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Abstract. A k-out-of-n ring signature is a kind of anonymous signa-
ture that can be performed by any member in a group. This signature
allows the creation of valid signatures if and only if actual signers more
than or equal to k sign the message among n possible signers. In this
paper, we present a new k-out-of-n ring signature. Our signature has
a remarkable property: When the signature is updated from k-out-of-n
to (k + α)-out-of-n, the previous signers do not need to sign a message
again. Our scheme can “reuse” the old signature, whereas the previous
schemes revoke it and create a signature from scratch. We call this prop-
erty “flexibility” and formalize it rigorously. Our signature scheme has
a multiple ring structure, each ring of which is based on 1-out-of-n ring
signature. The structure of our scheme is completely different from that
of conventional schemes, such as a secret-sharing type. The signers’ keys
are mostly independent of each user, thanks to a part of keys which use
a special hash function. We give the results of provable security for our
scheme.

Keywords: anonymity · ring signature · k-out-of-n property · flexible
participation.

1 Introduction

1.1 Background

Anonymity is a great concern in many cryptographic applications. Ring signature
[19] is a primitive which provides the signer’s anonymity. In the framework of
ring signature, a verifier can be convinced that a signature was produced by an
anonymous signer among n possible signers.

A k-out-of-n ring signature [7] is a extended type from the conventional ring
signature in [19]. This satisfies the following properties.
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1. Anonymity. For a given signature, it is hard to identify an actual signer
whereas the signer exists in n members that each have keys.

2. k-out-of-n property. A verifier can only be convinced that a signature
was produced by the collaboration of at least k anonymous signers among n
possible signers.

For this reason, we assume that ring signature is the same as 1-out-of-n ring
signature in this paper.

Possible applications of this signature are anonymous petition, voting [12]
and whistle blowing [19]. In that application, the signers can provide the evi-
dence that how many people approve the message, while the signers preserve
anonymity.

Note that in the case of k-out-of-n ring signature, the information related
to the number for actual signers is important. For example, if someone applies
this to the prosecution in a court case using this signature as evidence, the
verifier can confirm that “at least k signers approve the message”. Therefore,
such information gives the prosecution accuracy and reliability.

1.2 Previous Work

Informal notions of ring signatures were discussed simultaneously with the ap-
pearance of group signatures by [10], [11]. Bresson et al. [7] extend the ring
signature scheme into a k-out-of-n threshold ring signature scheme.

k-out-of-n signature has been widely studied. A separable threshold ring
signature was proposed by Liu et al. [14] and Abe et al. [2]. It enables possible
signers to use variety of keys such as RSA and Schnorr. An individual-linkability
for threshold ring signature was proposed by Tsang et al. [24]. In the scheme,
anyone can find out if two ring signatures are signed with the help of the same
signer. Fujisaki and Suzuki proposed some variation of the k-out-of-n threshold
ring signature scheme [12]. The verifier can be convinced that the signatures
were produced by the collaboration of at most/at least or exact k anonymous
signers. They also proposed a traceable ring signature, which restricts excessive
anonymity [13].

A threshold ring signature without random oracle was proposed by Yuen et
al. [27]. This is the threshold extension of the Shacham-Waters ring signature
[22], thus it needs a setup algorithm in their protocol. A multivariate based
threshold ring signature was proposed by Petzoldt et al. [18]. They extended the
work of Sakumoto [20] into a threshold ring signature.

Subsequently, different types of setting or construction have been proposed
such as ID-based [23], certificateless-based [9], code-based [3] and lattice-based
[8].

1.3 Motivation

In some applications, the number of signers quite naturally increases over time
gradually. Unfortunately, if the signatures in the previous works are applied for
such applications, the following serious problem occurs.
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Update Problem. Let us give a scenario to explain the context of our problem
clearly. Suppose some people who live in a city, want to express their approval
of the city’s proposed regulation. They create a k-out-of-n ring signature and
send it to the city’s office. Here n is the number of people who belong to a
community. One month later, the supporters have increased by α people. This
time they want to update the signature from k-out-of-n to (k+α)-out-of-n ring
signatures. In this case, all the people, including previous signers who had signed
one month ago, must join to create a new signature. Can we realize such a trial
in the real world?

Consequently, the existing schemes in Section 1.2, lead to the same problem.
We would like to emphasize that the condition of (k+α)-out-of-n property is not
satisfied even in the case in which the signers create k-out-of-n and α-out-of-n
signatures independently.

For this reason, in case of previous schemes, the signers are obliged to dis-
card the previous signature and re-create a (k+α)-out-of-n ring signature from
scratch. The participants in this case include previous signers who created a
k-out-of-n ring signature. This means that some applications by the previous
works, lead to fatal failure under the circumstances in our scenario.

1.4 Our Contribution

In this paper, we introduce a new k-out-of-n ring signature. This study is based
on our previous work [17], [25], [26]. The framework of our signature solves the
problem described in Section 1.3.

Our Solution. To create an updated (k+α)-out-of-n signature, we “reuse” the
previous k-out-of-n ring signature. In the generation phase for the updated sig-
nature, the previous signer no longer needs to participate. The entity in the
phase consists of the signers who will sign for α. An updated signature in this
case, is created by the sum of both (i.e., k-out-of-n and α-out-of-n) signatures.

We call this property “flexibility”. Our framework contains named the “dealer”.
She is in contact with the all signers and creates some parameters as a part of a
signature. Such a dealer similarly exists in previous schemes described in Section
1.2.

Our signature can be updated at any time or any times. Hence, this is ap-
propriate for using in the following situation: The number of signers increase
gradually in progress of time. We beliebe that such a situation is very common
in the real world. Our results are summarized as follows.

Flexible k-out-of-n Ring Signature. We focus on the update problem which
exists previous signatures, and give its solution. To the best of our knowledge,
this is the first approach to solve the problem. The flexibility enables possible
signers to sign a message gradually. Our scheme does not have to determine
k at the beginning of signing. As for the flexibility, we define and formalize it
rigorously.

