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Abstract. Reduced-round AES has been a popular underlying primi-
tive to design new cryptographic schemes and thus its security including
distinguishing properties deserves more attention. At Crypto’16, a key-
dependent integral distinguisher on 5-round AES was put forward, which
opened up a new direction to take more insights into the distinguishing
properties of AES. After that, two key-dependent impossible differen-
tial (ID) distinguishers on 5-round AES were proposed at FSE’16 and
CT-RSA’18, respectively. It is strange that the current key-dependent
integral distinguisher requires significantly higher complexities than the
key-dependent ID distinguishers, even though they are constructed with
the same property of MixColumns (2128 � 298.2). Proposers of the 5-
round key-dependent distinguishers claimed that the corresponding in-
tegral and ID distinguishers can only work under chosen-ciphertext and
chosen-plaintext settings, respectively, which is very different from the
situations of traditional key-independent distinguishers.

In this paper, we first construct a novel key-dependent integral dis-
tinguisher on 5-round AES with 296 chosen plaintexts, which is much
better than the previous key-dependent integral distinguisher that re-
quires the full codebook proposed at Crypto’16. Secondly, We show
that both distinguishers are valid under either chosen-plaintext setting
or chosen-ciphertext setting, which is different from the claims of pre-
vious cryptanalysis. However, under different settings, complexities of
key-dependent integral distinguishers are very different while those of
the key-dependent ID distinguishers are almost the same. We analyze
the reasons for it.
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1 Introduction

1.1 Background

In symmetric-key cryptanalysis, one usually starts by identifying a distinguish-
er on the reduced-round target cipher and then proceeds with the key-recovery
attack for more rounds. Besides the key recovery, the distinguishing proper-
ty of some cryptographic schemes itself has been more and more important
because many of new ciphers are designed based on well-studied schemes. A-
mong these underlying primitives, reduced-round Advanced Encryption Stan-
dard (AES) [4] is a very popular choice. In one hand, the security of reduced-
round AES has been analyzed a lot and in the other hand, processor man-
ufactures provided single round instruction for AES, which much encourages
researchers to rely on them for new designs. For example, the authentication
encryption algorithm AEGIS [14] uses four rounds of AES in the state update
functions and ELmd [5] suggests using some reduced-round including 5-round
AES. Although the security of these schemes does not completely depend on the
basic primitives, it is useful to understand them more deeply by studying the
reduced-round AES.

Many distinguishers on reduced-round AES have been proposed and used to
evaluate its security for different number of rounds. Traditional distinguishers
can only cover four or less rounds [1, 2, 4, 6, 8, 10]. At Crypto’16, Sun et al. pro-
posed the first 5-round zero-correlation (ZC) linear hull and transformed it into
a 5-round integral distinguisher. Then, with the statistical integral technique
presented at FSE’16 [13], Cui et al. gave an attack on 5-round AES [3]. In
[7, 8], 5-round ID distinguishers were put forward by Grassi et al. In all, the
5-round ZC linear hull, integral, statistical integral and ID distinguishers are
all key-dependent, which are valid only if the conditions of keys are satisfied.
Later, the first key-independent 5-round distinguisher, named multiple-of-n dis-
tinguisher, was given in [9]. This distinguisher has a key-dependent variant based
on the multiple-of-n property [7]. More recently, an interesting adaptive chosen-
plaintext-ciphertext distinguisher Yoyo was proposed to mount a distinguishing
attack [11] on reduced-round AES.

This paper focuses on the key-dependent distinguishers on 5-round AES.
Key-dependent distinguishers can be regarded as “something in the middle”
between secret-key distinguishers and key recovery attacks. Although the com-
plexities of the key-dependent integral and ID distinguishers are higher than that
of the multiple-of-n or Yoyo distinguisher, more insights for structural properties
of AES such as the details of MixColumns (MC) matrix can be identified, which
is based on the fact that all public key-dependent distinguishers on 5-round AES
are based on the details of coefficients of this matrix.

Among key-dependent distinguishers on 5-round AES, there is a big gap be-
tween the complexities of the integral and ID distinguishers. Even with the same
property (Property 1 which we will introduce in Section 2.3) of MC matrix, the
integral distinguisher requires the whole codebook, while the ID distinguish-
er just needs 298.2 chosen plaintexts. Moreover, it is claimed that the integral
distinguisher proceeds only under chosen-ciphertext setting in [12] and the ID
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distinguishers work only under chosen-plaintext model in [7, 8], because these
two kinds of distinguishers are based or Property 1 or Property 2 of MC matrix
(introduced in Section 2) but MC−1 matrix does not have such properties.

It is strange that the key-dependent integral and ID distinguishers can work
only under specific scenarios, which is a limitation for key-dependent distin-
guishers. This paper investigates the principles behind the phenomenon and try
to remove the limitations. The key-dependent integral distinguisher proposed
at Crypto’16 requires the whole codebook and 2128 memory accesses. However,
a distinguisher that requires the full codebook is usually thought as a trivial
attack. Thus, we hope to reduce the complexities of the key-dependent integral
distinguisher.

1.2 Contributions

The contributions of this paper are two-fold as follows:

Improved Key-Dependent Integral Distinguisher on 5-Round AES.
Key-dependent integral distinguisher on 5-round AES [12] is derived by setting
the constraints on the ciphertexts and requires the whole codebook. We con-
struct a new integral distinguisher with only 296 chosen plaintexts. Both our
distinguisher and the one in [12] take advantage of the same property of MC
matrix. In addition, our distinguisher works under the chosen-plaintext setting
instead of the chosen-ciphertext setting. The complexities of chosen-plaintext
and chosen-ciphertext key-dependent integral distinguishers are very different.
We find that the reason lies on the addition of the last round key. Under chosen-
ciphertext setting, we have to guess one byte of key information to achieve the
attack while we avoid it under the chosen-plaintext setting.

Key-Dependent ID Distinguishers on 5-Round AES under Chosen-
Ciphertext Setting. We transform the chosen-plaintext key-dependent ID
distinguishers into chosen-ciphertext ones, which extends the attacks presented
in [7, 8]. Both the distinguisher with 298.2 chosen plaintexts in [8] and the one
with 276.4 chosen plaintexts in [7] can be transformed into new ID distinguish-
ers with 299.6 and 276.5 chosen ciphertexts, respectively. The key-dependent ID
distinguishers have slightly different complexities under different attacking sci-
enarios. As the case for integral distinguishers, we analyze the influences of the
key addition operation which the key-dependent ID distinguishers depend on.

