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Abstract

Threshold cryptography provides a mechanism for protecting secret keys by sharing
them among multiple parties, who then jointly perform cryptographic operations. An
attacker who corrupts upto a threshold number of parties cannot recover the secrets
or violate security. Prior works in this space have mostly focused on definitions and
constructions for public-key cryptography and digital signatures, and thus do not capture
the security concerns and efficiency challenges of symmetric-key based applications which
commonly use long-term (unprotected) master keys to protect data at rest, authenticate
clients on enterprise networks, and secure data and payments on IoT devices.

We put forth the first formal treatment for distributed symmetric-key encryption,
proposing new notions of correctness, privacy and authenticity in presence of malicious
attackers. We provide strong and intuitive game-based definitions that are easy to un-
derstand and yield efficient constructions.

We propose a generic construction of threshold authenticated encryption based on
any distributed pseudorandom function (DPRF). When instantiated with the two differ-
ent DPRF constructions proposed by Naor, Pinkas and Reingold (Eurocrypt 1999) and
our enhanced versions, we obtain several efficient constructions meeting different security
definitions. We implement these variants and provide extensive performance compar-
isons. Our most efficient instantiation uses only symmetric-key primitives and achieves
a throughput of upto 1 million encryptions/decryptions per seconds, or alternatively a
sub-millisecond latency with upto 18 participating parties.

∗Work done as an intern at Visa Research.
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1 Introduction

A central advantage of using cryptographic primitives such as symmetric-key encryption is
that the safety of a large amount of sensitive data can be reduced to the safety of a very
small key. To get any real benefit from this approach, however, the key must be protected
securely. One could encrypt the key with another key, protect it using secure hardware (e.g.
HSM, SGX or SE), or split it across multiple parties. Clearly, the first approach only shifts
the problem to protecting another key. On the other hand secure hardware, co-processors
and the like provide reasonable security but are not always available, are expensive or not
scalable, lack programmability and are prone to side-channel attacks.

Splitting the key among multiple parties, i.e. threshold cryptography, is an effective
general-purpose solution, that has recently emerged in practice as an alternative software-
only solution [dya, por, sep]. Surprisingly, prior to our work, there was no formal treatment
of distributed symmetric-key encryption. Prior formal treatments of threshold cryptography
typically focus on the asymmetric-key setting, namely public-key encryption and signature
schemes [DF90, DDFY94, GJKR96, CG99, DK01, AMN01, SG02, Bol03, BBH06, GHKR08,
BD10] where the signing/decryption key and algorithms are distributed among multiple par-
ties. This is despite the fact that a large fraction of applications that can benefit from
stronger secret-key protection primarily use symmetric-key cryptographic primitives wherein
secret keys persist for a long time. We review three such examples below:

Secret Management Systems. An increasing number of tools and popular open source
software such as Keywhiz, Knox, and Hashicorp Vault (e.g. see [sec]) are designed to automate
the management and protection of secrets such as sensitive data and credentials in cloud-
based settings by encrypting data at rest and managing keys and authentication. These tools
provide a wide range of features such as interoperability between clouds and audit/compliance
support. By far, the most commonly adopted primitive for encrypting secrets in the stor-
age backend is authenticated encryption with a master data encryption key that encrypts a
large number of records. Some of these systems use secret sharing to provide limited key
protection in an initialization stage but once keys are reconstructed in memory they remain
unencrypted until the system is rebooted. Consider the following statement from Hashicorp
Vault’s architecture documentation [vaua]:

“Once started, the Vault is in a sealed state . . . When the Vault is initialized it generates an encryption

key which is used to protect all the data. That key is protected by a master key. By default, Vault uses a

technique known as Shamir’s secret sharing algorithm to split the master key into 5 shares, any 3 of which

are required to reconstruct the master key . . . Once Vault retrieves the encryption key, it is able to decrypt

the data in the storage backend, and enters the unsealed state.”

Enterprise Network Authentication. Network authentication protocols such as Ker-
beros [kerb] are widely used to provide a single-sign-on experience to users by enabling them
to authenticate periodically (e.g. once a day) to a ticket-granting service using their creden-
tials, to obtain a ticket-granting ticket (TGT) that they use to get access to various services
such as mail, printers and internal web. The recommended approach for generating the TGT
is authenticated encryption (e.g. see [kera]) using a master secret key in order to provide
both confidentiality and integrity for the information contained in the ticket. This renders
the master secret key an important attack target, as it remains unprotected in memory over
a long period.
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Multi-device IoT Authentication. The proliferation of a wide range of Internet of
Things (IoT) has provided users with new and convenient ways to interact with the world
around them. Such devices are increasingly used to store secrets that are used to authen-
ticate users or enable secure payments. Many IoT devices are not equipped with proper
environments to store secret keys, and even when they are, provide developers with little
programmability for their applications. It is therefore desirable to leverage the fact that
many users own multiple devices (smart phone, smart watch, smart TV, etc.) to distribute
the key material among them (instead of keeping it entirely on any single device) to enable
multi-device cryptographic functionalities without making strong assumptions about a de-
vice’s security features. Given the limited computation and communication power of many
such IoT devices, such distributed primitives should require minimal interaction and limited
cryptographic capabilities (e.g. only block-ciphers).

1.1 Technical Challenges

Modeling security As discussed earlier, existing threshold cryptographic definitions and
constructions are primarily focused on public-key primitives such as digital signatures and
public-key encryption. In fact, to the best of our knowledge, there is no standard symmetric-
key security notions in the distributed setting.

To help highlight the challenges with defining a robust security model, consider a software-
based encryption/authentication service wherein long-term secret keys are shared among
multiple servers who collectively perform symmetric encryption, decryption, and MAC oper-
ations to store data in the cloud in an encrypted form, or to generate authentication tokens
that are used to gain access to an external service. For example, the service can be used
by cloud storage customers to encrypt/decrypt data on the cloud using a key that is never
reconstructed after being distributed among the servers, or can be used to generate authen-
tication tokens for a single-sign-on access control system that provides access to multiple
services. A subset of these servers (below a threshold) are corrupted by an active adversary
and can behave arbitrarily malicious but a secure point-to-point channel is assumed between
the honest parties.

Observe that threshold authenticated encryption (TAE) is the appropriate and natural
notion here as it would simultaneously solve the confidentiality and the authenticity prob-
lem, such that a ciphertext generated by the TAE scheme could be both an authentication
tickets and an encrypted message. Unfortunately, while definitions for threshold public-key
encryption are well-understood (e.g. see [SG98, CG99, DP08, BD10, BBH06]), they fail to
capture important subtleties that only arise in the symmetric-key setting when considering
standard AE notions of message privacy and ciphertext integrity [BN00, KY01, RS06].

First note that in the above scenario, servers or parties are simply workers and have no
special roles in the application that uses the service. In particular, a party who initiates the
ciphertext generation may not be the one initiating the decryption process, and for availability
reasons, we do not assume that the same encryptor is online/available during a decryption
call. This necessitates a consistency property where a ciphertext generated by any subset of
parties should be decryptable by any other subset that is larger than a threshold.

However, what truly separates TAE from threshold public-key encryption is that in TAE
a corrupted party should not be able to encrypt or decrypt messages on her own or even
generate valid ciphertexts, without “being online” (i.e. without interaction with the honest
parties in a distributed encryption/decryption protocol), and this should hold even if the
adversary engages in other distributed encryption and decryption protocols.
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Capturing all legitimate adversarial interactions in our security games is quite critical and
subtle. For example, note that unlike the non-interactive setting, chosen plaintext attack
(CPA) security is not sufficient to capture message privacy in the distributed setting where
we need to guarantee message privacy not only in the presence of encryption queries but also
during decryption queries initiated by the honest parties. In other words, the transcripts of
such decryption queries should not reveal anything about the message being decrypted to the
adversary. Second, unlike the standard (non-interactive) ciphertext integrity notions where it
is shown that decryption queries cannot help the adversary and hence can be safely removed
from the security game (e.g. see [BGM04]), it is easy to observe that allowing for decryption
queries in the threshold setting makes the adversary strictly stronger. For instance, consider
a contrived threshold scheme where all parties contacted in the decryption protocol simply
return their secrets. Clearly, this scheme is not secure, but it would still satisfy a ciphertext
integrity notion that does not allow the adversary to invoke the decryption protocol.

Furthermore, adversarial encryption and decryption queries are of various different flavors.
Those where the adversary is the initiator (i.e. the encryptor/decryptor), and those where
an honest party initiates the query (indirect queries) but the adversary arbitrarily controls
the corrupted parties taking part in the protocol. In case of indirect encryption queries, in
the message privacy game, we let the adversary choose the message being encrypted and
learn the resulting ciphertext. This captures, for example, a scenario where a cloud storage
provider that uses the service is compromised and ciphertexts generated by honest encryptors
are revealed. On the other hand, in the ciphertext integrity game, it is crucial not to reveal
the ciphertext to the adversary in the indirect encryption queries and require that it cannot
learn the full ciphertext based on its interactions. Otherwise, an honest party’s call to the
encryption protocol provides the adversary with a valid ciphertext (token) that may give him
access to an external service. Similar subtleties arise for decryption queries which we discuss
in more detail in Section 2.

Finally, unlike the non-interactive case, defining what constitutes a valid forgery in the ci-
phertext integrity game is non-trivial. First, note that standard AE requires that ciphertexts
produced via encryption queries are distinct from the forged ciphertext. In the interactive
setting where the adversary takes part in the encryption protocol, however, generated ci-
phertexts may not be well-defined or valid. Moreover, there are two possible ways of testing
validity of a forged ciphertext in the integrity game: (i) decrypt the forgery using an honest
decryption (i.e. an execution of the decryption protocol that does not involve any corrup-
tion), or (ii) run the decryption protocol wherein adversary controls the corrupted parties.
This leads to two different notions of authenticity.

Performance Challenges. In addition to not meeting our security notions, existing thresh-
old public-key constructions are too expensive for symmetric-key use cases, as they are dom-
inated by more expensive public-key operations and/or require extensive interaction and
communication between the parties. Applications that use symmetric-key cryptography
often have stringent latency or throughput requirements. Ideally, one would like the dis-
tributed encryption/decryption protocols to not be significantly more expensive than their
non-distributed counterparts. In particular, the protocols should have low computation and
bandwidth cost, and require minimal interaction.

General-purpose multi-party computation protocols can also be used to solve the same
problems by computing standard symmetric-key encryption schemes inside an MPC (e.g. see
[RSS17, dya]). While this approach has the benefit of preserving the original non-interactive
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DistEnc(m):

− t← commit(m)

− k1, k4, k5 ←
query(t, {1,4,5})

− k ← combine(k1, k4, k5)

− c← Enc(k,m)

Figure 1: The flow of our distributed encryption protocol for n = 5 and t = 3. Client contacts servers
1, 4 and 5 to encrypt a message m. Servers do not communicate with each other. We show client
separate from the servers for simplicity. A simplified outline of the encryption protocol is given in the
box. See Figure 2 for the actual steps. The flow of decryption protocol is similar to encryption but
the steps involved are different.

algorithm, the resulting protocols would be prohibitively interactive, bandwidth-intensive,
and would become increasingly expensive for larger number of parties. In this paper, we
aim for two-round protocols where one server sends a message to other servers and receives
a response, while other servers need not exchange any messages. This minimal interaction
model minimizes coordination between the servers and is ideal for low-latency applications.

We review the MPC-based solutions and other related work on protecting cryptographic
secrets through splitting them among multiple parties (i.e. secret sharing, threshold PKE
and threshold PRFs) in the related work section (Section 3).

1.2 Our Contribution

We formalize, design and implement new protocols for distributed symmetric-key encryption.
Our contributions can be summarized as follows:

New security definitions. We initiate a formal study of authenticated encryption in the
distributed setting. We propose novel message privacy and ciphertext integrity definitions for
threshold authenticated encryption that captures the unique issues that arise in this setting,
in presence of a malicious adversary that corrupts a subset of parties.

Simple and lightweight protocols. We put forward a generic construction based on any
distributed pseudorandom function (DPRF) in the standard model. The construction only
assumes one-way functions.

− When we instantiate with multiple efficient DPRF constructions from Naor et al. [NPR99]
and our enhanced variants, we derive a number of threshold authenticated encryption
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protocols with different security guarantees and efficiency levels (see Figure 8). All our
protocols are light-weight: they require only two rounds of communication and incur
minimal computation and bandwidth cost. Specifically, the party interested in encryp-
tion or decryption sends one request message to other parties and receives one response
message in return (see Figure 1 for a visual depiction).1 In the most efficient instantia-
tion, there are no public-key operations as parties only make PRF calls and hashing.

− We provide the first formal analysis for both the PRF-based and the DDH-based instan-
tiations of the DPRF constructions given in Naor et al. [NPR99] by proposing a strong
pseudo-randomness property. We also formalize correctness of DPRFs in presence of
malicious corruption and extend their DDH-based construction to satisfy this notion.

− Our protocols allow for an arbitrary threshold t such that only t− 1 other parties need
to be contacted to encrypt or decrypt. At the same time, the protocols are resilient to
the corruption of t− 1 parties (clearly, this is the best one could hope for).

Implementation and Evaluation. We implement several variants of our protocols in
C++ and perform extensive experiments to evaluate their performance for applications with
high-throughput and low-latency requirements. Our most efficient instantiation achieves a
throughput of upto 1 million encryptions/decryptions per seconds, or alternatively a sub-
millisecond latency with upto 18 participating parties. We achieve this high level of perfor-
mance through a variety of cryptographic optimization and system level engineering such as
full use of hardware accelerated AES and instruction vectorization. The result is a lightweight
challenge-response protocol where only one message is sent and received by the participating
parties.

2 Technical Overview

2.1 Security Requirements

A primary contribution of this work is to present a formal treatment of symmetric-key au-
thenticated encryption in the distributed setting.

Our definitions are inspired by the traditional game-based notions of message privacy
and ciphertext integrity for standard (i.e. non-interactive) symmetric-key encryption [BN00,
KY01, RS06]. We intentionally avoid the Universal Composability framework [Can01] be-
cause such definitions, proposed in prior work for standard symmetric-key encryption, are
cumbersome to work with (e.g. see [KT09]).

We remark that over the past two decades, a large body of work has considered various
notions of security for standard authenticated encryption [BN00, Rog02, RS06, Rog13, RS06,
GL15, HRRV15, FFL12, BHT18, HKR15, BT16, BK11, PW12] to address many practical
issues such as concrete security, nonce-misuse resistance, online security, and multi-user secu-
rity. As the first work to formalize distributed authenticated encryption, we choose to focus
on the traditional notion of AE security (i.e. message privacy + ciphertext integrity) as even
extending this important notion to the threshold setting raises many new subtleties (as we
will see shortly) that do not exist in the non-interactive setting. We leave it for future work
to extend threshold AE to the more advanced notions mentioned above.

1This is in contrast with two-round MPC protocols (e.g. [MW16]) where typically in each round every
participant broadcasts messages to everyone else.
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The Attack Model. In the distributed setting, we consider an attacker who controls a
subset of parties and behaves arbitrarily malicious while the honest parties are connected
via point-to-point secure channels. Moreover, to capture a more realistic scenario, we let the
adversary choose its corruption set after receiving the public parameters of the scheme. As
we will see shortly, this requires additional care in both the constructions and the security
proof.

Threshold Symmetric-key Encryption. Analogous to its non-interactive counterpart,
we define a threshold symmetric-key encryption (TSE) scheme consisting of a setup algorithm
Setup and two protocols, DistEnc and DistDec, for distributed encryption and decryption, re-
spectively. The scheme is parameterized by two positive integers n and t, with n ≥ t ≥ 2
where n denotes the total number of parties and t the threshold. We allow at most t−1 corrup-
tions which is clearly optimal in this setting. Setup generates n private keys sk1, sk2, . . . , skn,
one for each party, and some public parameters pp. In DistEnc, one of the parties, called the
encryptor, who holds a message, sends a request message to any t−1 other parties in the pro-
tocol. The participating parties use their respective secret-keys to compute their individual
responses. At the end of the protocol, only the encryptor learns a ciphertext. Analogously,
in DistDec, one of the parties (decryptor) with a ciphertext performs a similar process and
learns the corresponding message. Note that we do not assume that the same party plays
the role of encryptor and decryptor. Our consistency property requires that any subset of t
parties should be able to encrypt or decrypt.

Correctness. The natural correctness requirement in the non-interactive setting is that a
ciphertext c generated by running an encryption algorithm on a message m must decrypt
to m. But in the threshold setting where the adversary is malicious, defining correctness
becomes more subtle. Informally, correctness requires that a ciphertext that is generated by
an honest encryptor but may involve corrupt parties in the encryption protocol can only be
decrypted (by an honest decryptor) to the correct message or results in an abort (i.e. ⊥) even
if the decryption involves corrupted parties. This notion may already be sufficient for many
applications. We also formalize a stronger notion wherein any execution of an encryption
protocol that potentially involves malicious parties either produces a correct ciphertext (by
correct we mean that an honest decryption produces the original message) or results in
an abort. In other words, a valid ciphertext carries an implicit guarantee that an honest
decryption/verification will always be successful. Looking ahead, if we do not impose the
stronger correctness requirement, our instantiation is significantly faster—since to achieve
the stronger form of correctness we need non-interactive zero-knowledge proofs (NIZK) that
require more expensive public-key operations.

Message Privacy. As discussed earlier, our definition has two components, message pri-
vacy and ciphertext integrity (also called authenticity). In the non-interactive case, message
privacy is defined via a chosen plaintext attack (CPA) game where the adversary can engage
in encryption queries before and after the challenge phase where the challenge stage consists
of guessing between the ciphertexts for two adversarially chosen messages.

In the threshold setting, we allow for two types of encryption queries in the message pri-
vacy game. First, the adversary can initiate its own encryption queries using messages of its
choice and obtain both the final ciphertext as well as the transcripts of the parties it corrupts
(and influence their actions during encryption). Second, we allow the adversary to perform
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indirect encryption queries where it invokes an honest party to initiate an encryption query
using an adversary-chosen message and let the adversary learn the ciphertext (despite the
fact that the TSE encryption would not necessarily leak the ciphertext to the adversary).
This captures scenarios where the application using the service may unintentionally leak ci-
phertexts to the adversary (e.g. a cloud storage compromise or authentication token leakage).
We then observe that this is not sufficient to capture full message privacy in the distributed
setting. In particular, even decryption queries initiated by honest parties should preserve
message privacy in presence of a malicious adversary who corrupts a subset of parties. Note
that this issue does not arise in the non-interactive case where decryption queries always
reveal the message. Hence, we allow these indirect decryption queries in our message privacy
game and do not reveal the decrypted message to the adversary. In particular, an adversary
could provide its challenge ciphertext to such an indirect decryption query and still should
not be able to win the message privacy game.

