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Abstract

Standardization bodies such as NIST and ETSI are currently seeking
quantum resistant alternatives to vulnerable RSA and elliptic curve-based
public-key algorithms. In this context, we present Round5, a lattice-based
cryptosystem providing a key encapsulation mechanism and a public-key
encryption scheme. Round5 is based on the General Learning with Round-
ing problem, unifying non-ring and ring lattice rounding problems into
one. Usage of rounding combined with a tight analysis leads to signif-
icantly reduced bandwidth and randomness requirements. Round5’s re-
liance on prime-order cyclotomic rings offers a large design space allowing
fine-grained parameter optimization. The use of sparse-ternary secret keys
improves performance and significantly reduces decryption failure rates at
minimal additional cost. The use of error-correcting codes, in combination
with ring multiplications in Z[x]/(xn+1−1) that ensures non-correlated er-
rors, further improves the latter. Round5 parameters have been carefully
optimized for bandwidth, while the design facilitates efficient implemen-
tation.

As a result, Round5 has leading performance characteristics among
all NIST post-quantum candidates, and at the same time attains conser-
vative security levels that fully fit NIST’s security categories. Round5’s
schemes share common building blocks, simplifying (security and opera-
tional) analysis and code review. Finally, Round5 proposes various ap-
proaches of refreshing the system public parameter A, which efficiently
prevent precomputation and back-door attacks.
Disclaimer: This is a draft version, not all sections are included.
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1 Algorithm Specifications

1.1 Design Rationale

This submission proposes Round5 that consists of algorithms for the key encap-
sulation mechanism r5 cpa kem and the public-key encryption scheme r5 cca pke.
The proposed algorithms fall under the category of lattice-based cryptogra-
phy, Round5 is a merger of the submissions Round2[13, 14] and HILA5[85, 86].
Like with Round2, the algorithms rely on the General Learning with Rounding
(GLWR) problem. In some of its configurations, Round5 uses an error-correcting
code based on the one from HILA5 to decrease decryption failure probability,
and thus, achieve smaller keys and faster performance.

1.1.1 A Unified Design

A key feature of Round5 is that it has been designed to instantiate the Learn-
ing with Rounding (LWR) problem and the Ring LWR (RLWR) problem in a
seamless and unified way. This is done by defining the General LWR problem,
on which Round5 is based, that can instantiate LWR or RLWR depending on
the input parameters. The reasons behind this choice are as follows:

Round5 is adaptive and can be applied to multiple environments. On the
one hand, LWR-based algorithms are required by environments in which perfor-
mance is less of an issue, but security is the priority. In those cases, it is often
preferred to not have an additional ring structure (as in ideal lattices [70, 54]).
On the other hand, RLWR-based algorithms achieve the best performance in
terms of bandwidth and computation so they are better suited for constrained
environments with stricter bandwidth requirements, e.g., due to the complexity
of message fragmentation or small MTUs.

Round5 reduces code analysis and maintenance since the unified scheme def-
initions of r5 cpa kem and r5 cca pke instantiate different underlying problems,
LWR and RLWR, with the same code.

The unified design enables a migration strategy from ring-based schemes
to non-ring schemes from day one of deployment. This makes sure that if
vulnerabilities in ring-based problems were found in future, then an alternative
secure solution would already be available and could be deployed directly.

An additional advantage of a unified design is that it can be ”parametrized”
to address the needs of different types of applications. This brings an enormous
flexibility. For instance, it is possible to derive specially small configurations
applicable to IoT scenarios or it is also possible to derive non-ring configurations
with balanced or unbalanced public-key and ciphertext sizes.

1.1.2 Parameter choices for optimized performance

Parameters in GLWR and Round5 are chosen to allow for optimized perfor-
mance.
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• The usage of GLWR, i.e., LWR and RLWR, rather than their LWE coun-
terparts, leads to lower bandwidth requirements in Round5 since fewer
bits need to be transmitted per coefficient.

• Rounding avoids sampling of noise, and thus requires the generation of
less random data.

• Round5 relies on a definition of GLWR with sparse ternary secrets. This
simplifies implementation and reduces the probability of decryption/de-
capsulation errors.

• The ring configuration of Round5 relies on the RLWR problem over the
cyclotomic ring Zq[x]/Φn+1(x) with n + 1 prime. This problem is well
studied: there exist reductions [18, 23] from the RLWE problem [70] to
RLWR, and the former is well-studied for the ring in question. Operations
over this ring can be mapped to an NTRU [54] ring Zq[x]/(xn+1 − 1) to
improve performance.

• In some of its configurations, Round5 uses an f -bit error correcting block
code XEf to decrease the failure rate, see Section 1.4.1. The code is built
using the same strategy as codes used by TRUNC8 [86] (2-bit correction)
and HILA5 [87] (5-bit correction). The main advantage of XEf codes is
that they avoid table look-ups and conditions altogether and are therefore
resistant to timing attacks. The usage of XEf requires performing the
ciphertext computations in the NTRU ring and sparse ternary secrets
that are balanced, i.e., contain equally many ones as minus ones. This
leads to independent bit failures so that error correction can be applied
(Section 1.4.1).

• Round5 allows for a single, unified implementation for a wide range of
security levels, relying on either LWR or RLWR. The moduli q and p
are powers of two. This simplifies the implementation of the rounding
function. Similarly, the modular computations can be realized by ignoring
the most significant bits.

• Preventing pre-computation attacks requires refreshing the master public
parameter A. However, this can be computationally costly, in particular
in the case of LWR. Round5 provides several alternatives for efficiently
refreshing A that are applicable to different use cases.

1.1.3 The Choice of the Ring

In the literature, a common choice of the ring to instantiate an RLWE or RLWR
problem is Zq[x]/Φ2n(x) where n is a power of two, so that the 2n-th cyclotomic
polynomial Φ2n(x) = xn+1. Examples of RLWE/RLWR key exchange schemes
based on the above ring are [28] and [7]. However, requiring that n be a power of
two narrows the choice of n: it has to be at least 512 for the proper security level
so that the underlying lattice problem is hard to solve in practice. While having
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n = 512 sometimes does not deliver the target security level, the n = 1024
choice would be considered an overkill. A sweet spot is n ≈ 700, which was a
common choice made by many proposals, including Kyber [26], NTRUEncrypt
[54], NTRU-KEM [58] and more.

The following observations can be made:

• Kyber [26] uses three RLWE instances, each of dimension 256, to achieve
n = 768 in total. This still limits the choice of n as it has to be a multiple
of 256.

• NTRUEncrypt uses the reduction polynomial xn − 1 which is slightly
different from a cyclotomic ring, and as suggested by [84], although the
NTRU problem remains hard for this ring, the decisional RLWE problem
over this ring seems to be easy.

This leads us to use as reduction polynomial the n + 1-th cyclotomic poly-
nomial Φn+1(x) = xn + · · ·+ x+ 1 with n+ 1 a prime as in NTRU-KEM [58].
With the resulting ring, there is a wide range of n to choose from, for various
security levels. In addition, as shown in [78], decisional RLWE over this ring
remains hard for any modulus; this gives us confidence in the underlying de-
sign and security of Round5. Note that although operating over the same ring
as the NTRU-KEM scheme, Round5 achieves better performance because its
key generation algorithm is significantly faster than the NTRU key generation
algorithm.

In addition, since decisional RLWE is hard over a prime cyclotomic ring with
any modulus [78], we can use any modulus that optimizes our performances.
Common choices of the modulus are

• A number theoretical transform (NTT) friendly prime number, such as
12289 in [7];

• A composite number that fits in a data type for modern computers, such
as 232 − 1 in [28];

• A power of two that makes modulo operations and integer multiplications
efficient, such as 211 in NTRUEncrypt [54].

In our proposal, we consider a prime cyclotomic polynomial ring with a
modulus q that is a power of two such that the Φn+1 is irreducible modulo two.
As Φn+1 then is irreducible modulo q, the ring Zq[x]/Φn+1(x) does not have
any proper subrings. This choice allows for a smooth implementation of the ring
and non-ring cases in the unified scheme. All coefficients of our polynomials and
matrices are integers modulo q less than 216. That is, each coefficient fits in a
uint16 t type. For intermediate values during computations, overflows can be
ignored,as overflown bits “mod-ed out” once the element is lifted back to Zq. In
particular, when multiplying two uint16 t elements, only the lower 16 bits of
the product need to be computed; the higher 16 bits have no effect on the final
result.
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We remark that the use of a composite modulus in [28], as well as the result
from [78] suggest that the particular modulus does not have much effect on the
hardness of the problem; the size of the modulus is more important from this
point of view. Consequently, any modulus of similar size should deliver a similar
security, and therefore we choose one that is most efficient depending on the use
case.

1.2 Preliminaries

For each positive integer a, we denote the set {0, 1, . . . , a− 1} by Za.

For a set A, we denote by a
$←− A that a is drawn uniformly from A. If χ is a

probability distribution, then a← χ means that a is drawn at random according
to the probability distribution χ.
Logarithms are in base 2, unless specified otherwise.

Modular reductions. For a positive integer α and x ∈ Q, we define {x}α
as the unique element x′ in the interval (−α/2, α/2] satisfying x′ ≡ x (mod α).
Moreover, we define 〈x〉α as the unique element x′ in the interval [0, α) for which
x ≡ x′ (mod α).

Rounding. For x ∈ Q, we denote by bxc and bxe rounding downwards to the
next smaller integer and rounding to the closest integer (with rounding up in
case of a tie) respectively.
For positive integers a, b and h ∈ Q, the rounding function Ra→b,h is defined as

Ra→b,h(x) = 〈b b
a

(x+ h)c〉b (1)

If h = a
2b , then Ra→b,h(x) = 〈

⌊
b
ax
⌉
〉b. This special case of rounding will be used

in the underlying problem, so the following notation will come in handy: for
positive integers a, b, the function Ra→b is defined as

Ra→b = Ra→b,a/2b (2)

Ring choice. Let n + 1 be prime. The (n + 1)-th cyclotomic polynomial
Φn+1(x) then equals xn + xn−1 + · · · + x + 1. We denote the polynomial ring
Z[x]/Φn+1(x) by Rn. When n equals 1, then Rn = Z. For each positive
integer a, we write Rn,a for the set of polynomials of degree less than n with all
coefficients in Za. We call a polynomial in Rn ternary if all its coefficients are 0,
1 or −1. Throughout this document, regular font letters denote elements from
Rn, and bold lower case letters represent vectors with coefficients in Rn. All
vectors are column vectors. Bold upper case letters are matrices. The transpose
of a vector v or a matrix A is denoted by vT or AT . A vector or matrix of
polynomials, in which all polynomial entries are equal to 1 is denoted by j or
J , respectively.
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Distributions. For each v ∈ Rn, the Hamming weight of v is defined as its
number of non-zero coefficients. The Hamming weight of a vector in Rkn equals
the sum of the Hamming weighs of its components. We denote with Hn,k(h)
the set of all vectors v ∈ Rkn of ternary polynomials of Hamming weight h,
where h ≤ nk. By considering the coefficients of a polynomial in Rn as a vector
of length n, a polynomial in Hn,k(h) corresponds to a ternary vector of length

nk with non-zeros in h positions, so that Hn,k(h) has
(
nk
h

)
2h elements. When

k = 1, we omit it from the notation, and Hn(h) denotes the set of all ternary
polynomials in Rn of Hamming weight h, corresponding to the set of all vectors
v ∈ {−1, 0, 1}n with Hamming weight h.

Secret keys consist of matrices that contain (column) vectors in Hn,k(h).
Functions fR and fS are used to generate secrets from a seed in the encryption
(Algorithm 2) and decryption (Algorithm 3), respectively.

1.3 Underlying Problem

The problem underlying the security of Round5 is the General LWR Problem
formally defined as follows:

Definition 1.3.0.1 (General LWR (GLWR)). Let d, n, p, q be positive integers
such that q ≥ p ≥ 2, and n ∈ {1, d}. Let Rn,q be a polynomial ring, and let Ds

be a probability distribution on Rd/nn .
The search version of the GLWR problem sGLWRd,n,m,q,p(Ds) is as follows:

given m samples of the form Rq→p(a
T
i s) with ai ∈ Rd/nn,q and a fixed s ← Ds,

recover s.
The decision version of the GLWR problem dGLWRd,n,m,q,p(Ds) is to dis-

tinguish between the uniform distribution on Rd/nn,q × Rn,p and the distribution

(ai, bi = Rq→p(a
T
i s)) with ai

$←− Rd/nn,q and a fixed s← Ds.

When n = 1, the GLWR problem is equivalent to the LWR problem [18] with
dimension d, large modulus q and rounding modulus p. Setting the distribution
Ds = U (H1,d(h)) further specializes the GLWR problem to the LWR problem
with sparse-ternary secrets LWRspt. In [35] it is claimed that the hardness of
LWRspt can be obtained from that of LWE with similar secret distributions since
the reduction from LWE to LWR is independent of the secret’s distribution [23].
We extend this claim and make it explicit by proving that for appropriate pa-
rameters there exists a polynomial-time reduction from the (decision) Learning
with Errors (LWE) problem with secrets chosen uniformly from Zdq and errors
chosen from a Gaussian distribution Dα, to the decision version of LWRspt. See
Section A.8 and Theorem A.8.0.1 for more details.

When n = d > 1 is such that n + 1 is prime, and Rn,q = Zq[x]/ (Φn+1(x))
for the n+ 1-th cyclotomic polynomial Φn+1(x) = 1 + x+ . . .+ xn, the GLWR
problem is equivalent to the Ring LWR (RLWR) problem defined on Φd+1(x), di-
mension d, large modulus q and rounding modulus p. Setting Ds = U (Hd,1(h))
further specializes it to the RLWR problem with sparse-ternary secrets RLWRspt.
For brevity, when Ds = U

(
Hn,d/n(h)

)
, we denote GLWRd,n,m,q,p

(
U
(
Hn,d/n(h)

))
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as GLWRspt. When the secret distribution Ds is the uniform one over Rd/nn,q , it
shall be omitted in the above problem notation.

1.4 Round5

Our proposal is called Round5. It includes an IND-CPA secure KEM called
r5 cpa kem and a IND-CCA secure PKE called r5 cca pke. A public-key en-
cryption scheme called r5 cpa pke is used as a building block for r5 cpa kem. A
key-encapsulation mechanism called r5 cca kem, is used as a building block for
r5 cca pke. All algorithms in these schemes use random choices, and scheme-
specific mappings that are described in the following sections with each scheme.

In Section 1.4.1, the error-correcting codes applied in some configurations
of Round5 are described. These codes are built using the same strategy as
codes used by TRUNC8 [86] (2-bit correction) and HILA5 [87] (5-bit correc-
tion). r5 cpa kem is described in Section 1.4.3, preceded by the description of
its building block r5 cpa pke in Section 1.4.2. r5 cca pke is descirbed in Sec-
tion 1.4.5, preceded by its building block r5 cca kem in Section 1.4.4. Figure 1
provides an overview of our proposal. It also shows the different configurations
of the proposed schemes based on the underlying GLWR problem.

Underlying problem and parameter sets (Sections 1.3, 1.9)

GLWR (d > 1, n = 1), q a power of 2
R5N1

GLWR (d > 1, n = d), q a power of 2
R5ND

r5 cpa pke (Section 1.4.2)
f

(τ)
d,n (Section 1.4.2)

r5 cca kem (Section 1.4.4) DEM

r5 cpa kem (Section 1.4.3) r5 cca pke (Section 1.4.5)

(XEf ()) (Section 1.4.1)

Figure 1: Submission overview

1.4.1 Internal building block: error correction code

In [46], it is analyzed how error-correcting codes can be used the enhance the
error resilience of protocols like NewHope, Frodo and Kyber, and it is shown
that the usage of error correcting codes can significantly increase the estimated
bit-security and decrease the communication overhead. In some of its configu-
rations, Round5 uses an f -bit error correcting block code XEf to decrease the
failure rate. The code is built using the same strategy as codes used by TRUNC8
[86] (2-bit correction) and HILA5 [87] (5-bit correction).
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XEf. The XEf code is described by 2f “registers” ri of size |ri| = li with
i = 0, . . . , 2f − 1. We view the κ-bits payload block m as a binary polynomial
mκ−1x

κ−1+· · ·+m1x+m0 of length κ. Registers are defined via cyclic reduction

ri = m mod xli − 1, (3)

or equivalently by

ri[j] =
∑

k≡j mod li

mk (4)

where ri[j] is bit j of register ri. A transmitted message consists of the payload
m concatenated with register set r (a total of µ = κ+xe bits, where xe =

∑
li).