The complexities of key-dependent integral and ID distinguishers under different
models are listed in Table 1.

1.3 Outline of This Paper

In Section 2, some preliminaries are given. Then, we present new key-dependent
integral distinguishers on 5-round AES in Section 3. In Section 4, we give the
ID distinguishers on 5-round AES under chosen-ciphertext setting. At last, we
conclude this paper in Section 5.
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Table 1: Key-Dependent Integral and ID Distinguishers on 5-round AES.
Distinguisher Property of MC Scenario Data Time (MA) Reference

Integral Property 1
CC 2128 2128 [12]
CP 296 296 Sect.3

ID Property 1
CP 298.2 2107 [8]
CC 299.6 2103.6 Sect.4

ID Property 2
CP 276.4 281.5 [7]
CC 276.5 280.5 Sect.4

– CP: Chosen-Plaintext CC: Chosen-Ciphertext MA: Memory Access

2 Preliminaries

2.1 Notations

To make the description clear and concise, we list some notations used in this
paper as follows.

– P : plaintext;

– C : ciphertext;

– Kr : round key of the r-th round and the whitening key is K0;

– Xr,OP : the state after OP operation of the r-th round. e.g. X4,MC is the
state after the MixColumns operation of the fourth round function, the state
after the whitening key addition is denoted as X0,AK ;

– Xi,j , i, j = 0, 1, 2, 3 : the byte in the i-th row and j-th column of the state
X.

– OPr : the OP operation of the r-th round, AK0 means the AddRoundKey
operation with the whitening key.

2.2 Description of AES

AES [4] is a 128-bit iterative block cipher that adopts substitution-permutation
network (SPN). It has three versions according to the size of key, namely AES-
128, -192 and -256, respectively, whose total rounds Nr are 10, 12 and 14 indi-
vidually. The 128-bit internal state of AES can be regarded as a 4 × 4 matrix,
each cell of which is an 8-bit value. All operations in AES are defined in the
finite field GF (28) whose irreducible polynomial is m(x) = x8 + x4 + x3 + x+ 1.
Each round function R(x) = AK ◦MC ◦ SR ◦ SB(x) has four components as
follows.

– SubBytes (SB): A nonlinear bijective mapping S : F8
2 → F8

2 on each byte of
the state;

– ShiftRows (SR): Left rotate the i-th row by i bytes, where i = 0, 1, 2, 3;
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– MixColumns (MC): Left multiply with an MDS matrix over the field GF (28)
on each column. The matrices used in the MC operation and its reverse
operation MC−1 are

MC =


0x2 0x3 0x1 0x1
0x1 0x2 0x3 0x1
0x1 0x1 0x2 0x3
0x3 0x1 0x1 0x2

 and MC−1 =


0xe 0xb 0xd 0x9
0x9 0xe 0xb 0xd
0xd 0x9 0xe 0xb
0xb 0xd 0x9 0xe

 ;

– AddRoundKey (AK): XOR with a round key.

We can change the orders of MC and AK operations in some situations, i.e.
R(x) = MC ◦ EAK ◦ SR ◦ SB(x), where MC ◦ EAK = AK ◦MC. Note that
there is a whitening key XORed with plaintext before the first round function
and the MC operation in the last round is omitted.

For decryption process, Nr reverse rounds are applied to the ciphertext ma-
trix. Each reverse round function applies four reverse operations: InvSubBytes(SB−1),
InvShiftRows(SR−1), InvMixColumns(MC−1) and InvAddRoundKey(AK−1).

2.3 Previous Integral and ID Distinguishers on 5-Round AES

In this subsection, we recall the previous key-dependent integral and ID distin-
guishers on 5 rounds of AES [12, 8, 7]. The key techniques for these distinguishers
are that they take advantage of the properties of MC matrix and manage to
extend the known 4-round distinguishers one more round. We conclude the prop-
erties as follows.

Property 1. The matrix of MC operation has two equal coefficients in each row
or each column, i.e, the MC matrix of AES has two elements equal to 1 in each
row or each column.

Property 2. The matrix of MC operation has two rows satisfying Equation (1)
or two columns satisfying Equation (2).{

MC[i1, j]⊕MC[i1, k]⊕MC[i1, l] = 0,

MC[i2, j]⊕MC[i2, k]⊕MC[i2, l] = 0.
(1)

{
MC[j, i1]⊕MC[k, i1]⊕MC[l, i1] = 0,

MC[j, i2]⊕MC[k, i2]⊕MC[l, i2] = 0.
(2)

where i1 6= i2, j 6= k 6= l, 0 ≤ i1, i2, j, k, l ≤ 3.

Integral Distinguisher on 5-Round AES [12]. The 5-round integral dis-
tinguisher is transformed from a 5-round ZC linear hull based on Property 1 by
setting a specific condition on ciphertexts. The ZC linear hull is illustrated in
Proposition 1 and Fig. 4 in Appendix D.
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Proposition 1. Divide the whole ciphertext-plaintext space into 28 sets accord-
ing to the value of C0,0 ⊕ C1,3 as

V∆ = {(C,P )|C0,0 ⊕ C1,3 = ∆,∆ ∈ F8
2}.

If the input mask Γin on ciphertext and output mask Γout on plaintext are as
follows,

Γin = (αi,j), 0 6 i, j 6 3, αi,j =

{
a, if (i, j) ∈ {(0, 0), (1, 3)};
0, otherwise.

Γout = (βi,j), 0 6 i, j 6 3, βi,j =

{
nonzero, if (i, j) = (0, 0);

0, otherwise.

where a ∈ F8
2\{0}.

Then (Γin → Γout) is a 5-round ZC linear hull when the ciphertexts are
chosen from one specific set of V∆, ∆ = K5

0,0 ⊕K5
1,3.

Bogdanov et al. proposed a link between ZC linear hull and integral distin-
guisher in [2], which is summarized in Theorem 1.

Theorem 1 (From [2]). Assume H : Fs2×Ft2 → Fu2 ×Fv2 is (part of) a cipher,
without loss of generality, we can decompose the cipher and define the part cipher
as

H(x, y) =

(
H1(x, y)
H2(x, y)

)
, H1 : Fs2 × Ft2 → Fu2 , H2 : Fs2 × Ft2 → Fv2.