Ciphertext Integrity. In the ciphertext integrity game, the adversary engages in both
encryption and decryption queries, and then needs to create a new valid ciphertext (forgery).
Several subtleties arise when defining a valid forgery. Let us start with the different types of
encryption/decryption queries.

Similar to the message privacy game, both standard and indirect encryption queries are
allowed. The ciphertexts resulting from the former are naturally not considered forgeries
since the corrupt party is intended to learn it. However, in the indirect case where an honest
party initiates the encryption, the security game does not provide the adversary with the
resulting ciphertext. As such, the adversary is allowed to output the ciphertext of an indirect
encryption query as a valid forgery if it manages to acquire one. Therefore the TSE scheme
is required to prevent such attacks by making them unpredictable to him even while actively
participating in the protocols.

Interestingly, we allow three types of decryption queries in the ciphertext integrity game.
The adversary (i) either makes a standard decryption query where it initiates the decryption
using a ciphertext of its choice and learns the decryption and transcripts of all corrupted
parties; or (ii) it makes an indirect decryption query where an honest party initiates the
decryption query using a ciphertext provided by the adversary ; or (iii) makes an indirect
decryption query using a ciphertext it does not know but that was previously generated
via an indirect encryption protocol initiated by an honest party. The purpose of the third
type (called targeted decryption queries) is to ensure that the decryption protocol initiated
by an honest party does not leak the computed ciphertext to the adversary if it is the
result of an earlier encryption by an honest party. To capture this, we do not count these
ciphertexts towards adversary’s forgery budget; in particular, the adversary wins the game
if it outputs one of them as a forgery. In fact, the only decryption queries that we count
towards adversary’s forgery budget are of the first type, i.e. those initiated by the adversary
itself. See Remark 6.11 for a more detailed discussion and how even this can be avoided at
the cost of more expensive constructions.

One-More Ciphertext Integrity. To define a successful forgery in the usual non-interactive
setting, one could just say that the adversary must produce a ciphertext that is different from
the ones it receives from the encryption oracle [BN00, KY01]. Alternatively, in the case of
unified definitions [RS06], the adversary is restricted from querying the decryption oracle
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with a ciphertext it received from the encryption oracle2. Unfortunately, one cannot take a
similar approach in the distributed setting. If the adversary initiates an encryption session
that involves malicious parties, the output of the session (a ciphertext) may not be available
to the honest parties even if they are involved. Thus, it is not clear how to explicitly define
the ciphertext learned by the adversary and therefore no straightforward way to prevent the
adversary from claiming such ciphertext as a valid forgery.

To circumvent the problem while keeping the definition simple, we keep track of the
maximum number of ciphertexts, say k, the adversary could learn (in an ideal sense) by
interacting with honest parties and require that as his forgery, he outputs k + 1 distinct
ciphertexts that successfully decrypt. This implies that at least one of the ciphertexts he
outputs is a new and valid ciphertext.

Two Notions of Authenticity. Our definition also needs to specify how the forged ci-
phertexts are decrypted to check their validity. The first option is to use an honest decryption
(where all parties behave honestly). This is sufficient in applications where an external service
would perform the decryption using the whole key (e.g. in case of single-sign-on access to
a service). We refer to this variant as authenticity as it resembles the standard authenticity
notions studied in the non-interactive setting. A second (and stronger) option is to continue
using the distributed decryption protocol (where adversary actively controls a subset of par-
ties) to decrypt the forged ciphertexts too. We refer to this variant as strong authenticity.
We design and implement protocols meeting both notions trading off efficiency for higher
security.

2.2 Our Generic Construction

We provide a brief overview of our main construction but before doing so, we discuss a few
attempts that fail to meet our efficiency or security requirements. A more detailed discussion
on the failed attempts can be found in Appendix B.

DPRF. All the constructions we discuss in this section use a Distributed Pseudorandom
Function (DPRF) as a building block. A DPRF is a distributed analog of a standard PRF.
It involves a setup where each party obtains their secret-key and the public parameters.
Evaluation on an input is performed collectively by any t parties where t (≤ n) is a threshold.
Importantly, at the end of the protocol, only one special party (evaluator) learns the output.
A DPRF should meet two main requirements: (i) consistency : the evaluation should be
independent of the participating set, and (ii) pseudorandomness: the evaluation’s output
should be pseudorandom to everyone else but the evaluator even if the adversary corrupts all
other t− 1 parties and behaves maliciously.

In the malicious case, one can think of a slightly stronger property, called (iii) correctness,
where after an evaluation involving up to t − 1 malicious corruptions, an honest evaluator
either receives the correct output or can detect the malicious behavior.3 Naor et al. [NPR99]

2Under the unified definition, the adversary is supposed to distinguish between two worlds, a ‘real’ world
where access to both encryption and decryption oracle is provided, and an ‘ideal’ world where the encryption
oracle is replaced with one that just returns random bits and the decryption oracle is replaced with one that
just returns ⊥.

3Looking ahead, our TSE protocol achieves strong authenticity, in which the adversary is involved in the
decryption of the forgery, only if the underlying DPRF achieves correctness.
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propose two very efficient (two-round) instantiations of DPRF, one based only on symmetric-
key cryptography and another based on the DDH assumption. We provide the first formal
proof of security for these constructions under a strong pseudo-randomness requirement.
These constructions, however, do not satisfy the correctness definition (against malicious
adversaries). Interestingly, we note that the recommended approach of obtaining correctness
by applying a NIZK to each message of the protocol runs into a subtle technical issue, and
show how to circumvent it by modifying the construction such that the public parameters
provide a trapdoor commitment to the secret keys of the parties.

Attempt-0: A four-round protocol. As discussed earlier, our goal is to obtain a two-
round protocol where one party sends a message to others and receives a response. But
it is helpful to review a first attempt that requires four rounds of interaction and meets
all our security requirements. We assume a DPRF scheme is already setup. To encrypt a
message m, parties evaluate the DPRF on a random message r generated by the encryptor
to obtain the output w. The encryptor then encrypts the message m using a CPA-secure
symmetric-key encryption with w as the secret-key to obtain a ciphertext c. Parties then
run the DPRF protocol one more time on H(c) for a collision-resistance hash function H,
such that the encryptor obtains the tag t. Encryptor outputs (r, c, t) as the output of the
encryption protocol. The decryption protocol works as expected by first recomputing and
checking t and then recovering w to decrypt c.

It is worth noting that this construction is reminiscent of the standard encrypt-then-MAC
approach for obtaining an authenticated encryption scheme, where in one invocation the
DPRF is used to generate a fresh random key for encryption and in the second invocation it
is used to compute a MAC on the ciphertext. Note that the encryption protocol requires two
sequential calls to the DPRF protocol, hence yielding four rounds of interaction. Interestingly,
to obtain a two-round protocol, we need to deviate from this and design a protocol that
roughly follows the MAC-then-encrypt paradigm but nevertheless meets our strong notions
of security. Next we review two 2-round proposals that fail to achieve our notions.

Failed Attempt-1 [NPR99]. The first (to the best of our knowledge) proposal for a
distributed encryption is due to Naor et al. [NPR99] (NPR in short). They propose to (i)
first encrypt the message m locally to produce a ciphertext e = SEw(m) by a “standard”
symmetric-key encryption scheme SE where the key w is chosen freshly at random; (ii) then
invoke the DPRF on the input (j‖e) for the encryptor to obtain y, where j is the encryptor’s
identity; (iii) finally mask the key w with y. The final ciphertext is of the form (j, y ⊕ w, e).
Although this achieves message privacy, it fails to achieve authenticity since the adversary,
after obtaining a valid ciphertext as above, can change the key by mauling w to w′ (and hence
maul the ciphertext) and decrypt e with w′ to produce a valid message m′. The crux of the
problem is in giving the adversary the flexibility to choose the encryption key w without any
checks or restrictions.

Failed Attempt-2. Another natural approach to construct distributed threshold encryp-
tion is to (i) choose a random nonce r, (ii) compute a DPRF value w on (j, r) and (iii) use
w as a key for a standard authenticated encryption scheme AE to compute e = AEw(m).
The final ciphertext is (j, r, e). One can easily observe that, although message private, this
approach does not suffice for authenticity since an attacker can make a single encryption
query to obtain w and use it to encrypt more valid messages without violating the security
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of the AE scheme.
Note that both attacks discussed above work even in the semi-honest setting since the

corrupt parties behave honestly in all distributed protocols. In fact, the above attempts fail
to achieve even a much weaker notion of authenticity which does not allow decryption queries.
See Appendix B for more details.

Our Construction. At a high level, we use a DPRF scheme to generate a pseudorandom
key w that is used to encrypt the message m. But to avoid the recurring problem in the failed
attempts above, we need to ensure that an adversary cannot use the same w to generate any
other valid ciphertext. To do so, we bind w to the message m (and the identity of party
j). One way to achieve that is to use (j‖m) as an input to the DPRF. First, note that it
is necessary to put j inside the DPRF, otherwise a malicious attacker can easily obtain w
by replaying the input of the DPRF in a new encryption query and thereby recovering any
message encrypted by an honest encryptor. In the protocol we make sure each party checks
if a message of the form (j, ∗) is indeed coming from party j. Second, this does not suffice as
it reveals m to all other parties during the encryption protocols originated by honest parties
and as a result fails to achieve even message privacy. To overcome this, we instead input
a commitment to m to the DPRF. The hiding property of the commitment ensures that
m remains secret, and the binding property of the commitment binds w to this particular
message. To enable the verification of the decommitment during the decryption, we need to
also encrypt the commitment randomness along with m.

This almost works4 except that the attacker can still generate valid new ciphertexts by
keeping m, j and w the same and using new randomness to encrypt m. We prevent this by
making the ciphertext deterministic given m and w: we input w to a pseudorandom number
generator to produce a pseudorandom string serving as a “one-time pad” that is used to
encrypt m just by XOR’ing (this can be thought of as applying a standard stream-cipher
using w as the “random” nonce).

To summarize, our final construction can be informally described as follows: (i) the
encryptor with identity j chooses a random ρ to compute α := Com(m; ρ) where Com is a
commitment and sends (j, α) to the participating parties, (ii) the participating parties then
first check if the message (j, α) is indeed sent by j (otherwise they abort) and then evaluate
the DPRF on (j‖α) for the encryptor to obtain the output w, (iii) finally, the encryptor
computes e = PRG(w)⊕ (m‖ρ) and outputs the ciphertext (j, α, e).

In Section 7 we show that the above construction achieves consistency, message privacy
and authenticity (ciphertext integrity) against a malicious adversary who corrupts up to t−1
parties if the underlying DPRF is consistent and pseudorandom. Moreover, if the underlying
DPRF satisfies our correctness definition, then our TSE achieves strong authenticity. Note
that given a DPRF, the only assumption required for the transformation is one-way functions.

3 Related Work

We briefly discuss several related research directions with similar motivations.

Secret-sharing. Secret-sharing schemes can be used to share the key for symmetric-key
encryption among multiple parties, say n. They guarantee that even if up to n−1 parties are

4In fact this already satisfies a weaker notion of plaintext integrity (see Remark 6.10) since the adversary
cannot forge a ciphertext for a new message.
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compromised, no information about the key is leaked. A popular key management tool called
Vault [vaub] takes this approach. It uses Shamir’s secret sharing [Sha79] to split the master
secret key into shards. According to the documentation [vauc], “This allows each shard of the
master key to be on a distinct machine for better security.” In practice, however, the master
secret key is reconstructed from the shards when the Vault server is started, and remains
in the memory of several—potentially, very weakly protected—parties for extended periods
of time5. Certainly, Vault makes it easy for multiple applications or services to share the
same key material but, at the same time, does not reduce key exposure in a significant way.
Effectively, instead of being stored in a permanent way on multiple parties, the key material
lives in memory.

Threshold PKE. Threshold public-key encryption is a well-studied problem in cryptog-
raphy [Fra90, DF90, DDFY94, SG98, CG99, NPR99, DP08]. Here, the decryption key is
shared among a set of parties such that at least a threshold of them are needed to decrypt
any ciphertext. In some sense, threshold PKE is an analog of the problem we study here. But
as discussed earlier, being a public-key notion, neither the security notions nor the efficiency
requirements meet those of symmetric-key applications.

Threshold Pseudorandom Functions. To the best of our knowledge, the only thresh-
old constructions designed for symmetric-key primitives are for pseudorandom functions
[MS95, NPR99, Nie02, Dod03, DY05, DYY06, BLMR13, ECS+15]. This line of work is
primarily focused on distributed PRFs (DPRF) with security in the standard model or ad-
ditional properties such as verifiability or key-rotation, but does not provide definitions or
constructions for the more general case of symmetric-key encryption. The only exception is
the work of Naor et al. [NPR99], which also proposes a mechanism for encrypting messages
using their DPRF construction. But as we have discussed (c.f. Sec 2.1, Appendix B), their
proposal fails to meet our definition of threshold authenticated encryption. Nevertheless, we
use Naor et al.’s DPRF constructions as the main building block in our constructions and
implementations.

General-purpose MPC. Secure multi-party computation (MPC) allows multiple parties
to evaluate a function over their private inputs without revealing anything about their inputs
beyond the function’s output. Since its introduction in early 80s, MPC has grown into a
rich area with a number of different solutions of various flavors. In the last decade or so,
the performance of general-purpose MPC protocols (which allow arbitrary functions to be
computed) has improved substantially in both the two-party and multi-party setting [mpca,
mpcb, mpcc].

However, all general-purpose MPC protocols work with a circuit representation of the
function which seems to be an overkill to solve our specific problem. Furthermore, the
communication complexity of these protocols typically scales linearly with the size of the
circuit and the number of parties. Finally, the number of rounds of interactions is often
more than two6 for all practical MPC instantiations; and the protocols require all pairs of

5If not the master secret key itself, then at least the encryption key remains in memory. The encryption
key encrypts the actual data and the master key encrypts the encryption key. We refer to the documentation
for details.

6A recent surge of results [GGHR14, MW16, GMPP16, GS18, GS17, BL18] construct two round MPC
protocols. However, these constructions focus mainly on generic feasibility and minimizing assumptions and
are far from being practical.
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parties to interact. Thus, a general-purpose MPC protocol for evaluating symmetric ciphers
such as AES in any encryption mode [DK10, GRR+16, RSS17, dya] is too expensive of a
solution for many applications of distributed symmetric-key encryption. On the other hand,
MPC-based solutions are advantageous in scenarios where the desired encryption scheme is
fixed and cannot be changed by the application (due to compatibility with other components
or a compliance requirement to use standardized schemes such as AES) since MPC can be
used to securely compute arbitrary cryptographic functions.

4 Preliminaries

In this paper, unless mentioned otherwise, we focus on challenge-response style two-round
protocols: a party sends messages to some other parties and gets a response from each one
of them. In particular, the parties contacted need not communicate with each other.

Common notation. Let N denote the set of positive integers. We use [n] for n ∈ N to
denote the set {1, 2, . . . , n}. A function f : N→ N is negligible, denoted by negl, if for every
polynomial p, f(n) < 1/p(n) for all large enough values of n. We use D(x) =: y or y := D(x)
to denote that y is the output of the deterministic algorithm D on input x. Also, R(x)→ y
or y ← R(x) denotes that y is the output of the randomized algorithm R on input x. R can
be derandomized as R(x; r) =: y, where r is the explicit random tape used by the algorithm.
Finally, we write X ∼ DS to denote a random variables X that follows a distribution D
over a set S. For two random variables X and Y we write X ≈comp Y to denote that they
are computationally indistinguishable and X ≈stat Y to denote that they are statistically
close. Concatenation of two strings a and b is either denoted by (a‖b) or (a, b). Throughout
the paper, we use n to denote the total number of parties, t to denote the threshold, and κ
to denote the security parameter. We make the natural identification between players and
elements of {1, . . . , n}.

We will use Lagrange interpolation for evaluating a polynomial. For any polynomial P ,
the i-th Lagrange coefficient for a set S to compute P (j) is denoted by λj,i,S . Matching the
threshold, we will mostly consider (t − 1)-degree polynomials, unless otherwise mentioned.
In this case, at least t points on P are needed to compute any P (j).

Inputs and outputs. We write [j : x] to denote that the value x is private to party j. For
a protocol π, we write [j : z′]← π([i : (x, y)], [j : z], c) to denote that party i has two private
inputs x and y; party j has one private input z; all the other parties have no private input;
c is a common public input; and, after the execution, only j receives an output z′. We write
[i : xi]∀i∈S or more compactly JxKS to denote that each party i ∈ S has a private value xi.

Network model. We assume that all the parties are connected by point-to-point secure
and authenticated channels. We also assume that there is a known upper-bound on the time
it takes to deliver a message over these channels.

Adversary model. We allow an adversary to take control of up to t− 1 parties and make
them behave in an arbitrary manner (active/malicious corruption). The set of corrupt parties
is not known in advance, but we assume that it does not change during protocol execution
(static corruption). We use C to denote the set of parties under the control of an adversary
A.

14



Cryptographic primitives. We need some standard cryptographic primitives to design
our protocols like commitments, secret-sharing, non-interactive zero-knowledge proofs, etc.
For completeness we define them formally in Appendix A.

5 Distributed Pseudo-random Functions: Definitions

Micali and Sydney introduced the notion of distributed pseudo-random functions in the mid
90s [MS95]. A DPRF distributes between n parties the evaluation of a function f which is
an approximation of a random function, such that only authorized subsets of parties are able
to compute f . A party who wants to compute f(x) sends x to the parties in an authorized
subset and receives information which enables her to find f(x). A DPRF must be consistent
in the sense that for all inputs x, all authorized subsets should lead to the same value f(x).

A number of constructions and variants have been proposed over the course of more than
two decades but they either involve multiple rounds of communication [Dod03], extensive
interaction [Nie02, DY05], consider only passive corruption [NPR99, BLMR13], or achieve
stronger properties which makes them more expensive [DYY06]. Several pseudo-randomness
definitions have also been put forward in the literature, but they are not very formal or general
in most cases. There are several attacks that are not explicitly captured by these definitions
(though the proposed constructions may be secure against them). First, the adversary is
not allowed to choose the set of parties to corrupt based on the public parameters (the
only exception we know of is the definition proposed by Boneh et al. [BLMR13]). Second, it
cannot obtain DPRF partial evaluations from honest parties on the challenge input (up to the
threshold). Third, it is not allowed to participate in computing the DPRF on the challenge
input, which may help it in distinguishing the true DPRF value from random. (Note that
this last attack makes sense only under an active corruption.)

