 93-113 (2009)

7. Childs, A., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quantum
subexponential time. J. Math. Crypt. 8(1), 1-29 (2014)

8. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient
compression of SIDH public keys. In: EUROCRYPT 2017, I. pp. 679-706 (2017)

9. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: CRYPTO 2016, Part 1. pp. 572-601 (2016)

10. Dagdelen, O, Fischlin, M., Gagliardoni, T.: The Fiat-Shamir transformation in a
quantum world. In: ASTACRYPT 2013, Part II. pp. 62-81 (2013)

11. De Feo, L., Jao, D., Plat, J.: Towards quantum-resistant cryptosystems from su-
persingular elliptic curve isogenies. J. Math. Crypt. 8(3), 209247 (2014)

12. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Practical and post-quantum
authenticated key exchange from one-way secure key encapsulation mechanism. In:
ASTACCS 2013. pp. 83-94 (2013)

13. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated
key exchange from factoring, codes, and lattices. Des. Codes Cryptography 76(3),
469-504 (2015), a preliminary version appeared in PKC 2012 (2012)

14. Galbraith, S.: Mathematics of Public Key Cryptography. Cambridge Univ. Press
(2012)

15. Galbraith, S.D.: Authenticated key exchange for SIDH. IACR Cryptology ePrint
Archive 2018, 266 (2018), http://eprint.iacr.org/2018/266

17

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingular
isogeny cryptosystems. In: ASTACRYPT 2016, Part I. pp. 63-91 (2016)
Galbraith, S.D., Vercauteren, F.: Computational problems in supersingular ellip-
tic curve isogenies. IACR Cryptology ePrint Archive 2017, 774 (2017), http:
//eprint.iacr.org/2017/774

Jao, D., Azarderakhsh, R., Campagna, M., Costello, C., Feo, L.D., Hess, B., Jalali,
A., Koziel, B., LaMacchia, B., Longa, P., Naehrig, M., Renes, J., Soukharev, V., Ur-
banik, D.: Supersingular Isogeny Key Encapsulation (SIKE). submission to NIST
Post-Quantum Cryptography Standardization (2017)

Jeong, 1., Katz, J., Lee, D.: One-round protocols for two-party authenticated key
exchange. In: ACNS 2004. pp. 220-232 (2004)

Koziel, B., Azarderakhsh, R., Kermani, M.M., Jao, D.: Post-quantum cryptogra-
phy on FPGA based on isogenies on elliptic curves. IEEE Trans. on Circuits and
Systems 64-I(1), 86-99 (2017)

Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Kermani, M.M.: NEON-SIDH:
efficient implementation of supersingular isogeny Diffie-Hellman key exchange pro-
tocol on ARM. In: CANS 2016. pp. 88-103 (2016)

Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In:
CRYPTO 2005. pp. 546-566 (2005)

LeGrow, J., Jao, D., Azarderakhsh, R.: Modeling quantum-safe authenticated key
establishment, and an isogeny-based protocol. IACR Cryptology ePrint Archive
2018, 282 (2018), http://eprint.iacr.org/2018/282

Longa, P.: A note on post-quantum authenticated key exchange from supersingular
isogenies. IACR Cryptology ePrint Archive 2018, 267 (2018), http://eprint.
iacr.org/2018/267

National Institute of Standards and Technology: Post-Quantum crypto standard-
ization: Call for Proposals Announcement (December 2016), http://csrc.nist.
gov/groups/ST/post-quantum-crypto/cfp-announce-dec2016.html

Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
ASTACRYPT 2017, Part II. pp. 330-353 (2017)

Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR
Cryptology ePrint Archive 2006, 145 (2006), http://eprint.iacr.org/2006/145
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484-1509 (1997)
Silverman, J.: The Arithmetic of Elliptic Curves, GTM, vol. 106. Springer Verlag,
2nd edn. (2009)

Sutherland, A.: Identifying supersingular elliptic curves. LMS J. Comp. and Math.
15, 317-325 (2012)

Thormarker, E.: Post-Quantum Cryptography: Supersingular Isogeny Diffie—
Hellman Key Exchange. Master’s thesis, Stockholm University (2017)

Urbanik, D., Jao, D.: SoK: The problem landscape of SIDH. In: APKC 2018. pp.
53-60 (2018)

Vélu, J.: Isogénies entre courbes elliptiques. C.R. Acad. Sc. Paris, Séries A. 273,
238-241 (1971)

Xu, X., Xue, H., Wang, K., Tian, S., Liang, B., Yu, W.: Strongly secure authenti-
cated key exchange from supersingular isogeny. IACR Cryptology ePrint Archive
2018, 760 (2018)

Zhandry, M.: How to construct quantum random functions. In: FOCS 2012. pp.
679-687 (2012)

Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: CRYPTO 2012. pp. 758-775 (2012)

18

37. Zhandry, M.: How to record quantum queries, and applications to quantum indif-
ferentiability. IACR Cryptology ePrint Archive 2018 (2018)

A Proof of Theorem 1

Since H is modeled as a quantum random oracle, adversary M has only three
ways to distinguish a session key of the test session from a random string.