Upon receiving a message (m′ | r′), one computes the register set r′′ corre-
sponding to m′ and compares it to the received register set r′ – that may also
have errors. Errors are in coefficients m′k where there are parity disagreements
r′i[k mod li] 6= r′′i [k mod li] for multitude of registers ri. We use a majority
rule and flip bit m′k if

2f−1∑
i=0

((r′i[〈k〉li ]− r′′i [〈k〉li ]) mod 2) ≥ f + 1 (5)

where the sum is taken as the number of disagreeing register parity bits at k.
XEf codes can include a special register – that is marked with symbol (∗)

such that `(∗) divides κ, and the parity bits in register r(∗) are computed as the
sum of κ/`(∗) consecutive bits. That is, for 0 ≤ j ≤ l(∗)−1, bit r(∗)[j] is defined
as

r(∗)[j] =

κ

`(∗)
−1∑

i=0

mj· κ
`(∗)

+i.

In HILA5[87]’s XE5 code, r0 is such a special register. When using this special
register, decoding is done as explained above, but with the term corresponding

to the special register r(∗) replaced by
(
r′(∗)[bk`

(∗)

κ c]− r”
(∗)[bk`

(∗)

κ c]
)

mod 2.

As shown in HILA5[87], if all length pairs satisfy lcm(li, lj) ≥ κ when i 6= j,
then this code always corrects at least f errors. If the XEf code includes a
special register r(∗), say r(∗) = r0, then it is required that κ

`0
≤ li for all j ≥ 1

and lcm(li, lj) ≥ κ for i, j ≥ 1 and i 6= j.
The main advantage of XEf codes is that they avoid table look-ups and con-

ditions altogether and are therefore resistant to timing attacks.

Requirements for using XEf in Round5. A basic requirement for using
XEf error correction code is that the errors it aims to correct are independent.
As explained in Section 1.4.2, Round5 can use two reduction polynomials ξ(x) =

Φn+1(x) = xn+1−1
x−1 or ξ(x) = Nn+1(x) = xn+1 − 1 in the computation of the

ciphertext and in the decryption/decapsulation. As explained in more detail in
Section 1.8, using ξ(x) = Φn+1(x) leads to correlated errors. The basic reason
is that the difference polynomial d(x) governing the error behavior is obtained
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as d(x) = 〈
∑n
i=0 fix

i〉Φn+1(x) =
∑n
i=0 fix

i − fnΦn+1(x) =
∑n−1
i=0 (fi − fn)xi.

As a result, if fn is large, then many coefficients of d(x) are likely to be large,
leading to errors in the corresponding bit positions. As a consequence of this
correlation between errors, the XEf code cannot be directly employed with the
reduction polynomial ξ(x) = Φn+1(x) as used in Round2.

As detailed in Section 1.8, Round5 aims to obtain independent errors by
imposing two requirements:

• Ciphertext computation and decryption use the reduction polynomial ξ(x) =
Nn+1(x).

• The secret ternary polynomials s(x) and r(x) are balanced, that is, both
have as many coefficients equal to 1 as to -1.

The latter requirement implies that (x−1) is a factor of both s(x) and r(x). As
a consequence, for any polynomial a(x), it holds that 〈s(x)a(x)〉Φn+1(x)r(x) ≡
s(x)〉a(x)r(x)〉Φn+1(x) (mod Nn+1(x)). This equivalence relation is essential for
operational correctness, cf. Section 1.8.

These two requirements are aligned with features of the original Round2
submission [13] since (i) Round2 already internally performed all operations in
ξ(x) = Nn+1(x) and (ii) Round2’s implementation used balanced secrets.

1.4.2 Internal building block: r5 cpa pke

This section describes r5 cpa pke, the CPA-secure public key encryption that is
a building block in both r5 cpa kem and r5 cca pke. It consists of algorithms 1
(key-generation), 2 (encryption) and 3 (decryption), and various cryptosystem
parameters, viz positive integers n, d, h, p, q, t, b, n, m, µ, f, τ , and a security
parameter κ. The system parameters are listed in Table 1. In the proposed
configurations, n ∈ {1, d}, and b, q, p, t are powers of 2, such that b|t|p|q. It is
required that

µ ≤ n ·m · n and µ ∗ b bits ≥ κ where b = 2b bits.

The function f
(τ)
d,n generates a public matrix A from a seed σ. Round5 has

three options for f
(τ)
d,n :

• f (0)
d,n generatesA by means of a deterministic random bit generator (DRBG)

from a seed σ specific for the protocol exchange. This is a standard
approach followed by many other protocols such as Frodo, Kyber, or
NewHope.

• f (1)
d,n generates A by permuting a public and system-wide matrix Amaster.

The permutation is derived from a seed σ. With this approach, it is
possible to efficiently obtain a fresh A that depends on a seed σ – so that
backdoor and pre-computation attacks are avoided – without having to
compute lots of pseudorandom data, so that higher efficiency is achieved.
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Table 1: List of symbols and their meaning

n Indicates if ring (n > 1) or ring-configuration (n = 1) is used

d Dimension of underlying lattice

h Number of non-zero components per column of secret matrices

b, p, q, t Rounding moduli, all powers of two, satisfying b < t < p < q

b bits Number of extracted bits per symbol in ciphertext component; b = 2b bits.

n Number of columns of the secret matrix of the initiator

m Number of columns of the secret matrix of the responder

κ Security parameter; number of information bits in error-correcting code

xe Number of parity bits of error correcting code

µ Number of symbols in ciphertext component: µ = dκ+xe
bbits
e.

Sampleµ Function for picking up µ polynomial coefficients from a matrix

f Number of bit errors correctable by error-correcting code

τ Index for method of determining public matrix from a seed in {0, 1}κ

f
(τ)
d,n Method for determining public matrix from a seed in {0, 1}κ

fS Function for determining secret matrix for initiator from a seed in {0, 1}κ

fR Function for determining secret matrix for responder from a seed in {0, 1}κ

z z = max(p, tqp ). Relevant in reduction proofs and definition of rounding constants

h1 h1 = q
2p is a rounding constant

h2 h2 = q
2z is a rounding constant

h3 h3 = p
2t + p

2b −
q
2z is a constant for reducing bias in decryption

h4 h4 = q
2p −

q
2z is a constant for reducing bias in decryption

Φn+1(x) Φn+1(x) = xn+1−1
x−1 . Reduction polynomial for computation of public keys; n+ 1 a prime.

ξ(x) Reduction polynomial for computation of ciphertext. ξ(x) ∈ {Φn+1(x), xn+1 − 1}

• f (2)
d,n generates A by first generating a vector a from a seed σ and then

permuting it. The permutation is also random and derived from seed σ
as well. With this approach, it is possible to efficiently obtain a fresh A
that depends on a seed σ – so that backdoor and pre-computation attacks
are avoided – without having to compute lots of pseudorandom data and
without having to store a potentially large matrix Amaster.

In the rest of this section, options like the choice of the DRBG underlying f
(τ)
d,n

are hidden. The specific implementation of fτd,n and performance trade-offs
discussed in Section 1.11.4 and Section 1.9

The function Sampleµ : C ∈ Rn×mn,p → Zµp outputs µ polynomial coefficients
of the n · m · n polynomial coefficients present in C. These µ coefficients are
used in the actual encryption algorithm. This function is fully specified in
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Section 1.11.4.
The integer f denotes the error-correction capability of a code XEκ,f ⊂

Zµb . We have an encoding function xef computeκ,f : {0, 1}κ → XEκ,f and a
decoding function xef decodeκ,f : Zµb → {0, 1}κ such that for each m ∈ {0, 1}κ
and each error e = (e0, . . . , eµ−1) with at most f symbols ei different from zero,

xef decodeκ,f (xef computeκ,f (m) + e) = m. (6)

The functions xef compute() and xef decode(), based on Xef codes, are detailed
from an implementation perspective in Section 1.11.4.

Algorithm r5 cpa pke encrypt employs a deterministic function fR for gen-

erating a secret matrix R ∈
(
Hn,d/n(h)

)1×m
from an input ρ. Defining ρ as an

explicit input to r5 cpa pke encrypt allows us to reuse this same algorithm as
a building block for both IND-CPA and IND-CCA secure cryptographic con-
structions.
Furthermore, r5 cpa pke uses four rounding constants, namely

h1 =
q

2p
, h2 =

q

2z
, h3 =

p

2t
+

p

2b
− q

2z
and h4 =

q

2p
− q

2z
, with z = max(p,

tq

p
)

(7)
The constant h1 leads to rounding to the closest integer. The choice of h2

ensures that Round5’s ciphertext (U ,v) is provably pseudorandom under the
GLWR assumption. Details are provided in the proof of IND-CPA security for
r5 cpa pke and r5 cpa kem (Section A.4). The choices of h3 and h4 are made
to avoid bias in decryption, see Section 1.8.

Note that the rounding constants are added explicitly here for complete-
ness, but with the specific parameter choices in the different Round5 configura-
tions 1.4.6 some of them can be simplified: h1 = h2 = q/2p leading to standard
rounding as in Round2 [13, 14] implemented by means of flooring. Furthermore,
h4 = 0. Thus, the only difference with respect to Round2 is h3, which is present
to avoid bias in decryption.
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Algorithm 1: r5 cpa pke keygen()

parameters: Integers p, q, n, h, d, n, κ, τ
input : -
output : pk ∈ {0, 1}κ ×Rd/n×nn,p , sk ∈ {0, 1}κ

1 σ
$←− {0, 1}κ

2 A = f
(τ)
d,n(σ)

3 sk
$←− {0, 1}κ

4 S = fS(sk)
5 B = Rq→p,h1(〈AS〉Φn+1)
6 pk = (σ,B)
7 return (pk, sk)

Algorithm 2: r5 cpa pke encrypt(pk,m, ρ)

parameters: Integers p, t, q, n, d,m, n, µ, b, κ, f, τ ; ξ ∈ {Φn+1(x), xn+1 − 1}
input : pk = (σ,B) ∈ {0, 1}κ ×Rd/n×nn,p ,m, ρ ∈ {0, 1}κ

output : ct = (U ,v) ∈ Rd/n×mn,p × Zµt
1 A = f

(τ)
d,n(σ)

2 R = fR(ρ)

3 U = Rq→p,h2(〈ATR〉Φn+1)

4 v = 〈Rp→t,h2(Sampleµ(〈BTR〉ξ)) + t
b
xef computeκ,f (m)〉t

5 ct = (U ,v)
6 return ct

Algorithm 3: r5 cpa pke decrypt(sk, ct)

parameters: Integers p, t, q, n, d,m, n, µ, b, κ, f ; ξ ∈ {Φn+1(x), xn+1 − 1}
input : sk ∈ {0, 1}κ, ct = (U ,v) ∈ Rd/n×mn,p × Zµt
output : m̂ ∈ {0, 1}κ

1 vp = p
t
v

2 S = fs(sk)

3 y = Rp→b,h3(vp − Sampleµ((ST (U + h4J))ξ))

4 m̂ = xef decodeκ,f (y)
5 return m̂

1.4.3 Submission proposal: r5 cpa kem

This section describes r5 cpa kem, an IND-CPA-secure key encapsulation method.
It builds on r5 cpa pke (Section 1.4.2). In addition to the parameters and func-
tions from r5 cpa pke, it uses a hash function H : {0, 1}∗ → {0, 1}κ. In order
to improve readability, in Algorithms5 and 6 the conversion of the ciphertext ct
into a binary string before it is fed to H is not made explicit.
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Algorithm 4: r5 cpa kem keygen()

parameters: Integers p, q, n, h, d, n, κ, τ
input : -
output : pk ∈ {0, 1}κ ×Rd/n×nn,p , sk ∈ {0, 1}κ

1 (pk, sk) = r5 cpa pke keygen()
2 return (pk, sk)

Algorithm 5: r5 cpa kem encapsulate(pk)

parameters: Integers p, t, q, n, d,m, n, µ, b, κ, f, τ ; ξ ∈ {Φn+1(x), xn+1 − 1}
input : pk ∈ {0, 1}κ ×Rd/n×nn,p

output : (ct,K) ∈ (Rd/n×mn,p × Zµt )× {0, 1}κ

1 m
$←− {0, 1}κ

2 ρ
$←− {0, 1}κ

3 ct = r5 cpa pke encrypt(pk,m, ρ)
4 K = H(m, ct)
5 return (ct,K)

Algorithm 6: r5 cpa kem decapsulate(sk, ct)

parameters: Integers p, t, q, n, d,m, n, µ, b, κ, f ; ξ ∈ {Φn+1(x), xn+1 − 1}
input : sk ∈ {0, 1}κ, ct ∈ Rd/n×mn,p × Zµt
output : K ∈ {0, 1}κ

1 m = r5 cpa pke.decrypt(sk, ct)
2 K = H(m, ct)
3 return K

1.4.4 Internal building block: r5 cca kem

This section describes r5 cca kem that is a building block for r5 cca pke. It
consists of the algorithms 7, 8, 9, and several system parameters and func-
tions in addition to those from r5 cpa pke and r5 cpa kem. In addition to the
hash function H from r5 cpa kem, it uses another hash function G : {0, 1}∗ →
{0, 1}κ × {0, 1}κ × {0, 1}κ. To improve readability, conversion of data types to
bitstrings before being fed to G and H is not made explicit.

r5 cca kem is actively secure as it is obtained by application of the Fujisaki-
Okamoto transform [56] to r5 cpa pke, similarly as in [27, Sec. 4]. On decap-
sulation failure, i.e. if the condition in line 4 of Algorithm 9 is not satisfied,
a pseudorandom key is returned, causing later protocol steps to fail implicitly.
Explicit failure notification would complicate analysis, especially in the quan-
tum random oracle (QROM) case.
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Algorithm 7: r5 cca kem keygen()

parameters: Integers p, q, n, h, d, n, κ, τ
input : -
output : pk ∈ {0, 1}κ×Rd/n×nn,p , sk ∈ {0, 1}κ×{0, 1}κ× ({0, 1}κ×Rd/n×nn,p )

1 (pk, skCPA−PKE) = r5 cpa pke keygen()

2 y
$←− {0, 1}κ

3 sk = (skCPA−PKE , y, pk)
4 return (pk, sk)

Algorithm 8: r5 cca kem encapsulate(pk)

parameters: Integers p, t, q, n, d,m, n, µ, b, κ, f, τ ; ξ ∈ {Φn+1(x), xn+1 − 1}
input : pk ∈ {0, 1}κ ×Rd/n×nn,p

output : ct = (U ,v, g) ∈ Rd/n×mn,p × Zµt × {0, 1}κ,K ∈ {0, 1}κ

1 m
$←− {0, 1}κ

2 (L, g, ρ) = G(m, pk)
3 (U ,v) = r5 cpa pke encrypt(pk,m, ρ)
4 ct = (U ,v, g)
5 K = H(L, ct)
6 return (ct,K)

Algorithm 9: r5 cca kem decapsulate(sk, ct)

parameters: Integers p, t, q, n, d,m, n, µ, b, κ, f, τ ; ξ ∈ {Φn+1(x), xn+1 − 1}
input : sk = (skCPA−PKE , y, pk) ∈ {0, 1}κ × {0, 1}κ × ({0, 1}κ ×

Rd/n×nn,p ), ct = (U ,v, g) ∈ Rd/n×mn,p × Zµt × {0, 1}κ
output : K ∈ {0, 1}κ

1 m′ = r5 cpa pke decrypt(skCPA−PKE , (U ,v))
2 (L′, g′, ρ′) = G(m′, pk)
3 (U ′,v′) = r5 cpa pke encrypt(pk,m′, ρ′)
4 if (U ′,v′, g′) = (U ,v, g) then
5 return K = H(L′,U ,v, g)
6 else
7 return K = H(y,U ,v, g)
8 end if

1.4.5 Submission proposal: r5 cca pke

The IND-CCA [82] public key encryption scheme r5 cca pke consists of al-
gorithms 10, 11 and 12. It combines r5 cca kem with a data encapsulation
mechanism (DEM), in the canonical way proposed by Cramer and Shoup [38].
r5 cca kem is used to encapsulate a key K that is then used by the DEM to
encrypt an arbitrary-length plaintext, optionally adding integrity protection.
In decryption, r5 cca kem is used to decapsulate K, which is then used by the
DEM to decrypt and authenticate the plaintext.
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Algorithm 10: r5 cca pke keygen()

parameters: Integers p, q, n, h, d, n, κ, τ
input : -
output : pk ∈ {0, 1}κ×Rd/n×nn,p , sk ∈ {0, 1}κ×{0, 1}κ× ({0, 1}κ×Rd/n×nn,p )

1 (pk, sk) = r5 cca kem keygen()
2 return (pk, sk)

Algorithm 11: r5 cca pke encrypt(pk,M)

parameters: Integers p, t, q, n, d,m, n, µ, b, κ, f, τ ; ξ ∈ {Φn+1(x), xn+1 − 1}
input : pk ∈ {0, 1}κ ×Rd/n×nn,p ,mlen ∈ Z,M ∈ Zmlen256

output : ct = (c1, clen, c2) ∈ (Rd/n×mn,p × Zµt × {0, 1}κ)× Z× Zclen256

1 (c1,K) = r5 cca kem encapsulate(pk)
2 (clen, c2) = DEM(K,M)
3 ct = (c1, clen, c2)
4 return ct

Algorithm 12: r5 cca pke decrypt(sk, ct)

parameters: Integers p, t, q, n, d,m, n, µ, b, κ, f, τ ; ξ ∈ {Φn+1(x), xn+1 − 1}
input : sk ∈ {0, 1}κ × {0, 1}κ × ({0, 1}κ ×Rd/n×nn,p ), ct = (c1, clen, c2) ∈

(Rd/n×mn,p × Zµt × {0, 1}κ)× Z× Zclen256

output : M ∈ Zmlen256

1 K = r5 cca kem decapsulate(sk, c1)
2 (mlen,M) = DEM−1(K, c2)
3 return (mlen,M)

1.4.6 Proposed configurations

As illustrated by Table 1, Round5 has a large design space so that it can be
easily configured to fit the needs of different applications. In particular, Round5
optimizes over the above design space to define the following configurations:

• Six ring configurations (r5 cpa kem and r5 cca pke for NIST security levels
1,3 and 5) without error correction, see Tables 2 and 11. These parameter
choices can be considered to be conservative, as they are only based on
the Round2 design that has received public review since its submission.