Proposal of Our Scheme. We also propose a practical scheme that satisfies
the flexible property. Our scheme is anonymous even against a computationally
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unbounded adversary, and unforgeable against chosen-subring attacks [6]. We
then suggest a specific construction based on a multiple 1-out-of-n ring signature,
which makes it possible to increase the threshold value gradually and specify
the number of signers who actually join the signing protocol. We also prove the
security of our proposal in a random oracle model.

Short-Term Key with Special Hash. To keep a k-out-of-n property using
multiple ring structure, the following condition should be satisfied: A signer can
sign a message only at once among k rings. In our scheme, we introduce “short-
term public key” zi, and embed it as a part of our signature. To make more
concretely, let us explain the structure of zi. A hash function in zi, looks like
one in the former paper, e.g. [12]. However we also use a parameter gtii in zi.
Consequently, the order of zi is fixed for each user i, and this leads to satisfy
the following two desirable properties: (1) Each 1-out-of-n ring signature scheme
must be signed by a different signer in a ring; and (2) Our scheme has “inde-
pendent key parameter” property, that is, each user in a ring can generate her
keys with independent parameters. We believe this technique would contribute
to another cryptographic construction.

Security Framework. We define our security framework from flexible k-out-of-
n ring signature point of view. Since our scheme is based on a multiple 1-out-of-n
ring signature, we can prove in the same manner as [1, 6] that each 1-out-of-n ring
signature is unforgeable, respectively. Moreover, we must prove the k-out-of-n
property for multiple ring structure and our flexibility. In particular, as regarding
flexibility, we needs signer not to sign on the same message with respect to the
same ring even if they know her (long-term) secret key and all of the short-term
secret keys corresponding to the signature. Hence, we define new security game
to capture it. We prove our specified unforgeability with the game in random
oracle model. We realize it by using short-term keys and the property of the
random oracle.

1.5 Outline of our Paper

This paper is organized as follows. We first provide preliminary materials such as
the notation and the necessary definitions in Section 2. Section 3 describes our
idea and approach. Section 4 gives some definitions related to flexible k-out-of-n
ring signature. We propose our scheme in Section 5, and the security proofs are
given in Section 6. In Section 7, we compare the efficiency of existing k-out-of-
n ring signature schemes, and discuss them. We finally conclude this paper in
Section 8.

2 Preliminaries

2.1 Notation

We give some notations to be used through this paper. We denote the security
parameter by λ, by PPT (Probabilistic Polynomial-Time), and by DPT (Deter-

ministic Polynomial-Time). For a set S, we write x
$← S to denote that x is
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sampled uniformly and randomly from S. We write y ← A(x) to indicate that y
is the output of an algorithm A when running on input x. We write z ← x ◦ y
to indicate that z is the output of an operation ◦ when running on input x and
y. We write y ← x to indicate that y is assigned by x. We denote by |S| the size
of the set. We denote by 〈g〉 the subgroup generated by g.

2.2 k-out-of-n ring signature

Our notation on a ring will basically follows [6]. Hence, hereafter we represent
“signer” by “prover”. We refer to an ordered list R = (PK1, . . . , PKn) of public
keys as a ring, and let R[i] = PKi. We will also freely use set notation, and
say, e.g., that PK ∈ R if there exists an index i such that R[i] = PK. In an
analogous way, we will say that PK ⊂ R if there exists a set PK of public
keys such that every elements is in R. We will always assume, without loss of
generality, that the keys in a ring are ordered.

Provers can gather public keys in a system to choose a proper ring. Let Rκ

and Rκ′ be distinct rings. We can denote them as Rκ = {PK(κ,1), . . . , PK(κ,nκ)}
and Rκ′ = {PK(κ′,1), . . . , PK(κ′,nκ′ )

}. To avoid complicated suffixes, we describe
a public key with a suffix relative to R in the current context. So, PK1 ∈ Rκ

and PK1 ∈ Rκ′ could differ. In analogous way, we simply describe a size of a
ring as n but |Rκ| and |Rκ′ | could differ.

Our k-out-of-n ring signature consists of multiple 1-out-of-n ring signature.
Here, we define two functions: f(·) and g(·, ·). f(·) is inputted our k-out-of-n ring
signature and returns the number of our 1-out-of-n ring signatures in it. g(·, ·) is
inputted our k-out-of-n ring signatures and returns 1 if there exists a signature
which is inputted as a first argument such that every elements is in a signature
which is inputted as a second argument, otherwise returns 0. For example, let
σ = (σ1, σ2), σ∗ = (σ1, σ2, σ3), σ∗∗ = (σ2, σ3) be our k-out-of-n ring signatures
and σ1, σ2, σ3 be our 1-out-of-n ring signatures for the same ring. In this case,
2← f(σ), 3← f(σ∗), 0← g(σ∗, σ), 1← g(σ, σ∗) and 0← g(σ, σ∗∗).

In signing and verifying algorithms, we denote by “round” the order of gen-
erating/checking 1-out-of-n signatures. A subscript i means the i-th element in a
ring and j means the j-th round in generating/checking signatures. For example,
4(i,j) means the i-th element of the j-th round. We show other denotations as
follows:

• U: A set of users in a ring. U = {1, 2, . . . , n}.
• Ui: A user corresponding to the i-th element in a ring. We sometimes denote

this as user i. A tuple of (PKi, SKi) is her valid public and private key-pair.
• P: A set of provers in a ring. P ⊆ U.
• Pi: A prover corresponding to the i-th element in a ring.
• PKS: A set of public keys for a set of S. For example, we denote PKP for

a set of P of provers in a ring.
• SKS: A set of secret keys for a set of S. For example, we denote SKP for a

set of P of provers in a ring.