— Guessing attack: M correctly guesses the session key.

— Key replication attack: M creates a session that is not matching to the test
session, but has the same session key as the test session.

— Forging attack: M computes Z; and Zs used in the test session identified
with (11, Z, A, B, X, Y), and queries H with a superposition including (17,
7y, Zs, A, B, X, Y).

Since H is a quantum random oracle, the probability of guessing the output of
H is O(1/2*). Since non-matching sessions have different communicating parties
or ephemeral public keys, key replication is equivalent to finding H-collision;
therefore the probability of succeeding key replication is O(s?/2*).

Let M be the event that M wins the security experiment with SIDHUM, H
be the event that M succeeds forging attack, and H the complementary event of
H. Thus we have Pr[M | H] = 3, and therefore AdvETum(M) = Pr[M] — 3 <
Pr[M N H].

By the definition of freshness in the CK-model, there are two cases that M
chooses a test session.

— E;: M chooses a test session without a matching session.

— Es: M chooses a test session with a matching session, and reveals the static
secret keys of both the owner of the test session and the owner of its matching
session.

In each case, we will show how to construct an SI-DDH solver S. Solver § is
given an SI-DDH instance (kaidh, U=g"V =g"W). Let R be an event that
M chooses a test session whose owner and peer are the same party, and let R
be its complement.

Whether a certain event took place or not is decided at the end of the ex-
periment. In other words for each event analysis bellow it is assumed that the
event conditions are satisfied upon the adversary termination.

Before analyzing the events, we note that the session state of a session in the
SIDH UM protocol is equivalent to the ephemeral secret key in the session as
no other information (except the static secret key) is necessary to compute the
shared secrets and the session key.

E1NR. S prepares n honest parties, selects two honest parties A and B to whom S
assigns the static public keys A; = U and By = V, and random static public and
secret key pairs for As and By. The remaining n — 2 parties are assigned random
static public and secret key pairs. S selects i €r {1,...,s}, and chooses i-th

19

session sid* among sessions, activated by M, owned by A and having intended
peer B.

When M activates sessions between honest peers, S follows the protocol
description. Since S knows static secret keys of at least one peer, it can respond
all queries faithfully. The only exception is the session owned by A with the
intended peer B because S does not know static secret keys of A and B. Then,
S sets W as Z; in such sessions.

Also, S chooses random t* and ¢ € {0,1}* as the ephemeral secret key and
the session key of sid*, respectively. (is inserted as the output of H in the test
session sid* (i.e., the session key).

S has difficulty in responding hash queries because he/she needs to return
superpositions corresponding to random values for exponentially many positions
(The domain of H is PRS x F2, x IDS? x SSEC,,1 x SSEC,, 5). We solve this
problem by using Lemma 2. Specifically, since the number of queries to H made
by M is h for direct queries, ¢ for SessionKeyReveal queries, and 1 for the Test
query, for a total of h 4+ ¢ + 1 queries, a (h + g + 1)-wise independent function
is sufficient to simulate superposition of outputs. There is the other difficulty to
correctly answer the SI-DDH problem because M uses ¢ with exponentially small
probability if the position of € is only the corresponding input. We can also solve
this problem by using Lemma 3. Specifically, the simulator inserts ¢ for inputs
(pid, Z1, Zs, uid, uid’, epk, epk’) € X C PRS><IE‘12)2 xIDS? X SSEC), 1xSSEC) 2.
The probability that a randomly chosen input is contained in X is w. If M
chooses (pid =1II, Z1 =W, Zy = Y™ uid = A, uid’ = B, epk, epk’) € X as the
test session, then S can use the distinguishing capacity of M to distinguish the
SI-DDH challenge.

We use the game hopping technique in the security proof. Let Advg‘I%%UM (M,
Game;) be the advantage of M in Game;.

— Let Gameg be the standard attack game for the CK security. When M poses
a superposition to quantum random oracle H, the superposition of output
values corresponding to the input is returned to M. Then, AdeAIIf)%UM (M,
Gameg) = Adviiiou(M).

— Game; is the same as Gamey except that the game halts if M poses
Test(sid) for sid # sid*. Since sid* is chosen from ns sessions, it holds
that Advihum(M, Game;) > L AdviEE (M, Gamey).