If we fix the t bits of input value as λ and consider only u bits of the output
value, we can construct another function Tλ(x) : Fs2 → Fu2 as follows

Tλ(x) = H1(x, λ).

When the input and output linear masks a and b are independent, the approxima-
tion b·H(x)⊕a·x has correlation zero for any a = (a1, 0) and any b = (b1, 0) 6= 0
(zero-correlation) if and only if the function Tλ is balanced for any λ (integral).

With Theorem 1, one ZC linear hull on 5-round AES can be transformed
into an integral distinguisher, which is shown in Proposition 2.

Proposition 2. Divide the whole ciphertext-plaintext space into 28 sets

V∆ = {(C,P )|C0,0 ⊕ C1,3 = ∆,∆ ∈ F8
2}.

There is always one ∆ such that

T∆ =
∑

(C,P )∈V∆

P = 0.

Note that this 5-round integral distinguisher requires the full codebook.
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ID Distinguishers on 5-Round AES [7, 8]. The first ID distinguisher on
5-round AES [8] is similar to the 5-round integral one [12]. It manages to extend
the traditional 4-round impossible distinguisher one more round. This 5-round
ID (see Fig. 5 in Appendix D) is summarized in Proposition 3.

Proposition 3. For plaintexts in the sets

V∆ = {(P l, Cl), l = 0, 1, 2, · · · , 255|P l0,0 ⊕ P l1,1 = ∆, ∀l and

P li,j = Pmi,j ∀(i, j) /∈ {(0, 0), (1, 1)} and l 6= m},

there is always one ∆ such that the difference of any two corresponding cipher-
texts after 5-round AES encryption cannot be inactive in three reverse-diagonals
at the same time.

This ID distinguisher requires 298.2 chosen plaintexts with success rate 95%.

The second ID distinguisher based on Property 2 was proposed in [7], which
requires 276.4 chosen plaintexts. It is illustrated in Proposition 4 and shown in
Fig. 6 in Appendix D.

Proposition 4. For plaintexts in the sets

A(∆1,∆2) = {(P l, Cl) l = 0, 1, · · · , 255| P l0,0⊕P l1,1 = ∆1 ∀i, P l0,0⊕P l2,2 = ∆2 ∀i
and P li,j = Pmi,j ∀(i, j) /∈ {(0, 0), (1, 1), (2, 2)} and l 6= m}

there is always one tuple of (∆1, ∆2) that the difference of ciphertexts after 5-
round AES encryption cannot be inactive in two reverse-diagonals in the same
time.

This distinguisher requires 276.4 chosen plaintexts with success rate 95%.

3 Improved Integral Distinguishers on AES

The 5-round integral distinguisher based on Property 1 proposed in [12] requires
the whole codebook, which will limit its contribution. However, we can improve
this distinguisher by significantly reducing data and time complexities. In Section
3.1, we put forward an improved 5-round integral distinguisher based on Prop-
erty 1 with 296 chosen plaintexts, which is the longest integral distinguisher on
AES as far as we know. In fact, our attack can be regarded as a chosen-plaintext
counterpart of the distinguisher in [12]. Interestingly, the data complexities are
very different between the two distinguishers. In Section 3.2, we discuss the rea-
son why there is such a big gap between the data complexities. Originally, we
plan to construct the key-dependent integral distinguisher based on Property 2
which was already used in building the key-dependent ID distinguisher, but we
fail to do it. We discuss the reasons for it in Appendix A.
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3.1 Improved Key-Dependent Integral Distinguisher on 5-Round
AES

The 5-round integral distinguisher in [12] requires the whole codebook while the
ID distinguisher in [8] needs only 298.2 chosen plaintexts. Both distinguishers use
Property 1 of MC matrix. There is a big gap for complexities between them. In
this section, we will propose an improved integral distinguisher to eliminate or
narrow this gap.

Fig. 1: 5-Round ZC Linear Hull of AES.

In order to improve the 5-round integral distinguisher, we first construct a
novel 4-round integral distinguisher on AES summarized in Lemma 1, which is
transformed from a 4-round ZC linear hull shown in Fig. 1 (from Round 1 to
Round 4), whose input mask Γin and output mask Γout are as follows.

Γin = (αi,j), 0 6 i, j 6 3, αi,j =

{
nonzero if (i, j) ∈ {(0, 0), (1, 1), (2, 2), (3, 3)},
0 otherwise

.

(3)

Γout = (βi,j), 0 6 i, j 6 3, βi,j =

{
b if (i, j) ∈ {(0, 0), (1, 0)},
0 otherwise

, b ∈ F8
2. (4)
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Lemma 1. For 4-round AES with MC operation in the last round, if we take
all 296 plaintexts P by fixing (P0,0, P1,1, P2,2, P3,3) as constant, each value of
C0,0 ⊕ C1,0 ∈ F8

2 of ciphertexts appears 288 times.

Proof. As shown in Fig. 1, Γin and Γout (Equation (3) and (4)) are independent
and lead to a ZC linear hull on 4 rounds of AES. According to Theorem 1,

– Γin can be denoted as (a, 0), where a can be any value in F32
2 ;

– Γout can be denoted as (b, b, 0), where b can be any value in F8
2\{0}.

Since it is required that Γout should be any value except 0, we proceed with some
transformations on the output of 4-round AES in order to satisfy the conditions
of Theorem 1.

Firstly, we can rewrite 4-round AES as a function H with two inputs and
three outputs:

H(x, y) = (H1(x, y), H2(x, y), H3(x, y)).

where x = (P0,0, P1,1, P2,2, P3,3), y is the concatenated value of other 12 bytes
of plaintext, (H1(x, y), H2(x, y)) = (C0,0, C1,0) and H3(x, y) is the concatenated
value of other 14 bytes.

We can produce a new function H ′ based on the function H with the same
inputs:

H ′(x, y) = (H1(x, y)⊕H2(x, y), H3(x, y)).