To avoid complicated suffixes, we also describe U,P with a suffix relative to R
in the current context.
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2.3 Complexity Assumptions

The security of our system is based on the discrete logarithm(DL) assumption.
We assumes the discrete logarithm problem is hard to compute in prime order
groups, which is the same assumption in [21]. Let p, q be large primes. 〈g〉 denote

a prime subgroup of order q in Z∗p generated by g. Pick g
$← 〈g〉 and x

$← Z∗q ,
then compute y = gx. An adversary A has a advantage ε in solving the discrete
logarithm problem if the condition

Pr [x = x′|x′ ← A(〈g〉, p, q, g, y)] ≥ ε(λ)

is satisfied.

3 Our Basic Idea

3.1 Short-Term Key with Hash Function

Obviously, it is impossible to construct a k-out-of-n ring signature only by using
k items of 1-out-of-n ring signature. Therefore, we must make a structure such
that each user can form a 1-out-of-n ring signature only once. For the purpose
of it, we introduce short-term public key with hash function under the random
oracle model in [5]. Let pi, qi be large primes. 〈gi〉 denote a prime subgroup of
order qi in Z∗pi generated by gi. Let H̄i : {0, 1}∗ → 〈gi〉 be cryptography hash
function. We define short-term public key zi as

zi =
gtii

H̄i(M ||wi||R)
mod pi,

where M ∈ {0, 1}∗, ti
$← Zqi and wi

$← {0, 1}λ such that ∃i, i′, i 6= i′ then
wi 6= wi′ . A short-term secret key is ti.

We embed short-term keys in each 1-out-of-n ring signature to satisfy k-out-
of-n property. Let S be its signing algorithm, V be its verifying one and D be a
dealer which generates and deals out short-term keys to P. Let σj = (δ(j,0), δ(j,1))
be a signature generated by our proposal at round j, where δ(j,0) is a part which
depends on a message M and δ(j,1) is a part which does not depend on it. We
assume a prover P` generates σj . Here, we do not consider flexibility of the
threshold. P` receive short-term keys from D in the following steps.

(z`, t`, w`)← D(M,R, `)

For i ∈ U\P`, zi
$← 〈gi〉

P` computes signature in the following steps.
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δ(j,1) ← w`

PKi ← (PKi, zi)

SK` ← (SK`t`)

R← {PKi}i∈U
δ(j,0) ← SSK`(M ||δ(j,1),R)

w` is for public but it is owner ambiguous value since H̄ is a random oracle and
t` is in secret. A verifier checks the signature σj in the following steps.

(δ(j,0), δ(j,1))← σj

1/0← VR(δ(j,0),M ||δ(j,1))

We would like to modify the above protocol to satisfy k-out-of-n property
with some hardness. We can realize it by expanding the protocol into multi-
ple prover and appending one process at verifying. That is, we check whether

∃j, j′, j 6= j′ and δ(j,1)
?
= δ(j′,1). If the equation is correct, we reject the signa-

ture. In intuition, we consider that the protocol has a k-out-of-n property for
the following reasons:

• If adversaries reuse t to form a ring more than once, they must find a collision
w′ such that H̄(M ||w||R) = H̄(M ||w′||R). Since H̄i is a random oracle, it
is difficult for any adversaries to break its one-wayness.
• If adversaries pick a proper t′( 6= t), they must find a pre-image w′ for z−1 ·gt′

to form a ring more than once. Since H̄i is a random oracle, it is difficult for
any adversaries to break its collision resistant properties.

3.2 Flexibility

We describe the role of the dealer D especially in the case of flexibility. Dealer
generates short-term keys for provers at signing in Section 3.1. We modify it as

{(zi, ti, wi)}i∈U ← D(M,R).

However, the dealer keeps {(ti, wi)}i∈U\P in secret and sends {ti, wi}i∈P to

provers in a ring, respectively. One of such zi is indistinguishable from zi
$←

〈gi〉 without the knowledge of (ti, wi). If some users in the same ring (that is,
new provers P̃) want to sign on the same message, dealer can respectively send
{(ti, wi)}i∈P̃ to them, which have already embedded in zi. Hence, new provers
can sign the same message and append their 1-out-of-n ring signature to the
existing k-out-of-n ring signature with respect to the same ring.

Remarks. The existence of the dealer is not special situation in k-out-of-n
ring signature. Most of the existing schemes require it explicitly or implicitly.
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They describe it as a “cooperation among provers”, “leader of provers” and so
on. Moreover, our dealer and most of it in other schemes do not need Setup
algorithm because they generate only short-term keys at signing.

4 Flexible k-out-of-n Ring Signature

4.1 Functional Definition

We present the functional definition of our flexible k-out-of-n ring signature
scheme. Our flexibility means that some new advocate for one message can sign
on the message additionally without the help of others.

Definition 1 (Flexible k-out-of-n Ring Signature) A flexible k-out-of-n ring
signature scheme consists of three PPT and one DPT algorithms. We define
Σ = (Gen,Sign,FSign,Vrfy), where those algorithms mean generate keys for
a user, sign a message, sign flexibly with respect to the number of provers and
verify the signature of a message, respectively.

Gen(1λ). This algorithm outputs a public key PKi and secret key SKi for a
user i. All users in this system can run this algorithm, respectively.

SignP,SKP
(M,R). Let P be provers and SKP be corresponding secret keys.

This algorithm outputs a signature σ on the message M with respect to
the ring R. The signature is k-out-of-n ring signature, where k = |P|. We
assume the following:

1. The index i in the ring is known to provers.

2. (R[i], SKi) is valid key-pair output by Gen.

3. Each public key in the ring is distinct.

4. The condition 1 ≤ k ≤ n is satisfied.

Note that in the case of n = 1, this is the special case as a ring signature
scheme, which has no anonymity.