— Let w € (0,1) be chosen later, and X be a subset of PRS x Fiz x IDS? x
SSEC, 1 x SSEC,, » where (pid, Z1, Z2, uid, uid’, epk, epk’) € PRS x IF?)2 X
IDS? x SSEC,; x SSEC, 5 is put in X with independent probability w.
Game; is the same as Game; except that the game halts if (IT, W, Y*¥,
A, B, X*, Y*) € X for the test session sid* = (II, Z, A, B, X*, Y*), M
poses SessionKeyReveal(II, Z, uid, uid’, X', Y’) such that (II, Z;, Z, uid,
uid’, X', Y') € X, or M poses H(II, Zy, Zo, uid, uid’, X', Y') such that (I,
Z1, Zy, uid, uid’, X', Y') € X. We note that Y* is decided by M because
sid* has no matching session, and M cannot poses SessionKeyReveal(I1,
T, A, B, X*, Y*) by the freshness condition. Adviiogum(M, Gamey) >

20

w(1—whq) - AdviEEom(M, Game;) > wAdviss oy (M, Game,) —w?hg
holds.

— Game;j is the same as Games, except that ¢ is set as H(pid, Z, Zs, uid,
uid’, epk, epk’) for all (pid, Z;, Z», uid, uid’, epk, epk’) € X, and choose
H(pid, Zy, Zs, uid, uid’, epk, epk’) randomly for all other inputs. Now, H is
distributed according to SC,,. By Lemma 3, the output distribution of M in
Games is at most a distance %(h + g+ 1)*w? from that in Game,. Hence,
Adviihion(M, Games) > Adva oy (M, Games) — 2(h + ¢ + 1)%w?
holds.

Finally, we estimate Advgionun (M, Games) by Ade};DDH(S) with the
reduction to SI-DDH problem. For simplicity, we assume that S has quantum

access to two random oracles H; : PRS x Iﬁ‘iz x IDS? x SSEC,1 x SSEC 2 —
{0,1}* and H, : PRS x F2, x IDS? x SSEC,, x SSEC, 5 — {0,1} where
H, outputs 1 with probability w. Let X be the set of (pid, Z;, Zs, uid, uid’,
epk, epk’) such that Hs(pid, Z;, Zs, uid, uid’, epk, epk’) = 1. We can see that
the above conditions are equivalent to Games. By Lemma 2, S can perfectly
simulate Hy and Hy by using a (h 4 ¢ + 1)-wise independent function without
oracle accesses. S prepares RU* with entries of the form (pid, uid, uid’, epk, epk’,
SK) € PRS x IDS? x SSEC,, 1 x SSEC,, 5 x {0,1}* and H'™! with entries of the
form (pid, Z1, Zs, uid, uid’, epk, epk’, SK) € PRS x F2, x IDS? x SSEC),; x
SSEC, 2 x{0,1}*, where pid is a string which gives a protocol identifier, and uid
is a string which gives a user identifier, and & maintains two lists for consistent
responses to H and SessionKeyReveal queries. On input (kaidh, U, V,W), S works
as follows:

— Choose t* €r SK; and ¢ € {0,1}*, andset A; = U, By = V,and X* = gt
in sid*. The remaining n — 2 parties are assigned random static public and
secret key pairs. Set sid* = (I, Z, A, B, X*,).

— Send(I1,Z, A, B): Solver S selects uniformly random ephemeral secret key r,
computes ephemeral public key X honestly, records (I, Z, /1, B, X) in List
R'* and returns X.

— Send(II, R, A, B, X): S selects uniformly random ephemeral secret key v,
computes ephemeral public key Y honestly, records (I, R, /1, 37 X,Y)in
List RVst as completed, and returns Y.

— Send(I1,Z,A, B, X,Y): If session (II, Z, A, B, X) is not recorded in List
Rt S records session (11, Z, A, B, X, Y) in List RE* as not completed.
Otherwise, S records the session in List Rt as completed.

— H(-): S simulates a random oracle such that

H(H7zlaZ2;AaévX7Y)
¢ if Hy(IT, Z1,Z2, A, B, X,Y) =1
| H\(II,Zy,Z5,A,B,X,Y) otherwise

— SessionKeyReveal(-): When M poses (II, Z, uid, uid’, X, Y) such that Hy(II,
Z1, Zy, uid,uid’, X,Y) = 1, then outputs a random bit and aborts. Other-
wise, return SK = Hy(pid, Zy, Z, uid, uid’, X, Y).

21

— SessionStateReveal(sid): S responds to the query faithfully.

— Corrupt(é): If C is queried before, S returns error. Otherwise, S responds
to the query faithfully. Note that Corrupt(A) nor Corrupt(B) is never posed
by the freshness condition.

— Test(sid): If sid # sid*, then S aborts with failure. Otherwise, S responds
¢ to the query.

— If adversary M outputs guess v, S outputs 7.