Then for the new function H ′, we derive that the linear approximation with
Γin = (a, 0) and Γout = (b, 0) has correlation zero, where a can be any value in
F32
2 and b can be any value in F8

2\{0}.
With Theorem 1, we can transform the ZC linear approximation on H ′

into an integral distinguisher, i.e. if we take all 296 plaintexts P by fixing
(P0,0, P1,1, P2,2, P3,3) as constant, the values of H1(x, y)⊕H2(x, y) are balanced,
which means that each value of C0,0 ⊕ C1,0 ∈ F8

2 of ciphertexts appears 288

times. ut

Based on Lemma 1, we can add one more round behind the 4-round integral
distinguisher to deduce a 5-round integral distinguisher by the idea of Lemma 2
as follows.

Lemma 2. For one-round AES without MC operation (i.e. AK ◦ SR ◦ SB), if
we take N plaintexts P where N1 plaintexts satisfy P0,0 ⊕ P1,0 = 0, then there
must be at least one δ ∈ F8

2 such that the number of ciphertexts C satisfying
C0,0 ⊕ C1,3 = δ is exactly N1 with probability 1.

Proof. Due to the bijective mapping S-box S, we have

S(P0,0)⊕ S(P1,0) =

{
0, if P0,0 ⊕ P1,0 = 0,

nonzero, if P0,0 ⊕ P1,0 6= 0.

After SB operation, there are exactly N1 values of X1,SB satisfying X1,SB
0,0 ⊕

X1,SB
1,0 = 0, which leads C0,0 ⊕ C1,3 = K1

0,0 ⊕K1
1,3 as well. Let δ = K1

0,0 ⊕K1
1,3,

thus C0,0 ⊕ C1,3 = δ happens exactly N1 times. ut
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With Lemma 1 and Lemma 2, our new 5-round integral distinguisher on AES
is summarized in Proposition 5.

Proposition 5. Taking all 296 plaintexts P by fixing (P0,0, P1,1, P2,2, P3,3) as
constant, after 5-round AES encryption, there is at least one δ ∈ F8

2 such that
the number of ciphertexts satisfying C0,0 ⊕ C1,3 = δ is exactly 288. Meanwhile,
for any random permutation, the same event happens with probability only about
2−40.7.

Proof. For 5-round AES, X4,AK
0,0 ⊕ X4,AK

1,0 = 0 happens 288 (out of 296) times

according to Lemma 1. Then due to Lemma 2, N = 296 and N1 = 288, so there
is one δ such that C0,0 ⊕ C1,3 = δ happens exactly 288 times.

For a random permutation, the number Nδ of ciphertexts satisfying C0,0 ⊕
C1,3 = δ for a fixed δ follows the binomial distribution

Nδ ∼ B(296, 2−8).

According to the Central Limit Theorem, the normal distribution can approxi-
mate the binomial distribution in this situation. Now

Nδ ∼ N (288, 296 × 2−8 × (1− 2−8)).

Therefore, p(Nδ = 288) ≈ 2−48.64. Because of 28 possible values for δ, the proba-
bility that there is at least one value for δ satisfying Nδ = 288 is 1− (1− p(Nδ =

288))2
8 ≈ 2−40.7. ut

The whole process of the integral distinguishing attack on 5-round AES is
illustrated in Algorithm 1.

Algorithm 1: Improved 5-Round Integral Distinguisher on AES

Input: 296 plaintexts P i, i = 0, 1, 2, . . . , 296 − 1
Output: 5-Round AES or Random Permutation

1 Set one 8-bit vector counter V [256] and initialize it as zero;

2 for Each P i of 296 plaintexts do
3 Query its ciphertext Ci and calculate δ = Ci

0,0 ⊕ Ci
1,3;

4 Let V [δ] = V [δ] + 1;

5 for Each δ ∈ F8
2 do

6 if V [δ]=288 then
7 return 5-Round AES;

8 return Random Permutation;

In Algorithm 1, the data complexity is 296 chosen plaintexts and the time
complexity is about 296 memory accesses. Since we set a 28 vector counter, the
memory requirements are 28 which can be ignored. The type-II error probability
(the probability to wrongfully accept a random permutation as AES) is 2−40.7.
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3.2 Gap for Complexities between Chosen-Plaintext and
Chosen-Ciphertext Integral Distinguishers

Interestingly, there exists a gap between the complexities of chosen-plaintext and
chosen-ciphertext integral distinguishers although they are constructed from a
same (or similar) ZC linear hull.

Fig. 2: 5-Round Integral Distinguisher with(out) AK5.

In the chosen-ciphertext integral distinguisher, we need to guess one byte of
K5

0,0 ⊕K5
1,3, which increases the complexities by a factor of 28. This inspires us

that the AK operation which the integral distinguisher depends on, i.e. AK5,
influences the complexities. In this subsection, we investigate the influences of
AK5 on complexities by considering chosen-ciphertext and chosen-plaintext inte-
gral distinguishers on 5-round AES with and without AK5, respectively. Notice
that we use a general variant of the key-dependent integral distinguisher with
four active masks on plaintext bytes (see Fig. 2).

Under Chosen-Ciphertext Setting. If we omit the operation AK5 (the en-
closure area by dotted line in Fig. 2) and decrypt from X5,SR in subspace VX5,SR

as follows to the plaintext P

VX5,SR = {(X5,SR, P ) | X5,SR
0,0 = X5,SR

1,3 , X5,SR
0,1 = X5,SR

3,2 , X5,SR
2,0 = X5,SR

3,3 ,

X5,SR
1,2 = X5,SR

2,1 , X5,SR
i,j ∈ F8

2, 0 6 i, j 6 3},

11



we can construct a chosen-ciphertext integral distinguisher whose corresponding
plaintexts satisfy the balance property, i.e. each possible value of plaintext byte
has the same number of occurrences. Since the size of VX5,SR is 296, this integral
distinguisher requires data complexity 296 chosen ciphertexts.

If the operation AK5 is included into the distinguisher (whole area in Fig.
2), we have to take a subspace of ciphertexts VC which can produce VX5,SR after
the proceeding with the AK−15 . Thus the set VC must be

VC = {(C,P ) | C0,0 ⊕ C1,3 = K5
0,0 ⊕K5

1,3, C0,1 ⊕ C3,2 = K5
0,1 ⊕K5

3,2,

C2,0 ⊕ C3,3 = K5
2,0 ⊕K5

3,3, C1,2 ⊕ C2,1 = K5
1,2 ⊕K5

2,1, Ci,j ∈ F8
2, 0 6 i, j 6 3}.