We allow the adversary to do all of the above in the pseudo-randomness game, thus ob-
taining a much stronger security guarantee. Apart from consistency and pseudo-randomness,
we also propose a correctness property which ensures that even if corrupt parties are in-
volved in a DPRF computation, they cannot make an honest party output a wrong value.7

We build on the constructions of Naor et al. [NPR99] to obtain these properties from our
DPRF instantiations.

Naor et al. [NPR99], however, were mainly concerned with DPRF security against semi-
honest adversaries. They provide a security definition and two different constructions for such
adversaries. They mention briefly that using non-interactive zero-knowledge (NIZK) proofs,
one could make their DPRF constructions actively secure. However, they do not give a formal
security definition for active security. It turns out that a naive application of NIZK proofs is
in fact not sufficient to obtain security against malicious participants. We additionally need
trapdoor commitments to satisfy the stronger pseudo-randomness requirement proposed here.
Further, the fact that adversaries can obtain DPRF partial outputs on the challenge input
and participate in computing the challenge DPRF value makes the proof more intricate.

We now present a formal treatment of DPRF. Similar to NPR [NPR99], we use a threshold
t to capture the authorized subsets, i.e., any set of at least t parties can compute the function
f . Security is provided against any set of up to t− 1 corrupt parties.

7This is a weaker requirement than robustness for DPRFs which guarantees that an honest party will receive
the correct DPRF value. However, Dodis [Dod03], for instance, assumes that the set of parties contacted by
the honest party includes at least t honest parties to achieve robustness (and the proposed protocol involves
several rounds of communication). We do not make any such assumption. In fact, when the threshold is close
to the total number of parties, there may not be enough honest parties to fulfill the condition.
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Definition 5.1 (Distributed Pseudo-random Function) A distributed pseudo-random
function (DPRF) DP is a tuple of three algorithms (Setup,Eval,Combine) who satisfy a con-
sistency property.

– Setup(1κ, n, t)→ ((sk1, . . . , skn), pp). The setup algorithm generates n secret keys (sk1,
sk2, . . ., skn) and public parameters pp. The i-th secret key ski is given to party i.

– Eval(ski, x, pp) → zi. The Eval algorithm generates pseudo-random shares for a given
value. Party i computes the i-th share zi for a value x by running Eval with ski, x and
pp.

– Combine({(i, zi)}i∈S , pp) =: z/⊥. The Combine algorithm combines the partial shares
{zi}i∈S from parties in the set S to generate a value z. If the algorithm fails, its output
is denoted by ⊥.

Consistency. For any n, t ∈ N such that t ≤ n, all ((sk1, . . . , skn), pp) generated by
Setup(1κ, n, t), any input x, any two sets S, S′ ⊂ [n] of size at least t, there exists a negligible
function negl such that

Pr[Combine({(i, zi)}i∈S , pp) = Combine({(j, z′j)}j∈S′ , pp) 6= ⊥] ≥ 1− negl(κ),

where zi ← Eval(ski, x, pp) for i ∈ S, z′j ← Eval(skj , x, pp) for j ∈ S′, and the probability is
over the randomness used by Eval.

Definition 5.2 (Security of DPRF) Let DP be a distributed pseudo-random function. We
say that DP is secure against malicious adversaries if it satisfies the pseudorandomness re-
quirement (Def. 5.3). Also, we say that DP is strongly-secure against malicious adversaries
if it satisfies both the pseudorandomness and correctness (Def. 5.4) requirements.

A DPRF is pseudorandom if no adversary can guess the PRF value on an input for which
it hasn’t obtained shares from at least t parties. It is correct if no adversary can generate
shares which lead to an incorrect PRF value. We define these properties formally below.

Definition 5.3 (Pseudorandomness) A DPRF DP := (Setup, Eval, Combine) is pseudo-
random if for all PPT adversaries A, there exists a negligible function negl such that

|Pr [PseudoRandDP,A(1κ, 0) = 1]− Pr [PseudoRandDP,A(1κ, 1) = 1]| ≤ negl(κ),

where PseudoRand is defined below.

PseudoRandDP,A(1κ, b):

− Initialization. Run Setup(1κ, n, t) to get ((sk1, . . . , skn), pp). Give pp to A. Initialize a
list L := ∅ to record the set of values for which A may know the PRF outputs.

− Corruption. Receive the set of corrupt parties C from A, where |C| < t. Give the secret
keys {ski}i∈C of these parties to A. Define the corruption gap as g := t− |C|.

− Pre-challenge evaluation queries. In response to A’s evaluation query (Eval, x, i) for
some i ∈ [n] \ C, return Eval(ski, x, pp) to A. Repeat this step as many times as A
desires.

16



− Build the list. Add an x to L if |{i | A made a (Eval, x, i) query}| ≥ g. In other words, if
A contacts at least g honest parties on a value x, it has enough information to compute
the PRF output on x.

− Challenge. A outputs (Challenge, x?, S, {(i, z?i )}i∈U ) such that |S| ≥ t and U ⊆ S ∩ C.
If x? ∈ L, output 0 and stop. Let zi ← Eval(ski, x, pp) for i ∈ S \ U and z? := Combine
({(i, zi)}i∈S\U ∪ {(i, z?i )}i∈U , pp). If z? = ⊥, return ⊥. Else, if b = 0, return z?;
otherwise, return a uniformly random value.

− Post-challenge evaluation queries. Same as the pre-challenge phase except that if A
makes a query of the form (Eval, x?, i) for some i ∈ [n] \ C and i is the g-th party it
contacted, then output 0 and stop.

− Guess. Finally, A returns a guess b′. Output b′.

Definition 5.4 (Correctness) A DPRF DP := (Setup, Eval, Combine) is correct if for all
PPT adversaries A, there exists a negligible function negl such that the following game
outputs 1 with probability at least 1− negl(κ).

− Initialization. Run Setup(1κ, n, t) to get ((sk1, . . . , skn), pp). Give pp to A.

− Corruption. Receive the set of corrupt parties C from A, where |C| < t. Give the
secret-keys {ski}i∈C of these parties to A.

− Evaluation In response to A’s evaluation query (Eval, x, i) for some i ∈ [n] \ C, return
Eval(ski, x, pp) to A. Repeat this step as many times as A desires.

− Computation. Receive a set S of size at least t, an input x?, and shares {(i, z?i )}i∈S∩C
from A. Let zj ← Eval(skj , x

?, pp) for j ∈ S and z′i ← Eval(ski, x
?, pp) for i ∈ S\C. Also,

let z := Combine({(j, zj)}j∈S , pp) and z? := Combine({(i, z′i)}i∈S\C ∪ {(i, z?i )}i∈S∩C , pp).
Output 1 if z? ∈ {z,⊥}; else, output 0.

6 Threshold Symmetric-key Encryption: Definitions

In this section, we introduce threshold symmetric-key encryption (TSE) and formalize notions
of correctness, message privacy, and authenticity for such schemes. We start by specifying
the algorithms that constitute a TSE scheme.

Definition 6.1 (Threshold Symmetric-key Encryption) A threshold symmetric-key en-
cryption scheme TSE is given by a tuple (Setup,DistEnc,DistDec) that satisfies the consistency
property below.

– Setup(1κ, n, t) → (JskK[n], pp) : Setup is a randomized algorithm that takes the security
parameter as input, and outputs n secret keys sk1, . . . , skn and public parameters pp.
The i-th secret key ski is given to party i.

– DistEnc(JskK[n], [j : m,S], pp) → [j : c/⊥] : DistEnc is a distributed protocol through
which a party j encrypts a message m with the help of parties in a set S. At the end
of the protocol, j outputs a ciphertext c (or ⊥ to denote failure). All the other parties
have no output.
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– DistDec(JskK[n], [j : c, S], pp) → [j : m/⊥] : DistDec is a distributed protocol through
which a party j decrypts a ciphertext c with the help of parties in a set S. At the end
of the protocol, j outputs a message m (or ⊥ to denote failure). All the other parties
have no output.

Consistency. For any n, t ∈ N such that t ≤ n, all (JskK[n], pp) output by Setup(1κ),

for any message m, any two sets S, S′ ⊂ [n] such that |S|, |S′| ≥ t, and any two parties
j ∈ S, j′ ∈ S′, if all the parties behave honestly, then there exists a negligible function negl
such that

Pr
[
[j′ : m]← DistDec(JskK[n], [j

′ : c, S′], pp) |

[j : c]← DistEnc(JskK[n], [j : m,S], pp)
]
≥ 1− negl(κ),

where the probability is over the random coin tosses of the parties involved in DistEnc and
DistDec.

Definition 6.2 (Security of TSE) Let TSE be a threshold symmetric-key encryption scheme.
We say that TSE is (strongly)-secure against malicious adversaries if it satisfies the (strong)-
correctness (Def. 6.4), message privacy (Def. 6.6) and (strong)-authenticity (Def. 6.8) re-
quirements.

In the security requirements that follow, the adversary is allowed to make encryption and
decryption queries. In a query, it will specify a special party j who will initiate the protocol,
a set of parties whom j will contact, and the input of j (message or ciphertext). The protocol
will be executed as one would expect: challenger will play the role of all parties not in the
control of adversary and exchange messages with it on their behalf. If j is honest, then
challenger will initiate the protocol, otherwise, the adversary will initiate it. For 2-round
protocols, the interaction between the challenger and adversary will be quite simple. If j
is honest, then the challenger will send every message intended for a corrupt party to the
adversary on behalf of j and wait to get a response from it. Challenger will then combine
the response together with the response of honest parties (which it generates itself) to get
the final output. On the other hand, when j is corrupt, the challenger is just supposed to
respond to the messages that adversary sends to the honest parties.

From here on, we will not be explicit about the details of a protocol execution. We
will just state that an instance of encryption or decryption protocol is run when adversary
requests for it. Also note that although all the games below have separate encryption and
decryption phases, this is only to make the definitions easy to read. The adversary is not
restricted in this sense and can alternate between encryption and decryption queries.

Remark 6.3 (Relation with standard definitions) Note that our security notion can
also be thought of as a generalization of standard (non-interactive) authenticated encryption.
In particular, setting n = 1 and t = 0 one gets standard CPA-security from our message pri-
vacy definition (Def. 6.6) and standard ciphertext integrity from our authenticity definition
(Def. 6.8).

6.1 Correctness

A TSE scheme is correct if whenever DistEnc outputs a ciphertext c for an input message
m (i.e., it does not fail), then DistDec outputs either m or ⊥ when run with c as input.
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An adversary should not be able to influence the decryption protocol to produce a message
different from m. We also consider strong-correctness which additionally requires that c
should only decrypt to m (not even ⊥) when decryption is performed honestly.

Definition 6.4 (Correctness) A TSE scheme TSE := (Setup, DistEnc, DistDec) is correct
if for all PPT adversaries A, there exists a negligible function negl such that the following
game outputs 1 with probability at least 1− negl(κ).

− Initialization. Run Setup(1κ) to get (JskK[n], pp). Give pp to A.

− Corruption. Receive the set of corrupt parties C from A, where |C| < t. Give the
secret-keys {ski}i∈C of these parties to A.

− Encryption. Receive (Encrypt, j,m, S) from A where j ∈ S \ C and |S| ≥ t. Initiate
the protocol DistEnc from party j with inputs m and S. If j outputs ⊥ at the end, then
output 1 and stop. Else, let c be the output ciphertext.

− Decryption. Receive (Decrypt, j′, S′) from A where j′ ∈ S′ \C and |S′| ≥ t. Initiate the
protocol DistDec from party j′ with inputs c, S′ and pp.

− Output. Output 1 if and only if j′ outputs m or ⊥.

A strongly-correct TSE scheme is a correct TSE scheme but with a different output step.
Specifically, output 1 if and only if:

− If all parties in S′ behave honestly, then j′ outputs m; or,

− If corrupt parties in S′ deviate from the protocol, then j′ outputs m or ⊥.

Remark 6.5 (Correctness for different applications) In applications like key manage-
ment, ciphertexts generated at some point may be decrypted much later when the plaintext
is no longer available. In such cases, malformed ciphertexts must be immediately detected,
hence strong correctness is needed. In applications like network authentication (Kerberos)
or IoT-based payments where ciphertexts are typically decrypted shortly after encryption, the
weaker notion of TSE suffices. In such cases, the outcome of decryption is known immediately
and, if it is a failure, one can run another encryption session with a different set of parties.

6.2 Message privacy

We allow for two types of encryption queries in the message privacy game: 1) the adversary
can initiate an encryption session to obtain both the final ciphertext as well as the transcripts
of the parties it corrupts. 2) it can make an indirect encryption query where it invokes an
honest party to initiate an encryption session using a message of its choice. To make the
definition stronger, we provide the ciphertext output by the honest party to the adversary.

However, this alone is not sufficient to capture full message privacy in the distributed
setting. A decryption session initiated by an honest party on any ciphertext of adversary’s
choice (including the challenge) should not reveal what the decrypted message is either. Thus,
we must allow the adversary to make such queries as well.
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Definition 6.6 (Message privacy) A TSE scheme TSE := (Setup,DistEnc,DistDec) satis-
fies message privacy if for all PPT adversaries A, there exists a negligible function negl such
that ∣∣Pr

[
MsgPrivTSE,A(1κ, 0) = 1

]
− Pr

[
MsgPrivTSE,A(1κ, 1) = 1

]∣∣ ≤ negl(κ),

where MsgPriv is defined below.

MsgPrivTSE,A(1κ, b):

− Initialization. Run Setup(1κ, n, t) to get (JskK[n], pp). Give pp to A.

− Corruption. Receive the set of corrupt parties C from A, where |C| < t. Give the secret
keys {ski}i∈C of these parties to A.

− Pre-challenge encryption queries. In response toA’s encryption query (Encrypt, j,m, S),
where j ∈ S and |S| ≥ t, run an instance of the protocol DistEnc with A8. If j /∈ C, then
party j initiates the protocol with inputs m and S, and the output of j is given to A.
Repeat this step as many times as A desires.

− Pre-challenge indirect decryption queries. In response to A’s decryption query (Decrypt,
j, c, S), where j ∈ S\C and |S| ≥ t, party j initiates DistDec with inputs c and S. Repeat
this step as many times as A desires.

− Challenge. A outputs (Challenge, j?,m0,m1, S
?) where |m0| = |m1|, j? ∈ S? \ C and

|S?| ≥ t. Initiate the protocol DistEnc from party j? with inputs mb and S?. Give c? (or
⊥) output by j? as the challenge to A.

− Post-challenge encryption queries. Repeat pre-challenge encryption phase.

− Post-challenge indirect decryption queries. Repeat pre-challenge decryption phase.

− Guess. Finally, A returns a guess b′. Output b′.

Remark 6.7 When DistEnc is run in the challenge phase with S? ∩ C 6= ∅, corrupt parties
can easily cause the protocol to fail, leading j? to output ⊥. The definition above ensures that
the probability that this happens cannot depend on the message mb.

6.3 Authenticity

As discussed in the overview section (Section 2.1), we cannot directly generalize the standard
(non-interactive) authenticity definition to our setting for multiple reasons. First, the ability
to make decryption queries gives additional power to the adversary. Second, ciphertexts
generated in indirect encryption and decryption queries should remain unpredictable to the
adversary or else they would enable successful forgeries. Thus, the definition we present below
departs significantly from the non-interactive version.

In the definition, the variable g captures the minimum number of honest parties an adver-
sary must contact in order to get enough information to generate one ciphertext. The variable
ct counts the total number of times honest parties are contacted in encryption/decryption
protocols initiated by corrupt parties. Thus, the definition requires that an efficient adversary
should only be able to produce bct/gc ciphertexts at the end of the game.

8Note that j can be either honest or corrupt here. So both types of encryption queries are captured.
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We present two variants of the definition. In the first notion, the forged ciphertexts output
by an adversary at the end of the game are decrypted in an honest manner, i.e., all the parties
involved in decryption follow the protocol. On the other hand, our stronger authenticity
notion allows the adversary to influence the decryption process. A forged ciphertext that may
otherwise not decrypt successfully, could be decryptable if corrupt parties manipulate their
responses. Thus, there could be ciphertexts that are valid forgeries in the strong authenticity
game but not in the standard one.

Recall that a targeted decryption query provides a way for an adversary to ask an honest
party to initiate a decryption session on a ciphertext that was previously generated by some
honest party, since such a ciphertext may not be available to the adversary. Just as in regular
encryption/decryption sessions initiated by honest parties, the counter ct is not updated in a
targeted decryption session because we want to capture that the adversary does not get any
useful information towards generating new ciphertexts in such a session.

Definition 6.8 (Authenticity) A TSE scheme TSE := (Setup, DistEnc, DistDec) satisfies
authenticity if for all PPT adversaries A, there exists a negligible function negl such that

Pr [AUTHTSE,A(1κ) = 1] ≤ negl(κ),

where AUTH is defined below.

AUTHTSE,A(1κ):

− Initialization. Run Setup(1κ, n, t) to get (JskK[n], pp). Give pp to A. Initialize a counter
ct := 0 and an ordered list Lctxt := ∅. Below, we assume that for every query, the (j, S)
output by A are such that j ∈ S and |S| ≥ t.

− Corruption. Receive the set of corrupt parties C from A, where |C| < t. Give the
secret keys {ski}i∈C of these parties to A. Define the gap between the threshold and the
number of corrupt parties as g := t− |C|.

− Encryption queries. On receiving (Encrypt, j,m, S) from A, run the protocol DistEnc
with m,S as the inputs of j. If j ∈ C, increment ct by |S \C| (number of honest parties
in S). Else, append the ciphertext output by j to Lctxt.

− Decryption queries. On receiving (Decrypt, j, c, S) from A, run the protocol DistDec
with c, S as the inputs of j. If j ∈ C, increment ct by |S \ C|.

− Targeted decryption queries. On receiving (TargetDecrypt, j, `, S) from A for some
j ∈ S \C, run DistDec with c, S as the inputs of j, where c is the `-th ciphertext in Lctxt.

− Forgery. Let k := bct/gc. A outputs ((j1, S1, c1), (j2, S2, c2), . . ., (jk+1, Sk+1, ck+1)) such
that j1, . . . , jk+1 /∈ C and cu 6= cv for any u 6= v ∈ [k+ 1] (ciphertexts are not repeated).
For every i ∈ [k + 1], run an instance of DistDec with ci, Si as the input of party ji.
In that instance, all parties in Si behave honestly. Output 0 if any ji outputs ⊥; else
output 1.