S may abort in the simulation of SessionKeyReveal and Test. Also, S may fail if
M poses H(I1, Zy, Zy, uid, uid’, X, Y') such that (11, Z,, Z5, uid,uid’, X, Y) € X.
However, in Games, these events do not occur because of the game hopping. In
the case of W = (g")", the simulation of Test query is the same as the real session
key. In the case of W = (g%)° with random secret keys t and s, the simulation
of Test query is the same as the random session key. Thus, AdeII](D%UM(M

Games) is

Adviiium (M, Game;) = Advi PPH(S).
Therefore, Adviisgun (M) is

Adv§iium(M) < %Advﬁ,I;DDH(S) + nsw (hq + 8(h +q+1))

4Adv§III<DE}IUh4 (M)

The right side is minimized when w = s@ha E3 gt D -

E; N R. S prepares n honest parties, selects an honest party A and assigns its
static public keys as A; = U and A2 = V. The proof is almost the same as in
E; NR. The party A is simulated as B in E; NR.

Es. S prepares n honest parties, selects two honest parties A and B, and assigns
random static public and secret key pairs for all parties (i.e., S knows a; and
bo). S selects i €g {1,...,s}, and chooses i-th session sid* among sessions,
activated by M, owned by A and having intended peer B.

When M activates sessions between honest peers, S follows the protocol
description. Since S knows static secret keys of at least one peer, it can respond
all queries faithfully. In sid*, S assigns ephemeral public keys X* = U and

=V of A and B, respectively. Then, S sets W as Z5 in sid*. Also, S chooses
random ¢ € {0,1}* as the session key of sid*. ¢ is inserted as the output of H
in the test session sid* (i.e., the session key).

We use the game hopplng technique in the security proof. Let AdeIDHUM (M,
Game;) be the advantage of M in Game;.

— Let Gameg be the standard attack game for the CK security. When M poses
a superposition to quantum random oracle H, the superposition of output
values corresponding to the input is returned to M. Then, AdeIIf)%UM (M,
Gamey) = Adviiium(M).

— Game; is the same as the game, Gamey, except that the game halts if
M poses Test(sid) for sid # sid*. Since sid* is chosen from ns sessions,
Adviihion(M, Game;) > L Adv{iiyu (M, Gamey) holds.

22

— Game; is the same as Game; except that ¢ is set as H(pid, Z; = B3,
W, A, B, U, V), and choose H(pid, Z1, Za, A, B, X, Y) randomly for
all other inputs. Now, H is distributed according to SC, where w is the
probability of randomly selecting (pid, Z;, W, 121, B , U, V) from the domain,
which is negligibly small. By Lemma 3, the output distribution of M in
Game; is at most a distance %(h + q + 1)*w? from that in Game;. Hence,
Adv&%%UM(M, Games) > AdeAI%%UM(M, Game;) — %(h +q+1)%w? =
Adviium (M, Game;) — negl holds.

Finally, we estimate Advgigum (M, Game,) by using Advi};DDH (S). For

simplicity, we assume that S has quantum access to two random oracles H; :
PRS x Fiz x IDS? x SSEC,1 x SSEC,2 — {0,1}* and Hs : PRS x IE‘ZQ)2 X
IDS? x SSECp1 x SSEC, 2 — {0,1} where H, outputs 1 with probability w.
By Lemma 2, S can perfectly simulate H; and Hs by using a (h + g + 1)-wise
independent function without oracle accesses. S prepares RUs* with entries of the
form (pid, uid, uid’, epk, epk’, SK) € PRS xIDS? x SSEC,, 1 x SSEC,, 5 x {0,1}*
and H'' with entries of the form (pid, Z;, Z», uid, uid’, epk, epk’, SK) €
PRS x IB'1272 x IDS? x SSEC,1 x SSEC, 2 x {0,1}*, where pid is a string which
gives a protocol identifier, and uid is a string which gives an user identifier, and
S maintains two lists for consistent responses to H and SessionKeyReveal queries.
On input (pk¥", U, V, W), S works as follows:

— Choose a; €r SKi, by € SKy and ¢ €r {0,1}*, and set A; = g™ and
By = g*, X* = U and Y* = V in sid*. n parties are assigned random
static public and secret key pairs. Set sid* = (II, Z, A, B, X*, Y*).

— Send(11,Z, A, B) Solver S selects uniformly random ephemeral secret key g,
computes ephemeral public key X honestly, records (11, Z, A, B, X) in List
R and returns X.

— Send(IT,R, A, B, X): S selects uniformly random ephemeral secret key b,
computes ephemeral public key Y honestly, records (I, R, A, B, X, Y) in
List RYs* as completed, and returns Y.