However, the exact values of K5
0,0⊕K5

1,3, K5
0,1⊕K5

3,2, K5
2,0⊕K5

3,3 and K5
1,2⊕K5

2,1

are unknown, so we have to take the whole space of (C,P ) and divide it into 232

subspaces as follows:

V∆0,∆1,∆2,∆3
= {(C,P ) | C0,0⊕C1,3 = ∆0, C0,1⊕C3,2 = ∆1, C2,0⊕C3,3 = ∆2,

C1,2 ⊕ C2,1 = ∆3, Ci,j ∈ F8
2, 0 6 i, j 6 3},

with ∆i ∈ F8
2, 0 6 i 6 3.

There is always one tuple of (∆0, ∆1, ∆2, ∆3) equal to (K5
0,0 ⊕K5

1,3,K
5
0,1 ⊕

K5
3,2,K

5
2,0⊕K5

3,3,K
5
1,2⊕K5

2,1) and thus the data complexity becomes 2128 instead
of 296 chosen ciphertexts.

Under Chosen-Plaintext Setting. If we exclude AK5 operation from 5-round
AES and encrypt all 296 possible plaintexts P toX5,SR by fixing (P0,0, P1,1, P2,2, P3,3)
as constant. From Section 3.1, each of the following four events

1. X5,SR
0,0 ⊕X5,SR

1,3 = 0, 2. X5,SR
0,1 ⊕X5,SR

3,2 = 0,

3. X5,SR
2,0 ⊕X5,SR

3,3 = 0, 4. X5,SR
1,2 ⊕X5,SR

2,1 = 0,

occurs 288 times with probability 1. We can distinguish AES from a random
permutation with 296 chosen plaintexts.

Again we take AK5 operation into consideration, each of four events

1. C0,0 ⊕ C1,3 = K5
0,0 ⊕K5

1,3, 2. C0,1 ⊕ C3,2 = K5
0,1 ⊕K5

3,2,

3. C2,0 ⊕ C3,3 = K5
2,0 ⊕K5

3,3, 4. C1,2 ⊕ C2,1 = K5
1,2 ⊕K5

2,1,

occurs 288 times with probability 1, respectively.
Though we do not know any information about the secret key, we can predict

there is always one tuple of (∆′0, ∆
′
1, ∆

′
2, ∆

′
3) ensuring each of the four experiences

1. C0,0 ⊕ C1,3 = ∆′0, 2. C0,1 ⊕ C3,2 = ∆′1,

3. C2,0 ⊕ C3,3 = ∆′2, 4. C1,2 ⊕ C2,1 = ∆′3,

to occur 288 times (when (∆′0, ∆
′
1, ∆

′
2, ∆

′
3) are just the four XOR values of K5).

Yet any one event occurs with probability about 2−40.7 for a random permuta-
tion. So 296 chosen plaintexts are enough to proceed this distinguishing attack.
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At last, we summarize the reasons resulting in the gap from two cases be-
tween chosen-plaintext and chosen-ciphertext integral distinguishers. If AK5 is
omitted, the data complexities of the two distinguishers under both settings are
the same. If AK5 is included, the chosen-ciphertext integral distinguisher has to
take the whole codebook while the chosen-plaintext integral distinguisher does
not increase the data complexity. To make it more clear, we compare the data
complexities of them in Table 2.

Table 2: Data Complexities of Integral Distinguishers with(out) AK5.
Setting Target Data Complexity Time (MA)

CC
5-round AES without AK5 296 296

5-round AES with AK5 2128 2128

CP
5-round AES without AK5 296 296

5-round AES with AK5 296 296

– CC: Chosen-Ciphertext CP: Chosen-Plaintext MA:Memory Access

4 ID Distinguishers on 5-Round AES Under
Chosen-Ciphertext Setting

Until now there have been two key-dependent ID distinguishers on 5-round AES
in [7, 8] by utilizing the Property 1 and 2 of MC matrix respectively. In this
section we put forward two ID distinguishers on 5-round AES under chosen-
ciphertext model in Section 4.1 and 4.2 respectively, which are transformed from
the ones under chosen-plaintext setting. Their data complexities are 299.6 and
276.5 chosen ciphertexts, which are slightly different from those of the original
ones with 298.2 and 276.4 chosen plaintexts, respectively. We analyze the reasons
in Appendix C.

4.1 ID Distinguisher on 5-Round AES Based on Property 1 of MC

In this subsection, we first propose 16 key-dependent IDs for 5-round AES shown
in Proposition 6 and we list one of them in Fig. 5. With these IDs, a distinguisher
under chosen-ciphertext model is put forward with data complexity 299.6 chosen
ciphertexts.

Proposition 6. If the difference of ciphertext pair (C1, C2) is nonzero at the
four bytes (C0,3, C1,2, C2,1, C3,0) and zero at other 12 bytes, after 5-round AES
decryption, the corresponding plaintext pair (P 1, P 2) never satisfies each of the
following 16 cases:

P 1
s,t ⊕ P 1

s+1,t+1 = P 2
s,t ⊕ P 2

s+1,t+1 = K0
s,t ⊕K0

s+1,t+1,

P 1
l,m ⊕ P 2

l,m = 0, (l,m) 6= (s, t), (s+ 1, t+ 1),

13



where 0 6 s, t 6 3.5

Proof. Proof by contradiction. Assume that there is one ciphertext pair (C1, C2)
leading to such plaintext pair (P 1, P 2). From the forward direction, since there
exists one (s, t) such that (P 1, P 2) satisfies P 1

s,t ⊕ P 1
s+1,t+1 = P 2

s,t ⊕ P 2
s+1,t+1 =

K0
s,t ⊕K0

s+1,t+1, we have ∆X1,SB
s,t = ∆X1,SB

s+1,t+1. Due to the Property 1 of MC

matrix, there are only three nonzero bytes of difference ∆X1,MC in one column,
which leads to at least one zero byte on each column of ∆X3,SR. From the back-
ward direction, (C1, C2) results in at most one nonzero byte for each column of
∆X3,MC . Since the branch number of MC matrix is 5, each column of ∆X3,MC

has at least two zero bytes. This yields a contradiction and shows that they are
IDs. ut

Taking (s, t) = (0, 0) as an example, we illustrate Proposition 6 in Fig. 5.
Actually, the value of K0

s,t ⊕ K0
s+1,t+1 is secret, so we cannot directly check

whether P 1
s,t ⊕ P 1

s+1,t+1 = P 2
s,t ⊕ P 2

s+1,t+1 = K0
s,t ⊕ K0

s+1,t+1 or not. In the
following, we will define good pair to further identify if there exist solutions for
K0
s,t ⊕K0

s+1,t+1 by using the ID characteristic.