A TSE scheme satisfies strong-authenticity if it satisfies authenticity but with a slightly
modified AUTH: In the forgery phase, the restriction on corrupt parties in Si to behave
honestly is removed (for all i ∈ [k + 1]).
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Remark 6.9 (Authenticity for different applications) When protecting data at rest,
an application may require that both encryption and decryption are distributed. If adver-
sary can also interfere with decryption, the stronger version of authenticity should be used.
In case of authentication tokens generated for an external service, the decryption is likely to
be performed by a third party who holds the full key in a secure environment. Hence, the
weaker notion of authenticity may suffice.

As we will see later, our TSE construction requires a stronger property from the underlying
DPRF to achieve the stronger form of authenticity and as a result require the use of zero-
knowledge proofs, but the normal form of authenticity can be achieved without it.

Remark 6.10 (Integrity of plaintexts) In the non-interactive setting for authenticated
encryption, a weaker form of INT-CTXT, called integrity of plaintexts (INT-PTXT) [BN00],
has also been studied. If a forged ciphertext decrypts to a message encrypted earlier by the
adversary, then it is not considered a valid forgery in the INT-PTXT game. One can also
weaken our authenticity definition in a similar fashion: a sequence of ` forgeries would be
accepted only if they decrypt to ` unique messages. See Lemma 7.5 for how this notion comes
up in the distributed setting.

Remark 6.11 (Updating counter for decryption) In our current authenticity defini-
tions, we increment the counter ct only for decryption queries initiated by the adversary
(not for indirect or targeted queries), implying that a ciphertext the adversary could deduce
from such an interaction is not considered a successful forgery. Though it may seem at first
that we are increasing the attack surface (note that direct encryption queries are already
counted towards this), the extra information leakage may not make a significant difference in
practice, especially when applications restrict and/or log who initiates decryption and what
can be decrypted by whom.

One can modify our construction to satisfy an even stronger notion where even decryption
queries initiated by the adversary are not counted towards its forgery budget. For example,
in parallel to evaluating the DPRF on j‖α, a threshold signature on the same input can be
computed. Then, during decryption, parties first check the validity of the signature before
responding with their partial share of the DPRF value. However, adding an invocation of a
threshold signature scheme to DiSE would be a significant overhead and would eliminate the
possibility of a symmetric-key only solution.

7 Our Construction: DiSE

In this section, we put forward our main construction DiSE, based on any DPRF. A full
description of the construction is provided in Figure 2. (See Section 2.2 for an overview.) We
prove that if the DPRF is (strongly) secure, then DiSE is (strongly) secure too. We provide
concrete DPRF instantiations in Section 8.

Theorem 7.1 The TSE scheme DiSE of Figure 2 is (strongly)-secure if the underlying
DPRF DP is (strongly)-secure.

Proof. We show each property of DiSE separately.

Consistency. Recall that consistency is required only when all the parties behave honestly.
Thus, consistency of DiSE follows easily from the consistency of DP.
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Ingredients:

− An (n, t)-DPRF protocol DP := (DP.Setup,Eval,Combine) (Def. 5.1).

− A pseudorandom generator PRG of polynomial stretch.

− A commitment scheme Σ := (Σ.Setup,Com) (Def. A.2).

Setup(1κ, n, t)→
(
JskK[n], pp

)
: Run DP.Setup(1κ, n, t) to get ((rk1, . . . , rkn), ppDP) and Σ.Setup(1κ)

to get ppcom. Set ski := rki for i ∈ [n] and pp := (ppDP, ppcom).

DistEnc(JskK[n], [j : m,S], pp)→ [j : c/⊥]: To encrypt a message m with the help of parties in S:

− Party j computes α := Com(m, ppcom; ρ) for a randomly chosen ρ and sends α to all parties in S.

− For every i ∈ S, party i runs Eval(ski, j‖α, pp) to get zi, and sends it to party j.

− Party j runs Combine({(i, zi)}i∈S , pp) to get w or ⊥. In the latter case, it outputs ⊥. Otherwise,
it computes e := PRG(w)⊕ (m‖ρ) and then outputs c := (j, α, e).

DistDec(JskK[n], [j
′ : c, S], pp)→ [j′ : m/⊥]: To decrypt a ciphertext c with the help of parties in S:

− Party j′ first parses c into (j, α, e). Then it sends j‖α to all the parties in S.

− For i ∈ S, party i receives x and checks if it is of the form j?‖α? for some j? ∈ [n]. If not, then
it sends ⊥ to party j′. Else, it runs Eval(ski, x, pp) to get zi, and sends it to party j′.

− Party j′ runs Combine({(i, zi)}i∈S , pp) to get w or ⊥. In the latter case, it outputs ⊥. Otherwise,
it computes m‖ρ := PRG(w) ⊕ e and checks if α = Com(m, ppcom; ρ). If the check succeeds, it
outputs m; otherwise, it outputs ⊥.

Figure 2: DiSE: our threshold symmetric-key encryption protocol.

Lemma 7.2 (Correctness) DiSE is a correct TSE scheme.

Proof. A TSE scheme is correct if whenever an honest party j initiates DistEnc on a message
m to obtain a ciphertext c (i.e., DistEnc does not fail), any honest party j′ recovers m itself
(or ⊥) when it runs DistDec with c as input (except with negligible probability). In the
protocol DiSE, c is of the form (j, α, e) where α := Com(m, ppcom; ρ) is generated locally. Any
decryptor must verify that the message m′ and randomness ρ′ that it recovers (if Combine
does not fail) satisfy α = Com(m′, ppcom; ρ′) or not. If Σ is a binding commitment scheme,
then this verification succeeds only if m = m′, except with negligible probability.

Lemma 7.3 (Strong-correctness) If DP satisfies the correctness property, then DiSE is
a strongly-correct TSE scheme.

Proof. For a TSE scheme to be strongly-correct, we also need that if all the parties involved
in decryption behave honestly, then a ciphertext c := (j, α, e), where e := PRG(w)⊕ (m‖ρ),
generated by an honest party (possibly involving some corrupt parties) should decrypt to the
right message with high probability. Now the correctness property of DP guarantees that if all
the parties involved in decryption are honest w′ obtained through Combine during decryption
will be the same as the w obtained during encryption except with negligible probability (as
the input to the DPRF is the same j‖α). Therefore, PRG(w′)⊕e in the last step of decryption
would give PRG(w′)⊕ PRG(w)⊕ (m‖ρ) = m‖ρ.
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For the following three lemma, we provide a sketch here and defer formal proofs to Ap-
pendix C.

Lemma 7.4 (Message privacy) If DP is a secure DPRF, then DiSE is a message-private
TSE scheme.

Proof sketch. The challenge ciphertext c? has the form (j?, α?, e?) where e? = PRG(w?)⊕
(mb‖ρ?), α? = Com(mb, ppcom; ρ?) and w? is the output of DPRF DP on j?‖α?. One can
think about the masking with PRG as a symmetric-key encryption using a stream cipher.
So, an adversary A will find it computationally hard to guess b if w? is indistinguishable
from random. The pseudorandomness property of DP ensures this as long as A has no way
of evaluating the DPRF on j?‖α? itself. (Note that α? does not reveal information about mb

due to the hiding property of Σ.)
If a corrupt party initiates an encryption protocol, then A can learn j‖α? for any j because

α? is not hidden from it, but j would never be equal to j? since j? is an honest party. On
the other hand, even if A asks party j? to initiate encryption, j? would compute DPRF on
a value α 6= α? due to the binding property of Σ. As a result, no matter how an encryption
query is crafted, A cannot compute the DPRF on j?‖α?. See Appendix C.1 for a detailed
proof.

Lemma 7.5 (Authenticity) If DP is a secure DPRF, then DiSE is a TSE scheme that
satisfies authenticity.

Proof sketch. Among the forged ciphertexts output by adversary, suppose there are two
ciphertexts c1, c2 (c1 6= c2) with the same j and commitment α. When these two are decrypted
with possibly different sets of parties, the DPRF value recovered would be the same due to
the consistency property of DP (it is assumed that all parties involved in decryption behave
honestly). As a result, (m1, ρ1) and (m2, ρ2) recovered from c1 and c2, respectively, would
be different. Due to the binding property of Σ, α cannot be a commitment to both. Hence,
decryption of at least one of c1, c2 fails, and AUTH outputs 0. Therefore, if an adversary
must succeed, each of the k + 1 ciphertexts must have unique (j, α).

Recall that a valid adversary is allowed to contact honest parties strictly less than k · g
number of times. So one can find at least one (j, α) among the forged ciphertexts for which
adversary has not contacted g parties. Due to the pseudorandomness property of DP, the
adversary does not know the value of DPRF on (j, α). Hence, it can not produce a valid
ciphertext with it.

A detailed proof can be found in Appendix C.2. Note that if parties involved in the
decryption of forged ciphertexts are allowed to act maliciously, we cannot invoke DPRF’s
consistency property. However, the adversary would still not be able to make sure that c1, c2

decrypt successfully to two distinct messages because the commitment is binding. Thus, DiSE
can be shown to satisfy a strong notion of an INT-PTXT-style definition in the distributed
setting (see Remark 6.10).

Lemma 7.6 (Strong-authenticity) If DP is a strongly-secure DPRF, then DiSE is a TSE
scheme that satisfies strong-authenticity.

Proof sketch. Strong authenticity gives additional power to the adversary. In the decryption
of forged ciphertexts, corrupt parties can deviate from the protocol arbitrarily. Thus, unlike
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above, consistency of DP alone would not suffice. Using both consistency and correctness
though, one can argue that even if c1, c2 are decrypted with different sets of parties, the
recovered DPRF values w1, w2 are either the same or ⊥. In the latter case, AUTH clearly
outputs 0, and, in the former, it outputs 0 for the same reason as above.

The rest of the proof is similar to the one for weak-authenticity with some minor changes
in how the pseudorandomness guarantee is reduced to authenticity. See Appendix C.3 for
more details.

Remark 7.7 (Key-management application) As discussed in the introduction (c.f. Sec-
tion 1), a main motivation of this work is to strengthen the security of key-management
applications like Hashicorp Vault [vaub]. For such applications, DiSE should be viewed as
distributing the role of the key-manager itself. Multiple servers would keep shares of the mas-
ter secret key (which is used to encrypt various types of secrets) and know about each other’s
identity. Clients of the key-management application would need to authenticate via a separate
mechanism.

Remark 7.8 (Other definitions of security) Through Theorem 7.1, we study two forms
of security for TSE in this paper. The stronger form combines strong correctness with strong
authenticity and the normal form combines their normal versions. One could consider other
possibilities too like combining strong correctness with normal authenticity. The exact re-
quirements would depend on the application for which TSE is being used (see remarks 6.5
and 6.9).

8 Instantiations of Distributed Pseudorandom Functions

In this section, we revisit the distributed pseudo-random function (DPRF) constructions of
Naor, Pinkas, and Reingold [NPR99] (henceforth NPR) and study the properties defined in
Section 5.

NPR proposed two different instantiations of DPRF, one based on the decisional Diffie-
Hellman assumption (DDH) and another based on any PRF. They showed that their con-
structions are secure against semi-honest adversaries, and briefly discussed how the first
construction (DDH-based) could be extended to the malicious setting. Below, we present
the two instantiations in their original form, and show that both achieve our pseudorandom-
ness requirement against malicious adversaries (Def. 5.3). As discussed in Section 5, our
definition captures several attacks that were not considered before. Thus, the proofs require
significantly more care. Further, building on the idea mentioned in NPR, we strengthen the
DDH-based construction with a NIZK proof (specifically, Schnorr’s proof [Sch90, CV90] via
the Fiat-Shamir transform [FS87]) to obtain strong security. However, it turns out that in
addition to the application of NIZKs, we need to use trapdoor commitments to commit to
secret key shares of parties in order to achieve our stronger pseudorandomness property. We
also briefly discuss how to strengthen the PRF-based construction to make it strongly secure
using only symmetric-key primitives.

8.1 DDH-based construction

NPR’s first DPRF is based on any multiplicative group G of prime order p in which DDH
holds. The PRF functionality being computed collectively can be written as fs(x) = H(x)s,
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where H : {0, 1}∗ → G is a hash function (modeled as a random oracle) and the key is s ∈ Zp.
To distribute the evaluation of f , the secret key s must be secret shared between the parties.

In the setup phase, a trusted party samples a master key s←$ Zp and uses Shamir’s secret
sharing scheme with a threshold t to create n shares s1, . . . , sn of s. Share si is given privately
to the party i. We know that for any set S of ` ≥ t parties S := {i1, ..., i`} ⊆ [n], there
exists integers (i.e. Lagrange coefficients) λ0,1,S , . . . , λ0,`,S ∈ Zp such that

∑
j∈S sijλ0,j,S = s.

Therefore, it holds that

fs(x) = H(x)s = H(x)
∑`

j=1 λ0,j,Ssij =
∏̀
i=1

(
H(x)sij

)λ0,j,S ,

which can be computed in a distributed manner running the protocol ΠDDH-DP as shown in
Figure 3. This protocol satisfies the pseudorandomness definition (Def. 5.3), but not the
correctness definition (Def. 5.4). Formally we show that:

Parameters: Let G = 〈g〉 be a multiplicative cyclic group of prime order p in which the DDH
assumption holds and H : {0, 1}∗ → G be a hash function modeled as a random oracle. Let SSS
be Shamir’s secret sharing scheme (Def. A.5).

− Setup(1κ, n, t) → (JskK[n], pp) : Sample s ←$ Zp and get (s1, . . . , sn) ← SSS(n, t, p, s). Set

pp := (p, g,G) and ski := si and give (ski, pp) to party i, for i ∈ [n].

− Eval(ski, x, pp)→ zi : Compute w := H(x), hi := wski and output hi.

− Combine({(i, zi)}i∈S , pp) =: z/⊥ : If |S| < t, output ⊥. Else, parse zi as (hi) for i ∈ S.

Output
∏
i∈S h

λ0,i,S

i .

Figure 3: A secure DPRF protocol ΠDDH-DP based on DDH.

Theorem 8.1 Protocol ΠDDH-DP in Figure 3 is a secure DPRF under the DDH assumption
in the programmable random oracle model.

We provide a detailed formal analysis in Appendix C.4. Here we provide a brief sketch.
Consistency follows from Shamir’s secret sharing in a straightforward way. The pseudoran-
domness property can be reduced from the hardness of DDH assumption. Intuitively, since
the attacker is restricted to get at most t − 1 evaluations of the secret polynomial for the
challenge x?, it does not have enough information whether the returned value in the challenge
phase lies on the secret polynomial or not. However, subtleties arise due to the fact that the
adversary may obtain more than t − 1 evaluations through queries on x 6= x?, and hence
the above argument must hold conditioned on those values. Fortunately, via a sequence of
hybrids, we can gradually move to a game in which a fresh random polynomial is selected
for each different x that is correlated with the secret polynomial on up to ` ≤ t − 1 points,
where ` is the number of corrupt parties (as those many secrets can be obtained by the ad-
versary via corruption). Clearly, t− 1 evaluations point give no information about the secret
(t− 1)-degree polynomial. Therefore, the response on challenge x? is indistinguishable from
random.

Strong security Adding trapdoor commitments and NIZK proofs in the RO model (for a
statement slightly different from the one suggested by NPR) appropriately to ΠDDH-DP, we
obtain the protocol ΠZK-DDH-DP, described in detail in Figure 4. This protocol also satisfies
correctness and hence achieves strong security. Formally:
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Theorem 8.2 Protocol ΠZK-DDH-DP in Figure 4 is a strongly secure DPRF under the DDH
assumption in the programmable random oracle model.

A detailed proof is provided in Appendix C.5. The proof for pseudorandomness follows
the same structure as before. However, to accommodate the changes (trapdoor commitments
and NIZK proofs), some additional effort is needed. Note that NIZK proofs are used by each
party i to show that they use the correct secret-share si which is committed as γi in the public
parameters. However, since the adversary is allowed to corrupt the parties after obtaining the
public parameters, we need trapdoor commitments to make sure that the commitments can
be opened to some different values later by the simulator with a trapdoor. The correctness
property follows from the extractability of NIZK and binding of commitments.

Parameters: Let G = 〈g〉 be a multiplicative cyclic group of prime order p in which the DDH
assumption holds, H : {0, 1}∗ → G and H′ : {0, 1}∗ → {0, 1}poly(κ) be two hash functions
modeled as random oracles. Let SSS be Shamir’s secret sharing scheme (Def. A.5), TDC :=

(Setupcom,Com) be a trapdoor commitment scheme (Def. A.3) and NIZK := (ProveH
′
,VerifyH

′
)

be a simulation-sound NIZK proof system (Def. A.6).

− Setup(1κ, n, t) → (JskK[n], pp). Sample s ←$ Zp and get (s1, . . . , sn) ← SSS(n, t, p, s). Run

Setupcom(1κ) to get ppcom. Compute a commitment γi := Com(si, ppcom; ri) by picking ri
at random. Set pp = (p, g,G, γ1, . . . , γn, ppcom), ski := (si, ri) and give ski to party i, for
i ∈ [n].

− Eval(ski, x, pp)→ zi. Compute w := H(x) and hi := wsi . Run ProveH
′

with the statement
stmti: {∃s, r s.t. hi = ws ∧ γi = Com(s, ppcom; r)} and witness (si, ri) to obtain a proof πi.
Output ((w, hi), πi).

− Combine({(i, zi)}i∈S , pp) =: z/⊥. If |S| < t, output ⊥. Else, parse zi as ((w, hi), πi) and

check if VerifyH
′
(stmti, πi) = 1 for all i ∈ S. If check fails for any i, output ⊥. Else, output∏

i∈S h
λ0,i,S

i .

Figure 4: A strongly secure DPRF protocol ΠZK-DDH-DP based on DDH. Differences from
ΠDDH-DP are highlighted in blue.

Parameters: Let G = 〈g〉 be a multiplicative cyclic group of prime order p in which the DDH assump-
tion holds, H : {0, 1}∗ → G and H′ : {0, 1}∗ → Zp be hash functions. Let SSS be Shamir’s secret
sharing scheme (Def. A.5).

− Setup(1κ, n, t) → (JskK[n], pp). Sample s ←$ Zp and get (s1, . . . , sn) ← SSS(n, t, p, s). Sample a
generator h of G at random. Compute a commitment γi := gsi · hri to si by picking ri ←$ Zp.
Set pp = (p, g,G,H,H′, γ1, . . . , γn, h), ski := (si, ri) and give ski to party i, for i ∈ [n].