— Send(11,Z, A, B, X, Y): If session (II, Z, A, B, X) is not recorded in List
RSt S records session (II, Z, A, B, X, Y) in List R'" as not completed.
Otherwise, S records the session in List R"S' as completed.

— H(-): S simulates a random oracle such that

H(HazlaZQ;AaEaX7Y)

_J¢ if Hy(Il, Z1, Z5,A, B,X,Y) =1
| H.(II,Zy,Z5,A,B,X,Y) otherwise

— SessionKeyReveal(:): When M poses (IT, Z, A, B, X, Y) such that Hy(II,
Z, 4o, [L B’, X,Y) =1, then outputs a random bit and aborts. Otherwise,
return SK = H, (I, Zy, Z2, A, B, X, Y).

— SessionStateReveal(sid): S responds to the query faithfully.

— Corrupt(C): If C is queried before, S returns error. Otherwise, S responds
to the query faithfully. Note that a; and by are given to M.

23

— Test(sid): If sid # sid*, then S aborts with failure. Otherwise, S responds
¢ to the query.
— If adversary M outputs guess y, S outputs 7.

S may abort in the simulation of SessionKeyReveal and Test. However, in Games,
these events do not occur because of the game hopping. In the case of W = (g")°,
the simulation of Test query is the same as the real session key. In the case of
W = (g%)® with random secret keys v and s, the simulation of Test query is the
same as the random session key. Thus, Adv?I%%UM(M, Gamey) is

AdVSAI%%UM(M, Games) = AdvgiDDH (S).
Therefore, Adviisnun (M) is

AdvEES (M) < ns - Ade)I;DDH (S) + negl.

B Proof of Theorem 2

Since H is modeled as a random oracle, adversary M has only three ways to
distinguish a session key of the test session from a random string.

— Guessing attack: M correctly guesses the session key.

— Key replication attack: M creates a session that is not matching to the test
session, but has the same session key as the test session.

— Forging attack: M computes Z;, Zs, Zs, and Z4 used in the test session
identified with (IT, Z, A, B, X, Y), and queries H with (II, Zy, Zy, Zs, Za,
A B, X,Y).

Since H is a random oracle, the probability of guessing the output of H is
O(1/2*). Since non-matching sessions have different communicating parties or
ephemeral public keys, key replication is equivalent to finding H-collision; there-
fore the probability of succeeding key replication is O(s?/2*). However to detect
collision the adversary has to query with both inputs the random oracle, in par-
ticular query with Z;, Zs, Z3, and Z4 used in the test session as describe in
Forging attack above.

Let M be the event that M wins the security experiment with BCSIDH, H
be the event that M succeeds forging attack, and H the complementary event
of H. Thus we have Pr[M | H] = 1, and therefore

1
AdvpEE o (M) = Pr[M] — 5 SPrMNH]. (1)

By the definition of freshness in the CK™-model, there are six cases that M
chooses a test session.

— E1: M chooses a test session without a matching session, and does not reveal
the ephemeral secret key of the owner of the test session.

24

— Es: M chooses a test session without a matching session, and does not reveal
the static secret key of the owner of the test session.

— Es: M chooses a test session with a matching session, and does not reveal
the ephemeral secret key of both the owner of the test session and the owner
of its matching session.

— E4: M chooses a test session with a matching session, and does not reveal
the static secret keys of both the owner of the test session and the owner of
its matching session.

— E5: M chooses a test session with a matching session, and does not reveal
the ephemeral secret key of the owner of the test session and the static secret
key of the owner of its matching session.

— Eg: M chooses a test session with a matching session, and does not reveal
the static secret key of the owner of the test session and the ephemeral secret
key of the owner of its matching session.

In each case, we will show how to construct a di-SI-GDH solver S. Solver S is
given an SI-CDH instance (pk®¥", U, V). Let R be an event that M chooses a test
session whose owner and peer are the same party, and let R be its complement.

Whether a certain event took place or not is decided at the end of the ex-
periment. In other words for each event analysis bellow it is assumed that the
event conditions are satisfied upon the adversary termination.

Before analyzing the events, we note that the session state of a session in the
biclique SIDH protocol is equivalent to the ephemeral secret key in the session
as no other information (except the static secret key) is necessary to compute
the shared secrets and the session key.

E; NR. S prepares n honest parties, selects one party B to whom S assigns the
static public key B, = V and a random static public and secret key pair for Bj.
The remaining n — 1 parties are assigned random static public and secret key
pairs. S selects i €g {1,...,s}, and chooses i-th session sid* among sessions,
activated by M and owned by an honest party different from B.

When M activates sessions between honest peers, S follows the protocol
description. Since S knows static secret keys of at least one peer, it can respond
all queries faithfully. The only exception is the session sid*, for which S sets
ephemeral public key of sid* to U, and chooses a random ¢ € {0,1}* as the
session key of sid*.