FSignP̃,SKP̃
(σ,M,R). Let P̃ be new provers and SKP̃ be corresponding secret

keys. Let P be provers who have already signed on the message and SKP

be corresponding secret keys. This algorithm checks whether the inputted
signature σ is valid or not on the message M with respect to the ring R by
Vrfy algorithm. If it is invalid, FSign outputs ⊥. Otherwise, it updates and
outputs a signature σ on the message M with respect to the ring R. And
it assigns values to variables as P ← P ∪ P̃ and k ← |P ∪ P̃|. Note that
this algorithm needs P ∩ P̃ = ∅ to generate a valid signature. If P ∩ P̃ 6= ∅,
it should be difficult for FSign to generate a valid signature to satisfy the
requirement for k-out-of-n property.

VrfyR(M,σ). This algorithm outputs a single bit indicating validity(1) or in-
validity(0) of a purported signature σ on a message M with respect to the
ring R.
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In the signing algorithms, we will generally omit the input “P” for simplicity.
We require the following correctness condition. For any λ, any {(PKi, SKi)}ni=1

output by Gen(1λ), any P, P̃ ⊆ U, any SKP = {SKi|i ∈ P, PKi ∈ R}, any
SKP̃ = {SKi|i ∈ P̃, PKi ∈ R} and any M , we have

(VrfyR (M,SignSKP
(M,R)) = 1)

∧
(
VrfyR

(
FSignSKP̃

(SignSKP
(M,R),M,R)

)
= 1

)
,

where P ∩ P̃ = ∅ and R = (PK1, . . . , PKn).
The security of ring signature has two aspects: anonymity and unforgeability.

Bender et al. [6] formalize them for 1-out-of-n ring signature. We modify their
formulation to apply for our k-out-of-n ring signature.

4.2 Anonymity

The anonymity condition requires, informally, that an adversary should not be
able to tell which members of ring generated a particular signature. We define a
prover anonymity through a game between a challenger C and an adversary A.

Definition 2 (Anonymity) A flexible k-out-of-n ring signature scheme is anony-
mous against any computationally unbounded adversary A, if for a polynomial
n(·), the probability that A wins in the following game is exactly k/n:

1. Initialization. C generates key pairs {(PKi, SKi)}n(λ)
i=1 using Gen(1λ) and

sends the set of public keys R := {PKi}n(λ)
i=1 to A.

2. Query to an oracle OSign. A is given access to an oracle OSign(·,·,·) such
that OSign(P,M,R) returns SignSKP

(M,R), where we require R ⊆ R,
PKP ⊆ R and |R| > 1.

3. Query to an oracle OFSign. A is given access to an oracle OFSign(·,·,·,·)
such that OFSign(σ,P̃,M,R) returns FSignP̃(σ,M,R), where σ is generated

by OSign or OFSign. We require R ⊆ R, PKP̃ ⊆ R, P ∩ P̃ = ∅ and
|R| > 1.

4. Challenge. A outputs a message M∗, distinct same size sets P∗0,P
∗
1, and a

ring for which R∗0,R
∗
1 ⊆ R, where |R∗0|,|R∗1| > 1. C randomly chooses a bit

b ∈ {0, 1} and sends the signature σ∗ ← SignSKP∗
b

(M∗,R∗b) to A.

5. Answer. A outputs a bit b′ and wins if b′ = b. C outputs 1 if A wins this
game, otherwise outputs 0.

4.3 Unforgeability

The unforgeability means any adversary can not forge any new valid signature.
We begin by defining a security game with respect to each 1-out-of-n ring signa-
ture. We utilize it to prove that it is difficult for any computationally bounded
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adversary to forge a part of our 1-out-of-n ring signature without the knowledge
of secret keys corresponding to our complexity assumption. Moreover, we define
another security game to prove the k-out-of-n property. That is , the adversaries
can not sign on the same message and ring more than once even if they know se-
cret keys in our scheme. With the two games, we will prove our proposal security
in Section 6.2. We now define them formally.

Definition 3 (Unforgeability) A flexible k-out-of-n ring signature scheme is
unforgeable against chosen-subring attacks [6] if for any PPT adversary A and
for any polynomial n(·), the probability that A wins in the following two games
is negligible:

Game0.

1. Initialization. C generates key pairs {(PKi, SKi)}n(λ)
i=1 using Gen(1λ) and

sends the set of public keys R := {PKi}n(λ)
i=1 to A.

2. Query to an oracle OSign. A is given access to an oracle OSign(·,·,·) such
that OSign(P,M,R) returns SignSKP

(M,R), where we require R ⊆ R and
PKP ⊆ R.

3. Query to an oracle OFSign. A is given access to an oracle OFSign(·,·,·,·)
such that OFSign(σ,P̃,M,R) returns FSignP̃(σ,M,R), where σ is generated

by OSign or OFSign. We require R ⊆ R, PKP̃ ⊆ R and P ∩ P̃ = ∅.
4. Answer. A outputs (σ∗,M∗,R∗) and wins if R∗ ⊆ R, VrfyR∗(M

∗,σ∗) = 1,
and one of the following conditions are satisfied: (i)A never queried (M∗,R∗)
to the oracles (ii) f(σ∗) > f(σ) ∧ g(σ, σ∗) = 1. (Recall the Section 2.1.) C
outputs 1 if A wins this game, otherwise outputs 0.

Game1.

1. Initialization. This is the same as 1 in the Game0.
2. Query to an oracle OSign. This is the same as 2 in the Game0.
3. Query to an oracle OFSign. This is the same as 3 in the Game0.
4. Challenge. A outputs (P ∗i ,M

∗,R∗), and A is never queried (M∗,R∗). C
returns a signature σ∗∗ corresponding to it. Finally, C corrupts SKP∗i

and
random numbers which are used at signing to A.