Definition 1 (Good Pair). One pair (P 1, P 2) is a good pair related to (s, t)
if it satisfies the following conditions:

P 1
s,t ⊕ P 1

s+1,t+1 = P 2
s,t ⊕ P 2

s+1,t+1,

P 1
l,m ⊕ P 2

l,m = 0, (l,m) 6= (s, t), (s+ 1, t+ 1),

where (s, t), 0 6 s, t 6 3.

No matter how many ciphertext pairs as the form in Proposition 6 we take,
for each (s, t) there always exists one value δs,t ∈ F8

2 that P 1
s,t ⊕ P 1

s+1,t+1 =
P 2
s,t ⊕ P 2

s+1,t+1 = δs,t = K0
s,t ⊕ K0

s+1,t+1 never happens for each good pair.
According to the fact above, we put forward an ID distinguishing attack on

5-round AES under chosen-ciphertext model, see Algorithm 2. For each of 16
(s, t), 0 ≤ s, t,≤ 3, we take Ns structures of ciphertexts that each one includes
232 ciphertexts by traversing all values of bytes (C0,3, C1,2, C2,1, C3,0) and fixing
other bytes as constant, to find all good pairs and record their P 1

s,t ⊕ P 1
s+1,t+1

in a vector counter Vs,t. For 5-round AES, there is always a value δst never
happening in Vs,t for each (s, t). The probability that there is always a value δs,t
never happening in Vs,t for each (s, t) for a random permutation is calculated in
Proposition 7.

Proposition 7. For a random permutation, for each of 16 (s, t), 0 ≤ s, t ≤ 3,
the probability that there always exists at least one value δs,t = P 1

s,t ⊕ P 1
s+1,t+1

never appearing for any one of N random good pairs is 2128 × (1− 2−8)16N .

5 The addition used in subscripts of the equations are actually addition modulo 4. For
example, when t = 3, t+ 1 = 0.

14



Proof. For a random permutation and any given value of (s, t), the event that
there is at least one value for δs,t = P 1

s,t ⊕ P 1
s+1,t+1 never occurring for any one

of N random good pairs happens with the following probability

ps,t = 28 × (1− 2−8)N ,

then the probability that this event happens for all 16 values of (s, t) is p16s,t =

2128 × (1− 2−8)16N . ut

Algorithm 2: 5-Round ID Distinguisher under Chosen-Ciphertext Model
Based on Property 1

Input: Ns structures of ciphertexts and corresponding plaintexts
Output: 5-Round AES or Random Permutation

1 for Each s ∈ {0, 1, 2, 3} do
2 for Each t ∈ {0, 1, 2, 3} do
3 Initialize 256 indicators V [256] as false;
4 for Each one of Ns structures do

// Each structure includes 232 ciphertexts.

5 Initialize a table T [232];
6 Query the corresponding 232 plaintexts and put them into T ;
7 Sort T according to the value of 14 bytes except the (s, t)-th and

(s+ 1, t+ 1)-th bytes;
8 Traverse all items of T and find adjacent plaintexts to combine good

pairs;
// About N = Ns × 263 × 2−120 good pairs are found.

9 for Each (P 1, P 2) of N good pairs do
10 Let V [P 1

s,t ⊕ P 1
s+1,t+1] = true;

11 if all 256 indicators are true then
12 return Random Permutation;

13 return 5-Round AES;

By setting the type-II error probability as 5%, it means that the success rate
is 95%, then, N ≈ 210.6 good pairs are required for each (s, t), 0 ≤ s, t ≤ 3.
Since the probability to find a good pair from random ones is 2−120, we have
Ns = 267.6 by using Ns × 263 × 2−120 = N . As a result, the data complexity is
299.6 chosen ciphertexts. From Algorithm 2, Step 6 needs 16×Ns× 232 = 2103.6

memory accesses. Since the time to sort a table of size 2n is O(2nlog(2n)), Step 7
needs about 16×Ns232log(232). Then the time complexities of Step 8 and Steps
9 ∼ 10 are 16 × Ns × 232 = 2103.6 and 16 × Ns × N = 282.2 memory accesses,
respectively. Totally, the time complexity is about 2103.6 memory accesses. The
memory requirements are 232 to construct table T .
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4.2 ID Distinguisher on 5-Round AES Based on Property 2 of MC

Similar to the method of constructing ID distinguisher on 5-round AES under
chosen-ciphertext model in Section 4.1, we also can get an ID distinguisher under
chosen-ciphertext model by using Property 2 of MC matrix transformed from
the distinguisher in [7], see Proposition 8.

Proposition 8. If the difference of ciphertext pair (C1, C2) is nonzero at the
eight bytes (C0,3, C1,2, C2,1, C3,0, C0,2, C1,2, C2,0, C3,3) and zero at other 8 bytes,
after 5-round AES decryption, the corresponding plaintext pair (P 1, P 2) never
satisfies any one of the following 16 cases:

P 1
s,t ⊕ P 1

s+1,t+1 = P 2
s,t ⊕ P 2

s+1,t+1 = K0
s,t ⊕K0

s+1,t+1,

P 1
s,t ⊕ P 1

s+2,t+2 = P 2
s,t ⊕ P 2

s+2,t+2 = K0
s,t ⊕K0

s+2,t+2,

P 1
l,m ⊕ P 2

l,m = 0, (l,m) 6= (s, t), (s+ 1, t+ 1), (s+ 2, t+ 2),

where 0 6 s, t 6 3.
However, for a random permutation, under each (s, t), the probability that

there always exists a tuple (δ1s,t, δ
2
s,t) that δ1s,t = P 1

s,t⊕P 1
s+1,t+1 and δ2s,t = P 1

s,t⊕
P 1
s+2,t+2 never appearing for any one of N random good pairs is 2256 × (1 −

2−16)16N .

We omit the proof here due to its similarity to the distinguisher in Section
4.1. The distinguisher is illustrated in Algorithm 3 which is in Appendix B.
The data and time complexities are 276.5 chosen-ciphertexts and 280.5 memory
accesses, respectively. The type-II error probability is 5%.