The simulator has difficulty in responding queries related to B because S does
not know one of the static secret keys of B. More precisely, for sessions owned
by B with a peer C controlled by M, S cannot compute the shared secrets, 71,
Zs, Z3, and Z4, but may have to answer SessionKeyReveal queries. M could also
derive session keys of these session by computing the shared secrets, Z1, Zs, Z3,
and Z4, and query H. If four values do not coincide, then S fails its simulation.
To handle this situations, S prepares R'' with entries of the form (pid, rid,
uid, uid’, W, W', SK) € PRS x {0,1} x IDS? x SSEC,,; x SSEC, > x {0,1}}
and H'* with entries of the form (pid, Zy, Zs, Z3, Z4, uid, uid’, W, W', SK) €
PRS x]F;l)z x IDS? x SSEC,1 x SSEC, 5 x {0,1}*, where pid is a string which
gives a protocol identifier, rid is a bit which gives a role identifier, e.g., 0 in Z

25

and 1 in R, and uid is a string which gives a user identifier, and S maintains
two lists for consistent responses to H and SessionKeyReveal queries as follows.
Below, Y is generated by S on behalf of B.

Send(I1,Z, A, E) Solver S selects uniformly random ephemeral secret key g,
computes ephemeral public key X honestly, records (II, Z, A B, X) in List
RY* and returns X.
Send(I1, R,A,B,X): S selects uniformly random ephemeral secret key v,
computes ephemeral public key Y honestly, records (I, R, /1, B, X, Y) in
List RUst as _completed, and returns Y.
Send(I1,Z, A, B, X,Y): If session (11, zZ, A, B, X) is not recorded in List
RUst S records session (II, Z, A, B, X, Y) in List R as not completed.
Otherw1se S records the session in Llst Rl‘st as completed.
H(): S snnulates a random oracle in the usual way except for queries of
the form (II, Zy, Zs, Zs, Z4, B, C, Y, X) and (11, Z1, Za, Z3, Za, C, B,
X,Y). When (II, Zy, Za, Zs, Zy, B, C,Y, X) is queried, S responds to
these queries in the following way: (When (H Z1, Zs, Zs, Za, C, B, X, Y)
is queried, S responds in a similar way)
o if (I, Zy, Zy, Zs, Zy, B, C, Y, X, SK) € H*" for some SK, S returns
SK to M.
o clse if
— the validity conditions, SI-DDH(B1, X, Z1) = 1, SI-DDH(Y, Cs, Z3) =
1, SLDDH(By, Cs, Z3) = 1, and SLDDH(Y, X, Z4) = 1, hold,
then if there exists (II, Z, B, C, Y, X, SK) e RIS S returns SK;
otherwise, S chooses SK €pr {0 1})‘ returns SK and stores (IT, Z, B, C,
Y, X, SK) in RIS*. S also stores the new tuple (I, Zy, Zs, Zs, Z, B,
C,Y, X, SK) in HUst,
e else S choose SK €r {0, 1}’\ returns it to M and stores the new tuple
(I, Z1, Zs, Z3, Z4, B, C, Y, X, SK) in HIst,
SessionKeyReveal(-): S s1mulates these queries in the usual way except for
queries of the form (11, Z, B,C,Y, X) and (II, R, B, C, X, Y). When (11
T, B, C, Y, X) is queried, S does one of the following: (when (I, R, B, C,
X, Y) is queried, S responds in a similar Way)
e if there is no session with identifier (17, T C Y, X), the query is
aborted.
e elseif (I1,Z, B, C, Y, X, SK) € R'™" for some SK, S returns SK to M.
o elseif (I1, Z1, Zg, Z3, Z4, B C,Y, X, SK) € Hlst such that SI-DDH(B;,
X, Zl) =]., SI- DDH(KCQ,ZQ) =]., SI- DDH(Bl,CQ,Zg) =]., and
SI-DDH(Y, X, Z,) = 1, S returns SK and stores the new tuple (I, Z, B,
C,Y, X, SK) in Rlist,
SessionStateReveal(sid): If the corresponding ephemeral public key is U,
then solver § aborts with failure. Otherwise, solver S responds to the query
faithfully.
Corrupt(A): If A is queried before, solver S returns error. Otherwise, solver
S responds to the query faithfully.
Test(sid): If sid is not the i-th session, owned by A, then solver S aborts
with failure. Otherwise, solver S responds to the query faithfully.

26

— If adversary M outputs guess v, solver S aborts with failure.