− Eval(ski, x, pp) → zi. Compute w := H(x) and hi := wsi . Pick vi, v
′
i ←$ Zp and set ti := wvi ,

t′i := gvi · hv′i . Compute a hash ci := H′(hi, w, γi, g, h, ti, t′i), ui := vi− ci · si and u′i := v′i− ci · ri.
Define πi to be (ci, ui, u

′
i) and output ((w, hi), πi).

− Combine({(i, zi)}i∈S , pp) =: z/⊥. If |S| < t, output ⊥. Else, parse zi as ((w, hi), (ci, ui, u
′
i)) for

i ∈ S. Compute ti := wui · hcii , t′i := gui · hu′
i · γcii and check if ci = H′(hi, w, γi, g, h, ti, t′i). If

check fails for any i ∈ S, output ⊥. Else, output
∏
i∈S h

λ0,i,S

i .

Figure 5: A concrete instantiation of the protocol ΠZK-DDH-DP from Figure 4 using Pedersen
commitment and Schnorr-style proof (via the Fiat-Shamir transform).
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Parameters: Let G = 〈g〉 be a multiplicative cyclic group of prime order p in which the DDH assump-
tion holds, H : {0, 1}∗ → G and H′ : {0, 1}∗ → Zp be hash functions. Let SSS be Shamir’s secret
sharing scheme (Def. A.5).

− Setup(1κ, n, t) → (JskK[n], pp). Sample s ←$ Zp and get (s1, . . . , sn) ← SSS(n, t, p, s). Set

pp = (p, g,G,H,H′, gs1 , . . . , gsn), ski := si and give ski to party i, for i ∈ [n].

− Eval(ski, x, pp) → zi. Compute w := H(x) and hi := wski . Pick vi ←$ Zp and set ti := gvi .
Compute a hash ci := H′(hi, w, gski , g, ti) and ui := vi − ci · ski. Define πi to be (ci, ui) and
output ((w, hi), πi).

− Combine({(i, zi)}i∈S , pp) =: z/⊥. If |S| < t, output ⊥. Else, parse zi as ((w, hi), (ci, ui)) for
i ∈ S. Compute ti := wui · hcii and check if ci = H′(hi, w, gski , g, ti). If check fails for any i ∈ S,

output ⊥. Else, output
∏
i∈S h

λ0,i,S

i .

Figure 6: A privately verifiable version of the protocol from Figure 5.

An efficient way to instantiate trapdoor commitments and NIZK arguments of knowledge
(in the random oracle model) is via Pedersen commitments and Fiat-Shamir transformation
on Schnorr-style proofs. We give this concrete version of ΠZK-DDH-DP in Figure 5 and use
it for our experiments in the following section. The concrete protocol remains secure under
DDH (in random oracle model).

Remark 8.3 Besides correctness, protocol of Figure 4 has the additional property that each
party’s proof can be publicly verified, i.e. the Combine algorithm only takes public inputs and
the public messages sent/received. In particular, even an external party who does not hold
any secrets, given the partial DPRF values and the NIZK proofs, can publicly verify that the
DPRF was computed correctly. This may be useful in applications where an external party
wants to verify the correctness of a token. But if we settle for strong correctness with only
private verifiability, we can obtain a more efficient protocol. In particular, instead of publicly
committing to the secret keys, each party can be given gsi for all i as part of its secret key
in the setup, and the Schnorr-based NIZK can be simplified to reduce the number of required
exponentiations. In the experiment section we implement both variants and show that the
privately verifiable version is 25% faster than the publicly verifiable version. A concrete
construction is provided in Figure 6.

8.2 PRF-based construction

NPR also presented a DPRF construction based on any PRF, e.g. AES. 9 To obtain an t-
out-of-n threshold, this protocol incurs an exponential overhead of O(nmin(t,n−t)). However,
for n < 20 or t ≈ n it can significantly outperform the previously described DDH based
construction (see Section 9).

In the setup phase of the protocol, d :=
(

n
n−t+1

)
random numbers k1, ..., kd are chosen.

We assume that d is polynomial in the security parameter so that all the DPRF algorithms
are polynomial time. Let D1, . . . , Dd be the d distinct (n− t+ 1)-sized subsets of [n]. Then,
the i-th random number is given to all parties in the set Di. The DPRF is defined as
Fk(x) =

⊕d
i=1 fki(x), where f can be any PRF. Since all the d keys are needed to compute

Fk, no set S of parties of size less than t can compute Fk by itself (at least one of the

9Micali and Sydney provided a similar construction but for more general access structures [MS95].

28



Parameters: Let f : {0, 1}κ × {0, 1}∗ → {0, 1}∗ be a pseudo-random function.

− Setup(1κ, n, t)→ (JSKK[n], pp) : Pick k1, ..., kd ←$ {0, 1}κ where d :=
(

n
n−t+1

)
. Let D1, . . . , Dd be

the d distinct (n− t+ 1)-sized subsets of [n]. For i ∈ [n], let SKi := {kj | i ∈ Dj for j ∈ [d]}. Set
pp := (f) and give (SKi, pp) to party i, for i ∈ [n].

− Eval(SKi, x, pp)→ zi : Compute hi,k := fk(x) for all k ∈ SKi and output {hi,k}k∈SKi
.

− Combine({(i, zi)}i∈S , pp) =: z/⊥ : If |S| < t, output ⊥. Else, parse zi as {hi,k}k∈SKi
for i ∈ S.

Let {SK ′i}i∈S be mutually disjoint sets such that ∪i∈SSK ′i = {k1, . . . , kd} and SK ′i ⊆ SKi for
every i. Output ⊕k∈SK′

i,i∈Shi,k.

Figure 7: A secure DPRF protocol Πf-DP based on any PRF.

D1, . . . , Dd subsets, say Dj , does not intersect with S; thus parties in S do not have kj). See
Figure 7 for a formal description.

Theorem 8.4 If f is a PRF, then Πf-DP in Figure 7 is a secure DPRF.

Proof of the above theorem can be found in Appendix C.6. We also note that it is
possible to augment this PRF-based construction into one that satisfies strong correctness
(hence strong security) using only symmetric-key primitives. In particular, one could commit
to the PRF secrets during the setup, and require that each party provides a symmetric-key
NIZK of correctness of its evaluation with respect to its committed secret keys using recent
techniques [GMO16, CDG+17]. We do not present such an instantiation since it would be
quite inefficient.

9 Experimental Evaluation

When we combine the constructions of Section 7 and the DPRF instantiations of Section 8,
we obtain four variants (two with strong security) of a threshold authenticated encryption
scheme as depicted in Figure 8. We remark that although our implementation uses a hash
function modeled as a random oracle to implement the commitment scheme used in DiSE
the construction itself is proven secure using any commitment scheme in the standard model.

DPRF Instantiation Resulting TSE Assumption Model
Πf-DP (Fig. 7) ΓAES OWF Standard
ΠDDH-DP (Fig. 3) ΓDDH DDH Standard
ΠZK-DDH-DP (Fig. 5) ΓS

DDH (Strong) DDH ROM
ΠZK-DDH-DP (Fig. 6) ΓPV

DDH (Strong) DDH ROM

Figure 8: The four TSE schemes we implemented by instantiating DiSE. There are two concrete
instantiations of ΠZK-DDH-DP, depending on the verifiability feature (see Remark 8.3).

We implement all four variants of our protocol in C++. We implement the random oracle
as Blake2 [bla] and the PRF/PRGs are constructed from AES-NI. The DDH-based DPRF
[NPR99] uses the Miracl library [mir] with Curve p256k1. Benchmarks were performed on
a single server equipped with two 18-core Intel Xeon CPUs at 2.3Ghz and 256GB of RAM.
Parties communicate through a kernel loopback device simulating two settings: LAN - 10
Gbps and 0.1ms (RTT) latency, WAN: shared 40 Mbps and 80ms latency.
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t n

Throughput
(enc/s)

Latency
(ms/enc)

Bandwidth
(Throughput Mbps)

ΓAES ΓDDH ΓS
DDH ΓPV

DDH ΓAES ΓDDH ΓS
DDH ΓPV

DDH ΓAES ΓDDH ΓS
DDH ΓPV

DDH

n/3

6 1,095,770 556 232 189 0.1 4.6 9.3 10.5 268 0.28 0.29 0.28
12 656,728 382 99 77 0.3 4.4 15.9 18.8 481 0.53 0.37 0.35
18 45,434 297 64 46 0.6 5.4 21.5 27.6 55 0.77 0.40 0.35
24 902 173 34 31 7.5 11.2 36.4 43.1 2 0.69 0.30 0.34

n/2

4 1,113,090 555 235 190 0.1 4.7 9.2 10.1 272 0.13 0.30 0.29
6 510,152 527 146 112 0.2 4.0 11.9 14.3 249 0.26 0.44 0.34
12 198,020 300 64 48 0.7 5.2 21.2 26.1 242 0.37 0.47 0.36
18 10,194 231 42 31 1.1 8.0 31.3 38.8 20 0.45 0.50 0.37
24 165 125 22 22 38.0 15.9 54.5 69.6 0 0.33 0.38 0.36

2n/3

3 1,100,413 561 239 190 0.1 3.9 10.7 18.6 269 0.14 0.30 0.29
6 1,033,592 399 101 75 0.4 4.2 15.0 18.6 757 0.29 0.38 0.34
12 438,957 245 47 35 1.1 6.4 27.6 34.5 750 0.42 0.49 0.36
18 21,139 176 31 21 1.6 8.9 41.6 51.5 57 0.47 0.43 0.35
24 445 100 17 16 16.5 21.5 72.4 85.0 2 0.37 0.32 0.36

n− 2
12 727,273 203 37 34 1.4 7.37 33.1 44.7 1598 0.45 0.42 0.36
18 524,109 135 23 17 2.2 12.6 55.2 66.2 1919 0.49 0.43 0.38
24 283,822 75 12 10 5.6 28.0 98.9 116.4 1455 0.38 0.32 0.31

2
12 1,058,574 556 235 189 0.1 4.6 9.56 10.0 258 0.14 0.30 0.29
18 1,037,703 553 226 188 0.1 4.6 9.6 10.3 253 0.14 0.28 0.28
24 735,294 404 176 151 2.2 4.6 9.56 10.4 180 0.10 0.22 0.23

Figure 9: Encryption performance metrics for 10 second trials of 32 bytes messages in the LAN setting
with various number of parties n and threshold t. Throughput is computed by performing many
encryptions concurrently (single thread per party). Latency is computed by performing sequential
encryptions. Bandwidth is total (send + receive) bandwidth consumed at peak throughput.

t n

Throughput
(enc/s)

Latency
(ms/enc)

Bandwidth
(Throughput Mbps)

ΓAES ΓDDH ΓS
DDH ΓPV

DDH ΓAES ΓDDH ΓS
DDH ΓPV

DDH ΓAES ΓDDH ΓS
DDH ΓPV

DDH

n
3

6 153,332 570 238 190 81 86 96 101 37 0.14 0.30 0.29
12 51,745 399 103 76 81 88 111 117 38 0.29 0.39 0.34
18 31,096 303 65 46 81 90 125 139 38 0.37 0.41 0.35
24 775 191 36 26 86 90 132 146 1 0.33 0.31 0.27

n
2

4 150,783 571 239 188 81 86 96 104 37 0.14 0.30 0.28
6 76,957 536 150 112 81 86 103 111 38 0.26 0.38 0.34
12 30,937 297 65 48 82 90 125 131 38 0.36 0.41 0.36
18 11,776 235 42 31 82 92 141 145 23 0.46 0.43 0.37
24 166 132 24 18 102 96 146 149 0 0.36 0.33 0.30

2n
3

3 150,965 555 238 189 81 86 97 105 37 0.14 0.30 0.28
6 51,535 396 103 77 81 88 112 122 38 0.29 0.39 0.34
12 21,484 244 45 35 81 93 123 152 37 0.42 0.40 0.37
18 14,029 174 31 22 82 97 156 169 38 0.47 0.43 0.37
24 446 101 17 13 92 98 164 172 2 0.37 0.33 0.28

Figure 10: Encryption performance metrics for 10 second trials of 32 bytes messages in the
WAN setting (shared send+receive 40Mbps, 80ms RTT) with various number of parties n
and threshold t.

Throughput. Figure 9 shows the throughput and latency of our protocols under a variety of
configurations in the LAN setting. Throughput measures the maximum number of operations
that can be performed given that each party has a single core. Throughput is an important
metric for many tasks such as a key/token server or per row database decryption.

The ΓAES protocol is the fastest by a large margin for all n ≤ 24 despite having exponential
overhead in the number of parties. For instance, encrypting 32 bytes with n = 6 and t = 4,
ΓAES achieves 1 million encryption per second while ΓDDH, the next fastest, is 2000× slower
with 556 encryptions. Increasing the parameters to n = 24, t = 16, ΓAES achieves 902
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encryptions per second while ΓDDH is still 5× slower with 173 encryptions. The protocol
ΓS
DDH which achieves strong correctness incurs a 2 to 5× overhead compared to the weaker

ΓDDH while the publicly verifiable variant ΓPV
DDH has, on average, 25% lower throughput.

Latency. Another important metric is latency. That is, the time from the start of an
encryption/decryption until the result is ready. Due to various system level optimization
for improved latency, the throughput and latency results shown in Figure 9 are for different
configurations of the protocol, e.g. less vectorization which improves latency at the cost of
a smaller throughput. ΓAES achieves sub-millisecond latency for most configurations. On
the other hand, ΓPV

DDH with its strong security guarantees achieves a latency between 10 and
100ms.

Communication. In addition to achieving the best throughput and latency, the ΓAES

protocol has the smallest communication overhead of 32(t − 1) bytes per encryption. The
ΓDDH incurs slightly more communication with 49(t − 1) bytes per encryption while ΓS

DDH

and ΓPV
DDH have the most communication with 148(t − 1) bytes. However, despite having

comparable communication overheads, the pure symmetric-key ΓAES protocol is significantly
faster for small n due to the use of much more efficient AES operations (in contrast to
exponentiations).

Key Size. The primary advantage of the DDH-based protocols ΓDDH, ΓS
DDH and ΓPV

DDH is
that the key size is either constant (33 bytes) or linear in the threshold (33t bytes). The
ΓAES protocol, on the other hand, requires that each party hold roughly

(
n
t

)
≈ O(nmin(t,n−t))

keys. As such, the single benchmark machine sharing 256GB of RAM was not able to handle
significantly more than 24 parties. For instance, with n = 6, t = 4 each party must hold 80
bytes of key while the case of n = 24, t = 16 requires each party to hold a 8MB key. In
the worst case of t = n/2 with n = 24, the key size increases to 22MB per party. However,
despite this exponential blowup, the ΓAES can gracefully handle cases where n is small or the
threshold t is near 2 or n as shown in the bottom half of Figure 9.

WAN Performance. To measure the performance of the protocols over the Internet, we
benchmark on a (simulated) network with a shared bandwidth of 40 Mbps and an 80ms
round-trip time.

As shown in Figure 10, the bandwidth restriction limits the throughput of the ΓAES proto-
col due to it easily saturating the network. With n = 6, t = 2, we observe that the throughput
drops 7× to 153,332 encryption per second. However, this is near optimal given that sim-
ply communicating κ bits requires 37 out of the 40Mbps bandwidth limit. Additionally, the
latency of the ΓAES is near the optimal of 80ms in most cases. The ΓDDH protocol require
slightly more time of roughly 90ms in most cases while the strongly-correct ΓPV

DDH and ΓS
DDH

protocols require between 95 and 170ms.
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A Cryptographic Primitives

A.1 Authenticated Encryption

Definition A.1 (Symmetric encryption) A symmetric encryption scheme is a triple of
polynomial-time algorithms (Kgen,Encrypt,Decrypt) that satisfy a correctness requirement.

− Kgen(1κ)→ sk : On input the security parameter, Kgen outputs a secret key sk.

− Encrypt(sk,m) → c : On input the secret key sk and a message m, Encrypt outputs a
ciphertext c.

− Decrypt(sk, c) =: m/⊥ : On input the secret key sk and a ciphertext c, Decrypt outputs
a message m or a failure symbol ⊥.

Correctness. For all κ ∈ N, sk output by Kgen(1κ), and any message m, there exists a
negligible function negl such that

Pr [m := Decrypt(sk, c) : c← Encrypt(sk,m)] ≥ 1− negl(κ),

where the probability is over the randomness of Encrypt.

Chosen-plaintext attack. A symmetric encryption scheme Π = (Kgen,Encrypt,Decrypt)
is secure against chosen-plaintext attacks (CPA) if for all PPT adversary A, there exists a
negligible function negl such that∣∣Pr

[
SymCPAΠ,A(1κ) = 1

]
− 1/2

∣∣ ≤ negl(κ),

where SymCPA is defined as follows:

1. Initialize. Run Kgen to get a key sk.

2. Pre-challenge encryption queries. On receiving (Encrypt,m) fromA, return c← Encrypt(sk,m).
This step can be repeated any number of times.

3. Challenge. When A sends (Challenge, (m0,m1)) such that |m0| = |m1|, choose a ran-
dom bit b←${0, 1} and return c? ← Encrypt(sk,mb).

4. Post-challenge encryption queries. Same as Step 2.

5. Guess. Finally, receive a guess b′ from A and output 1 if and only if b′ = b.
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Authenticity [BN00, KY01, RS06]. A symmetric encryption scheme Π = (Kgen,Encrypt,
Decrypt) satisfies authenticity if for all PPT adversary A, there exists a negligible function
negl such that

Pr
[
SymAUTHΠ,A(1κ) = 1

]
≤ negl(κ),

where SymAUTH is defined as follows:

1. Initialize. Run Kgen to get a key sk.

2. Encryption queries. On receiving (Encrypt,m) from A, return c← Encrypt(sk,m). This
step can be repeated any number of times.

3. Forgery. A produces a ciphertext c?. Output 1 if and only if Decrypt(sk, c?) 6= ⊥.

In the following, we use Encryptsk(·) and Decryptsk(·) to mean Encrypt(sk, ·) and Decrypt(sk, ·),
respectively.

A.2 Commitment

Definition A.2 A (non-interactive) commitment scheme Σ consists of two PPT algorithms
(Setupcom,Com) which satisfy hiding and binding properties:

− Setupcom(1κ)→ ppcom : It takes the security parameter as input, and outputs some public
parameters.

− Com(m, ppcom; r) =: α : It takes a message m, public parameters ppcom and randomness
r as inputs, and outputs a commitment α.

Hiding. A commitment scheme Σ = (Setupcom,Com) is hiding if for all PPT adversaries
A, all messages m0, m1, there exists a negligible function negl such that for ppcom ←
Setupcom(1κ),

|Pr[A(ppcom,Com(m0, ppcom; r0)) = 1]− Pr[A(ppcom,Com(m1, ppcom; r1)) = 1]| ≤ negl(κ),

where the probability is over the randomness of Setupcom, random choice of r0 and r1, and
the coin tosses of A.