• Six ring configurations (r5 cpa kem and r5 cca pke for NIST security levels
1,3 and 5) with XEf error correction code, see Tables 3 and 12. Using XEf
requires that ξ(x) = xn+1 − 1 and that the sparse ternary secrets are
balanced (cf. Section 1.4.1. These parameter choices are based on the
merge of HILA5 with Round2 and lead to the smallest public key and
ciphertext sizes.

• Six non-ring configurations (r5 cpa kem and r5 cca pke for NIST security
levels 1,3 and 5) without error correction, see Tables 4 and 13 These
parameter choices rely on same design choices as the original Round2
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submission. In particular, it uses n ≈ m to minimize total size of public-
key plus ciphertext.

Round5 further details three additional specific use-case parameters with the
only purpose of demonstrating its flexibility:

• A ring-based KEM configuration, addressing IoT. This configuration has
lower bandwidth and computational requirements,yet still providing 90
bits of (quantum) security. XE2 forward error correction is used to im-
proved failure rate, bandwidth requirements and security. See Table 5.

• A ring-based NIST level 1 configuration with Xef code in which the encap-
sulated key is 192-bit long instead of just 128-bit so that the difficulty of
attacking the encapsulated key (by Grover) equals the difficulty of quan-
tum lattice attack to Round5, see Table 5.

• A non-ring-based PKE parameter set with NIST level 3 with a ciphertext
size of only 988 Bytes, with very fast encryption and decryption, by taking
m = 1, at the cost of a larger public key, see Table 14. This configura-
tion targets applications in which the public-key can remain static for a
long period, e.g., a fixed VPN between two end points. In such appli-
cations, the bandwidth footprint depends on the size of the ciphertext.
Hence, this parameter set, despite enjoying the more conservative secu-
rity assumptions for unstructured lattices, has a bandwidth requirement
comparable to ring variants.

In contrast to the original Round2 and HILA5 submissions, Round5 does
not include parameter sets suitable for NTT. The reason is that non-NTT pa-
rameters allow achieving better CPU-performance, as the advantages of using
modular arithmetic with powers of two outweigh the advantages of using an
NTT.
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LWE

Theorem A.8.0.1

SPT-GLWRd>1,n=1

r5 cpa pke

r5 cpa kem

r5 cca kem + r5 cca pke

Theorem A.4.0.1 Theorem A.4.0.1

Theorem A.6.0.1 Theorem A.6.0.1

Theorem A.7.0.1 Theorem A.7.0.2
(ROM) (QROM)

RLWE

SPT-GLWRd>1,n=d

Figure 2: Summary of reductions involved in the security proofs for Round5
algorithms. “SPT” refers to a variant of the problem in question where the
secret is sparse-ternary, instead of uniform in Zdq .

1.5 Known Answer Test Values

The Known Answer Test Values for all algorithm variants and NIST levels can
be found on the digital media at the location described in Section ??.

Note that for generating intermediate output, the code needs to be compiled
with -DROUND5 INTERMEDIATE (this option is enabled by default when making
use of the provided Makefiles).

1.6 Expected Security Strength

This section summarizes results on the expected security of Round5 algorithms,
its building blocks and underlying hard problem. An overview of these results
is also given in Figure 2. For proofs, we refer to Appendix A.

1. r5 cpa pke is an IND-CPA secure public-key encryption scheme if the
decision General Learning with Rounding (GLWR) problem with sparse
- ternary secrets is hard for the polynomial ring Z[x]/Φn+1(x). Theo-
rem A.4.0.1 gives a tight, classical reduction against classical or quantum
adversaries in the standard model, a concise version of which is as follows:
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Theorem 1.6.0.1. For every adversary A, there exist distinguishers B,
C, D, E, F such that

AdvIND-CPA
CPA-PKE(A) ≤ Adv

fτn,d

U(Rd/n×d/nn,q )
(B) + Adv

fS(s)

χnS
(C)+

Adv
fR(ρ)

χmS
(D) + n ·Adv

dGLWRspt
d,n,d/n,q,p(E) + Adv

dGLWRspt
d,n,d/n+n,q,z(F)

(8)

where z = max(p, tq/p).

The full proof of IND-CPA security, given in Appendix A.4, follows a
similar approach as [40] to equalize the noise ratios q/p and p/t in the
two ciphertext components U and v that allows their combination into a
single GLWR sample with noise ratio q/z. This proof does not apply if
the reduction polynomial ξ(x) in Round5 is Nn+1(x), since then U and v
cannot be combined into a single GLWR sample.

2. Appendix A.5 presents a proof of IND-CPA security for a Ring LWE based
variant of r5 cpa pke with reduction polynomial ξ(x) = Nn+1(x), if the
decision Ring LWE problem for Z[x]/Φn+1(x) is hard; this results gives
confidence for the RLWR case. Theorem A.5.0.1 gives a tight, classical re-
duction against classical and quantum adversaries in the standard model,
a concise version of which is as follows:

Theorem 1.6.0.2. For every adversary A, there exist distinguishers C
and E such that

AdvIND-CPA
CPA-PKE,Nn+1(x)(A) ≤ Adv

RLWE(Z[x]/φ(x))
m=1 (C) + Adv

RLWE(Z[x]/φ(x))
m=2 (E).

(9)
where m denotes the number of available RLWE samples available.

This section also gives indications on sufficient conditions for the proof
to work. One of them is replacing coordinate-wise rounding as done in
Round5 by a more complicated form of rounding which ensures that the
sum of the errors induced by rounding sum to zero. We chose not to use
this form of rounding as it adds complexity and seems not to improve
practical security. Moreover, the Sampleµ function in Round5 stops a
well- known distinguishing attack against schemes based on rings with
reduction polynomial xn+1 − 1.

3. r5 cpa kem is an IND-CPA secure KEM if r5 cpa pke is an IND-CPA se-
cure public-key encryption scheme, and that H is a secure pseudo-random
function. Theorem A.6.0.1 gives a tight, classical reduction against clas-
sical or quantum adversaries in the standard model; the construction and
proof technique are standard.

4. r5 cca pke is constructed from r5 cca kem and a one-time data encapsu-
lation mechanism in the canonical way proposed by Cramer and Shoup [39].
Therefore, if r5 cca kem is IND-CCA secure, and the data encapsulation
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mechanism is (one-time) secure against chosen ciphertext attacks and has
a keylength fitting the security level of r5 cca kem, then r5 cca pke is an
IND-CCA secure PKE. Section A.7 contains details.

5. r5 cca kem is constructed using a KEM variant of the Fujisaki-Okamoto
transform [53] from r5 cpa pke. Therefore, assuming that r5 cpa pke is an
IND-CPA secure public-key encryption scheme, and G and H are mod-
eled as random oracles, r5 cca kem is an IND-CCA secure KEM. Theo-
rem A.7.0.1 gives a tight, classical reduction against classical adversaries
in the classical random oracle model. Theorem A.7.0.2 gives a non-tight,
classical reduction against quantum adversaries in the quantum random
oracle model.

6. Appendix A.1 gives an overview of the security reduction when replacing
the GLWR public parameter A sampled from a truly uniform distribution

with one generated in a pseudorandom fashion using the function f
(τ)
d,n , for

τ ∈ {0, 1}. The reduction models AES(128 or 256) as an ideal cipher, and
SHAKE(128 or 256) as a random oracle.

7. The decision Learning with Rounding (LWR) problem with sparse-ternary
secrets is hard if the decision Learning with Errors (LWE) problem with
uniform secrets and Gaussian errors is hard. Theorem A.8.0.1 gives a
classical reduction against classical or quantum adversaries in the stan-
dard model, under the condition that the noise rate in the LWE problem
decreases linearly in the security parameter n of the LWE and LWR prob-
lems. A concise version of this theorem is presented below:

Theorem 1.6.0.3. Let p divide q, and k ≥ q
p · m. Let ε ∈ (0, 1

2 ), and

α, δ > 0 such that

α ≥ q−1
√

(2/π) ln(2n(1 + ε−1)),

(
n

h

)
2h ≥ qk+1 · δ−2, and m = O(

logn

α
√

10h
)

Then there is a reduction from dLWEn, qp ,q,Dα√10h
(U(Hn (h))) to

dLWRn,m,q,p (U(Hn (h))).

1.7 Analysis with respect to known attacks

In this section, we analyze the concrete security of Round5. As the lattice-based
attacks all rely on estimating the costs of solving certain lattice problems, we
start with preliminaries on this topic in Sections 1.7.1 and 1.7.2. We then con-
sider attacks using lattice basis reduction in Sections 1.7.3,1.7.4 and 1.7.5, fol-
lowed by specialized attacks that exploit sparse-ternary secrets used in Round5
in Sections 1.7.6 and 1.7.7. Finally, in Section 1.7.8we consider precomputation
and back-door attacks against the Round5 GLWR public parameter A.
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1.7.1 Preliminaries: SVP Complexities

On arbitrary lattices, we define the Shortest Vector Problem (SVP) as the prob-
lem of finding a vector in a lattice whose Euclidean norm is minimal among all
non-zero vectors in the lattice. This problem is known to be NP-hard for ran-
domized reductions [2, 62], and we do not expect any polynomial time algorithms
for solving this problem in the worst-case to be found any time soon.

Various algorithms have been studied for solving SVP both in the worst-
case and for average-case instances. The algorithm with the current best worst-
case (asymptotic) complexity for solving SVP is the discrete Gaussian sampling
approach [1], with an asymptotic cost in dimension n of 2n+o(n) time and space.
For large dimensions, this beats other exponential time and space algorithms
based on computing the Voronoi cell [93, 72] or running a lattice sieve [3, 81], and
enumeration algorithms requiring superexponential time in the lattice dimension
[80, 61, 92, 47, 11]. These worst-case analyses however seem to suffer heavily
from the (potential) existence of exotic, highly dense lattices such as the Leech
lattice [36], and for average-case instances one can often solve SVP much faster,
as also shown by various experiments on random lattices [41].

By making heuristic assumptions on the expected average-case behavior of
SVP algorithms on random lattices, various works have demonstrated that some
algorithms can solve SVP much faster than the above worst-case bounds sug-
gest. For a long time, lattice enumeration [47, 11] was considered the fastest
method in practice for solving SVP in high dimensions, and the crossover point
with sieving-based approaches appeared to be far out of reach, i.e. well beyond
cryptographically relevant parameters [73]. Recently, improvements to lattice
sieving have significantly weakened this view, and the current fastest imple-
mentation based on sieving [4] has surpassed the best previous enumeration
implementation both in terms of speed and in terms of the highest dimension
reachable in practice. Although sieving is hindered by its exponential memory
footprint, sieving also scales better in high dimensions compared to enumer-
ation in terms of the time complexity (2Θ(n) for sieving versus 2Θ(n logn) for
enumeration).

Conservative estimates. To estimate the actual computational complexity
of solving SVP, we will use the best asymptotics for sieving [19], which state
that solving SVP in dimension n takes time 20.292n+o(n). Clearly the hidden
order term in the exponent has a major impact on the actual costs of these
methods, and one might therefore be tempted to choose this term according to
the actual, experimental value. However, recent improvements have shown that
although the leading term 0.292n in the exponent is unlikely to be improved
upon any time soon [10, 52], the hidden order term may well still be improved
with heuristic tweaks such as those discussed in [42, 66, 4]. A conservative
and practical cost estimate is therefore to estimate the costs of solving SVP in
dimension n as 20.292n, ignoring the (positive) hidden order term which may
still be reduced over the next decades. Observe that this estimate is also well
below the lowest estimates for enumeration or any other SVP method in high
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dimensions.
Note that some work has also suggested that SVP is slightly easier to solve

on structured, ideal lattices when using lattice sieving [60, 30, 20, 95]. However,
these are all improvements reducing the time and/or space complexities by a
small polynomial factor in the lattice dimension. Moreover, in our cost estimates
we will actually be using an SVP algorithm as a subroutine within a blockwise
lattice reduction algorithm, and even if the original lattice on which we run this
lattice basis reduction algorithm has additional structure, these low-dimensional
sublattices do not. Therefore, even for ideal lattices we do not expect these
polynomial speedups to play a role.

Quantum speedups. For making Round5 post-quantum secure, we also take
into account any potential quantum speedups to attacks an adversary might run
against our scheme. Concretely, for the hardness of SVP on arbitrary lattices
this may reduce the cost of lattice sieving to only 20.265n+o(n), assuming the
attacker can efficiently run a Grover search [48] on a dynamically changing,
exponential-sized database of lattice vectors stored in quantum RAM [68, 65].
Although it may not be possible to ever carry out such an attack efficiently,
a conservative estimate for the quantum hardness of SVP in dimension n is
therefore to assume this takes the attacker at least 20.265n time [65].

Note that recent work has also indicated that enumeration may benefit from
a quantum speedup when applying a Grover-like technique to improve the back-
tracking search of lattice enumeration [12]. Disregarding significant polynomial
overhead as well as simply the overhead of having to do operations quantumly,
a highly optimistic estimate for the time costs of quantum enumeration in di-
mension n is 2

1
2 (0.187n logn−1.019n+16.1) [59]. Even with this model, the attack

costs for all our parameter sets are higher than 20.265n.

1.7.2 Lattice basis reduction: the core model

The above discussion focused on algorithms for solving exact SVP in high di-
mensions. The concrete security of lattice-based cryptographic schemes like
Round5 however relies on the hardness of unique/approximate SVP, where a
break constitutes finding a vector not much longer than the actual shortest
non-zero vector in the lattice. This problem has also been studied extensively,
and the the fastest method known to date for approximate SVP is the BKZ
algorithm [91, 89, 32, 74, 4]. Given an arbitrary basis of a lattice, this algo-
rithm (a generalization of the LLL algorithm [69]) performs HKZ reduction [63]
on (projected) parts of the basis of a certain block size b. To perform HKZ
reduction, the algorithm makes calls to an exact SVP oracle on b-dimensional
lattices, and uses the result to improve the basis. Both the quality and time
complexity can be tuned by b: running BKZ with larger b gives better bases,
but also takes longer to finish.

Although the exact overall time complexity of BKZ remains somewhat mys-
terious [32, 51, 74, 4], it is clear that the dominant cost of BKZ for large block
sizes is running the SVP oracle on b-dimensional lattices. The BKZ algorithm
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further makes tours through the entire basis on overlapping blocks of basis vec-
tors, but the number of tours only contributes a small multiplicative term, and
SVP calls on overlapping blocks do not necessarily add up to independent SVP
calls - for multiple overlapping blocks, it may well be possible to solve SVP
in almost the same time as solving only one instance of SVP when using a
sieving-based SVP solver [4].