Provided that E; NR occurs and M selects sid* as the test session with peer B ,
the simulation does not fail. In this case, the session identifier of sid* is (I1, Z, A,
B , U, Y), where Y is the incoming ephemeral public key of sid*. If M wins the
security game, it must have queried H with inputs Z; = SI-CDH(A,,Y), Zs =
SI-CDH(U, B,), Z3 = SI-CDH(A4, B2), Zy = SI-CDH(U,Y). To solve the SI-
CDH instance, S checks if there is an H query made by M of the form (11, Z3, Zs,
Zs, Zy, A, B, U, Y), such that SI-DDH(A;,Y, Z;) = 1, SEDDH(U, By, Z5) = 1,
SI-DDH(A1, By, Z3) = 1, and SI-DDH(U, Y, Z;) = 1. If such an H query exists, S
outputs Zs as the SI-CDH answer where Z = SI-=CDH(U, B2) = SI-.CDH(U, V).
With probability at least i, the test session is sid* with peer B. Thus the
advantage of S is

, 1
Adv3SFEPH(Gy > — prMOHNE; NR]. (2)

g,¢ sn

Notice that in the above simulation S cannot respond to StaticKeyReveal(B)
query. However, given that event E; occurs, S correctly guesses the test session
and the test session is fresh at the end of the experiment, then M have not
queried for the static secret keys of the test session B.

Such static key reveal query would contradict the freshness of the test session
and thus the simulation terminated without errors.

E; N R. § prepares n honest parties, selects an honest party A and assigns its
static public keys as A; = U and Ay = V. The remaining n — 1 parties are
assigned random static and secret key pairs. S simulates the environment of M
by following the protocol description. The party A is simulated as B in E; NR.

If M selected a session whose owner and peer are the same party A as the
test session, and E; NR occurs, this simulation does not fail. Let (1T, Z, A, A, X,
Y') be the session identifier of the test session. When M is successful, S checks if
there is an H query made by M of the form (I1, Z1, Zs, Zs3, Zy, A A X, Y), such
that SI-DDH(A4,,Y, Z1) = 1, SI-DDH(X, Ay, Z5) = 1, SI-DDH(A;, A, Z3) = 1,
and SI-DDH(X,Y, Z,) = 1. If such an H query exists, S outputs Z3 as the SI-
CDH answer where Z; = SI-CDH(A;, A) = SI-CDH(U, V). With probability
at least %, M will select a test session whose owner and peer is the same party
A. Thus, the advantage of S is

. 1
AdvISTEPH(S) > Z PrMAHNE; NR]. (3)
) n

S cannot respond to StaticKeyReveal(A) query during the simulation. As
before if event E; occurs, S correctly guesses the test session and the test session
is fresh at the end of the experiment, then M have not queried for the static
secret keys of A, and therefore the simulation does not terminate with error.

27

E2 N R. S prepares n honest parties, selects two distinct honest parties A and
B, and assigns A’s and B’s static public keys as Ay = U and By =V, respec-
tlvely. S assigns random static public and secret key pairs for Az, By, and the
remaining n — 2 parties are assigned random static and secret key pairs. S fol-
lows the protocol description when M activates session between honest peers,
and simulate M’s queries related to A or B as explained in E;.

If M selected a session whose participants are A B as the test session, and
E2NR occurs, this simulation does not fail. Let (11, Z, A, B, X,Y) be the session
identifier of the test session. Note that S generated X and so knows r. When M
is successful, S checks if there is an H query made by M of the form (II, Z;, Zo,
Zs, Zy, A, B, X, Y), such that S-DDH(A;,Y, Z;) = 1, SLDDH(X, B, Z,) =
1, SI-DDH(Ay, B, Z3) = 1, and SI-DDH(X,Y, Z;) = 1. If such an H query
exists, & outputs Z3 as the SI-CDH answer where Z3 = SI-CDH(A;, Bs) =
SI-CDH(U, V). With probability at least 2, M will select a test session with

owner A and peer B, respectively. Thus, the advantage of S is

Adv STEPH(S) > % Pr[MNHNE;NR]. (4)

S can respond to neither StaticKeyReveal(A) nor StaticKeyReveal(B) queries
during the simulation. As before if event Es occurs, S correctly guesses the test
session and the test session is fresh at the end of the experiment, then M have
queried for the static secret key of neither A nor B, and therefore the simulation
does not terminate with error.

E> NR. This case is essentially the same as E; NR. In this case, we can construct
an di-SI-GDH solver S with advantage

di-

Advy

N4

S-GDH(g) > %Pr[M NHNE;NR]. (5)

Es;. S prepares n honest parties, and assigns random static public and secret
key pairs for these parties. S selects 4,5 €r {1,...,s}, and chooses i-th session
sid* and j-th session sid* among sessions activated by M and owned by honest
parties. When activated, S sets the ephemeral public key of sid* to be U and of
sid* to be V. Since S knows the static secret keys of all honest parties, it can
respond all queries, faithfully, except those that related to sid* and sid*.