5. Query to an oracle OSign. This is the same as 2 in this game except that
A never queried (·,M∗,R∗).

6. Query to an oracle OFSign. This is the same as 3 in this game except
that A never queried (σ∗∗, ·,M∗,R∗).

7. Answer. A outputs (σ∗,M∗,R∗) and wins if R∗ ⊆ R, VrfyR∗(M
∗,σ∗) = 1.

C outputs 1 if A wins this game, otherwise outputs 0.

5 Our Scheme

5.1 k-out-of-n Ring Signature

We begin by constructing our k-out-of-n ring signature scheme except a flexible
sign algorithm for readability.
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Gen(1λ). Let pi,qi be large primes. Let 〈gi〉 denote a prime subgroup of Z∗pi
generated by gi whose order is qi. Let Hi : {0, 1}∗ → Zqi and H̄i : {0, 1}∗ →
〈gi〉 be cryptography hash functions. Each user i in this system computes

• gi
$← 〈gi〉, xi

$← Zqi , Hi
$← {Hi}, H̄i

$← {H̄i},
• yi ← gxii mod pi.

Ring / Public Key / Secret Key. Provers P gather public keys in this sys-
tem to decide a ring. We set

PKi ← (〈gi〉, gi, pi, qi, yi, Hi, H̄i),

SKi ← xi,

R← (PK1, PK2, · · · , PKn),

SKP ← {xi}i∈P.

SignSKP
(M,R). Provers P send a message M and a ring R to a dealer. The

dealer does as follows.
• For i ∈ U, ti

$← Z∗qi .
• For i ∈ U, wi

$← {0, 1}λ such that each wi is different from the others.
• For i ∈ U, zi ← gtii · (H̄i(M ||wi||R))−1 mod pi.
• Output an ordered list z(M,R) ← (z1, z2, . . . , zn) as a part of signature.
• Encrypt a tuple of (ti, wi) and send it to each prover i ∈ P, respectively.
• Save the history of (M,R, {ti}i∈U, {wi}i∈U).

Note that non-real prover i /∈ P cannot receive (ti, wi) from the dealer.
Let ` ∈ P be a prover who generates j-th 1-out-of-n ring signature. She

decrypts the cipher-text from the dealer and parse it as (t`, w`).
(Initialization) Prover ` computes

• wj ← w`,

• r`
$← Zq` ,

• a(`,j) ← g`
r` mod p`,

• c(`+1,j) ← H`+1(M ||wj ||R||z(M,R)||a(`,j)).
(Forward sequence) For i = ` + 1, . . . , n,1, . . . , ` − 1, prover ` computes

the parameters in the j-th round such that

• s(i,j)
$← Zqi ,

• a(i,j) ← zi · H̄i(M ||wj ||R) gi
s(i,j)yi

c(i,j) mod pi,
• c(i+1,j) ← Hi+1(M ||wj ||R||z(M,R)||a(i,j)).

(Forming the ring) Prover ` computes
s(`,j) ← r` − t` − x`c(`,j) mod q`.

(Output) Prover ` outputs σj as his 1-out-of-n ring signature such that
σj ← (c(1,j),s(1,j), . . . , s(n,j), wj).

Note that each prover can do the above steps independently.

k-out-of-n Signature. Provers P outputs as a k-out-of-n ring signature such
that

σ ← ({σj}j∈[1,k], z(M,R)),
where k = |P|.

VrfyR(M,σ). A verifier checks a signature as follows.
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• ({σj}j∈[1,k], z(M,R))← σ.
• (c(1,j),s(1,j), . . . , s(n,j), wj)← σj .
• (zi, z2, . . . , zn)← z(M,R).
• If ∃j, j′ ∈ [1, k] such that wj = wj′ where j 6= j′, stop this algorithm and

reject the signature.
• If ∃i ∈ U such that c(i,·) /∈ 〈gi〉 or s(i,·) /∈ 〈gi〉, stop this algorithm and

reject the signature.
• If ∃i ∈ U such that zi /∈ 〈gi〉 stop this algorithm and reject the signature.
• For i = 1, . . . , n and for j = 1, . . . , k, computes
• a(i,j) ← zi · H̄i(M ||wj ||R) gi

s(i,j)yi
c(i,j) mod pi,

• c(i+1,j) ← Hi+1(M ||wj ||R||z(M,R). ||a(i,j)) if i 6= n.
• Accept σ as a k-out-of-n ring signature on a message M if and only if
∀j ∈ [1, k], c(1,j) = H1(M ||wj ||R||z(M,R)||a(n,j)). Otherwise, return 0.

5.2 Flexible Sign

We assume that P ∩ P̃ = ∅. If FSign output a signature with P ∩ P̃ 6= ∅, Vrfy
always reject it under the complexity assumption.

FSignSKP̃
(σ,M,R). Additional provers P̃ send (M,R, σ) to the dealer. For all

provers i ∈ P̃, the dealer does as follows.
• b← VrfyR(M,σ).
• If b = 0, stop this algorithm and return ⊥.
• Search for a tuple of (ti, wi) from the history of (M,R, {ti}i∈U, {wi}i∈U).
• Encrypt the tuple of (ti, wi) and send it to prover i ∈ P.

Let ` ∈ P̃ be an additional prover who generates j̃-th(j̃ > k) 1-out-of-n
ring signature. Prover ` does the same steps in Sign to get σj̃ and updates
• ({σ}j∈[1,k], z(M,R))← σ,
• σ ← ({σ}j∈[1,k], σj̃ , z(M,R)),

• P← P ∪ P̃,
• k ← |P|.

All additional provers P̃ do the above steps, respectively.

k-out-of-n Signature. The structure is exactly the same in Section 5.1. Hence,
we can use the same Vrfy. Note that P and its size are different since FSign
updates the signature.