5 Conclusions

In this paper, we study key-dependent integral and ID distinguishers on 5-round
AES. A new key-dependent integral distinguisher is constructed with 296 chosen
plaintexts, which is more efficient than the previous one that requires the full
codebook. Under different settings, the complexities of key-dependent integral
distinguishers have a significant gap while those of the key-dependent ID distin-
guishers are almost the same. We analyze the principles behind the phenomena.
If the AK operation which the key-dependent distinguishers depend on is posi-
tioned in the end of the distinguishers, the data complexities of integral and ID
distinguishers will be almost unchanged no matter whether we consider or not
the AK operations. Otherwise, the data complexities will increase significantly
when we contain the AK operations in 5-round AES.
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A Property 2 and Key-Dependent Integral Distinguisher

In [7], Grassi et al. took advantage of Property 2 to build a more efficient ID
distinguisher requiring 276.4 chosen plaintexts. A question arises: Can we build
an integral distinguisher based on Property 2?

Recall the key-dependent ID distinguisher based on Property 2, once the
differences of X1,SR

0,0 , X1,SR
1,0 and X1,SR

2,0 are identical, differences on X1,MC
0,0 and

X1,MC
1,0 will be zero with probability 1 (As described in Section 2.3). Therefore,

in order to construct a key-dependent integral distinguisher with the similar
technique we have to enforce the mask on X4,MC to statisfy following condition:

ΓX4,MC = ΓX4,AK = βi,j , 0 6 i, j 6 3,

βi,j

{
b ∈ F 8

2 \{0} if(i, j) =∈ {(0, 0), (1, 0), (2, 0)},
0 otherwise.

For the purpose of extending the ZC linear hull one more round, we should
carefully select the masks of ΓX5,SB and make sure the correlation of ΓX5,SB →
ΓX4,AK is 1, i.e. the equation

b · (X4,AK
0,0 ⊕X4,AK

0,0 ⊕X4,AK
0,0 ) = ΓX5,SB ·X5,SB

always holds for any X5,SB . Unfortunately, we cannot find any set of X5,SB or
value of Γ5,SB to ensure it because of the non-linear property of SB.

B Algorithm of 5-Round ID Distinguisher under
Chosen-Ciphertext Model Based on Property 2

The algorithem 3 shows the process that we transfer the chosen-plaintext ID
distinguisher based on Property 2 into a chosen-ciohertext one.

C Gap between Complexities of Chosen-Plaintext and
Chosen-Ciphertext ID Distinguishers

Although the key-dependent integral distinguishers on 5-round AES have dif-
ferent data complexities under chosen-plaintext and chosen-ciphertext models,
the complexity of key-dependent chosen-ciphertext ID distinguisher is slightly
different from that of the chosen-plaintext one.

Similar to the key-dependent integral distinguishers, we will consider the
influences of AK0 operation, which the key-dependent ID distinguishers depend
on. In this subsection, we only take the key-dependent ID distinguisher based
on Property 1 for example. Situations are similar for the distinguihser based on
Property 2. Notice that here we use a general ID characteristic with more active
plaintext bytes (see Fig. 3) to make our analysis more convincing.
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Algorithm 3: 5-Round ID Distinguisher under Chosen-Ciphertext Model
Based on Property 2

Input: Ns structures of ciphertexts and corresponding plaintexts
Output: 5-Round AES or Random Permutation

1 for Each s ∈ {0, 1, 2, 3} do
2 for Each t ∈ {0, 1, 2, 3} do
3 Initialize 216 indicators V [216] as false;
4 for Each one of Ns structures do

// Each structure includes 264 ciphertexts.

5 Initialize a table T [264];
6 Query the corresponding 264 plaintexts and put them into T ;
7 Sort T according to the value of 13 bytes except bytes (s, t) and

(s+ 1, t+ 1) and (s+ 2, s+ 2);
8 Traverse all items of T and find adjacent plaintexts to combine find

good pairs;
// About N = Ns × 2127 × 2−120 good pairs are found.

9 for Each (P 1, P 2) of N good pairs do
10 Let V [P 1

s,t ⊕ P 1
s+1,t+1] = true;

11 if all 216 indicators are true then
12 return Random Permutation;

13 return 5-Round AES;

Fig. 3: 5-Round Impossible Distinguisher Distinguisher with(out) AK5.
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Under Chosen-Plaintext Setting. If AK0 operation is excluded from the
5-round AES (the enclosure area by dotted line in Fig. 3), we encrypt a pair of
(X0,AK , X̄0,AK) satisfying

– Condition 1 :

X̂0,AK
0,0 = X̂0,AK

1,1 , X̂0,AK
1,2 = X̂0,AK

2,3 ,

X̂0,AK
0,2 = X̂0,AK

3,1 , X̂0,AK
0,3 = X̂0,AK

3,2 ,

where X̂ represents X or X̄;
– Condition 2 :

X0,AK
j,k = X̄0,AK

j,k ,

where (j, k) 6= (0, 0), (1, 1), (1, 2), (2, 3), (0, 2), (3, 1), (0, 3), (3, 2),

It is impossible that the corresponding ciphertext pair of (C, C̄) has the active
differences in only one reverse-diagonal. Yet for a random permutation, such pair
appears with probability 4×2−96 = 2−94. Given 2N1 pairs of (X0,AK , X̄0,AK), the
probability p1 that we identify a random permutation as 5-round AES without
AK0 is

p1 = 1− (1− 2−94)2
N1

= 1− e−2
N1−94

.

If we set p1 > 95%, then N1 > 95.6.
All the X0,AK satisfying Condition 1 and 2 compose a structure whose

size is 232. Each structure can produce 263 pairs. To construct 295.6 pairs, we
need to take 295.6−63 different structures. Therefore, the total data complexity
is 295.6−63+32 = 264.6 chosen plaintexts. To check the specific ciphertext pairs,
we insert each ciphertext into a hash table indexed by four bytes in one diagonal
and test whether there are two different ciphertexts in the same row of the hash
table. Therefore, the time complexity of this attack is 264.6 memory accesses.