This all gives rise to the core SVP model, where the complexity of BKZ with
block size b is modeled by just one call to an SVP oracle in a b-dimensional
lattice. This is clearly a lower bound for the actual cost of BKZ, and as further
advances may be made to sieving-based BKZ algorithms reusing information
between blocks, this is also the largest lower bound we can use without risking
that predicted future advances in cryptanalysis will reduce the security level of
our scheme in the near future.

1.7.3 Lattice-based attacks

We consider lattice-reduction based attacks, namely, the primal or decoding
attack [16] and the dual or distinguishing attack [5], and how they can be
adapted to exploit the shortness of secrets in our schemes. We begin by detailing
how an attack on Round5 can be formulated as a lattice-reduction based attack
on the LWR problem. We then analyze the concrete security of Round5 against
the primal attack in order to estimate secure parameters, in Section 1.7.4. We
do the same for the dual attack in Section 1.7.5.

The attacker can use the public keys B = 〈bpq 〈〈AS〉q〉qe〉p of the public-key
encryption scheme or the key-encapsulation scheme to obtain information on the
secret key S. We work out how this is done. For the non-ring case, B ∈ Zd×np .
Note also that since q|p in this case, B = 〈bpq 〈AS〉qe〉p. Let 1 ≤ i ≤ d and

1 ≤ j ≤ n. If we denote the i-th row of A by aTi and the j-th column of S by
sj , then

Bi,j = 〈bp
q
〈〈aTi sj〉q〉qe〉p = 〈bp

q
〈aTi sj〉qe〉p.

By the definition of the rounding function b·e, we have that

Bi,j ≡
p

q
〈aTi sj〉q + ei,j (mod p) with ei,j ∈ (−1/2, 1/2].

As 〈aTi sj〉q = aTi sj + λq for some integer λ, we infer that

q

p
Bi,j ≡ aTi sj +

q

p
ei,j (mod q). (10)

So we have d equations involving sj . Unlike conventional LWE, the errors q
pei,j

reside in a bounded interval, namely (− q
2p ,

q
2p ]. In what follows, we will only

consider the case that p divides q.
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1.7.4 Primal Attack

In (10), we write s for sj , denote by b the vector of length m with j-th com-
ponent q

pBi,j , and with Am the matrix consisting of the m top rows of A. We

then have, for e ∈ (− q
2p ,

q
2p ]

m

b ≡ Ams+ e (mod q) (11)

so that v = (sT , eT , 1)T is in the lattice Λ defined as

Λ = {x ∈ Zd+m+1 : (Am|Im|−b)x = 0 (mod q)} (12)

of dimension d′ = d+m+ 1 and volume qm [25, 7]. The attacker then searches
for a short vector in Λ which hopefully equals v, thus enabling him to recover
the secret s.

Lattice Rescaling: The lattice vector v = (s, e, 1) is unbalanced in that
‖s‖ � ‖e‖. For exploiting this fact, a rescaling technique originally due to [16],
and analyzed further in [35] and [5] is applied. Multiplying the first d columns
of Λ’s basis (see Eq. 12) with an appropriate scaling factor ω yields the following
weighted or rescaled lattice,

Λω = {x ∈ Zd+m+1 :
(
(ω ·AT

m)|Im|−b
)
x = 0 (mod q)} (13)

in which the attacker then searches for the shortest vector, that he hopes to
be equal to vω = (ω · sT , eT , 1)T . This search is typically done by using a
lattice reduction algorithm to obtain a reduced basis of the lattice, the first
vector of which will be the shortest of that basis due to a common heuristic.
We explain later in this section how to choose an appropriate value for ω in
order to maximize the chances of the attack’s success.

If the quality of the lattice reduction is good enough, the reduced basis will
contain vω. The attack success condition is as in [7] assuming that BKZ [33, 90]
with block-size b is used as the lattice reduction algorithm. The vector vω will
be detected if its projection ṽb onto the vector space of the last b Gram-Schmidt
vectors of Λ is shorter than the expected norm of the (d′ − b)th Gram-Schmidt

vector b̃d′−b, where d′ is the dimension of Λ [7, Sec. 6.3],[25]. The condition
that must be satisfied for the primal attack to succeed is therefore:

‖ṽb‖ < ‖b̃d′−b‖

i.e., ‖ṽb‖ < δ2b−d′−1 · (Vol(Λ))
1
d′

where, δ = ((πb)
1
b · b

2πe
)

1
2(b−1)

(14)

The attack success condition (14) yields the following security condition that
must be satisfied by the parameters of our public-key encryption and key-
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encapsulation schemes to remain secure against the primal attack:√
(ω2 ·h+ σ′2m) · b

d+m
≥ δ2b−d′−1 · (qmωd) 1

d′

where, δ = ((πb)
1
b · b

2πe
)

1
2(b−1) ,

σ′
2

= ((q/p)2 − 1)/12,

and d′ = d+m+ 1.

(15)

For finding an appropriate value for ω, we rewrite (15) as

δ2b−d′−1b−1/2 ≤
√
ω2h+mσ′2 · 1

m+ d
ω−d/d

′
q−(d−d′−1)/d. (16)

Given d,m, h and σ′, the attacker obtains the least stringent condition on the
block size b by maximizing the right hand side 16 over ω, or equivalently, by
maximizing

1

2
log(ω2h+mσ′2)− d

d′
logω.

By differentiating with respect to ω, we find that the optimizing value for ω
satisfies

ω2 =
dmσ′2

h(d′ − d)
=

dmσ′2

h(m+ 1)
≈ d

h
σ′2.

1.7.5 Dual Attack

The dual attack against LWE/LWR [8],[6] employs a short vector (v,w) ∈
Zm × Zd in the dual lattice

Λ∗ = {(x,y) ∈ Zm × Zd : AT
mx = y (mod q)} (17)

The attacker constructs the distinguisher using z = {vT b}q. If b is an LWR
samples, then z = {vT (Ams+ e)}q = {wTs+ vTe}q. Note that ‖s‖ � ‖e‖ in

our case, the attacker can enforce that ‖w‖ � ‖v‖ to ensure that |wTs| ≈ |vTe|
similar to [6]. He does so by choosing ω = σ′

√
m/h (for the LWR rounding

error with variance σ′2 = ((q/p)2 − 1)/12), and considering the lattice:

Λ∗ω = {(x,y/ω) ∈ Zm ×
( 1

ω
· Zd

)
: AT

mx = y (mod q)} (18)

A short vector (v,w) ∈ Λ∗ω gives a short vector (v, ωw) ∈ Λ∗ that is used
to construct the distinguisher z. If b is uniform modulo q, so is z. If b is an
LWR sample, then z = {vT b}q = {(ωw)Ts+ vTe}q = {wT (ωs) + vTe} has

a distribution approaching a Gaussian of zero mean and variance ‖(v,w)‖2 ·
σ′

2
as the lengths of the vectors increase, due to the Central limit theorem.

Note that ω has been chosen such that ‖ωs‖ ≈ ‖e‖. The maximal statistical
distance between this and the uniform distribution modulo q is bounded by
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ε ≈ 2−1/2 exp(−2π2(‖(v,w)‖2 · σ′/q)2) [22, Appendix B]. Lattice reduction with

root-Hermite factor δ yields a shortest vector of length δd
′−1 ·Vol(Λ∗ω)

1/d′
, where

d′ = m+ d and Vol(Λ∗ω) = (q/ω)d are Λ∗ω’s dimension and volume, respectively.
However, finding only one such short vector is not enough, as the resulting

distinguishing advantage ε is too small to distinguish a final key which is hashed.
The attack needs to be repeated approximately ε−2 times to achieve constant
advantage. The attacker can utilize the fact that when sieving algorithms are
used in the lattice reduction algorithm (e.g., BKZ with block size b) to obtain
short vectors, each run of such algorithms provides 20.2075b vectors [8]. Under the
conservative assumption that each of these vectors is short enough to guarantee
a distinguishing advantage ε, the lattice reduction algorithm must therefore be
run at least max(1, 1/20.2075b · ε2) times [8], when considering BKZ with block
size b. The cost of the weighted dual attack on LWR (with dimension d, large
modulus q, rounding modulus p) using m samples thus is the cost of running
one instance of BKZ lattice reduction with block size b times the number of
repetitions required, i.e.,

(b · 2cb) ·max(1, 1/(ε2 · 20.2075·b)),where

ε = 2−1/2 · e−2π2((‖(v,w)‖2·σ′)/q)
2

, ‖(v,w)‖2 = δm+d−1 · (q/ω)
d/(m+d)

,

δ = ((πb)
1
b · b

2πe
)

1
2(b−1) , ω = σ′ ·

√
m/h, and σ′

2
= ((q/p)2 − 1)/12.

(19)

The first term (b · 2cb) in the overall attack cost is that of running BKZ with
block-size b. The BKZ sieving exponent c depends on the security model, e.g.,
c = 0.265 considering sieving algorithms sped up with Grover’s quantum search
algorithm [64, 67], and c = 0.292 with no such speedup.

For Round5’s ring-based instantiations (i.e., when the parameters n = d),
we follow a conservative approach similar to [8] and omit the b factor in the cost
of running one instance of BKZ, accounting for the possibility that techniques
in [88, 29] can be adapted to more advanced sieving algorithms, yielding the
cost 2cb instead of b · 2cb.

1.7.6 Hybrid Attack

In this section, we consider a hybrid lattice reduction and meet-in-the-middle
attack (henceforth called hybrid attack) originally due to [57] that targeted the
NTRU [54] cryptosystem. We first describe the hybrid attack, using notation
similar to that of [94], in a general form. Subsequently, we specialize the attack
to our scheme. Finally, we describe a scaling approach to make the hybrid
attack exploit the fact that the secret is small and sparse.

The hybrid attack will be applied to the lattice

Λ′ = {x ∈ Zm+d+1 | (Im|Am| − b)x ≡ 0 mod q}
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for some m ∈ {1, . . . , d}. We first find a basis B′ for Λ′ of the form

B′ =

(
B C

0 Ir

)
(20)

where 0 < r < d is the meet-in-the-middle dimension and Ir is the r-dimensional
identity matrix. We aim to find the short vector v = (eT , sT , 1)T in Λ′. We
write v = (vTl v

T
g )T where vg has length r. We recover the vector vg of length

r < d consisting of the (r− 1) bottom entries of s followed by a ‘1’ by guessing.
As the columns of B′ generate Λ′, there exists a x ∈ Zd+m+1−r such that

v =

(
vl

vg

)
= B′

(
x

vg

)
=

(
B C

0 Ir

)(
x

vg

)
=

(
Bx+Cvg

vg

)
(21)

As vl is short, Cvg is close to −Bx, a vector from the lattice Λ(B). As
explained in [94], the idea is that if we correctly guess vg, we can hope to find
vl by using Babai’s Nearest Plane (NP) algorithm [15]. This algorithm, given a
basis B̃, finds for every target vector t ∈ Rd+m+1−r a vector e = NPB̃(t) such

that t− e ∈ Λ(B̃).
The cost for the hybrid attack thus is the sum of two terms: the cost of

finding a good basis B̃ for Λ(B), and the cost of generating NPB̃(Cy) for all y
from a set of vectors of length r that (with high probability) contains vg. The
latter cost may be reduced by using a Meet-in-the-middle approach [57] which
reduces the number of calls to the Nearest Plane algorithm to the square root
of the number of calls with a brute-force approach.

As r < d, the vector vg is a ternary. The attacker can benefit from the fact
that s has h non-zero entries in the generation of candidates for vg: candidates
with high Hamming weight are not very likely. Also, as the (d−r) bottom entries
of vl, being the (d − r) top elements of s, are ternary and sparse. In order to
benefit from this fact, the d−r rightmost columns of the matrixB are multiplied
with an appropriate scaling factor ω. Calculated similarly to Section 1.7.4 by
equalizing the per-component expected norms of the secret s and LWR rounding

error e, we arrive at the same scaling factor ω =
√

(q/p)2−1
12 · dh . This then scales

up the volume of the (d− r +m+ 1 dimensional) lattice Λ generated by B by
a factor ωd−r.

We analyze the hybrid attack similarly as in [54]. For each pair (r,m) with
1 ≤ r,m < d, we stipulate that the quality of the reduced basis B̃ is so high that
NPB̃(vg) = vl with high probability. The condition, derived from [57, Lemma

1] is that the norm of the last Gram-Schmidt vector of B̃ is at least twice
||vl||∞, see also [54] We use the Geometric Series Assumption to approximate
the norms of these vectors in terms of the Hermite constant δ. The cost for
obtaining a reduced basis with Hermite constant δ is estimated as b2cb, where b

is such that δ =
(

(πb)
1
b · b

2πe

) 1
2b−1

, and similar to our conservative approach in

the previous attacks we ignore the additional b factor in the cost accounting for
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potential speedups in sieving algorithms for ring-based instantiations. c is the
BKZ sieving exponent as before. Moreover, we estimate the cost for the lattice
decoding part to be equal to the number of invocations of the Nearest Plane
Algorithm, which, following [54], we set to 2

1
2 r·H , where H is the entropy of the

distribution of each of the coordinates of the guessed vector vg. The number
2r·H approximates the number of typical vectors of length r; the factor 1

2 is due
to either the usage of the MITM technique, or the use of Grover’s algorithm in
the quantum case. Finally, we minimize the cost over all feasible pairs (r,m).

Our analysis of the hybrid attack allows us to obtain a rough estimate of its
cost. With the goal of providing a more accurate estimate, Wunderer [94] gives
an extensive runtime analysis of the hybrid attack. One of the aspects he takes
into account is that the attacker chooses a larger value of δ. This leads to a
smaller cost (running time) for lattice reduction to obtain B̃, but decreases the
probability that NPB̃(vg) = vl, thereby increasing the expected cost (running
time) of the part of the attack dealing with solving BDD problems. Also, he
takes into account that the guesses for vg are generated such that the most
likely candidates for vg occur early, thus reducing the expected number of calls
to the nearest plane algorithm.

1.7.7 Attacks against Sparse Secrets

In Sections 1.7.4 and 1.7.5, we considered attacks [16, 5, 35] against LWE and/or
LWR variants with unnaturally small secrets. In this section, we consider at-
tacks against sparse secrets with the goal of choosing an appropriate Hamming
weight providing both optimal performance and security. The best-known at-
tacks against such sparse secrets are (to the best of our knowledge) the Hybrid
attack described in Section 1.7.6, and another one due to Albrecht et al [5].
The Hybrid attack performs better than Albrecht’s attack against our schemes,
it is therefore the primary attack considered in our analysis. Recall that the
hybrid attack’s overall cost is the sum of two components: that of finding a
good basis and that of solving Babai’s Nearest Planes for a large set of vectors
using a Meet-in-the-middle approach. Recall also that this second cost com-
ponent depends on the entropy H of the distribution of each secret coordinate
(in our case), which in turn depends on the Hamming weight of the secret. We
therefore optimize over the Hamming weight to choose the smallest value for
which the overall hybrid attack cost is at least a targeted minimum (depending
on the security level).

For completeness, we also describe Albrecht’s attack [5] against LWE/LWR
variants with sparse secrets. Since most rows of the public matrix A become
irrelevant in the calculation of the productAs for such secrets, Albrecht’s attack
ignores a random set of k ≤ d components of s and brings down the lattice
dimension (and hence attack cost) during lattice reduction. As s has d − h
zeroes, there are

(
d−h
k

)
choices (out of

(
d
k

)
) for the k ignored components such

that these ignored components only contain zeroes. We therefore repeat the
attack

(
d
k

)
/
(
d−h
k

)
times. We estimate the cost (in bits) for a given Hamming

weight h ≤ d, as the number of repetitions each low cost attack is performed
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times the cost of the low-cost attack on a lattice of dimension d− k:(
d
k

)(
d−h
k

) × CostLattice Reduction(d, k, h)

Here CostLattice Reduction(d, k, h) is defined as

min{b · 2cb | b ∈ N, there exists m ∈ N such that m ≤ d and (22) is satisfied.}√
(ω2 ·h+ σ′2m) · b

d+m
< δ2b−d′−1 · (qd

′−(d−k)−1ωd−k)
1
d′

where, δ = ((πb)
1
b · b

2πe
)

1
2(b−1) ,

ω = σ′ ·
√

(d− k)/h,

σ′
2

= ((q/p)2 − 1)/12,

and d′ = m+ d− k + 1.

(22)

The term b ·2cb represents the cost of running BKZ lattice reduction with block-
size b (the first term or factor b in the cost is ignored for ring-based instantiations
as in the previous attacks). The attack runs on a LWE problem of dimension
d − k with m ≤ d samples. Condition 22, which is essentially Condition 14,
ensures that such an attack has chances of succeeding. Note that although the
above applies to the primal attack, a similar analysis is possible for the dual
attack, in which case CostLattice Reduction(d, k, h) is calculated as in Eq. 19, with
the parameter d replaced by d− k.