Let ` be a prover at round j. For the consistency, it is sufficient to show that
the equation z` · H̄(M ||wj ||R) · gs(`,j)` y`

c(`,j) mod p` = g`
r` mod p` holds for any

j from 1 to n. The correctness can be verified as

z` · H̄`(M ||wj ||R) · gs(`,j)` y
c(`,j)
`

= gt`` · H̄`(M ||w`||R)−1 · H̄`(M ||wj ||R) · gs(`,j)` y
c(`,j)
`

= gt`` g
s(`,j)
` y

c(`,j)
`

= gt`` g
r`−t`−x`c(`,j)
` y

c(`,j)

`

= gr`` (mod p`).
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6 Security Analysis

6.1 Anonymity

Theorem 4 (Anonymity of our scheme) Under the secret of {ti}i∈U, for
any computationally unbounded adversary A, our flexible k-out-of-n ring signa-
ture scheme is anonymous in the sense of Definition 2.

Proof of Theorem 4. We first focus on the distribution of our signature scheme
Σ. Let {w} := {w|w ∈ {0, 1}λ ∧ w′ ∈ {0, 1}λ\w ∧ w 6= w′} be a set and n be
a size of the set. Let W be a set whose element is {w}. Σ chooses {wi}i∈U at
Sign in the following steps.

{w} $←W
For i ∈ U

wi
$← {w}

{w} ← {w}\wi

Therefore, {wi}i∈U have
(

2λ−1
n

)
·n! variations with same probability. Since 2λ−

1 >> n, wi have no meaning to adversaries to break an anonymity of provers.

Since ti
$← Z∗qi , each zi is independent with the others owing to ti. Moreover,

all zi distribute uniformly over Zqi on the same reason. Therefore, {zi}i∈U have
Πi∈[1,n]qi variations with same probability.

We now observe that all s(i,j) are taken randomly from Zqi except for s(`,j) at
the closing point. s(`,j) also distributes uniformly over Zqi since ti and ri are uni-
formly chosen from Zqi . Hence, (s(1,j), . . . , s(n,j)) have Πi∈[1,n]qi variations that
are equally likely regardless of the closing point. Remaining c(1,j) in signature
is determined uniquely from others. They are independent to each other with
respect to i and j. Therefore, {(c(1,j), s(1,j), . . . , s(n,j))}j∈[1,k] have k ·Πi∈[1,n]qi
variations with the same probability.

We recall the game of Definition 2 in this step. A queries to OSign but is not
able to retrieve user-specific information from (c(1,j), s(1,j), . . . , s(n,j), {zi}i∈U).
A is only able to learn information for P ∈ P from {wj}j∈[1,k] (and input
of specified provers P for the oracle) but is not able to learn information for
U ∈ U\P. In analogous way, A is not able to learn about U ∈ U\(P ∪ P̃) by
OFSign. Moreover, Σ generates new subgroup {wi} in U with each function
(O)Sign call, thus, the information of the old {wj}j∈[1,k] has no use. We obtain
the proof of Theorem 4. 2

6.2 Unforgeability

Theorem 5 (Unforgeability of our scheme) For any PPT adversary, our
flexible k-out-of-n ring signature scheme is unforgeable against chosen-subring
attacks [6].
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Proof of Theorem 5. We describe a public key with a suffix relative to R in
the current context. (Recall Section 2.1.) In analogous way, we omit the suffix
of z(M,R). For simplicity, the random oracles {Hi}i∈U and {H̄i}i∈U are treated
as a single oracle H and H̄, respectively.

To prove Theorem 5, we define and prove two lemmas. LetA0 be a (τ0, ε0, qs, qh)-
adversary that requests signing oracles at most qs times, accesses random oracle
H at most qh times in the Game0 of Section 4.3 and outputs forged (σ,M,R)
with probability at least ε0 and running time at most τ0.

Lemma 6 If there exists (τ0, ε0, qs, qh)-adversary A0 for public key set R of size
n, then there exists (η0, µ0)-adversary B0 that computes discrete-logarithm xi of
(〈gi〉, pi, qi, gi, yi(= gxii )) ∈ R for at least one i with probability at least µ0 within
running time η0 by using A0. Here, η0 < (32q2

h + 4)ε−1
0 τ0 and µ0 > 9/100 under

the condition that ε0 > 8q2
hq
−1 and q > 2qhqs where q is the smallest qi included

in R.

Proof of Lemma 6. We begin by showing how to simulate the oracles in Game0.

Key generation. B0 receives tuples of discrete logarithm problems as public
key set. Note that they are independent to each other. The remainder of
public key is generated exactly as prescribed by the Gen algorithm.

Query to H̄. H̄ takes Q̄κ = (i,Mκ, wκ,Rκ) as κ-th query. B0 computes h̄κ
$←

〈gi〉 and returns h̄κ that corresponds to Hi(Mκ, wκ,Rκ) maintaining consis-
tency against duplicated queries.

Query to H. H takes Qκ = (i,Mκ, wκ,Rκ, zκ, aκ) as κ-th query. B0 deal with
hκ as follows: If B0 queries to H to form a ring at signing, chooses hκ such
that it maintains consistency with respect to forming the ring. Otherwise, B0

chooses hκ
$← Zqi . B0 returns hκ that corresponds to Hi(Mκ, wκ,Rκ, zκ, aκ)

maintaining consistency against duplicated queries.
OSign. B0 simulates in the following steps.

For i ∈ U

ti
$← Z∗qi

wi
$← {0, 1}λ s.t. each wi is different from others.

zi ← gtii · (H̄i(M ||wi||R))−1 mod pi
(z,w)← ((z1, . . . , z|U|), (w1, . . . , w|U|))
For j = 1, . . . , |P|
c(1,j)

$← Zq1
wj

$← w
w← w\wj
For i = 1, . . . , |U|
s(i,j)

$← Zqi
a(i,j) ← zi·H̄i(M ||wj ||Rκ) gi

s(i,j)yi
c(i,j) mod pi c(i+1,j) = Hi+1(M ||wj ||Rκ||z||a(i,j))

if i 6= |U|
c(1,j) ← H1(M ||wj ||Rκ ||z||a(|U|,j))

The assignment to c(1,j) means to form a ring.
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OFSign. B0 checks the inputted signature. If the equation VrfyRκ
(M,σ) = 0

holds, B0 outputs ⊥. Otherwise, B0 generates a signature in the same manner
of OSign except that B0 reuses z,w.