Binding. A commitment scheme Σ = (Setupcom,Com) is binding if for all PPT adversaries
A, if A outputs m0, m1, r0 and r1 ((m0, r0) 6= (m1, r1)) given ppcom ← Setupcom(1κ), then
there exists a negligible function negl such that

Pr[Com(m0, ppcom; r0) = Com(m1, ppcom; r1)] ≤ negl(κ),

where the probability is over the randomness of Setupcom and the coin tosses of A.

Definition A.3 (Trapdoor (Non-interactive) Commitments.) Let Com = (Setupcom,Com)
be a (non-interactive) commitment scheme. A trapdoor commitment scheme has two more
PPT algorithms SimSetup and SimOpen:

− SimSetup(1κ) → (ppcom, τcom) : It takes the security parameter as input, and outputs
public parameters ppcom and a trapdoor τcom.
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− SimOpen(ppcom, τcom,m
′, (m, r)) =: r′ : It takes parameters ppcom, trapdoor τcom, a mes-

sage m′ and a message-randomness pair (m, r) as inputs, and outputs a randomness
r′.

For every (m, r) and m′, there exists a negligible function negl such that

ppcom ≈stat pp′com where ppcom ← Setupcom(1κ) and (pp′com, τcom)← SimSetup(1κ)

and

Pr

[
Com(m, pp′com; r) = Com(m′, pp′com; r′) | (pp′com, τcom)← SimSetup(1κ);

r′ := SimOpen(pp′com, τcom,m
′, (m, r))

]
≥ 1−negl(κ).

Remark A.4 Clearly, a trapdoor commitment can be binding against PPT adversaries only.

A.2.1 Concrete instantiations.

Practical commitment schemes can be instantiated under various settings:

Random oracle. In the random oracle model, a commitment to a message m is simply
the hash of m together with a randomly chosen string of length r of an appropriate length.

DLOG assumption. A popular commitment scheme secure under DLOG is Pedersen
commitment. Here, Setupcom(1κ) outputs the description of a (multiplicative) group G of
prime order p = Θ(κ) (in which DLOG holds) and two randomly and independently chosen
generators g, h. If H : {0, 1}∗ → Zp is a collision-resistant hash function, then a commitment
to a message m is given by gH(m) ·hr, where r ←$ Zp. A trapdoor is simply the discrete log of
h with respect to g. In other words, SimSetup picks a random generator g, a random integer a
in Z?p and sets h to be ga. Given (m, r), m′ and a, SimOpen outputs [(H(m)−H(m′))/a] + r.
It is easy to check that commitment to m with randomness r is equal to the commitment to
m′ with randomness r′.

Pseudo-random generators. Naor proposed a simple and efficient commitment scheme
based on the existence of PRGs [Nao91]. We briefly describe here a non-interactive variant
of the scheme for commitment to n-bit strings. Setupcom outputs a randomly chosen string
crs of length 4n. Let pad : {0, 1}n → {0, 1}4n be the function that prepends 3n zeroes to
its argument, H : {0, 1}∗ → {0, 1}n be a collision-resistant hash function, and G : {0, 1}n →
{0, 1}4n be a pseudo-random generator. Then, a commitment to a message m is given by
G(r) + crs · pad(H(x)) with arithmetic in GF (24n), where r ←$ {0, 1}n. We skip rest of the
details.

A.3 Secret Sharing

Definition A.5 (Shamir’s Secret Sharing) Let p be a prime. An (n, t, p, s)-Shamir’s se-
cret sharing scheme is a randomized algorithm SSS that on input four integers n, t, p, s, where
0 < t ≤ n < p and s ∈ Zp, outputs n shares s1, . . . , sn ∈ Zp such that the following two con-
ditions hold for any set {i1, . . . , i`}:

− if ` ≥ t, there exists fixed (i.e., independent of s) integers λ1, . . . , λ` ∈ Zp (a.k.a. Lagrange

coefficients) such that
∑`

j=1 λjsij = s mod p;
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− if ` < t, the distribution of (si1 , . . . , si`) is uniformly random.

Concretely, Shamir’s secret sharing works as follows. Pick a1, . . ., at−1 ←$ Zp. Let f(x)
be the polynomial s+a1 ·x+a2 ·x2 + . . .+at−1 ·xt−1. Then si is set to be f(i) for all i ∈ [n].

A.4 Non-interactive Zero-knowledge

Let R be an efficiently computable binary relation. For pairs (s, w) ∈ R, we refer to s
as the statement and w as the witness. Let L be the language of statements in R, i.e.
L = {s : ∃w such that R(s, w) = 1}. We define non-interactive zero-knowledge arguments of
knowledge in the random oracle model based on the work of Faust et al. [FKMV12].

Definition A.6 (Non-interactive Zero-knowledge Argument of Knowledge) Let H :
{0, 1}∗ → {0, 1}poly(κ) be a hash function modeled as a random oracle. A NIZK for a binary
relation R consists of two PPT algorithms Prove and Verify with oracle access to H defined
as follows:

− ProveH(s, w) takes as input a statement s and a witness w, and outputs a proof π if
(s, w) ∈ R and ⊥ otherwise.

− VerifyH(s, π) takes as input a statement s and a candidate proof π, and outputs a bit
b ∈ {0, 1} denoting acceptance or rejection.

These two algorithms must satisfy the following properties:

− Perfect completeness: For any (s, w) ∈ R,

Pr
[
VerifyH(s, π) = 1 | π ← ProveH(s, w)

]
= 1.

− Zero-knowledge: There must exist a pair of PPT simulators (S1,S2) such that for all
PPT adversary A,∣∣∣Pr[AH,Prove

H
(1κ) = 1]− Pr[AS1(·),S′2(·,·)(1κ) = 1]

∣∣∣ ≤ negl(κ)

for some negligible function negl, where

− S1 simulates the random oracle H;

− S ′2 returns a simulated proof π ← S2(s) on input (s, w) if (s, w) ∈ R and ⊥ other-
wise;

− S1 and S2 share states.

− Argument of knowledge: There must exist a PPT simulator S1 such that for all PPT
adversary A, there exists a PPT extractor EA such that

Pr
[
(s, w) /∈ R and VerifyH(s, π) = 1 |

(s, π)← AS1(·)(1κ);w ← EA(s, π,Q)
]
≤ negl(κ)

for some negligible function negl, where

− S1 is like above;

− Q is the list of (query, response) pairs obtained from S1.
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Fiat-Shamir transform. Let (Prove,Verify) be a three-round public-coin honest-verifier
zero-knowledge interactive proof system (a sigma protocol) with unique responses. Let H be
a function with range equal to the space of the verifier’s coins. In the random oracle model,
the proof system (ProveH,VerifyH) derived from (Prove,Verify) by applying the Fiat-Shamir
transform satisfies the zero-knowledge and argument of knowledge properties defined above.
See Definition 1, 2 and Theorem 1, 3 in Faust et al. [FKMV12] for more details. (They
actually show that these properties hold even when adversary can ask for proofs of false
statements.)

B A few failed attempts in detail

B.1 Attempt 1: Distributed Encryption Scheme proposed by Naor et al.

The work of Naor et al. [NPR99], which puts forward the DPRF constructions we use in this
paper, also proposes the only distributed symmetric-key encryption proposal we are aware
of. Their proposal appeared before any formal treatment of threshold symmetric-key existed,
and in fact even prior to the introduction of authenticated encryption in the non-distributed
setting. Hence, it is only natural that their scheme does not meet the strong security notions
we introduce here. We review their protocol in Figure 11 and argue why it fails to meet the
security definitions introduced in this paper.10

(In)-security of ΠNPR. The protocol ΠNPR is CPA-secure against malicious adversaries if
the underlying DPRF satisfies weak-malicious security. The formal proof is similar to the
proof of the CPA-security of our protocol (c.f. Theorem 7.4) and hence we omit it. However,
we argue that ΠNPR does not satisfy authenticity (c.f. Definition 6.8) even when the corrupt
parties follow the protocol. To see this, first observe that a ciphertext in this protocol is a
tuple c := (j, k, e) where k = y ⊕ w, y := DP(j‖e) and e ← sENC.Encryptw(m) for some
message m. After obtaining this ciphertext, an adversary can go “off-line” and compute
another ciphertext c′ = (j, k′, e) which now decrypts to m′ := sENC.Decryptw′(e) where
w′ = k′ ⊕ y. This is possible since CPA-security does not guarantee that a ciphertext c
can not be decrypted with another secret-key w′ (although the message m′ will not reveal
any information about m by CPA-security). So the adversary could produce many valid
ciphertexts by running just one encryption session, and thus win the authenticity game. (If
we consider adversaries that choose their own w, then it becomes even harder to make the
scheme secure.)

The authors also mention that “in order [to] combat changes to the stored information
one should use parts of y as an authentication key to e and w” (symbols in the quote have
been replaced with the equivalent ones here). As we interpret, one can additionally use a
message-authentication code (MAC) so that the ciphertext would look like c := (j, k, e, t)
where k := w ⊕ y1, t = MACy2(e||w) and (y1||y2) := DP(j‖e). However, the modified
construction still does not satisfy the authenticity requirement (c.f. Def. 6.8) because once
an adversary gets the MAC key y2 through an encryption session, it can re-launch the same
attack, this time attaching a correct MAC computed with y2.

10We present a slightly different version here that does not use a collision-resistant hash function or a
decryption policy, but incorporates the identity of the initiating party in computing the ciphertext. This does
not interfere in any way with the security analysis we carry out.
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Ingredients:

− An (n, t)-DPRF protocol DP := (DP.Setup, DP.Eval, DP.Combine).

− A CPA secure symmetric-key encryption scheme: sENC := (sENC.Kgen, sENC.Encrypt,
sENC.Decrypt).

Setup(1κ, n, t)→
(
JskK[n], pp

)
: Run DP.Setup(1κ, n, t) to get ((rk1, . . . , rkn), pp′). Set ski := rki for

i ∈ [n] and pp := pp′.

DistEnc(JskK[n], [j : m,S], pp)→ [j : c/⊥]: To encrypt a message m with the help of parties in S:

− Party j samples w ← sENC.Keygen(1κ) and computes e ← sENC.Encryptw(m). Then it sends e
to all parties in S.

− For every i ∈ S, party i runs DP.Eval(ski, j‖e, pp) to get yi, and sends it to party j.

− Party j runs Combine({(i, yi)}i∈S , pp) to get y or ⊥. In the latter case, it outputs ⊥. Otherwise,
it outputs c := (j, k, e) where k := y ⊕ w.

DistDec(JskK[n], [j
′ : c, S], pp)→ [j′ : m/⊥]: To decrypt a ciphertext c with the help of parties in S:

− Party j′ first parses c into (j, k, e). Then it sends j‖e to all the parties in S.

− For i ∈ S, party i receives x and checks if it is of the form j?‖e? for some j? ∈ [n]. If not, then
it sends ⊥ to party j′. Else, it runs DP.Eval(ski, x, pp) to get yi, and sends it to party j′.

− Party j′ runs Combine({(i, yi)}i∈S , pp) to get y or ⊥. In the latter case, it outputs ⊥. Otherwise,
it computes w := k ⊕ y and outputs m := sENC.Decryptw(e).

Figure 11: Description of the protocol ΠNPR

B.2 Attempt 2: DPRF + Authenticated Encryption

Another natural proposal for encryption is to generate a fresh pseudorandom key using a
DPRF and use it to encrypt the message via a symmetric-key authenticated encryption
scheme. This was our first attempt for a secure construction. It is helpful to review this
construction (Fig. 12) and show why it fails to meet our notion of authenticity, even when
the corrupt parties do not deviate from the protocol.

To see why the above scheme does not meet our authenticity notion, consider an attacker
who runs a single distributed encryption session to learn an encryption key w and uses it to
encrypt many messages “off-line”, thereby generating many new valid ciphertexts.

C Missing Proofs

C.1 Proof of Theorem 7.4

We use a sequence of hybrids to prove security, with the first hybrid being the message privacy
game MsgPriv. We first write down the challenge phase of MsgPriv in detail:

1. A outputs (Challenge, j?,m0,m1, S
?) where j ∈ S? \ C and |S?| ≥ t.

2. Compute α? := Com(mb, ppcom; ρ?) by picking ρ? at random, and zi ← DP.Eval(ski, (j
?‖α?), pp)

for every i ∈ S? \ C.

3. Send α? to A and get back ẑi for every i ∈ S? ∩ C.
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Ingredients:

− An (n, t)-DPRF protocol DP := (DP.Setup, DP.Eval, DP.Combine).

− An authenticated encryption scheme
auENC := (auENC.Kgen, auENC.Encrypt, auENC.Decrypt).

Setup(1κ, n, t)→
(
JskK[n], pp

)
: Run DP.Setup(1κ, n, t) to get ((rk1, . . . , rkn), pp′). Set ski := rki for

i ∈ [n] and pp := pp′.

DistEnc(JskK[n], [j : m,S], pp)→ [j : c/⊥]: To encrypt a message m with the help of parties in S:

− Party j samples a random r and sends it to all parties in S.

− For every i ∈ S, party i runs DP.Eval(ski, j‖r, pp) to get wi, and sends it to party j.

− Party j runs Combine({(i, wi)}i∈S , pp) to get w or ⊥. In the latter case, it outputs ⊥. Otherwise,
it computes e := auENC.Encryptw(m) and outputs c := (j, r, e).

DistDec(JskK[n], [j
′ : c, S], pp)→ [j′ : m/⊥]: To decrypt a ciphertext c with the help of parties in S:

− Party j′ first parses c into (j, r, e). Then it sends j‖r to all the parties in S.

− For i ∈ S, party i receives x and checks if it is of the form j?‖α? for some j? ∈ [n]. If not, then
it sends ⊥ to party j′. Else, it runs DP.Eval(ski, x, pp) to get wi, and sends it to party j′.

− Party j′ runs Combine({(i, wi)}i∈S , pp) to get w or ⊥. If it obtains w, it outputs m :=
auENC.Decryptw(e); else, it outputs ⊥.

Figure 12: Description of the protocol ΠDP+AE

4. Run Combine({(i, zi)}i∈S?\C ∪{(i, ẑi)}i∈S?∩C , pp) to get w? or ⊥. In the latter case, give
⊥ to A. Otherwise, compute e? := PRG(w?)⊕ (mb‖ρ?) and give c? := (j?, α?, e?) to A.

We define five hybrids. With every hybrid, we only mention the difference from the
previous hybrid (consider MsgPriv to be Hyb0).

− Hyb1: Whenever an honest party initiates an encryption session (including the challenge
phase) and generates a commitment that is not unique (among all the commitments
generated so far by honest parties), notify the adversary and stop.

− Hyb2: In Step 4 (see breakdown of challenge phase above), use a randomly chosen w? to
compute e? (instead of the one obtained through Combine).

− Hyb3: Replace PRG(w?) with a randomly chosen string of the same length.

− Hyb4: Set e? to be a random string of length |mb|+ κ.

− Hyb5: Set α? to be a commitment to a random message.

Except with negligible probability, the commitments generated by honest parties are all
unique due to the binding property of Σ (a fresh ρ is chosen every time). Thus MsgPriv
is indistinguishable from Hyb1. Indistinguishability of Hyb2, Hyb3 and Hyb4 is easy to see.
Further, Hyb4 and Hyb5 are indistinguishable due to the hiding property of Σ.

We are only left to show that Hyb1 and Hyb2 are indistinguishable. On the contrary,
suppose there exists a PPT adversary A who can distinguish between Hyb1 and Hyb2 with
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a non-negligible probability. We use A to build another PPT adversary B who succeeds in
PseudoRand for the DPRF DP (Definition 5.3) with the same probability.

Let Chal denote the challenger in PseudoRand. B acts as follows:

− Initialization. Get ppDP from Chal and run Σ.Setup(1κ) to get ppcom. Give (ppDP, ppcom)
to A.

− Corruption. Receive the set of corrupt parties C from A, where |C| < t. Pass it on to
Chal. When Chal returns {ski}i∈C , forward them to A.

− Pre-challenge encryption queries. Suppose A outputs
(Encrypt, j,m, S), where j ∈ S and |S| ≥ t. There are two possibilities:

− If j is honest, compute α := Com(m, ppcom; ρ) for a randomly chosen ρ. If α is
not unique among all the commitments generated so far, notify A and stop; else,
send α to it. A responds with a zi for every i ∈ S ∩ C. At the same time, send
(Eval, j‖α, i) to Chal and get back a response zi for every i ∈ S \ C. Now run
Combine({(i, zi)}i∈S , pp) to get w or ⊥. In the latter case, send ⊥ to A. Otherwise,
compute e := PRG(w)⊕ (m‖ρ) and send c := (j, α, e) to A.

− If j is corrupt, A expects the honest parties in S to help compute a DPRF value. For
a message x sent to an honest party j′ in S, send (Eval, j‖x, j′) to Chal. Forward
Chal’s response to A.

− Pre-challenge indirect decryption queries. Suppose A outputs (Decrypt, j, c, S), where
j ∈ S \C and |S| ≥ t. If c parses to (j′, α, e), send j′‖α to A. Ignore any response from
A.

− Challenge. A outputs (Challenge, j?,m0,m1, S
?) where |m0| = |m1|, j? ∈ S? \ C and

|S?| ≥ t. Compute α? := Com(mb, ppcom; ρ?) by picking ρ? at random and, based on the
uniqueness of α?, do the same thing as before. For every i ∈ S? ∩C, A provides a value
ẑi. Send (Challenge, j?‖α?, S, {(i, ẑi)}i∈S?∩C) to Chal. If Chal returns ⊥, forward the
same to A. Otherwise, use Chal’s response w? to compute e? := PRG(w?) ⊕ (mb‖ρ?),
and give c? := (j?, α?, e?) to A.

− Post-challenge encryption queries. This is same as the pre-challenge encryption phase.

− Post-challenge indirect decryption queries. This is same as the pre-challenge decryption
phase.

− Guess. Finally, A returns a guess b′. Output b′.

B makes an Eval request in the (pre- or post-challenge) encryption phase only. When
j is honest, a request is made only when α is unique. When j is corrupt, j‖x can not be
equal to j?‖α? because j? is honest. As a result, B never requests any evaluation on j?‖α?.
Therefore, the challenge message it sends to Chal is valid. Now it is easy to see that when
w? := Combine({(i, zi)}i∈S?\C ∪{(i, ẑi)}i∈S?∩C , pp), B perfectly simulates Hyb1, and when w?

is random, it perfectly simulates Hyb2.
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C.2 Proof of Theorem 7.5

We first write down the last step of the authenticity game AUTH, forgery, in detail. Recall
that ct counts the total number of times honest parties are contacted in encryption/decryption
protocols initiated by corrupt parties and g captures the minimum number of honest parties
an adversary must contact in order to get enough information to generate one ciphertext.
Let k := bct/gc.