This specialized attack only gives an advantage if an attacker is able to choose
a k for which the total attack cost is less than a standard lattice-reduction
attack on a lattice of dimension d. Similar to the case of the hybrid attack
(Section 1.7.6), we optimize over the Hamming weight to choose the smallest
value such that Albrecht et al.’s attack results in at least a minimum targeted
security level (both for the standard attack embodiment mentioned above and
an adaptive embodiment described in [5]).

Furthermore, to ensure that an exhaustive, brute-force search of each secret-
key vector in the secret-key using Grover’s quantum search algorithm [49] has
a cost of at least λ (in bits), the chosen Hamming weight should satisfy:√(

d

h

)
· 2h > 2λ (23)

Note that for a typical security level of λ = 128, a dimension of at least d = 512
would be secure against Grover’s quantum search, for any Hamming weight h
that is at least 0.1d.

1.7.8 Pre-computation and Back-door Attacks

A pre-computation attack can happen if the GLWR public parameter A is fixed
and an attacker performs lattice reduction on it over a long period of time. A
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back-door attack can happen if there is any public value, e.g., A is deliberately
chosen so as to result in a lattice with weak security. For each τ ∈ {0, 1, 2}, the

function f
(τ)
d,n (see Section 1.4.2) prevents both types of attacks.

For τ = 0, a fresh A is generated in each protocol instantiation, similar to [25]
and [7]. This prevents both pre-computation attacks and backdoors.
For τ = 1, the matrix A is derived from a fixed long-term matrix Amaster of
dimension d2. This is done by applying a random, fresh permutation that is
chosen by the initiator of the protocol at the start of each protocol exchange.
This prevents any pre-computation attacks since the possible number of per-
muted A obtained in this way equals nn. Back-doors are avoided since Amaster

is derived by means of a pseudo-random function from a randomly generated

seed. We note that for both f
(0)
d,n=1 and f

(1)
d=n=1, the entries of both Amaster

and the resulting A cannot be differentiated from uniform, hence the results in
Section A.8 hold.
For τ = 2, A is obtained from a vector amaster of length q, that is randomly
generated by means of a DBRG from a seed determined by the initiator in
each protocol interaction. Furthermore, each row in A is obtained from this
vector by means of a random permutation that is also determined by the ini-
tiator and is specific to each protocol interaction. Since only a few elements

need to be generated and kept in memory, f
(2)
d,n is efficient. Pre-computation

and back-door attacks are avoided since the seed that determines A is new
in each protocol interaction. Furthermore, this approach destroys any struc-
ture in the resulting A (as can be found in circulant or anti-circulant matrices
for ideal lattices, for example) since it contains many more elements. This
results clear from the following analysis. Suppose a = 〈a0, a1, a2, . . . , an−1〉
and b = 〈b0, b1, . . . , bk−1, a0, a1, a2, . . . , an−k−1〉 are two rows of A. They share
n−1−k elements due to our rotation strategy. Then, define a(x) ..= a0 +a1x+
a2x

2 + · · ·+ an−1x
n−1 and b(x) ..= b0 + b1x+ · · ·+ bk−1x

k−1 + a0x
k + a1x

k+1 +
· · · + an−k−1x

n−1. We have b(x) = a(x)xk + (an−k + b0) + (an−k+1 + b1)x +
· · ·+(an−1 +bk−1)xk−1 mod xn+1. Effectively, that is, each row can be seen as
using the xn + 1 ring with a random shifting (due to k) and additional random
noises, those (an−k + b0) + (an−k+1 + b1)x+ · · ·+ (an−1 + bk−1)xk−1. From this

point of view, generating A with f
(2)
d,n is at least as secure as using the pure ring

version of Round5. Since the length of amaster is smaller than d2, the entries
of the resulting A can be differentiated from uniform. The security of Round5

can therefore not be based on the results in Section A.8 for f
(2)
d,n.

1.8 Correctness of Round5

The following subsections we first derive the condition for correct decryption
in Round5. Subsequently, we work out this condition for non-ring parameters,
ring parameters with reduction polynomial ξ(x) = Φn+1(x), and ring parame-
ters with ξ(x) = xn+1−1. The analysis for ring parameters with ξ(x) = Φn+1(x)
show that decryption errors (before error correction) are correlated. For this rea-
son, error correction in combination with reduction polynomials ξ(x) = xn+1−1
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is not effective. Finally, results from the decryption failure analysis are com-
pared with simulations for scaled-down versions of Round5.

1.8.1 Decryption failure analysis

In this section, the decryption failure behavior of r5 cpa pke is analyzed. In
decryption, the vector x′ = 〈b bpζc〉b is computed, where

ζ =

〈
p

t
v + h3j − Sampleµ

(〈
ST (U + h4J)

〉
ξ

)〉
p

.

First, a sufficient condition is derived so that x′ and x = xef computeκ,f (m)
agree in a given position, where x is considered as a vector of µ symbols, each
consisting of b bits bits. We have that

v ≡ 〈 t
p

Sampleµ(〈BTR〉ξ + h2j)−
t

p
Iv〉p +

t

b
x (mod t),

where t
pIv is the error introduced by the rounding downwards, with each com-

ponent of Iv in Zp/t. As a result,

ζ ≡ p

b
x+∆ (mod p) with ∆ = (h2 +h3)j−Iv +Sampleµ(〈BTR−ST (U +h4J〉ξ).

(24)

As x′ = b bpζc = b bpζ −
1
2e, we have that

x′ ≡ x+ b b
p
∆− 1

2
Je ≡ x+ b b

p
{∆− p

2b
J}pe (mod b).

Here {y}p denotes the integer in (−p/2, p/2] that is equivalent to y modulo p.
As a consequence, xi = x′i whenever |{∆i− p

2b}p| <
p
2b . We multiply both sides

of the above inequality with q
p , and infer that xi = x′i whenever

| {q
p
∆i −

q

2b
}q |<

q

2b
. (25)

Equivalently, as q
p∆i has integer components, if xi 6= x′i, then

〈q
p
∆i〉q ∈

[ q
2b
, q − q

2b

]
(26)

The probability that x and x′ differ in position i thus is at most the probability
that (26) is satisfied. In order to analyze this probability, we work out q

p∆− q
2bJ ,

using (24).
We write Jv = q

p (h2j+h3j−Iv− p
2b
J). The definitions of h2 and h3 imply

that Jv = q
p ( p2t − Iv). Each component of Iv is in Zp/t. The value of h3 thus

ensures that the absolute value of each coefficient of p
2t − Iv is at most p

2t .

We now analyse q
p 〈B

TR − ST (U + h4J)〉ξ. Similarly to the expression for v,
we write

B =

〈
p

q

(
〈AS〉Φn+1 + h1J

)
− p

q
IB

〉
p

and U =

〈
p

q
(〈ATR〉Φn+1 + h2J)− p

q
IU

〉
p

,
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with all components of IB and IU in Zq/p. We thus can write

q

p
(BTR−ST (U+h4J) ≡ 〈STAT 〉Φn+1R−S

T 〈ATR〉Φn+1 +JTBR−STJU (mod q)

(27)

where
JB = h1J − IB , and JU = (h2 + h4)J − IU . (28)

As h1 = h2 + h4 = q
2p , all entries of JB and of JU are from the set I :=

(− q
2p ,

q
2p ]∩Z. The value of h4 thus ensures that the absolute value of the entries

of JB and JU are at most q
2p .

Clearly, if ξ = Φn+1, then 〈STAT 〉Φn+1
R ≡ ST 〈ATR〉Φn+1

, so that

q

p
∆ ≡ Jv + Sampleµ

(
〈JTBR− S

TJU 〉Φn+1

)
(mod q) (29)

In Section 1.8.4, the special case ξ(x) = xn+1 − 1 will be analyzed.
The probability that (26) is satisfied will be analyzed under the following

assumptions: the entries Jv are drawn independently, and each such entry is
distributed as q

py with y uniform on (− p
2t ,

p
2t ]∩Z. The entries of JB and JU are

drawn independently and uniformly from I = (− q
2p .

q
2p ]∩Z. In our analysis, we

also assume that all columns of the secret matrices S andR have h/2 coefficients
equal to 1 and h/2 coefficients equal to −1. This is true for the implementations
of fS and fR.

1.8.2 Failure probability computation: non-ring parameters

In the non-ring case, each entry of JTBR and of STJU is the inner product of a
row of JTB (resp. a column of JU ) and a ternary vector with h/2 entries equal
to one and h/2 entries equal to minus one. Hence each entry of JTBR−S

TJU is
distributed as the sum of h uniform variables on I minus the sum of h uniform
variables on I. Assuming independence, the latter distribution (modulo q) can
easily be computed explicitly (using repeated convolutions). Indeed, if c and d
are two independent variables on {0, 1, . . . , q− 1} with probability distributions
pc and pd, then the probability distribution pe of 〈c+ d〉q is given by

pe(k) =

q−1∑
i=0

pc(i)pd(〈k − i〉q) for 0 ≤ k ≤ q − 1.

Assuming independence between the i-th components of Jv and of Sampleµ(JTBR−
STJU ), the probability that (26) is satisfied can be computed by using another
convolution. By the union bound, the probability that at least one of the sym-
bols of x is not retrieved correctly is at most µ times the probability that (26)
is satisfied.
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1.8.3 Failure probability computation: ring parameters with ξ(x) =
xn+1 − 1

Round5 parameters without error correction use ξ(x) = Φn+1(x). As N(x)
is a multiple of Φn+1(x), we have that 〈f〉Φn+1

= 〈〈f〉N 〉Φn+1
. Moreover, if

g(x) =
∑n
i=0 gix

i, then 〈g〉Φn+1 = g−gnΦn+1. In particular, for all polynomials
s, e,

if 〈se〉N =

n∑
k=0

ck(s, e)xk, then 〈se〉Φn+1 =

n−1∑
k=0

(ck(s, e)− cn(s, e))xk, (30)

with ck(s, e) as defined in (33). If the k-th symbol is not retrieved correctly,
then

〈(jv(x))k + ck(jB , r)− cn(jB , r) + ck(s, ju) + cn(s, ju)〉q ∈
[ q

2b
, q − q

2b

]
(31)

Assuming independence, and taking into account that r and s contain h/2 ones
and h/2 minus ones, ck(jB , r)− cn(jB , r)− cn(jB , r) + ck(s, ju) is distributed as
the difference of 2h independent random variables on I, minus the sum of 2h
independent random variables on I. The probability that (31) is satisfied thus
can be computed explicitly. By the union bound, the probability that at least
one of the µ symbols is not retrieved correctly is at most µ times the probability
that (31) is satisfied.

Remark The condition in (31) for decryption error in position k shows the
term −cn(jB , r)+ cn(s, ju) that is common to all positions k. This is the reason
that using error correction in conjunction with ξ(x) = Φn+1(x) is not effective.
The union bound can be used as it also applies to dependent random variables.

1.8.4 Failure probability computation: ring parameters with ξ(x) =
Φn+1(x)

Round5 parameters using error correction are restricted to the ring case. So in
(27) we have

〈STAT 〉Φn+1R− S
T 〈ATR〉Φn+1 = λs(x)Φn+1(x)r(x)− s(x)λr(x)Φn+1(x)

for some λs, λr ∈ Z[x].
For the Round5 parameters with error correction, it is required that ξ(x) =

(x − 1)Φn+1(x) = xn+1 − 1, and that s(x) and r(x) both are balanced, that
is, have h/2 coefficients equal to 1, h/2 coefficients equal to −1, and the other
coefficients equal to zero. Then x − 1 divides both r(x) and s(x), and so ξ(x)
divides both Φn+1(x)r(x) and s(x)Φn+1(x). As a result, (29) reads as

q

p
∆(x) ≡ jv(x) + Sampleµ (〈jB(x)r(x)− s(x)jU (x)〉xn+1−1) (mod q). (32)
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For any two polynomials e(x) =
∑n
i=0 eix

i and s(x) =
∑n
i=0 six

i,

〈s(x)e(x)〉xn+1−1 =

n∑
k=0

ck(s, e)xk where ck(s, e) =

n∑
i=0

eis〈k−i〉n+1
. (33)

If the k-th symbol is not retrieved correctly, then

〈(jv(x))k + ck(jB , r)− ck(s, ju)〉q ∈
[ q

2b
, q − q

2b

]
. (34)

Assuming independence, using that r and s both contain h/2 and h/2 minus
ones, ck(jB , r) − ck(s, ju) is distributed as the sum of h independent uniform
variables on I, minus the sum of h uniform variables on I. The probability pn
that (33) is satisfied thus can be computed explicitly.

Now let the error-correcting code be capable of correcting f symbol errors.
Assuming that ck(s, e) and c`(s, e) are independent whenever k 6= `, the proba-
bility of not decoding correctly is at most

∑
e≥f+1

(
µ
e

)
pen(1− pn)µ−e.

1.8.5 Experimental results

Figure 3 compares the estimated probabilities of at least one error occurring
and that of at least two errors occurring, when ξ = Nn+1 (as in r5 cpa pke)
and when ξ = Φn+1 ,respectively. These estimates are computed by explicitly
convolving probability distributions. Parameters are simulated without error
correction, and are n = 800, q = 211, p = 27, t = 24, µ = κ = 128, while the
Hamming weight h varies between 100 and 750 in order to show its effect on
both the bit failure rate and error correlation.

For xi = Φn+1, the probabilities are computed as follows. For any a, (31)
can be used to compute p(k | a), the probability that bit k is not retrieved
correctly, given that −cn(jb, r)+cn(s, ju) ≡ a (mod q). We assume that having
a bit error in position k, given that cn(s, ju) − cn(jb, r) ≡ a, is independent of
having a bit error in another position j, given that cn(s, ju)−cn(jb,r ) ≡ a. The
probability of having exactly e bit errors, given that cn(s, ju) − cn(jb, r) ≡ a,
then equals

(
µ
k

)
(p(0 | a)e(1− p(0 | a))µ−e. By summing these probabilities over

a, weighted with the probability that cn(s, ju) − cn(jb, r) ≡ a, the probability
of having exactly e bit errors is obtained.

Clearly, the probability of at least two errors is much higher when multi-
plications are done modulo Φn+1 instead of Nn+1, and in the latter case, this
probability is significantly lower than the probability of at least one error. Fig-
ure 3 also shows corresponding probabilities of at least one and at least two
errors, obtained from simulations of actual, scaled-down r5 cpa pke parameters,
showing that the actual behavior closely matches estimates.

To conclude, the effect of dependency introduced between polynomial co-
efficients in Round2 due to polynomial multiplication modulo Φn+1, is made
negligible by the combined use of polynomial multiplication modulo Nn+1 and
balanced secrets in Round5, allowing the use of forward error correction, result-
ing in better security and performance.
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Figure 3: Probabilities of at least one (continuous lines) and at least two errors
(dotted lines) in Round5 ring parameters, plotted against the Hamming weight
of secrets (X-axis). Red and green curves respectively represent predicted values
for the above in parameters using Φn+1(x) and Nn+1(x) as reduction polyno-
mial, respectively. Diamonds represent corresponding probabilities computed
from actual Round5 simulations for the same parameters, with 106 runs per
datapoint. Scripts for analyzing and reproducing these results can be found at
www.round5.org.

1.9 Round5: Configurations, Parameters and Performance

Round5 offers a large design space allowing for a unified and efficient imple-
mentation of Round5, independently of the fact that it instantiates LWR or
RLWR. r5 cpa kem and r5 cca pke can be configured to instantiate the LWR
and RLWR underlying problems depending on the input configuration param-
eter n. As described in detail later, the security level depends on the input
value d and also the choice of q and p. All moduli, q, p, and t are chosen to be
powers-of-two. Usage of error correction to better deal with decryption failures
can also be configured by setting up parameter f . If f > 0, then secrets must
be balanced and the reduction polynomial ξ(x) for the ciphertext component v
must be xn+1− 1. A final restriction is that Φn+1(x) is irreducible modulo two.

The Round5 configurations are described in Sections 1.9.1 and Section 1.9.2.
Section 1.9.3 describes the implementations in the submission package. Sec-

www.round5.org
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tion 1.9.5 details the configuration parameters for Round5.KEM. Section 1.9.6
summarizes the performance of Round5.KEM. Section 1.9.7 details the config-
uration parameters of Round5.PKE. Section 1.9.8 summarizes the performance
of Round5.PKE. Section ?? reports performance on other platforms.