We prove the the rest of this proof in analogy with [1]. Let Θ, Ω be the
random tapes given to the signing oracle and A0. The success probability of
A0 is taken over the space defined by Θ, Ω and random oracle H, H̄. We fix
the value of random tapes and the behavior of H̄. In the case of forming a
ring by queries, there exists at least one index, say α, in [1, n] such that Qu =
(α + 1,M,w,R, z, aα+1) and Qv = (α,M,w,R, z, aα) satisfy u ≤ v. Split H
as (H−, hα) where H− corresponds to the answers to all queries except for Qv
answered with hα.

By rewinding A0, B0 finds at least one randomly chosen h′α( 6= hα) such that a
relation of the query order (u, v) is unchanged over the space of (Θ, Ω). Since Qu
happens before Qv, aα is unchanged both run. B0 can compute the discrete-log
since xα = (sα − s′α)/(h′α − hα) mod qα.

The analysis of the reduction cost is also most of the same with [1]. The
signing simulation fails if the process of forming a ring causes inconsistency in
H̄1. It happens with probability at most qh/q where q is the smallest qi in a ring.
Hence, the signing simulation is successful qs times with probability at least(

1− qh
q

)qs
≥ 1− qhqs

q
.

Let S be a set of (Θ,Ω,H, H̄) with which A0 is successful in forgery. From the
definition of ε0, we have Pr[(Θ,Ω,H, H̄) ∈ S] ≥ ε0. Due to the ideal randomness
of H, there exist queries Qκ = (i,M,w,R, z, ai) for i ∈ U with probability at
least 1− 1/q. Let S ′ be a subset of S where (Θ,Ω,H, H̄) ∈ S ′ leads A to output
a signature that has corresponding queries as above with successfully simulated
signing oracles. Then, we have

Pr[(Θ,Ω,H, H̄) ∈ S ′] ≥ ε′0,

where ε′0 = (1− qhqs/q)(1− 1/q)ε0.

We classify S ′ by the (u, v). Let S ′(u,v) denote a class where (Θ,Ω,H, H̄) ∈
S ′(u,v) yields (u, v). There are at most

(
2
qh

)
+

(
1
qh

)
= qh(qh + 1)/2 classes. By

invoking A0 with randomly chosen (Θ,Ω,H, H̄) at most t1 = ε′
−1
0 times, B0

finds at least one (Θ,Ω,H, H̄) ∈ S ′(u,v) for some (u, v) with probability

1− (1− ε′0)
1
ε′0 > 1− exp(−1) >

3

5
.

Let GI = {(u, v)||S ′(u,v)|/|S
′| ≥ 1/(qh(qh + 1))} and S ′′ = {(Θ,Ω,H, H̄) ∈

S ′(u,v)|(u, v) ∈ GI}. Then, it holds that Pr[S ′′|S ′] ≥ 1/2. Due to the heavy-

row lemma [16], (Θ,Ω,H, H̄) that yields the successful run of A0 is in S ′′ with
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probability at least 1/2. Due to the heavy-row lemma, again, with probability
at least 1/2, (Θ,Ω,H−, H̄) satisfies

Pr[(Θ,Ω,H−, h′α, H̄) ∈ S ′(u,v)] ≥
ε′0

2qh(qh + 1)
.

Since we assume ε0 > 8q2
h/q and q > 2qhqs, it holds that ε′0/(2qh(qh + 1)) > 1/q.

By the running A0 up to t2 = ((ε′0/(2qh(qh + 1))) − 1/q)−1 times with
(Θ,Ω,H−, H̄) obtained in the first 3/5, Overall success probability is

µ0 >
3

5
· 1

2
· 1

2
· 3

5
=

9

100
,

and the number of invocations of A0 is

t1 + t2 <
1

ε′0
+

4qh(qh + 1)

ε′0

<
4

ε0
+

4 · 4 · 2q2
h

ε0

=
32q2

h + 4

ε0
.

We have proven Lemma 6. 2

We now try to prove another lemma. Let A1 be a (τ1, ε1, qs, qh̄)-adversary
that requests signing oracles at most qs times, accesses random oracle H̄ at
most qh̄ times in the Game1 of Section 4.3 and outputs forged (σ,M,R) with
probability at least ε1 and running time at most τ1.

Lemma 7 We assume there exists (τ1, ε1, qs, qh̄)-adversary A1 for public key set
R of size n. Then, by using A1, there exists (η1, µ1)-adversary B1 that computes

discrete-logarithm βi of (〈gi〉, pi, qi, gi, Y (= gβii )) ∈ R for at least one i with
probability at least µ1 within running time η1 or breaks a collision resistance
property of the random oracle H̄. Here, η0 < (32q2

h + 4)ε−1
1 τ0 and µ1 > 9/100

under the condition that ε1 > 8q2
hq
−1 and q > 2qhqs where q is the smallest qi

included in R.

Proof of Lemma 7. We begin by showing how to simulate the oracles in Game1.

Key generation. B1 generates public/secret keys by Gen algorithm.
Query to H̄. B1 receives tuples of discrete logarithm problems. H̄ takes Q̄κ =

(i,Mκ, wκ,Rκ) as κ-th query. B1 picks γ
$← Zqi , computes h̄κ ← Y γ .

and returns h̄κ that corresponds to Hi(Mκ, wκ,Rκ) maintaining consistency
against duplicated queries.