If the AK0 operation is taken into consideration, we will encrypt a pair of
plaintexts (P, P̄ ) and expect that the difference of corresponding (C, C̄) would
never be active in only one reverse-diagonal. To ensure it, (P, P̄ ) should satisfy
Equation (5) and (6):

P̂0,0 ⊕ P̂1,1 = K0
0,0 ⊕K0

1,1, P̂1,2 ⊕ P̂2,3 = K0
1,2 ⊕K0

2,3,

P̂0,2 ⊕ P̂3,1 = K0
0,2 ⊕K0

3,1, P̂0,3 ⊕ P̂3,2 = K0
0,3 ⊕K0

3,2,
(5)

where P̂ represents P or P̄ .

P 1
j,k = P 2

j,k, (j, k) 6= (0, 0), (1, 1), (1, 2), (2, 3), (0, 2), (3, 1), (0, 3), (3, 2). (6)

However, the XOR values of K0 involved in Equation (5) are unknown. We
traverse 232 possible values to ensure that the right XOR values of key are
contained. For each XOR value in our traversing process, we fix other eight bytes
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of plaintexts involved in Equation (6) as constant. Then we get 232 structures
of plaintexts.

For 5-round AES, structures with the right XOR values, i.e. the four XOR
values are equal to the XOR values of a key described in Equation (5), will
never produce ciphertext pairs which have active differences in only one reverse-
diagonal, but the structures with the wrong XOR values will do. However, for
a random permutation, there will be at least one pair of ciphertexts with active
bytes in only one diagonal if we take enough structures for each of 232 XOR
values.

The key point of the distinguisher is that we take enough pairs and make
sure that we can get ciphertext pairs with active bytes in only one diagonal for
each XOR value, if the target is a random permutation. If the probability that
we get such a pair for one XOR value is p′1, the probability that we get such

pairs for all the 232 XOR values is (p′1)2
−32

.
If we set the probability that we can identify a random permutation as a

random permutation at least 95%, we get p′1 > (0.95)2
−32

.
Given 2N

′
1 pairs from structures one certain XOR value, p′1 can be calculated

as follows
p′1 = 1− (1− 2−94)2

N′1 = 1− e−2
N′1−94

.

Since p′1 > (95%)2
−32

, we get N ′1 > 98.7.
One structure produces 263 pairs, so we need 298.7−63 = 235.7 structures, i.e.

235.7+32 = 267.7 chosen plaintexts for each XOR values. We have 232 possible
XOR values, so the total complexity is 267.7+32 = 299.7 chosen plaintexts. For
each XOR value, we encrypt plaintexts and insert the corresponding ciphertexts
into a hash table indexed by the four bytes in one diagonal and then check
whether there are two ciphertexts in the same row of the hash table. Thus the
time complexity is 299.7 memory accesses.

Under Chosen-Ciphertext Setting If AK0 operation is excluded and we
decrypt a pair of ciphertexts (C, C̄) with active bytes in only one diagonal to
(X0,AK , X̄0,AK). For 5-round AES without AK0, the pair (X0,AK , X̄0,AK) will
never satisfy Condition 1 and 2 at the same time while for a random permuta-
tion, such pair appears with probability 2−128 (2−64 for the probability to satisfy
Condition 1 and 2−64 for Condition 2 ).

In order to distinguish 5-round AES without AK0 from a random permu-
tation, we use 2N2 ciphertext pairs, thus the probability p2 that there will be
at least a pair of (X0,AK , X̄0,AK) satisfying Condition 1 and 2 for a random
permutation is:

p2 = 1− (1− 2−94)2
N2

= 1− e−2
N2−94

.

Setting p2 > 95% we will get N2 > 129.6.
We fix 12 bytes of three diagonals as constants and take all possible values for

other four bytes to compose a structure. Each structure provides 263 pairs with
232 ciphertexts. Thus we need 2129.6−63 = 266.6 structures and the total data
complexity is 266.6+32 = 298.6. We decrypt ciphertexts and insert the X0,AK
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satisfying Condition 1 into a hash table indexed by eight bytes involved in
Condition 2 and then check whether there are two texts in the same row of the
hash table. Thus the time complexity is 298.6 memory access.

If AK0 operation is contained and we decrypt a pair of ciphertexts (C, C̄)
with active differences in only one diagonal to get corresponding plaintext pair
(P, P̄ ), the intermediate state (X0,AK , X̄0,AK) will never satisfy Condition 1 and
2, thus (P, P̄ ) cannot satisfy Equation (5) and (6), neither.

Since we do not know the key information involved in the Equation (5), we
have to collect good pairs and test whether each possible XOR value will occur as
described in Section 4.1. Given 2N

′
2 ciphertext pairs, we expect to collect 2N

′
2−96

good pairs. The probability p′2 that all the possible XOR values will occur is

p′2 = 1− 232 × (1− 2−32)2
N′2−96

Setting p′2 > 95% we can get N ′2 > 132.7.
Since one structure provides 232 ciphertexts and 263 pairs, we need 2132.7−63 =

269.7 structures and totally 269.7+32 = 2101.7 chosen ciphertexts. When proceed-
ing the attack, we decrypt ciphertexts and insert the corresponding plaintexts
satisfying Condition 1 into a hash table indexed by other eight bytes, and check
whether there are two plaintexts in the same row. Therefore the time complexity
is 2101.7 memory accesses. The complexity is very similar with the distinguisher
without AK0.

We analyze the reason why the chosen-plaintext and chosen-ciphertext ID
distinguishers have a similar data complexity. Without AK0 operation, the
chosen-plaintext distinguisher requires 264.6 chosen plaintexts while the chosen-
ciphertext distinguisher needs 298.6 chosen ciphertexts. However, when we take
the AK0 operation into consideration, the data complexity increases significantly
under chosen-plaintext setting while it remains almost unchanged under chosen-
ciphertext setting. To make it clear, we list the complexities of these distinguish-
ers in Table 3.

Table 3: Data Complexities of 5-Round ID Distinguishers with(out) AK0.
Setting Target Data Complexity Time (MA)

CP
5-round AES without AK0 264.6 264.6

5-round AES with AK0 296.7 2101.7

CC
5-round AES without AK0 298.6 298.6

5-round AES with AK0 2101.7 2101.7

– CC: Chosen-Ciphertext CP: Chosen-Plaintext MA: Memory Access

D Figures of the Distinguisher Introduced in Section 2
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Fig. 4: ZC Linear Hull of 5-Round AES [12].

Fig. 5: ID of 5-Round AES Based on Property 1 [8].
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Fig. 6: ID of 5-Round AES Based on Property 2 [7].
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