1.9.1 Main Configurations of Round5

The Round5 cryptosystem includes a total of 18 main parameters sets: six ring
configurations without error correction, six ring configurations without error
correction, and six non-ring configurations. Each set of six configurations is for
Round5.KEM and Round5.PKE, NIST security levels 1, 3 and 5.

A parameter set is denoted as R5N{1,D} {1,3,5}{KEM,PKE} {0,5}{version}
where:

• 1,D refers whether it is a non-ring (1) or ring (D) parameter set.

• 1,3,5 refers to the NIST security level that is strictly fulfilled.

• KEM,PKE refers to the cryptographic algorithm it instantiates.

• 0,1,2,3,4,5 identifies the amount of corrected bits, 0 means no-errors are
corrected and this description is equivalent to the original Round2; 5
means that up to 5 errors can be corrected as in the original HILA5 sub-
mission.

• version is a letter to indicate the version of published parameters to ac-
count for potential differences in published parameters.

R5ND {1,3,5}KEM 5c: Merged parameters for the ring variant (n = d)
of Round5 key-encapsulation mechanism, for NIST security levels 1, 3 and 5,
resulting from the merge of the NIST PQC first round candidate cryptosystems
Round2 and HILA5. XE5 forward error correction is used to decrease decryption
failure rates (hence the 5 at the end of the parameter designator), and improve
bandwidth and security.

R5ND {1,3,5}PKE 5c: Merged parameters for the ring variant (n = d) of
Round5 public-key encryption, for NIST security levels 1, 3 and 5, resulting from
the merge of the NIST PQC first round candidate cryptosystems Round2 and
HILA5. XE5 forward error correction is used to decrease decryption failure rates
(hence the 5 at the end of the parameter designator), and improve bandwidth
and security.

R5ND {1,3,5}KEM 0c: Parameters for the ring variant (n = d) of Round5
INDCPA key-encapsulation mechanism, for NIST security levels 1, 3 and 5. No
forward error correction is used, hence the 0 at the end of the parameter designa-
tor. All polynomial multiplications are done modulo the prime-order cyclotomic
polynomial. This choice is considered more conservative since it uses the same
design principles as Round2.

R5ND {1,3,5}PKE 0c: Parameters for the ring variant (n = d) of Round5
INDCCA public-key encryption, for NIST security levels 1, 3 and 5. No forward
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error correction is used, hence the 0 at the end of the parameter designator. All
polynomial multiplications are done modulo the prime-order cyclotomic polyno-
mial. This choice is considered more conservative since it uses the same design
principles as Round2.

R5N1 {1,3,5}KEM 0c: Parameters for the non-ring/unstructured vari-
ant (n = 1) of Round5 key-encapsulation mechanism, for NIST security levels
1, 3 and 5. No forward error correction is used, hence the 0 at the end of the
parameter designator. Since the generation of the public-parameter A is expen-
sive, we include performance results for three alternative ways of generating it
denoted as T0, T1, T2 and discuss performance trade-offs between the usage of
SHAKE256 and AES128.

R5N1 {1,3,5}PKE 0c: Parameters for the non-ring/unstructured variant
(n = 1) of Round5 public-key encrpytion, for NIST security levels 1, 3 and 5.
No forward error correction is used, hence the 0 at the end of the parameter
designator.

1.9.2 Round5 parameters for specific use-cases

Round5 further details three additional “specific use-case” parameters with the
only purpose of demonstrating the flexibility of Round5 and applicability to
three different specialized usage scenarios.

R5ND 0KEM 2iot: A small parameter set targeting the Internet of Things
use-cases, with lower bandwidth and computational footprints, yet still provid-
ing 90 bits of (quantum) security. XE2 forward error correction is used to
improve failure rate, bandwidth and security.

R5ND 1KEM 4longkey: An alternative to theNIST level 1, ring vari-
ant key-encapsulation parameter set R5ND 1KEM that encapsulates a 192-bit
key despite targeting the NIST security level 1, to ensure that the (quantum)
cost of atacking the encapsulated key (e.g., by using Grover’s quantum search
algorithm) is as much as the (quantum) cost of attacking the underlying cryp-
tosystem, i.e., Round5.

R5N1 3PKE 0smallCT: An alternative to the NIST level 3, non-ring
variant public-key encryption parameter set R5N1 3PKE 0smallCT that has
exceptionally small ciphertexts, targeting usage scenarios where the public-key
is static and hence exchanged rarely, implying that bandwidth footprint de-
pends on the size of the ciphertext. Hence this parameter set, despite enjoying
the more conservative security assumption based on unstructured lattices, has
a bandwidth requirement comparable to ring or structured variants.

1.9.3 Implementations

We include three implementations of Round5.

• Reference: This is a reference implementation of Round5 capable to run all
configurations at run time. Matrix and polynomial operations are explicit
so that it is simple to verify the correctness of the implementation.



Round5 Draft Friday 25th January, 2019 39

• Optimized: This is an optimized implementation of Round5 capable to run
all configurations at run time. This implementation shows the feasibility
of an implementation running very different configurations with a common
code base.

• Tiny: This is an optimized implementation of Round5 capable of running
a single configuration, fixed at compiler time. This implementation can

also fix – at compile time – the way to generate A, i.e., f
(0)
d,n, f

(1)
d,n, or

f
(2)
d,n and whether to use SHAKE or AES. Trade-offs are discussed in the

following sections.

1.9.4 Development Environment

The performance numbers or Round5 have been gathered on a MacBookPro10.1
with an Intel Core i7 2.6GHz, running macOS 10.14.1. The code has been com-
piled with gcc -march=native -mtune=native -O3 -fomit-frame-pointer

-fwrapv, using Apple LLVM version 10.0.0 (clang-1000.11.45.5).
All tests were run 10000 times, the measurements shown are the minimum

values of all test runs and are for the tiny implementation of the algorithm.
We use the minumum values as opposed to say the median or average since we
believe the minimum is a better illustration of the time actually spent by the
algorithm and not induced by e.g., system or multi-tasking overhead.

For the memory requirements, we have provided an indication based on
a possible implementation. Note that the actual memory usage depends, of
course, on the specifics of a particular implementation (e.g., an implementation
might require matrices to exist (also) in transposed form, need room for storing
intermediate results, etc.).

1.9.5 Round5 CPA KEM: Parameters

This section contains specific parameter values for Round5.KEM fitting the
Round5 configurations described at the beginning of this section.

Tables 2, 3, and 4 show the configurations for the Round5 parameter sets
for the NIST security levels 1, 3, and 5. Table 5 present the configurations for
the parameter sets for specific use cases.

In all of the above tables, the values under Security Levels represent the
cost of known attacks (discussed in Section 1.7) against the underlying LWR
or RLWR problem.

The main conclusions from these tables are as follows:

• All parameter sets strictly fulfill NIST security levels and the hybrid attack
is the one that has the highest impact on Round5.

• Parameter sets using XE5 (R5ND 1,3,5KEM 5c) have around 25% lower
bandwidth requirements compared with those without error correction
(R5ND 1,3,5KEM 5c). Since Round5 proposes a KEM that offers CPA
security, no active attacks are applicable.
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• The application specific IoT parameter set (R5ND 0KEM 2iot) only re-
quires 736 bytes and it still offers a classical security level of 129 bits if an
enumeration cost model is applied.

• Many security protocols that require a handshake to exchange a session
key do not require active security and a relatively high failure probability
is good enough. This allows finding parameters that offer smaller keys and
ciphertext at the price of a slightly higher failure rate. For instance, for
Internet of Things deployment the failure rate of a wireless communication
link will be likely worse than the failure rate of R5ND 0KEM 2iot, and
thus, a failure probability of 2−41 is sufficient. Alternatively, it is possible
to further increase this failure probability so that the sizes of public-key
and ciphertext further drop.
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Table 2: R5ND {1,3,5}KEM 0c parameters

Security Level

NIST1 NIST3 NIST5

Parameters

d/n/h 618/618/104 786/786/384 1018/1018/428

q/p/t/b 211/28/24/21 213/29/24/21 214/29/24/21

n/m 1/1 1/1 1/1

f/xe/κ/µ 0/0/128/128 0/0/192/192 0/0/256/256

Performance

Total bandwidth (bytes) 1316 1890 2452

Public key (bytes) 634 909 1178

Ciphertext (bytes) 682 981 1274

Failure rate 2−65 2−71 2−64

Classical/Quantum security (bits) – Core Sieving

Primal attack 144/131 192/175 256/233

Dual attack 147/134 193/175 258/235

Hybrid attack 128/122 194/183 261/248

Sparse-secrets attack 144/130 192/174 256/232

Classical/Quantum optimal block size BKZ – Core Sieving

Primal attack 494/494 659/659 878/878

Dual attack 504/504 662/662 885/885

Hybrid attack 437/461 665/691 895/934

Classical/Quantum security (bits) – Enumeration

Primal attack 340/170 500/250 729/365

Dual attack 350/175 503/252 737/368

Hybrid attack 160/133 293/222 397/309

Sparse-secrets attack 340/170 500/250 729/364

Classical/Quantum optimal block size BKZ – Enumeration

Primal attack 494/494 659/659 878/878

Dual attack 504/504 661/662 885/885

Hybrid attack 284/412 442/603 554/773
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Table 3: R5ND {1,3,5}KEM 5c parameters

Security Level

NIST1 NIST3 NIST5

Parameters

d/n/h 490/490/162 756/756/242 940/940/414

q/p/t/b 210/27/23/21 212/28/22/21 212/28/22/21

n/m 1/1 1/1 1/1

f/xe/κ/µ 5/190/128/318 5/218/192/410 5/234/256/490

Performance

Total bandwidth (bytes) 994 1639 2035

Public key (bytes) 445 780 972

Ciphertext (bytes) 549 859 1063

Failure rate 2−88 2−117 2−64

Classical/Quantum security (bits) – Core Sieving

Primal attack 130/118 194/176 256/233

Dual attack 132/120 197/179 259/235

Hybrid attack 128/122 193/183 263/249

Sparse-secrets attack 130/118 194/176 256/232

Classical/Quantum optimal block size BKZ – Core Sieving

Primal attack 446/446 666/666 878/878

Dual attack 452/452 674/674 887/887

Hybrid attack 440/462 660/691 900/940

Classical/Quantum security (bits) – Enumeration

Primal attack 297/148 507/254 729/365

Dual attack 301/151 515/258 739/369

Hybrid attack 170/135 270/215 390/307

Sparse-secrets attack 296/148 507/253 729/364

Classical/Quantum optimal block size BKZ – Enumeration

Primal attack 446/446 666/666 878/878

Dual attack 451/451 673/674 887/887

Hybrid attack 297/416 416/588 547/770
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Table 4: R5N1 {1,3,5}KEM 0c parameters

Security Level

NIST1 NIST3 NIST5

Parameters

d/n/h 594/1/238 881/1/238 1186/1/712

q/p/t/b 213/210/27/23 213/210/27/23 215/212/27/24

n/m 7/7 8/8 8/8

f/xe/κ/µ 0/0/128/43 0/0/192/64 0/0/256/64

Performance

Total bandwidth (bytes) 10450 17700 28552

Public key (bytes) 5214 8834 14264

Ciphertext (bytes) 5236 8866 14288

Failure rate 2−66 2−65 2−77

Classical/Quantum security (bits) – Core Sieving

Primal attack 132/121 201/184 257/234

Dual attack 131/120 202/184 256/233

Hybrid attack 128/121 192/182 256/241

Sparse-secrets attack 130/119 201/183 256/233

Classical/Quantum optimal block size BKZ – Core Sieving

Primal attack 422/422 658/658 847/847

Dual attack 418/418 659/659 843/844

Hybrid attack 408/423 626/652 844/871

Classical/Quantum security (bits) – Enumeration

Primal attack 275/138 499/250 696/348

Dual attack 272/136 500/250 692/346

Hybrid attack 177/130 268/210 420/304

Sparse-secrets attack 271/135 499/249 691/345

Classical/Quantum optimal block size BKZ – Enumeration

Primal attack 422/422 658/658 847/847

Dual attack 418/418 659/659 843/843

Hybrid attack 306/404 414/577 578/765
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Table 5: Specific use case Round5 KEM parameters

Parameter Set

R5ND 0KEM 2iot R5ND 1KEM 4longkey

Parameters

d/n/h 372/372/178 490/490/162

q/p/t/b 211/27/23/21 210/27/23/21

n/m 1/1 1/1

f/xe/κ/µ 2/53/128/181 4/163/192/355

Performance

Total bandwidth (bytes) 736 1016

Public key (bytes) 342 453

Ciphertext (bytes) 394 563

Failure rate 2−41 2−71

Classical/Quantum security (bits) – Core Sieving

Primal attack 98/89 130/118

Dual attack 98/89 132/120

Hybrid attack 96/90 128/122

Sparse-secrets attack 97/88 130/118

Classical/Quantum optimal block size BKZ – Core Sieving

Primal attack 335/335 446/446

Dual attack 336/336 452/452

Hybrid attack 329/341 440/462

Classical/Quantum security (bits) – Enumeration

Primal attack 201/100 297/148

Dual attack 202/101 301/151

Hybrid attack 129/96 170/135

Sparse-secrets attack 200/100 296/148

Classical/Quantum optimal block size BKZ – Enumeration

Primal attack 335/335 446/446

Dual attack 336/336 451/451

Hybrid attack 243/325 297/416
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1.9.6 Round5 CPA KEM: CPU and Memory Requirements

This section contains the CPU and memory requirements for Round5 CPA KEM
described in Section 1.9.5.

Table 6 shows the performance and memory usage figures for the tiny im-
plementation of the R5ND {1,3,5}KEM 0c algorithm. Table 7 shows the per-
formance and memory usage figures for the tiny implementation of the R5ND
{1,3,5}KEM 5c algorithm. Table 8 shows the performance and memory usage
figures for the tiny implementation of the R5N1 {1,3,5}KEM 0c τ = 2 algo-
rithm. Table 9 shows the performance of the parameter sets for specific use
cases of the tiny implementation of the Round5 CPA KEM algorithm. Table 10
compares the performance of the different variants of computing A of the tiny
implementation of the R5N1 1KEM 0c algorithm.

The main conclusions from these tables are as follows:

• CPU performance for ring configurations does not seem to be an issue for
most applications since it requires fractions of a millisecond without using
any type of hardware instructions.

• CPU performance for non-ring configurations can be sufficient for many
applications, except those that require very high throughput.