Query to H. This is the same as one in the Game0.
OSign. B1 simply simulates with the knowledge of secret keys.
OFSign. This is the same as one in the Game0 except that B1 simply simulates

with the knowledge of secret keys.
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Table 1. Comparison of k-out-of-n ring signature schemes.

Scheme Signature Type Flexibility
Independent

Key Parameter †1
Signature Size

Our Scheme Multiple Ring Structure Yes Yes O(kn)

BSS02 [7] Partition No Yes O(2kn logn)

AOS02 [1] + BSS02 [7] Partition No Yes O(2kn logn)

AOS04 [2] Secret-Sharing No Yes O(n)

FS05 [12] Secret-Sharing No No O(n)

YLASZ11 [27] Secret-Sharing No No O(n)

PBB12 [18] Multivariate Vector No No O(γ†2 · n)

†1: It means whether users in a ring can generate their keys with

independent parameters.
†2: γ means the number of round to convert from identification to signature.
A cheating probability is less than 2−80 if γ = 193.

A1 outputs (Pi,M,R) in the challenge phase. B1 computes σ′ by the secret
key SKPi . B1 corrupts the secret key and random numbers (include short-term
secret keys) which are used at signing to A1. After that, B1 responses for the
queries in analogous way. Finally, A1 outputs forged (σ,M,R) with probability
at least ε1 and running time τ1. By Lemma 6, A1 cannot forge even 1-out-
of-n ring signature except for Pi because A1 has no knowledge of secret keys
corresponding to U ∈ U\Pi.

Let Θ, Ω be the random tapes given to the signing oracle and A1. The
success probability of A1 is taken over the space defined by Θ, Ω and random
oracle H, H̄. We fix the value of random tapes and the behavior of H. By the
knowledge of SKPi and the analogous way with Lemma 6, A1 computes βi =
(xi(c

′
i − ci) + s′i − si)/(γi − γ′i). The equation is valid under the condition of

γi 6= γ′i. In the case of γi = γ′i, A1 find wi such that (gβi )γ
′
(H̄(M ||w′i||R))−1 =

(gβi )γ(H̄(M ||wi||R))−1. B1 returns wi to break the collision resistance of H̄. The
analysis of the reduction cost is most of the same with 6. 2

By the result of Lemma 6 and 7, we have proven Theorem 5. 2

7 Discussions

7.1 Comparison

We show the comparison in the Table 1 among some k-out-of-n signature schemes.

The signature type is divided into three types: partition, secret-sharing and
multivariate vectors.
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Partition. This type is introduced by Bresson et al. [7]. Let π = (π1, π2, . . . , πk)
be a partition over [1, n] in k subsets and P be a set of provers over [1, n]. If all
proves belong to different subsets, then π is a fair partition with respect to P.
By using a perfect hash functions [4], we generate a fair partition for any set of
cardinality k. It was shown in [4] that the size of (n, k) family of perfect functions
is p = 2t log(n). A super-ring consists of p partitions: fair-partition πs and others
{πi}i∈[1,p]\s. Provers form sub-rings for {πi}i∈[1,p]\s, then form a super-ring as
if a simulation. By using the gap-value which forms a super-ring as a random
numbers, provers form the sub-rings corresponding to fair-partitions. Therefore,
the signature length in this scheme is exponential to k and it is non-flexible.

Secret-Sharing. There are many schemes based on secret-sharing. We give a
naive construction for a type of (a, c, s)-Σ-protocol in [2] as an example. It is
sufficient to demonstrate the basic idea and performance briefly. Each prover
i ∈ P computes ai and provers simulate {(ai, ci, si)}i∈U\P. Provers compute a
common challenge, say c0, by hashing all ai’s and message M . Then share co
with a (n− k)-degree polynomial, say P, that is consistent with all n− k points
(i, ci) determined so far. Each prover i ∈ P computes si for challenge ci = P(i)
by using the secret-key. Therefore, the signature length in this scheme is linear
to n and it is non-flexible.

Multivariate Vector. This type is introduced by Petzoldt et al. [18]. They
extend the identification scheme in [20] to their threshold ring signature. Let
Pi : Fn → Fm be a polar form of the multivariate quadratic system which
is viewed as a system parameter. Each prover i ∈ P chooses a private vector
si ∈ Fn and creates a system Pi such that Pi(si) = 0. Provers choose a vector
si = 0 for i ∈ U\P. Let r(i,0), r(i,1) be vectors such that si = r(i,0) + r(i,1).
We use them (and other values which are related with polar form) as a message
in the commitment scheme of Σ − protocol. Verifier checks the number of the
equations such that Com(r(i,0)) = Com(r(i,1)) is satisfied and considers it as
n− k. Therefore, the signature length in this scheme is linear to n and depends
on the number of rounds. Moreover, it is non-flexible.

7.2 Anonymity

We analyze the following two points.

Linkability. The notion of linkability was introduced by Liu, et al. [15]. Such
signature scheme allow anyone to determine if two signatures (possibly generated
with respect to different rings) are signed by the same member. This property
is interesting in the term of functionality. However, in the term of anonymity, it
is the property to avoid. Our scheme has the unlinkable property.

Insider Attacks for Anonymity. Our scheme does not have the anonymity
for an exposure of short-term secret keys. However, the exposure of them does
not influence on the signatures which are generated by Sign at different times
since they are randomly picked with each function Sign call. On the other hand,
our scheme have the anonymity for an exposure of (long-term) secret keys xi
since it does not affect the distribution of signatures which are generated by Σ.
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8 Conclusion

We proposed a k-out-of-n ring signature with flexible participation for provers.
In our scheme, a user in a ring can sign on a same message gradually. We define
its functional and security model, and prove our proposal secure in random
oracle model. The user in a ring can add her signature at any time. Our scheme
is convenient for petition or whistle blowing such as requiring more reliable
information on the same message.
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