1. A outputs ((j1, S1, c1), (j2, S2, c2), . . ., (jk+1, Sk+1, ck+1)) s.t. j` ∈ S \ C, |S`| ≥ t for
` ∈ [k + 1] and cu 6= cv for any u 6= v ∈ [k + 1]. Let c` := (j`, α`, e`) for ` ∈ [k + 1].

2. For ` ∈ [k + 1], compute z`,i ← DP.Eval(ski, j`‖α`, pp) for all i ∈ S` and w` :=
Combine({(i, z`,i}i∈S`

, pp). Output 0 if any w` = ⊥. Else, computem`‖ρ` := PRG(w`)⊕e`
and check if α` = Com(m`, ppcom; ρ`). Output 0 if the check fails for any `. Else, output
1.

We define a new authenticity game called AUTH-U (U stands for unique). It differs from
AUTH in the first step of forgery:

− A outputs ((j1, S1, c1), (j2, S2, c2), . . ., (jk+1, Sk+1, ck+1)) s.t. j` ∈ S \ C, |S`| ≥ t for
` ∈ [k + 1] and cu 6= cv for any u 6= v ∈ [k + 1]. Let c` := (j`, α`, e`) for ` ∈ [k + 1].
Output 0 if for any u 6= v, ju = jv and αu = αv.

We show that AUTH is indistinguishable from AUTH-U. Suppose an adversary outputs
k + 1 distinct ciphertexts s.t. there are two ciphertexts cu and cv for which ju = jv and
αu = αv (thus, eu 6= ev). We show that in this case even AUTH will output 0. Since all the
parties involved in decrypting forged ciphertexts are assumed to behave honestly, wu = wv
with high probability due to the consistency property of DP. Together with eu 6= ev, this
implies that mu‖ρu 6= mv‖ρv. As a result, Com(mu, ppcom; ρu) 6= Com(mv, ppcom; ρv) with all
but negligible probability (binding property of Σ).

We now show that if there exists a PPT adversary A such that AUTH-U outputs 1
with probability at least ε, then one can use it to build another PPT adversary B for the
pseudorandomness game PseudoRand (Definition 5.3) whose advantage is at least ε − negl
for some negligible function negl. Let Chal denote the challenger for the pseudorandomness
game. B acts as follows:

− Initialization. Get ppDP from Chal and run Σ.Setup(1κ) to get ppcom. Give (ppDP, ppcom)
to A. Initialize an ordered list Lp-ctxt := ∅ and a counter ctj,α := 0 for every (j, α).
(Here, p-ctxt stands for partial ciphertext.)

− Corruption. Receive the set of corrupt parties C from A, where |C| < t. Pass it on to
Chal. When Chal returns {ski}i∈C , forward them to A. Set g := t− |C|.

− Encryption queries. Suppose A outputs (Encrypt, j,m, S), where j ∈ S and |S| ≥ t.
There are two possibilities:

− If j is honest, send α← Com(m, ppcom; ρ) to A, where ρ is picked at random. Ignore
any response from A. Append (j, α) to Lp-ctxt.

− If j is corrupt, A expects the honest parties in S to help compute a DPRF value. For
a message x sent to an honest party j′ in S, send (Eval, j‖x, j′) to Chal. Forward
Chal’s response to A and increment ctj,x by 1.
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− Decryption queries. Suppose A outputs (Decrypt, j′, c, S), where j′ ∈ S and |S| ≥ t.
Parse c into (j, α, e). Now:

− If j′ is honest, send j‖α to A. Ignore any response from A.

− If j′ is corrupt, for a message x sent to an honest party j′′ ∈ S by A, check if x is
of the form j?‖α? for some j? ∈ [n]. If not, return ⊥ to A. Else, send (Eval, x, j′′)
to Chal and forward its response to A. Increment ctj?,α? by 1.

− Targeted decryption queries. Suppose A outputs (TargetDecrypt,
j′, `, S), where j′ ∈ S \ C and |S| ≥ t. Let (j, α) be the `-th entry of Lp-ctxt. Send
j‖α to A. Ignore any response from A.

− Forgery. A outputs ((j1, S1, c1), (j2, S2, c2), . . ., (jτ , Sτ , cτ )) s.t. j` ∈ S \ C, |S`| ≥ t for
` ∈ [τ ] and cu 6= cv for any u 6= v ∈ [τ ]. Let c` := (j`, α`, e`) for ` ∈ [τ ]. Now:

− If for any u 6= v, ju = jv and αu = αv, output 1 as the guess and stop.

− Pick a c`? such that ctj`? ,α`?
< g. Send (Challenge,

j`?‖α`? , S`? , ∅) to Chal. Let w? be Chal’s response. If w? = ⊥, output 1; else,
compute m‖ρ := PRG(w?) ⊕ e`? and check if α`? = Com(m, ppcom; ρ). If the check
fails, output 1; else, output 0.

Note that the sum of ctj,α for all (j, α) is at most ct, the variable in AUTH-U that keeps
track of the number of times honest parties are contacted. In turn, ct must be less than τ · g
as required by AUTH-U. Thus, there must exist a c`? such that ctj`? ,α`?

< g. This ensures
that j`?‖α`? is not in the list L maintained by Chal.
B simulates AUTH-U perfectly for A. Let b′ denote the bit output by B at the end.

Suppose the bit b in PseudoRand is 0. From the third item in the first paragraph of this
section, we can see that AUTH-U outputs 1 only if w` 6= ⊥ and α` = Com(m`, ppcom; ρ`)
succeeds for all `—and, in particular, for ` = `?. We have assumed that AUTH-U outputs 1
with probability at least ε. Thus, Pr[b′ = 1 | b = 0] ≤ 1− ε.

On the other hand, when b = 1, w? is picked at random, so m‖ρ is a pseudo-random value.
The probability that α`? = Com(m, ppcom; ρ) is at most negl for some negligible function negl
due to the binding property of Σ. Therefore, Pr[b′ = 1 | b = 1] ≥ 1− negl. So,∣∣Pr[b′ = 1 | b = 0]− Pr[b′ = 1 | b = 1]

∣∣ ≥ ε− negl.

C.3 Proof of Theorem 7.6

In the case of strong authenticity, we cannot assume anymore that the corrupt parties involved
in decrypting forged ciphertexts behave honestly. As a result, first of all, we cannot use the
consistency property of DPRF alone to argue the indistinguishability of AUTH and AUTH-U.
We will need the correctness property too.

We first define a notion called validity for DPRFs which combines both consistency and
correctness. Formally, an (n, t)-DPRF DP := (Setup,Eval,Combine) is valid if for all PPT
adversaries A, there exists a negligible function negl such that the following game outputs 1
with probability at least 1− negl(κ).

− Initialization. Run Setup(1κ, n, t) to get ((sk1, . . . , skn), pp). Give pp to A.

− Corruption. Receive the set of corrupt parties C from A, where |C| < t. Give the
secret-keys {ski}i∈C of these parties to A.
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− Evaluation. In response to A’s evaluation query (Eval, x, i) for some i ∈ [n] \ C, return
Eval(ski, x, pp) to A. Repeat this step as many times as A desires.

− Computation. Receive two sets S0, S1 of size at least t, an input x?, and shares {(i, z?0,i)}i∈S0∩C ,
{(i, z?1,i)}i∈S1∩C fromA. Let z0,j ← Eval(skj , x

?, pp) for j ∈ S0\C and z1,j ← Eval(skj , x
?, pp)

for j ∈ S1 \ C. Let z?b := Combine({j, zb,j}j∈Sb\C ∪ {(i, z
?
b,i)}i∈Sb∩C , pp) for b ∈ {0, 1}.

Output 1 if z?0 = ⊥ or z?1 = ⊥ or z?0 = z?1 ; else, output 0.

Notice that validity is different from consistency in the sense that corrupt parties also con-
tribute to DPRF evaluation, and it is different from correctness in the sense that both DPRF
evaluations involve corrupt parties (instead of just one).

Fix a PPT adversary A for the validity game defined above. Let Z?0 and Z?1 be random
variables that capture the distribution of z?0 and z?1 in the game, respectively. Define two
adversaries A0 and A1 for the correctness game based on A as follows: for b ∈ {0, 1}, Ab runs
A up to the end of the evaluation phase and, when A produces its output for the computation
phase, Ab outputs the b-th part of it (i.e., Sb, x

? and {(i, z?b,i)}i∈Sb∩C). Let Zb and Z
?
b be

random variables that capture the distribution of z (the true DPRF value) and z? in the
correctness game with Ab, for b ∈ {0, 1}.

On account of DPRF DP being correct, we have that

Pr[Z
?
b ∈ {Zb,⊥}] ≥ 1− εb(κ)

for b ∈ {0, 1} and a negligible function εb. Further, the consistency of DP gives us that

Pr[Z0 = Z1 6= ⊥] ≥ 1− ε

for some negligible function ε. Now, observe that Z?b is identically distributed to Z
?
b for

b ∈ {0, 1} due to the definition of the validity and correctness games as well as the construction
of A0, A1 from A. Therefore,

Pr[Validity game outputs 1] = Pr[Z?0 = ⊥ ∨ Z?1 = ⊥ ∨ Z?0 = Z?1 ]

= Pr[Z
?
0 = ⊥ ∨ Z?1 = ⊥ ∨ Z?0 = Z

?
1]

≥ Pr

[
Z
?
0 ∈ {Z0,⊥} ∧ Z

?
1 ∈ {Z1,⊥}

∧Z0 = Z1

]
≥ 1− (ε0 + ε1 + ε).

Therefore, validity game outputs 1 with all but negligible probability. Since the above analysis
holds for any PPT adversary, DP is a valid DPRF.

We now turn to arguing the indistinguishability of AUTH and AUTH-U. The forgery step
of AUTH is now different from the previous case. We first write it down in detail here:

1. A outputs ((j1, S1, c1), (j2, S2, c2), . . ., (jk+1, Sk+1, ck+1)) s.t. j` ∈ S \ C, |S`| ≥ t for
` ∈ [k + 1] and cu 6= cv for any u 6= v ∈ [k + 1]. Let c` := (j`, α`, e`) for ` ∈ [k + 1].

2. For ` ∈ [k + 1],

− for i ∈ S` ∩ C, send j`‖α` to A and get back z?`,i;

− for i ∈ S` \ C, compute z`,i ← DP.Eval(ski, j`‖α`, pp).
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3. Compute w` := Combine({(i, z?`,i)}i∈S`∩C ∪{(i, z`,i}i∈S`\C , pp) for ` ∈ [k+ 1]. Output 0 if
any w` = ⊥. Else, compute m`‖ρ` := PRG(w`)⊕e` and check if α` = Com(m`, ppcom; ρ`).
Output 0 if the check fails for any `. Else, output 1.

Note that corrupt parties can now provide arbitrary shares of DPRF values during the de-
cryption of forged ciphertexts (step 2).

AUTH-U is different from AUTH in the same way as before. Specifically, the difference is
in the first step of forgery:

− A outputs ((j1, S1, c1), (j2, S2, c2), . . ., (jk+1, Sk+1, ck+1)) s.t. j` ∈ S \ C, |S`| ≥ t for
` ∈ [k + 1] and cu 6= cv for any u 6= v ∈ [k + 1]. Let c` := (j`, α`, e`) for ` ∈ [k + 1].
Output 0 if for any u 6= v, ju = jv and αu = αv.

Let E denote the event that among the ciphertexts output by the adversary, there exists
u 6= v such that ju = jv and αu = αv. Clearly, the probability that E happens is the same in
AUTH and AUTH-U.

Fix any PPT adversary A. We now informally describe an adversary B′ who simulates
AUTH for A with the help of the challenger, say Chal′, of the validity game. B′ will be
able to handle all the encryption and decryption queries of A by making evaluation queries
to Chal′. When A outputs k + 1 forgeries, B′ will check if the event E occurs or not. If
not, then it aborts. Otherwise, B′ will pick any u 6= v s.t. ju = jv and αu = αv. For all
` ∈ [k + 1] \ {u, v}, B′ will evaluate w` by making evaluation queries. Then, it will send
(Su, Sv, ju‖αu, {(i, z?u,i)}i∈Su∩C , {(i, z?v,i)}i∈Sv∩C) to Chal′. Assume, for simplicity, that Chal′

returns z?0 and z?1 to B′, which we refer to as wu and wv, respectively. Now, given w1, . . . , wk+1,
B′ outputs the final bit in the same way as AUTH.

To show that AUTH and AUTH-U are indistinguishable, all we need to do is argue that
when E occurs, AUTH also outputs 0 with high probability. When E occurs, B′ is a valid
adversary for the validity game. Hence, wu = ⊥, wv = ⊥ or wu = wv with all but negligible
probability. In the first two cases, B′ clearly outputs 0. Further, in the last case, by the same
argument as in the previous proof, B′ outputs 0 with high probability.

Finally, when using an advantage in AUTH-U to break the pseudorandomness of DP
like in the previous proof, the construction of B needs to change slightly. Since corrupt
parties are involved in the final decryption, they will provide partial shares of DPRF too.
Therefore, instead of sending (Challenge, j`?‖α`? , S`? , ∅) to Chal in the forgery step, B will
send (Challenge, j`?‖α`? , S`? , {(i, z?`?,i)i∈S`∩C}) instead, where for ` ∈ [τ ] and i ∈ S` ∩C, z?`,i
is returned by A when j`‖α` is sent to it. This change does not affect the argument that if
AUTH-U outputs 1 with probability ε then B will be able to get a similar advantage in the
pseudorandomness game.

C.4 Proof of Theorem 8.1

Recall that a secure DPRF protocol is supposed to provide consistency and pseudo-randomness
guarantees but not necessarily correctness. First, it is straightforward to see that ΠDDH-DP is
consistent due to the properties of Shamir’s secret sharing.

Pseudorandomness. We show that if the DDH assumption holds in groupG, then ΠDDH-DP

satisfies the pseudorandomness property in the random oracle model. We will go through
several hybrids to establish this. For any PPT adversary A, let us first consider the real game
PseudoRandΠDDH-DP,A(1κ, b). For simplicity, let us denote the game just by PseudoRandA(b).
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PseudoRandA(b) :

1. Give the public parameters pp := (p, g,G) (G is a cyclic group of order p and g is a
generator of G) to A.

2. Program the random oracle H as follows: Initialize LH := ∅. For random oracle call
with input x:

1. If there exists a tuple (x, r, h) ∈ LH , output h.

2. Otherwise, choose r ←$ Zp and set h := gr. Update LH := LH∪(x, r, h) and output
h.

Give random oracle access to A.

3. Choose a (t−1)-degree random polynomial f . Define si := f(i) for i ∈ [n]∪{0}. Get the
set of corrupt parties C from A. Without loss of generality assume that C = {1, . . . `}.
Then send the corresponding secret keys {s1, . . . , s`} to A.

4. On an evaluation query (Eval, x, i) for an honest i, return H(x)si .

5. On the challenge query (Challenge, x?, S, g?1, . . . , g
?
u) for u ≤ ` (without loss of generality

assume that S ∩ C = [u]):

1. If A has already made at least t− |C| queries of the form (Eval, x?, ∗), then output
0 and stop.

2. Otherwise do as follows:

1. Set g?i := H(x?)si for i ∈ S \ C.

2. Depending on b do as follows:

1. If b = 0 then compute z :=
∏
i∈S g

?
i
λ0,i,S .

2. Else, choose a random z ←$ G.

3. Send z to A.

6. Continue answering evaluation queries as before, but if A makes a query of the form
(Eval, x?, i) for some i ∈ [n] \ C and i is the g-th party it contacted, then output 0 and
stop.

7. Receive a guess b′ from A; output b′.

For any adversary A that asks evaluation queries on qE distinct x, we now define hybrid

games Hyb
(k)
A (b) for k ∈ [qE ] and b ∈ {0, 1}. The only difference between Hybk−1

A (b) and
HybkA(b) is the way the evaluation queries for the k-th distinct x are answered. Specifically, in
the k-th hybrid these queries are answered using a randomly chosen (t−1)-degree polynomial
f (k), where evaluations of exactly ` points match with that of “real polynomial” f , and f (k) is
only used to reply to such queries. On the other hand, in the (k−1)-th hybrid the queries on
k-th distinct x are answered according to f itself. However, in both the games the evaluation
queries for the first k− 1 distinct x are answered using randomly chosen polynomials and all
the subsequent queries (for the (k + 1)-th distinct x onwards) are answered using f .

We will formally specify hybrid HybkA(b) now. Differences with the game PseudoRand are
highlighted in red.
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Hyb
(k)
A (b) :

1. Give the public parameters pp := (p, g,G) to A.

2. Program the random oracle H as follows: Initialize LH := ∅. For random oracle call
with input x:

1. If there exists a tuple (x, r, h) ∈ LH, output h.

2. Otherwise, choose r ←$ Zp and set h := gr. Update LH := LH∪(x, r, h) and output
h.

Give random oracle access to A.

3. Choose a (t−1)-degree random polynomial f . Define si := f(i) for i ∈ [n]∪{0}. Get the
set of corrupt parties C from A. Without loss of generality assume that C = {1, . . . `}.
Then send the corresponding secret keys {s1, . . . , s`} to A.

4. Choose k (t − 1)-degree random polynomials f (1), . . . , f (k) with the constraint that for

all i ∈ [`] and all j ∈ [k], f (j)(i) = si. Define s̃
(j)
i = f (j)(i) for i ∈ [n], j ∈ [k].

5. Define a function pc as follows:

pc(x, j, i) :=

{
H(x)s̃

(j)
i if j ≤ k

H(x)si otherwise,

for i ∈ [n].

6. On an evaluation query (Eval, x, i) for an honest i, if x is the j-th distinct value, then
return pc(x, j, i). 11

7. On the challenge query (Challenge, x?, S, g?1, . . . , g
?
u):

1. If x? was queried in the evaluation phase and it was the j-th distinct value, then let
j? := j. Else, let j? := qE + 1.

2. If A has already made at least t− |C| queries of the form (Eval, x?, ∗), then output
0 and stop.

3. Otherwise do as follows:

1. Set g?i := pc(x?, j?, i) for i ∈ S \ C.

2. Depending on b do as follows:

1. If b = 0 then compute z :=
∏
i∈S g

?
i
λ0,i,S .