• The performance of R5N1 1KEM 0c for different choices of f
(τ)
d,n imple-

mented using as DRBG either SHAKE128 or AES128 with hardware ac-

celeration is illustrated. We observe that CPU performance of f
(0)
d,n is

worse than f
(2)
d,n that is also worse than f

(1)
d,n. The reason is simple: f

(1)
d,n

requires the smallest amount of pseudorandom data to be obtained from

the DRBG while f
(0)
d,n requires the highest amount of pseudorandom data.

f
(2)
d,n is in between and has the lowest memory cost since the amount of

data to be kept in memory is limited. Finally, we observe that if the CPU
has hardware-enabled AES instructions, then AES-based generation of A
is competitive.
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Table 6: Tiny R5ND {1,3,5}KEM 0c performance and memory usage

Security Level

NIST1 NIST3 NIST5

API Parameters

CRYPTO SECRETKEYBYTES 16 24 32

CRYPTO PUBLICKEYBYTES 634 909 1,178

CRYPTO BYTES 16 24 32

CRYPTO CIPHERTEXTBYTES 682 981 1,274

Performance: Elapsed time (ms)

KEM Generate Key Pair 0.01 0.03 0.05

KEM Encapsulate 0.01 0.04 0.06

KEM Decapsulate 0.007 0.02 0.02

Total 0.03 0.10 0.1

Performance: CPU Clock Cycles

KEM Generate Key Pair 29.1K 88.1K 118.1K

KEM Encapsulate 37.4K 114.7K 149.3K

KEM Decapsulate 17.3K 49.6K 57.8K

Total 83.8K 252.3K 325.1K

Memory usage indication

KEM Generate Key Pair 4,374B 5,673B 7,350B

KEM Encapsulate 7,784B 10,182B 12.9KiB

KEM Decapsulate 3,458B 4,581B 5,954B
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Table 7: Tiny R5ND {1,3,5}KEM 5c performance and memory usage

Security Level

NIST1 NIST3 NIST5

API Parameters

CRYPTO SECRETKEYBYTES 16 24 32

CRYPTO PUBLICKEYBYTES 445 780 972

CRYPTO BYTES 16 24 32

CRYPTO CIPHERTEXTBYTES 549 859 1,063

Performance: Elapsed time (ms)

KEM Generate Key Pair 0.01 0.02 0.04

KEM Encapsulate 0.02 0.03 0.05

KEM Decapsulate 0.01 0.01 0.03

Total 0.05 0.07 0.1

Performance: CPU Clock Cycles

KEM Generate Key Pair 32.8K 56.7K 100.7K

KEM Encapsulate 56.0K 80.7K 136.8K

KEM Decapsulate 32.5K 38.6K 69.5K

Total 121.3K 175.9K 307.0K

Memory usage indication

KEM Generate Key Pair 3,417B 5,364B 6,676B

KEM Encapsulate 6,182B 9,631B 11.7KiB

KEM Decapsulate 2,813B 4,339B 5,431B



Round5 Draft Friday 25th January, 2019 48

Table 8: Tiny R5N1 {1,3,5}KEM 0c τ = 2 performance and memory usage

Security Level

NIST1 NIST3 NIST5

API Parameters

CRYPTO SECRETKEYBYTES 16 24 32

CRYPTO PUBLICKEYBYTES 5,214 8,834 14,264

CRYPTO BYTES 16 24 32

CRYPTO CIPHERTEXTBYTES 5,236 8,866 14,288

Performance: Elapsed time (ms)

KEM Generate Key Pair 0.6 1.0 3.8

KEM Encapsulate 0.8 1.3 5.2

KEM Decapsulate 0.07 0.09 0.3

Total 1.5 2.4 9.2

Performance: CPU Clock Cycles

KEM Generate Key Pair 1,631K 2,643K 9,826K

KEM Encapsulate 2,097K 3,432K 13.4M

KEM Decapsulate 171.8K 228.7K 686K

Total 3,900K 6,303K 23.9M

Memory usage indication

KEM Generate Key Pair 38.5KiB 53.9KiB 117.4KiB

KEM Encapsulate 51.9KiB 76.6KiB 150.1KiB

KEM Decapsulate 21.5KiB 36.4KiB 51.2KiB
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Table 9: Tiny Round5 CPA KEM specific use case parameters, performance
and memory usage

Parameter Set

R5ND 0KEM 2iot R5ND 1KEM 4longkey

API Parameters

CRYPTO SECRETKEYBYTES 16 24

CRYPTO PUBLICKEYBYTES 342 453

CRYPTO BYTES 16 24

CRYPTO CIPHERTEXTBYTES 394 563

Performance: Elapsed time (ms)

KEM Generate Key Pair 0.01 0.01

KEM Encapsulate 0.02 0.02

KEM Decapsulate 0.01 0.02

Total 0.04 0.06

Performance: CPU Clock Cycles

KEM Generate Key Pair 31.3K 35.0K

KEM Encapsulate 49.9K 59.1K

KEM Decapsulate 36.1K 48.1K

Total 117.3K 142.1K

Memory usage indication

KEM Generate Key Pair 2,606B 3,441B

KEM Encapsulate 4,744B 6,348B

KEM Decapsulate 2,186B 2,979B
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Table 10: Tiny R5N1 1KEM 0c – A generation variants

Variants

τ = 0 τ = 0 τ = 1 τ = 2

(cSHAKE128) (AES128-HW) (cSHAKE128) (cSHAKE128)

Performance: Elapsed time (ms)

KEM Generate Key Pair 2.2 0.6 0.5 0.6

KEM Encapsulate 2.5 0.8 0.8 0.8

KEM Decapsulate 0.07 0.07 0.07 0.07

Total 4.8 1.5 1.4 1.5

Performance: CPU Clock Cycles

KEM Generate Key Pair 5,829K 1,590K 1,412K 1,631K

KEM Encapsulate 6,364K 2,129K 2,021K 2,097K

KEM Decapsulate 171.7K 176.5K 171.7K 171.8K

Total 12.4M 3,896K 3,605K 3,900K

Memory usage indication

KEM Generate Key Pair 710.5KiB 2,088.8KiB 38.5KiB

KEM Encapsulate 723.9KiB 2,102.2KiB 51.9KiB

KEM Decapsulate 21.5KiB 21.5KiB 21.5KiB
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1.9.7 Round5 CCA PKE: Parameters

This section contains specific parameter values for Round5.PKE fitting the
Round5 configurations described at the beginning of this section.

Tables 2, 3, and 4 show the configurations for the Round5 parameter sets
for the NIST security levels 1, 3, and 5. Table 5 present the configurations for
the parameter sets for specific use cases.

In all of the above tables, the values under Security Levels represent the
cost of known attacks (discussed in Section 1.7) against the underlying LWR
or RLWR problem.

The main conclusions from these tables are as follows:

• As for r5 cpa kem parameters, all parameter sets strictly fulfil NIST se-
curity levels and the hybrid attack is the one that has the highest impact
on Round5.

• Parameter sets using XE5 (R5ND 1,3,5PKE 5c) have around 25% lower
bandwidth requirements compared with those parameters without error
correction (R5ND 1,3,5KEM 5c). For instance, R5ND 5PKE 5c requires
730 Bytes less than R5ND 5PKE 0c.

• r5 cca pke, targeting IND-CCA security, requires lower failure probability
compared with r5 cpa kem; this leads to parameters that require slightly
longer public-keys and ciphertexts. When no error correction is used, this
difference is larger and can be up to 400 Bytes.

• The application specific R5N1 3PKE 0smallCT, i.e., the parameter set for
a non-ring configuration with short ciphertext is a desirable alternative in
use cases in which the public-key remains static for a long period of time
since the ciphertext is small and comparable in size with ring configura-
tions, minimizing the overall bandwidth requirement.



Round5 Draft Friday 25th January, 2019 52

Table 11: R5ND {1,3,5}PKE 0c parameters

Security Level

NIST1 NIST3 NIST5

Parameters

d/n/h 586/586/182 852/852/212 1170/1170/222

q/p/t/b 213/29/24/21 212/29/25/21 213/29/25/21

n/m 1/1 1/1 1/1

f/xe/κ/µ 0/0/128/128 0/0/192/192 0/0/256/256

Performance

Total bandwidth (bytes) 1432 2102 2874

Public key (bytes) 676 983 1349

Encryption overhead (bytes) 756 1119 1525

Failure rate 2−155 2−147 2−143

Classical/Quantum security (bits) – Core Sieving

Primal attack 131/119 199/181 281/255

Dual attack 132/120 202/183 286/260

Hybrid attack 128/121 192/182 257/246

Sparse-secrets attack 130/118 199/180 281/255

Classical/Quantum optimal block size BKZ – Core Sieving

Primal attack 448/448 683/683 963/963

Dual attack 451/451 692/692 981/981

Hybrid attack 439/457 657/688 880/929

Classical/Quantum security (bits) – Enumeration

Primal attack 298/149 524/262 822/411

Dual attack 301/151 534/267 842/421

Hybrid attack 177/135 266/213 346/289

Sparse-secrets attack 298/149 524/262 822/411

Classical/Quantum optimal block size BKZ – Enumeration

Primal attack 448/448 683/683 963/963

Dual attack 451/451 692/692 981/981

Hybrid attack 306/417 412/584 500/736
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Table 12: R5ND {1,3,5}PKE 5c parameters

Security Level

NIST1 NIST3 NIST5

Parameters

d/n/h 508/508/136 756/756/242 940/940/414

q/p/t/b 210/27/24/21 212/28/23/21 212/28/23/21

n/m 1/1 1/1 1/1

f/xe/κ/µ 5/190/128/318 5/218/192/410 5/234/256/490

Performance

Total bandwidth (bytes) 1097 1730 2144

Public key (bytes) 461 780 972

Encryption overhead (bytes) 636 950 1172

Failure rate 2−142 2−256 2−144

Classical/Quantum security (bits) – Core Sieving

Primal attack 133/121 194/176 256/233

Dual attack 135/122 197/179 259/235

Hybrid attack 128/122 193/183 263/249

Sparse-secrets attack 132/120 194/176 256/232

Classical/Quantum optimal block size BKZ – Core Sieving

Primal attack 455/455 666/666 878/878

Dual attack 462/462 674/674 887/887

Hybrid attack 437/462 660/691 900/940

Classical/Quantum security (bits) – Enumeration

Primal attack 305/152 507/254 729/365

Dual attack 311/156 515/258 739/369

Hybrid attack 166/134 270/215 390/307

Sparse-secrets attack 304/152 507/253 729/364

Classical/Quantum optimal block size BKZ – Enumeration

Primal attack 455/455 666/666 878/878

Dual attack 462/462 673/674 887/887

Hybrid attack 292/413 416/588 547/770
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Table 13: R5N1 {1,3,5}PKE 0c parameters

Security Level

NIST1 NIST3 NIST5

Parameters

d/n/h 636/1/114 876/1/446 1217/1/462

q/p/t/b 212/29/26/22 215/211/27/23 215/212/29/24

n/m 8/8 8/8 8/8

f/xe/κ/µ 0/0/128/64 0/0/192/64 0/0/256/64

Performance

Total bandwidth (bytes) 11544 19392 29360

Public key (bytes) 5740 9660 14636

Encryption overhead (bytes) 5804 9732 14724

Failure rate 2−146 2−144 2−144

Classical/Quantum security (bits) – Core Sieving

Primal attack 146/133 194/177 257/234

Dual attack 146/134 193/176 257/234

Hybrid attack 128/122 192/181 256/241

Sparse-secrets attack 145/133 192/175 257/234

Classical/Quantum optimal block size BKZ – Core Sieving

Primal attack 469/469 632/632 848/848

Dual attack 471/471 628/628 847/847

Hybrid attack 407/428 626/646 844/874

Classical/Quantum security (bits) – Enumeration

Primal attack 317/159 473/237 697/348

Dual attack 319/160 469/235 696/348

Hybrid attack 159/130 296/214 402/300

Sparse-secrets attack 317/158 469/234 695/347

Classical/Quantum optimal block size BKZ – Enumeration

Primal attack 469/469 632/632 848/848

Dual attack 470/471 628/628 847/847

Hybrid attack 283/404 445/586 559/756
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Table 14: Specific use case Round5 PKE parameters

Parameter Set

R5N1 3PKE 0smallCT

Parameters

d/n/h 757/1/378

q/p/t/b 214/29/24/21

n/m 192/1

f/xe/κ/µ 0/0/192/192

Performance

Total bandwidth (bytes) 164524

Public key (bytes) 163536

Encryption overhead (bytes) 988

Failure rate 2−149

Classical/Quantum security (bits) – Core Sieving

Primal attack 194/177

Dual attack 193/176

Hybrid attack 191/181

Sparse-secrets attack 192/175

Classical/Quantum optimal block size BKZ – Core Sieving

Primal attack 632/632

Dual attack 628/628

Hybrid attack 624/648

Classical/Quantum security (bits) – Enumeration

Primal attack 473/237

Dual attack 469/235

Hybrid attack 281/211

Sparse-secrets attack 469/234

Classical/Quantum optimal block size BKZ – Enumeration

Primal attack 632/632

Dual attack 628/628

Hybrid attack 428/580
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1.9.8 Round5 CCA PKE: CPU and Memory Requirements

This section contains the CPU and memory requirements for Round5 CCA PKE
described in Section 1.9.7.

Table 15 shows the performance and memory usage figures for the tiny im-
plementation of the R5ND {1,3,5}PKE 0c algorithm. Table 16 shows the per-
formance and memory usage figures for the tiny implementation of the R5ND
{1,3,5}PKE 5c algorithm. Table 17 shows the performance and memory usage
figures for the tiny implementation of the R5N1 {1,3,5}PKE 0c τ = 2 algo-
rithm. Table 18 shows the performance of the parameter sets for specific use
cases of the tiny implementation of the Round5 CCA PKE algorithm. Some
conclusions from these tables are as follows:

• Due to the asymmetry of n̄ and m̄, the key generation time of R5N1 3PKE-
0smallCT is relatively high; however, this is only a one-time cost since

public-keys remain static for a long period of time. On the other hand,
the benefit of the asymmetry is that the encryption time decreases.

• Ring versions of Round5 perform currently around 70 times faster than
its non-ring versions.
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Table 15: Tiny R5ND {1,3,5}PKE 0c performance and memory usage

Security Level

NIST1 NIST3 NIST5

API Parameters

CRYPTO SECRETKEYBYTES 708 1,031 1,413

CRYPTO PUBLICKEYBYTES 676 983 1,349

CRYPTO BYTES 756 1,119 1,525

Performance: Elapsed time (ms)

PKE Generate Key Pair 0.02 0.02 0.03

PKE Encrypt 0.03 0.04 0.05

PKE Decrypt 0.03 0.05 0.06

Total 0.07 0.1 0.1

Performance: CPU Clock Cycles

PKE Generate Key Pair 41.9K 59.8K 80.7K

PKE Encrypt 63.6K 95.5K 124.6K

PKE Decrypt 81.5K 118.5K 151.8K

Total 187.1K 273.8K 357.1K

Memory usage indication

PKE Generate Key Pair 4,916B 7,150B 9,814B

PKE Encrypt 7,596B 10.8KiB 14.8KiB

PKE Decrypt 4,112B 6,014B 8,226B
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Table 16: Tiny R5ND {1,3,5}PKE 5c performance and memory usage

Security Level

NIST1 NIST3 NIST5

API Parameters

CRYPTO SECRETKEYBYTES 493 828 1,036

CRYPTO PUBLICKEYBYTES 461 780 972

CRYPTO BYTES 636 950 1,172

Performance: Elapsed time (ms)

PKE Generate Key Pair 0.01 0.02 0.04

PKE Encrypt 0.02 0.04 0.06

PKE Decrypt 0.03 0.05 0.08

Total 0.07 0.1 0.2

Performance: CPU Clock Cycles

PKE Generate Key Pair 32.9K 57.3K 101.1K

PKE Encrypt 60.7K 95.1K 156.1K

PKE Decrypt 83.3K 124.5K 215.8K

Total 176.8K 276.9K 473.0K

Memory usage indication

PKE Generate Key Pair 4,018B 6,168B 7,680B

PKE Encrypt 6,481B 9,746B 11.9KiB

PKE Decrypt 3,465B 5,258B 6,576B
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Table 17: Tiny R5N1 {1,3,5}PKE 0c τ = 2 performance and memory usage

Security Level

NIST1 NIST3 NIST5

API Parameters

CRYPTO SECRETKEYBYTES 5,772 9,708 14,700

CRYPTO PUBLICKEYBYTES 5,740 9,660 14,636

CRYPTO BYTES 5,804 9,732 14,724

Performance: Elapsed time (ms)

PKE Generate Key Pair 0.4 2.0 2.7

PKE Encrypt 0.5 2.6 3.6

PKE Decrypt 0.5 2.7 3.7

Total 1.4 7.3 10.0

Performance: CPU Clock Cycles

PKE Generate Key Pair 930K 5,139K 7,036K

PKE Encrypt 1,307K 6,684K 9,230K

PKE Decrypt 1,385K 7,005K 9,541K

Total 3,622K 18.8M 25.8M

Memory usage indication

PKE Generate Key Pair 40.4KiB 112.0KiB 133.1KiB

PKE Encrypt 50.6KiB 126.0KiB 152.4KiB

PKE Decrypt 31.4KiB 46.6KiB 67.0KiB
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Table 18: Tiny Round5 CCA PKE specific use case parameters, performance
and memory usage

Parameter Set

R5N1 3PKE 0smallCT τ = 2

API Parameters

CRYPTO SECRETKEYBYTES 163,584

CRYPTO PUBLICKEYBYTES 163,536

CRYPTO BYTES 988

Performance: Elapsed time (ms)

PKE Generate Key Pair 30.9

PKE Encrypt 1.2

PKE Decrypt 3.2

Total 35.2

Performance: CPU Clock Cycles

PKE Generate Key Pair 80.0M

PKE Encrypt 2,993K

PKE Decrypt 8,192K

Total 91.2M

Memory usage indication

PKE Generate Key Pair 920.7KiB

PKE Encrypt 481.8KiB

PKE Decrypt 446.5KiB
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1.10 Advantages and limitations

Flexibility in the underlying problem’s choice Round5 can be config-
ured to rely on the Learning with Rounding (LWR) or Ring-Learning
with Rounding (RLWR) problems, by controlling the input parameters
n and d. This allows the user to flexibly choose the configuration (and
underlying problem instantiation) that fits best his application and se-
curity requirements, even while Round5 is already in deployment. For
instance, a user dealing with strictly confidential information might only
trust a public-key encryption (PKE) algorithm with a construction hav-
ing no additional (e.g., ring) structure, while another user operating a
wireless network for a less critical application would prioritize low band-
width and/or energy requirements and thus might prefer a (more efficient)
ring-based construction. The unified approach provides from day one a
contingency and smooth transition path, should vulnerabilities in ring-
based constructions be discovered, since the non-ring based construction
is already deployed. Finally, as the Round5 implementation and code
remains unified independent of the underlying problem instantiated, the
amount of code in devices and effort required for code-review is reduced.