Provided that M selects sid* as the test session, sid* as its matching session,
and Ez occurs, the simulation does not fail. Let (11, Z, A, B, U, V) and (11,
R, B 3 fl U, V) be the session identifiers of sid* and sid*, respectively. When
M wins the security game, S checks if there is an H query made by M of
the form (I1, Zy, Zs, Z3, Z, A, B, U, V), such that SI-DDH(A4,,V, Z;) = 1,
SI-DDH(U, Bs, Z5) = 1, SI- DDH(Al,BQ,Zg) =1, and SI-DDH(U,V, Z;) = 1. If
such an H query exists, S outputs Z4 as the SI-CDH answer. With probability
at least s%, M selects sid* as the test session and sid* as its matching session.
Thus the advantage of S is

: 1
Adv STOPH(S) > — Pr

g2

[MNHNE;). (6)

28

S cannot respond to SessionStateReveal queries against the test session and
its matching during the simulation. However, under event E3 adversary does not
issue such queries, and hence the simulation does not fail.

E4, E5, and Eg. The analysis of E4, E5, and Eg is similar to Es, E;, and Eq,
respectively. We omit the details and provide only the conclusion. In each case,
we can construct an di-SI-GDH solver S as follows.

Adv;if-gSI-GDH(g) > # Pr[MNHNE4NR], (7)
Advgf;SI_GDH(S) > i Pr[MNHNE; N 7], (8)
AdvISIOPI(S) > L PrMNHAE; NR], ©)

for i =5,6, and j = 4,5,6.

Analysis. Combining (1), ..., (9), we have

; 1 1 1
di-SI-GDH . AKE
Advy (§) > min { pretie L 372} - Advgcsipa(M).
During the simulation, the solvers S and S perform O((n + s))\) low-degree
isogeny operations for assigning static and ephemeral keys, and make O(h + s)
times SI-DDH oracle queries for simulating SessionKeyReveal and the random
oracle H queries. This completes the proof of Theorem 2. a

C Basic Facts on Elliptic Curves and Isogenies

We summarize basic facts and notations about elliptic curves and isogenies. For
details, refer to [29,14]. Let p be a prime greater than 3 and F, be the finite
field with p elements. Let F, be its algebraic closure. An elliptic curve E over
F, is given by the Weierstrass normal form

E:YV?’=X*+aX+8 (10)

for aand § € Fp where the discriminant of the right hand side of Eq. (10) is non-
zero. We denote the point at infinity on E by Og. Elliptic curves are endowed
with a unique algebraic group structure, with Og as neutral element. The j-

invariant of E is j(E) = j(a,) = 1728%. Conversely, for j # 0,1728 €

Fp, set a = a(j) = ”g’ig_j, B=p83)= 17227]_3 Then, the obtained F in Eq. (10)
has j-invariant j. Two elliptic curves over Fp are isomorphic if and only if they
have the same j-invariant. For a positive integer n, the set of n-torsion points of
Eis E[n] = {P € E(F,)|nP = Og}.

Given two elliptic curves F and E over ED, a homomorphism ¢ : F — Fisa
morphism of algebraic curves that sends Og to Og. A non-zero homomorphism
is called an isogeny, and a separable isogeny with the cardinality ¢ of the kernel

is called f-isogeny. We consider only separable isogenies in this paper, i.e., any

29

isogeny is separable here. An elliptic curve I over F, is called supersingular if
there are no points of order p, i.e., E[p] = {Og}. The j-invariants of supersingular
elliptic curves lie in F)2 [29]. A non-supersingular elliptic curve is called ordinary.

We compute the f-isogeny by using Vélu’s formulas for a small prime ¢ =
2,3,.... Vélu gave in [33] the explicit formulas of the isogeny ¢ : E — FE and
the equation of E when E is given by Eq.(10) and K = kert is explicitly
given. Then there exists a unique isogeny ¢ : E — E st.K = ker, and we
denote E by E /K. For an elliptic curve E and a cyclic group K(C F) of order
£, Vélu’s formula [33] gives an isogenous curve E/K and the associated isogeny
E > (x,y) = (%,9) € E/K. For computing it, for £ : Y? = X? + aX +
and point Q = (zq,yq) # Or € K, we define g§) = 3%‘%2 + a,gé = —2yq,
and tg = 295 if Q € E[2], tq = g5 if Q ¢ E[2], uq = (gé)Q. For S = (K —
{Og})/£1,let t = ZQes lg,w= ZQES(U’Q +zotg), & =a —5t, =0 — Tw,
then, £ = E/K : Y? = X3 + aX + B,i :x+ZQES(%+ ug)73;:

T— (z—zq)?

_ T Y
y— ZQG s <(x27ufg)3 + tQ(y(mzin)Q)gQgQ) gives the curve and isogeny.

30