2. Else, choose a random z ←$ G.

4. Send z to A.

8. Continue answering evaluation queries as before, but if A makes a query of the form
(Eval, x?, i) for some i ∈ [n] \ C and i is the g-th party it contacted, then output 0 and
stop.

11To clarify a bit more, suppose A makes three evaluation queries: (Eval, x1, i1), (Eval, x2, i2) and
(Eval, x1, i3) such that x1 6= x2. For both the first and third queries, j will be 1, and for the second, it
will be 2.
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9. Receive a guess b′ from A; output b′.

It is easy to check that the view of A in Hyb
(0)
A (b) is identical to that in PseudoRandA(b).

We now prove the following lemma.

Lemma C.1 For any b ∈ {0, 1} and k ∈ [qE ], the outputs of hybrids Hyb
(k−1)
A (b) and

Hyb
(k)
A (b) are computationally indistinguishable.

Proof. We show that if there exists a PPT adversary A that can distinguish between the
hybrids Hybk−1

A (b) and HybkA(b) with non-negligible probability then we can construct a PPT
adversary A′ that can break an extended version of the DDH assumption with non-negligible
probability using A as a sub-routine.

A DDH-tuple over a cyclic group G is given by (g, gα, gβ, y) where α, β ←$ Zp and y is
equal to gαβ or a random element in G. The extended version of DDH we consider here is
given by (g, gα0 , gα1 , gαw , gβ, y0, y1, . . . , yw) where yi = gαiβ or random for all i ∈ {0, . . . , w}.
One can easily show that this extended version of DDH follows from DDH itself (with some
polynomial security loss) as long as w is a polynomial.

We now construct A′ as follows:

1. Forward the public parameters pp := (p, g,G) from the DDH challenger to A. Receive a
DDH-tuple (gα, gβ, y) from the DDH challenger.

2. Program the random oracle H as follows: Initialize LH := ∅. Let qH be the total number
of random oracle queries asked in this game. Guess an index η? ←$ [qH] randomly. For
random oracle call with input x,

1. If there exists a tuple (x, r, h) ∈ LH , output h.

2. Otherwise,

1. if this is the η?-th call, set r := ⊥ and h := gβ, where gβ is from the DDH
tuple;

2. else, choose r ←$ Zp and set h := gr.

Update LH := LH ∪ (x, r, h) and output h.

Give random oracle access to A.

3. Get the set of corrupt parties C from A. Without loss of generality assume that C =
{1, . . . `}. Then proceed as follows:

1. Choose random si ←$ Zp and define ĝi := gsi for i ∈ [`].

2. Then let ĝ0 := gα0 and ĝi := gαi for i ∈ [` + 1, t − 1], where gα0 , gα`+1 , . . . , gαt−1

comes from the DDH-tuple. The values α0, s1, . . . , s`, α`+1, . . . , αt−1 define a (t−1)-

degree polynomial f . Setting T := {0} ∪ [t − 1], compute ĝi :=
∏
j∈T ĝ

λi,j,T
j for all

i ∈ {t, . . . , n}.
3. Send {s1 . . . , s`} to A.

4. Choose k−1 (t−1)-degree random polynomials, f (1), . . . , f (k−1) with the constraint that

for all i ∈ [`] and all j ∈ [k− 1], f (j)(i) = si. Define s̃
(j)
i := f (j)(i) for i ∈ [n], j ∈ [k− 1].
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5. Compute ḡi := (gβ)si for all i ∈ [`]. Set ḡ0 := y0 and ḡi := yi for i ∈ [` + 1, t − 1],

where y0, y`+1, . . . , yt−1 are from the DDH-tuple. Then compute ḡi :=
∏
j∈T ḡ

λi,j,T
j for

all i ∈ {t, . . . , n}.

6. Define a function pc as follows. On input (x, i, j) for i ∈ [n], pc first invokes RO on
x. This associates a tuple (x, r, h) with x in LH if there wasn’t one already. Now, pc
returns

− H(x)s̃
(j)
i if j < k,

− ḡi if j = k,

− ĝri if j > k (if r = ⊥, return ⊥).

7. On an evaluation query (Eval, x, i) for an honest i, if x is the j-th distinct value, then
return pc(x, j, i).

8. On the challenge query (Challenge, x?, S, g?1, . . . , g
?
u):

1. If x? was queried in the evaluation phase and it was the j-th distinct value, then let
j? := j. Else, let j? := qE + 1.

2. If A has already made at least t− |C| queries of the form (Eval, x?, ∗), then output
0 and stop.

3. Otherwise do as follows:

1. Set g?i := pc(x?, j?, i) for i ∈ S \ C.

2. Depending on b do as follows:

1. If b = 0 then compute z :=
∏
i∈S g

?
i
λ0,i,S

2. Else, choose a random z ←$ G.

4. Send z to A.

9. Continue answering evaluation queries as before, but if A makes a query of the form
(Eval, x?, i) for some i ∈ [n] \ C and i is the g-th party it contacted, then output 0 and
stop.

10. Receive a guess b′ from A; output b′.

Let xj denote the j-th distinct x on which an evaluation/challenge query is made. Suppose
the first RO query made on xk is the η-th one. Let us consider the case when η? = η. First
of all, pc never returns ⊥ in Step 6. because r is set to ⊥ only for the η?-th call and we have
assumed that this call is for the k-th distinct x. Secondly, note that RO returns gβ when
queried on xk and β is associated with xk only.

Let’s consider the two possibilities for y0, y`+1, . . . , yt−1. When they are equal to gα0β,

gα`+1β, . . ., gαt−1β, respectively, then pc’s return value ḡi on j = k is equal to H(xk)
f (k)(i)

where f (k) is the (t − 1)-degree polynomial that satisfies f (k)(0) = α0, f (k)(1) = s1, . . .,
f (k)(`) = s`, f

(k)(`+ 1) = α`+1, . . ., f (k)(t− 1) = αt−1. This is exactly the same polynomial
f as defined in Step 3.. Thus A′ perfectly simulates Hybk−1

A (b) in this case.
When y0, y`+1, . . . , yt−1 are random, f (k) is a completely random polynomial except that

it “matches” with f on s1, . . . , s`. Thus, in this case, A′ simulates HybkA(b) perfectly.
As a result, when η? = η, which happens with probability 1/qH, A′ distinguishes between

the two possibilities described above with non-negligible probability. Since qH is polynomial
in the security parameter, this breaks the (extended version of) DDH assumption.
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Now, we claim that the views of any adversary in the games Hyb
(qE)
A (0) and Hyb

(qE)
A (1)

are statistically close. Irrespective of whether x? is queried in the evaluation phase or not,
a unique (t − 1)-degree polynomial, say f ′, is used for it. f ′ “matches” with any other
polynomial only on 1, . . . , `, and is completely random otherwise. Adversary is allowed to
make up to g − 1 = t − ` − 1 evaluation queries on x?. Thus, it could learn H(x?)f

′(i) for
g − 1 additional values of i. In total, information-theoretically, adversary learns the value
of f ′ on at most t − 1 points. As a result, the product

∏
i∈S g

?
i
λ0,i,S (|S| ≥ t) computed in

the b = 0 case has at least one g?i for which adversary has no information. So the product
appears random to the adversary, making the b = 0 case indistinguishable from b = 1.

C.5 Proof of Theorem 8.2

A strongly secure DPRF needs to be consistent, pseudorandom and correct. Consistency
easily follows from the properties of Shamir’s secret sharing and completeness of NIZK.

Pseudorandomness. The overall approach is the same as the proof of Theorem 8.1 in
Appendix C.4 but due to the presence NIZK and commitments, we need to go through a
couple of hybrids. We will use the zero-knowledge property of NIZKs to simulate proofs and
the trapdoor property of commitments to produce fake commitments.

Let PseudoRand′A(b) be a shorthand for the game PseudoRandΠZK-DDH-DP,A(1κ, b). We first
describe this game in detail, highlighting differences from the game PseudoRandA(b) of Ap-
pendix C.4.

PseudoRand′A(b) :

1. Let G be a cyclic group of order p and g a generator of G. Sample s ←$ Zp and
get (s1, . . . , sn) ← SSS(n, t, p, s). Run Setupcom(1κ) to get ppcom. Compute a com-
mitment γi := Com(si, ppcom; ri) by picking ri at random. Send public parameters
pp = (p, g,G, γ1, . . . , γn, ppcom) to A.

2. Get the set of corrupt parties C from A. Without loss of generality assume that C =
{1, . . . `}. Send the corresponding secret keys {(s1, r1), . . . , (s`, r`)} to A.

3. On an evaluation query (Eval, x, i) for an honest i, compute w := H(x) and hi := wsi .
Run ProveH

′
with the statement stmti: {∃s, r s.t. hi = ws ∧ γi = Com(s, ppcom; r)} and

witness (si, ri) to obtain a proof πi. Return ((w, hi), πi) to A.

4. On the challenge query (Challenge, x?, S, ((w, g?1), π1), . . . , ((w, g?u), πu)) for u ≤ ` (with-
out loss of generality assume that S ∩ C = [u]):

1. If A has already made at least t− |C| queries of the form (Eval, x?, ∗), then output
0 and stop.

2. Otherwise do as follows:

1. If VerifyH
′
(stmti, πi) 6= 1 for any i ∈ [u], output 0 and stop.

2. Set g?i := H(x?)si for i ∈ S \ C.

3. Depending on b do as follows:

1. If b = 0 then compute z :=
∏
i∈S g

?
i
λ0,i,S .

2. Else, choose a random z ←$ G.
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3. Send z to A.

5. Continue answering evaluation queries as before, but if A makes a query of the form
(Eval, x?, i) for some i ∈ [n] \ C and i is the g-th party it contacted, then output 0 and
stop.

6. Receive a guess b′ from A; output b′.

First hybrid. Define a hybrid Hyb
(zk)
A (b) which is similar to PseudoRand′A(b) except that real

proofs πi in Step 3. and 5. are replaced with simulated proofs. (As a result, the witness

(si, ri) is not needed anymore.) PseudoRand′A(b) is indistinguishable from Hyb
(zk)
A (b) for any

PPT A and b ∈ {0, 1} due to the zero-knowledge property of NIZKs.

Second hybrid. Define a hybrid Hyb
(com)
A (b) which is similar to the previous one except:

− In step 1., SimSetup of TDC is run to get (pp′com, τcom), ppcom is replaced by pp′com in the
public parameters, and γi becomes a commitment to some fixed value s? for all i ∈ [n].

− In step 2., SimOpen(pp′com, τcom, si, (s
?, ri)) is run to get randomness r′i, and (s1, r

′
1), . . . ,

(s`, r
′
`) is sent to A.

One can see that Hyb
(zk)
A (b) is indistinguishable from Hyb

(com)
A (b) for any PPTA and b ∈ {0, 1}

due to the trapdoor property of commitments.

Reduction. We now show that if a PPT adversary A can distinguish between the b = 0
and b = 1 cases in the hybrid game above with a non-negligible probability, then one
can build a PPT adversary A′ to break the pseudorandomness property of the scheme
ΠDDH-DP, which would be in contradiction to Theorem 8.1. Let Chal denote the challenger in
PseudoRandΠDDH-DP,A′(1

κ, b), described in Appendix C.4 using the shorthand PseudoRandA′(b).
We construct A′ as follows:

− Get group parameters (p, g,G) from Chal. Run SimSetup of TDC to get pp′com and τcom.
Generate n commitments γ′1, . . . , γ

′
n to the fixed value s? using randomness r1, . . . , rn.

Send (p, g,G, γ′1, . . . , γ
′
n, pp

′
com) to A.

− Get the set of corrupt parties C = {1, . . . , `} from A. Pass it along to Chal and get
back shares s1, . . . , s`. Run SimOpen(pp′com, τcom, si, (~0, ri)) to get randomness r′i. Send
(s1, r

′
1), . . . , (s`, r

′
`) to A.

− On an evaluation query (Eval, x, i) for an honest i from A, send the same query to Chal
and get back hi. Compute w := H(x) and a simulated proof π′i. Return ((w, hi), π

′
i) to

A.

− On the challenge query (Challenge, x?, S, ((w, g?1), π1), . . . , ((w, g?u), πu)) from A, if A
has already made at least t − |C| queries of the form (Eval, x?, ∗) or one of the proofs
does not verify, then output 0 and stop. Query Chal with (Challenge, x?, S, g?1, . . . , g

?
u)

and get back z. Return z to A.

− Continue answering evaluation queries as before, but if A makes a query of the form
(Eval, x?, i) for some i ∈ [n] \ C and i is the g-th party it contacted, then output 0 and
stop.
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− Receive a guess b′ from A; output b′.

Observe that for b ∈ {0, 1}, when A′ is in the game PseudoRandA′(b), the view of A in

the reduction is exactly the same as that in Hyb
(com)
A (b). Thus, if the output of Hyb

(com)
A (0)

is computationally distinguishable from Hyb
(com)
A (1), the output of PseudoRandA′(0) would

also be so from PseudoRandA′(1).

Correctness. To prove correctness of ΠZK-DDH-DP, we will exploit the extractibility prop-
erty of proofs and the binding property of commitments. We first describe the correctness
game (Definition 5.4) in detail. (The first three steps are same as that of PseudoRand′A(b) in
Appendix C.5.)

1. Let G be a cyclic group of order p and g a generator of G. Sample s ←$ Zp and
get (s1, . . . , sn) ← SSS(n, t, p, s). Run Setupcom(1κ) to get ppcom. Compute a com-
mitment γi := Com(si, ppcom; ri) by picking ri at random. Send public parameters
pp = (p, g,G, γ1, . . . , γn, ppcom) to A.

2. Get the set of corrupt parties C from A. Without loss of generality assume that C =
{1, . . . `}. Send the corresponding secret keys {(s1, r1), . . . , (s`, r`)} to A.

3. On an evaluation query (Eval, x, i) for an honest i, compute w := H(x) and hi := wsi .
Run ProveH

′
with the statement stmti: {∃s, r s.t. hi = ws ∧ γi = Com(s, ppcom; r)} and

witness (si, ri) to obtain a proof πi. Return ((w, hi), πi) to A.

4. On the challenge query (Challenge, x?, S, ((w, g?1), π1), . . . , ((w, g?u), πu)) for u ≤ ` (with-
out loss of generality assume that S ∩ C = [u]):

1. If |S| < t or any of π1, . . . , πu do not verify, output 1.

2. Else, compute gj := H(x?)sj for j ∈ S, g?i := H(x?)si for i ∈ S \C, z :=
∏
i∈S gi

λ0,i,S

and z? :=
∏
i∈S g

?
i
λ0,i,S . If z? = z, output 1.

3. Else, output 0.

Suppose there exists an adversary A s.t. the correctness game reaches the very last step
(3.), leading the challenger to output 0, with non-negligible probability. We will show that
this leads to a contradiction. Towards this, we define a few intermediate hybrid games. In
the first hybrid game, the hash function H′ is replaced with the simulator S1 guaranteed by
the zero-knowledge property of NIZK.

In the second hybrid, instead of producing a zero in the very last step (3.), the challenger:

− finds an i? ∈ [u] s.t. g?i? 6= gi? (such an i? exists because z? 6= z);

− invokes the extractor E guaranteed by the argument of knowledge property on the adver-
sary with inputs (stmti? , πi? , Q) (Q is the list of queries made to S1 and their responses);
and,

− outputs whatever the extractor does.

If the first hybrid game reaches the very last step, it means that all the proofs provided by A
were valid. Thus, if the game outputs 0 with non-negligible probability, the challenger will
output a witness (s′i? , r

′
i?) for stmti with non-negligible probability.
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In the last hybrid, the challenger outputs (si? , ri?) along with the extracted witness. Since
g?i? 6= gi? , s′i? 6= si? . Therefore, the challenger finds two distinct pairs (si? , ri?) and (s′i? , r

′
i?)

that produce the same committed value (with non-negligible probability). This breaks the
binding property of TDC.

C.6 Proof of Theorem 8.4

First observe that the consistency property is trivially true. Next, we construct a PPT
adversary B that breaks the security of PRF f if there exists a PPT adversary A that gains
a non-negligible advantage in the pseudo-randomness game PseudoRand.
B gets access to fk? for a randomly chosen k? in the PRF game. It can make an arbitrary

polynomial number of queries to fk? , and output a value x? at some point. Then, B is
supposed to distinguish between fk?(x?) and a random value from the range of f , provided
that x? was never queried. Let γ denote the PRF challenge.

Note that in PseudoRand adversary is allowed to query on the challenge input in the
evaluation phase, but it must make less than t − |C| queries, where C denotes the set of
corrupt parties. Therefore, there is a set of size n − t + 1 honest parties that the adversary
never queries. We denote this set by D?. In the following reduction, B will guess this set
at the beginning of the game, and (implicitly) set the key for it to be k?. Recall that we
have assumed that d :=

(
n

n−t+1

)
is polynomial in the security parameter. So we only suffer a

polynomial loss in the security reduction.
B plays the role of challenger in PseudoRand with A as follows:

− Initialization and corruption. Define d and D1, . . . , Dd in the same manner as Setup.
Pick a subset D? of [n] \ C of size n− t+ 1 at random. Implicitly set the key for D? to
be k?. Pick all the other PRF keys at random, use them to define {SKj}j∈C , and give
{SKj}j∈C to A. Initialize list L and gap g as in PseudoRand. Add elements to L in the
same way as well.

− Pre-challenge evaluation queries. Let (Eval, x, i) be an evaluation query for some i ∈
[n] \ C. Send hi,k := fk(x) for all k ∈ SKi to A. When k = k?, query the PRF to get
fk?(x).

− Challenge. Let (Challenge, x?, S, {(i, z?i )}i∈U ) such that |S| ≥ t and U ⊆ S ∩ C be the
challenge query. If x? ∈ L, output 0 and stop. Let V be the set of parties queried
on x? in the previous phase. If V ∩ D? 6= ∅, then abort. Else, output x? to the PRF
challenger and get γ in return. For i ∈ S \U , compute zi by evaluating hi,k := fk(x) for
all k ∈ SKi. Whenever k = k? in these evaluations, use γ as the value for fk?(x?). Send
z? := Combine({(i, zi)}i∈S\U ∪ {(i, z?i )}i∈U , pp) to A.

− Post-challenge evaluation queries. Same as before. If at any point A makes a query of
type (Eval, x?, i) for some i ∈ [n] \ C so that i ∈ D?, then abort.

− Guess. Finally, A returns a guess b′. Output b′.

As long as B does not abort, it perfectly simulates PseudoRand for A. If γ = fk?(x?), then
A gets the view with b = 0, and if γ is random, then A gets the view with b = 1.
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