Small public-keys and ciphertexts Round5 relies on rounding (specifically,
the GLWR problem, see Section 1.3), leading to public-keys and cipher-
texts with coefficients that have only dlog pe and dlog te bits. Furthermore,
Round5 relies on prime cyclotomic polynomials that provide a large pool of
(q, n) values to choose from, allowing the selection of parameters that sat-
isfy security requirements while minimizing bandwidth requirements. The
usage of contant-time XEf error correction allows dealing with multiple er-
rors so that even smaller parameters (n = d, p), and thus, messages are
feasible. Round5 thus is suited for bandwidth-constrained applications,
and Internet protocols that only allow limited packet sizes. Comparing
with other submissions, Round5 shows a very good trade-off between se-
curity and the sizes of public keys and ciphertexts, as reported in [50]
(with ”Performance” as label for the X-axis).

Common building blocks for KEM and PKE By design, r5 cpa kem and
r5 cca pke are constructed using common building blocks. This allows for
a common security and correctness analysis for both schemes. Further-
more, it reduces the amount of code in devices, and the effort required for
code-review of r5 cpa kem and r5 cca pke.

Flexibility in achieving security levelsThe design choices in Round5, espe-
cially the choice for prime cyclotomic polynomials, allowed the fine-tuning
of parameters to each NIST level. Round5 thus enables the user to choose
parameters that tightly fit the required security level.

Flexibility for bandwidth Different applications can have different security
needs and operational constraints. Round5 enables the flexible choice of
parameters so that it is possible to adjust bandwidth requirements and
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security level according to the application needs. Round5 achieves this by
using prime cyclotomic polynomials and rounding. For instance, configu-
ration R5ND 1KEM 5c for NIST security level 1 requires the exchange of
994 Bytes so that it can be used by an application with communication
constraints; configuration R5N1 5PKE 0c offers a much higher security
level and does not rely on any ring structure so that it might be a pre-
ferred option for the exchange of highly confidential information. The
amount of data to be exchanged for the latter configuration (29360 Bytes)
is larger than for the former, but is smaller than in another existing non-
ring proposal for an equivalent security level [25].

Flexibility for CPU Different applications can have different security needs
and operational constraints. Round5 allows for flexibility in the choice of
parameters so that it is possible to adjust CPU needs and security require-
ments according to the application needs. Furthermore, the parameters in
Round5 are chosen such that a unified implementation performs well for
any input value (n, d). If necessary, optimized implementations for specific
parameters can be realized, leading to even faster operation than with the
unified implementation. For instance, configuration R5N1 5KEM 5c for
NIST security level 5, intended for a high security level and not relying
on a ring structure, requires around 9.2 milliseconds for key generation,
encapsulation and decapsulation in our testing platform. Another appli-
cation, requiring faster operation and with less security needs, can use
configuration R5ND 1KEM 5c for NIST security level 1 that performs a
factor 70 faster.

Flexibility for cryptographic primitives Round5 and its building blocks
can be used to create cryptographic primitives such as authenticated key-
exchange schemes in a modular way, e.g., as in [26].

Flexibility for integration into real-world security protocols The In-
ternet relies on security protocols such as TLS, IKE, SSH, IPsec, DNSSEC
etc. Round5 can be easily integrated into them because it has relatively
small messages and is computationally efficient. For instance, the public-
key and ciphertext in R5ND 5KEM 5c for NIST security level 5 require
a total of 2035 Bytes. This is smaller than other lattice-based propos-
als such as [26] or [7], making sure that it fits in the protocols without
requiring changes or additional complexity such as packet fragmentation.
At the same time, all Round5 configurations can be realized by means of
a single library minimizing the amount of work to extend and maintain
them.

Prevention of pre-computation and back-door attacks Round5 offers
different alternatives to refresh A in a way that is efficient but also secure
against pre-computation and back-door attacks. In the ring setting, this
is achieved by computing a new A. In the non-ring setting, three options

are provided: (f
(0)
d,n) randomly generating A in each protocol exchange,
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(f
(1)
d,n) permuting a fixed and system-wide public parameter Amaster in

each protocol exchange, or (f
(2)
d,n) deriving A from a large pool of values.

– determined in each protocol exchange – by means of a permutation.
Permutation-based approaches show a performance advantage compared
with generating A randomly— for instance, in settings in which a server
has to process many connections. This is because the server can keep a
fixed A in memory and just permute it according to the client request. If

keeping a fixed A in memory in the client is an issue, then f
(2)
d,n has a clear

advantage compared with f
(1)
d,n due to its lower memory needs.

Post-deployment flexibility A single implementation can be used for all
Round5 configuration parameters, without the need to recompile the code.
This approach reduces the amount of code in the devices and makes code
review easier. Furthermore, it enables a unified Round5 deployment that
can be customized to fit non-ring or ring-based use cases, and a smooth
transition to non ring usage, should vulnerabilities in ring-based construc-
tions be discovered.

Efficiency in constrained platforms The implementation of Round5 uses
up to 16 bit long integers to represent the Round5 data. This enables good
performance even in architectures with constrained processors. In partic-
ular, all parameter sets using error correction have parameter p ≤ 28 so
that this parameter set is specially suitable for resource constrained plat-
forms. Round5 incorporates the special parameter set R5ND 0KEM 2iot
that has a total bandwidth requirement of just 736 Bytes, while provid-
ing a reasonable security level (129-bits classical enumeration). This is
feasible due to the usage of prime cyclotomic rings that allows configur-
ing Round5 with a n = d parameter between 256 and 512, the only two
options available with power-of-two cyclotomic rings.

Parallelization Operations in Round5, for instance matrix multiplications,
can be parallelized allowing for faster performance. This type of opti-
mization has not been applied yet.

Resistance against side channel attacks The design of Round5 allows
for efficient constant-time implementations, since by design all secrets are
ternary and have a fixed number of ones and minus ones. The XEf error
correction codes avoid conditions altogether and table look-ups and are
therefore resistant against timing attacks.

Low failure probability The failure probability for all proposals for r5 cpa kem
(except the one for the IoT use case) is at most 2−64. The failure proba-
bility for all proposals for r5 cca pke is at most 2−142. These failure prob-
abilities can be achieved because of the usage of sparse, ternary secrets
and the large pool of parameter sets. The usage of XEf error correction
codes in some Round5 parameter sets plays a fundamental role to deal
with multiple errors and decrease the overall failure probability.
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Known underlying mathematical problems Round5 builds on the well-
known Learning with Rounding and Ring Learning with Rounding prob-
lems.

Provable security We provide security reductions from the sparse ternary
LWR and RLWR problems to r5 cpa kem and r5 cca pke, and from the
standard Learning with Errors (LWE) problem to the sparse ternary LWR
problem. Even though the latter reduction is not tight, this gives confi-
dence in the Round5 design. As the parameters using error correction re-
quire performing certain operations modulo xn+1 − 1, the above security
reductions do not apply to them. We describe an RLWE-based analo-
gon of Round5 with error correction, and present a reduction for such a
scheme to RLWE. This give confidence in Round5 with error correction.
We discuss why this reduction does not directly translate to the RLWR
case, and argue that it does not have any impact on the concrete security
estimates.

Easy adoption A device that supports Round5 can handle a wide range of
configuration parameters, for both the ring and the non-ring versions,
without re-compilation. This flexibility will ease a smooth adoption.

Perfect forward secrecy Round5’s key generation algorithm is fast, which
makes it suitable for scenarios in which it is necessary to refresh a pub-
lic/private key pair in order to maintain forward secrecy.

Application-specific configurations The flexibility of Round5 allows ad-
dressing the needs of a very different range of applications. Round5 in-
cludes a ring-based KEM configuration addressing Internet of Things that
achieves very small bandwidth requirements at the price of lower security,
still providing 129−bit security (classical enumeration). Another special
configuration is a ring-based KEM NIST level 1 configuration in which
the encapsulated key is 192-bit long instead of just 128-bit, so that the
difficulty of attacking the encapsulated key (by Grover) is approximately
equal to the difficulty of quantum lattice attack to Round5. This con-
figuration can be very practical for many applications and has a total
bandwidth requirement of just 1016 Bytes. Finally, Round5 includes a
non-ring-based PKE parameter set with small encryption overhead (988
Bytes) at the cost of a larger public key. The latter configuration makes
unstructured lattice configurations more efficient in applications in which
the public-key remains static, e.g., email security.

1.11 Technical Specification of Reference Implementation

This section specifies Round5 from an implementation perspective. The descrip-
tion is close to Round5’s C reference implementation and aims at explaining it
and allowing other developers to create own implementations. In the descrip-
tion, we avoid special symbols to facilitate its direct implementation. For in-
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stance, Greek letters are not included and, e.g., we write kappa instead of κ; we
write q bits instead of qbits or n bar instead of n̄.

1.11.1 Round5 main parameters

Each Round5 parameter set (Sections 1.9.1 and 1.9.2) is determined by the
following parameters that are located on the top of each parameter table in
Sections 1.9.5 and 1.9.7.

d Dimension of underlying lattice.

n If ring-based, n > 1. If non-ring-based, n = 1.

h Number of non-zero values per column in secret matrices.

q, q bits Power of two modulo size where q = 2q bits.

p, p bits Power of two modulo size where p = 2p bits.

t, t bits Power of two modulo size where t = 2t bits.

b, b bits b bits bits are extracted per ciphertext symbol; b = 2b bits.

n bar Number of columns of the secret matrix to compute B.

m bar Number of columns of the secret matrix to compute U .

kappa Security parameter; number of information bits in error-
correcting code.

f Number of bit errors correctable by error-correcting code.

xe Number of parity bits of error correcting code.

mu Number of ciphertext symbols: mu · b bits ≥ kappa+xe.

1.11.2 Round5 derived or configurable parameters

The following parameters are derived from the main parameters. Parameter tau

indicates a configuration choice in function f
(τ)
d,n used to generate A.

d/n Number of polynomial elements in a row of A.

kappa bytes Security parameter in bytes, i.e., kappa/8.

z z = max(p, tqp ). Relevant in reduction proofs and defini-
tion of rounding constants.

z bits z bits = dlog2(z)e.

h 1 h 1 = q
2p is a rounding constant.

h 2 h 2 = q
2z is a rounding constant.
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h 3 h 3 = p
2t + p

2b −
q
2z is a constant to reduce decryption

bias.

h 4 h 4 = q
2p −

q
2z is a constant to reduce decryption bias.

N Identifies polynomial Nn+1(x) = xn+1 − 1.

Phi Identifies polynomial Φn+1(x) = Nn+1(x)/(x− 1).

Xi Identifies if reduction polynomial is N or Phi.

tau Index in f
(τ)
d,n .

For all proposed Round5 parameter sets, z = p, h 1 = h 2 = q
2p , and h 4 = 0.

1.11.3 Basic data types, functions and conversions

Bit A binary digit: 0 or 1.

Bit string An ordered sequence of bits, e.g., [0, 1, 1, 1] contains 4
bits, 0 is the left-most bit. Bit strings are denoted by a
lower case letter.

Byte An ordered sequence of 8 bits, e.g., [0, 1, 1, 1, 0, 1, 1, 1].
Bytes are interpreted in little-endian. The previous ex-
ample represents 0xEE in hexadecimal or 238 in decimal
representation.

Byte string An ordered sequence of bytes e.g., [0x01, 0x02, 0x03] con-
tains 3 bytes, 0x01 is the left-most byte. Byte strings are
denoted by a lower case letter.

0c A bit string containing c 0s.

|| The concatenation operator is represented by || and con-
catenates two strings, e.g., two bit or two byte stings. For
instance,

[0, 1, 1, 1, 0, 1] = [0, 1, 1]||[1, 0, 1]

dae For a real number a, the ceiling operator is represented by
dae and returns the next integer value of a. For instance,
d15/8e = 2, d−3.2e = −3.

bac For a real number a, the flooring operator is represented
by bac and returns the integer part of value a. For in-
stance, b15/8c = 1, b−3.2c = −4.

⊕ For two bits x and y, x ⊕ y represents the modulo 2
addition of two bits. For instance, 1⊕ 1 = 0.
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Little endianness Round5 uses a little endianness representation for bit
strings and byte strings as defined above as well as for
vectors and polynomials. In a bit string this means that
the leftmost bit is the least significant bit and the right-
most bit or the last bit is the most significant bit. The
same applies to byte string, vectors, and polynomials.

For instance, the following byte c contains 8 bits, starting
with bit 0 (c0) and ending with bit 7 (c7).

c = [c0, c1, c2, c3, c4, c5, c6, c7]

In another example, a 64-bit word w contains 8 bytes
such as the first byte is byte 0 (c0) and the last byte is
byte 7 (c7).

w = [c0, c1, c2, c3, c4, c5, c6, c7]

For instance, c = [0, 1, 0, 1, 1, 1, 0, 1] equals 186, or 0xba
in hexadecimal representation.
w = [0xef, 0xcd, 0xab, 0x89, 0x67, 0x45, 0x23, 0x01] equals
0x0123456789abcdef .

Moduli Round5 performs operations modulo r with r = {q, p, t}
being powers of two. The number of bits is denoted as
r bits = {q bits, p bits, t bits} such that r = 2r bits.

Vectors Round5 vectors v
(k,1)
r are defined column-wise, and con-

tain k integers in Zr. Vector element with index 0 v[0]
comes first (little-endian) followed by element with index
1 v[1] till last element with index k − 1, i.e., v[k − 1]. A
vector element v[i] is represented as a bit string contain-
ing r bits = dlog2re bits. Vectors are denoted by a bold
low case letter.

Polynomials Round5 polynomials are inRn,r = Zr[x]/ (ξn+1(x)) where
r = {q, p, t} is a power of two, n+1 is chosen to be a prime
number, and ξn+1(x) can be either the prime cyclotomic
polynomial Φ(x) = 1+x+ . . .+xn, or the NTRU polyno-
mial Nn+1(x) = xn+1−1 = (x−1) ·Φn+1(x) having n+1
coefficients. All coefficients are r bits = dlog2(r)e bits
long, i.e., r bits = {q bits, p bits, t bits}. When n = 1,
polynomials have a single coefficient in Zr.
Polynomials are represented in little endian, i.e., coeffi-
cient of degree 0 comes first and the highest degree coef-
ficient comes last.

A polynomial is represented as a vector poly so that
poly[i] is the coefficient of degree i. In particular,

poly = poly[0] + poly[1] · x+ · · ·+ poly[s] · xs
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where s = n when Xi = N and s = n−1 when Xi = Phi.

Each polynomial coefficient poly[i] is represented as a bit
string of length r bits.

poly[i] = [poly[i] 0,poly[i] 1, . . . ,poly[i] (r bits− 1)]

Polynomial vectors Round5 polynomial vectors v
(k,1)
r are defined column-

wise, and contain k = d/n polynomials inRn,r = Zr[x]/ (ξn+1(x)).
Polynomial vectors are denoted by a bold lower case let-
ter.

Matrices Round5 matricesA(row,col)
r contain row rows and col columns

and their elements are polynomials inRn,r = Zr[x]/ (ξn+1(x)).
Matrices are denoted by a bold capital letter.

1.11.4 Supporting functions

SHAKE Specified in FIPS-202, SHAKE with security levels 128
and 256 is used as the extendable-output function to gen-
erate the coefficients in public parameter A and secrets
S and R.

cSHAKE Specified in NIST SP 800-185, cSHAKE128 and cSHAKE256
offer security levels 128 and 256 and build on top of
SHAKE128 and SHAKE256 such that cSHAKE(X,L,N =
””, S = ””) = SHAKE(X,L) where X, L, N and S are as
in NIST SP 800-185. cSHAKE allows for customization
bit strings so that
cSHAKE(X1, L1, N1, S1) and
cSHAKE(X1, L1, N2, S2) produce unrelated outputs un-
less N1 = N2 and S1 = S2.

cSHAKE is used in the construction of the permutations

specified in f
(1)
d,n and f

(2)
d,n.

Round5 operations are specified in terms of cSHAKE
although some operations can be replaced by SHAKE as
cSHAKE(X,L,N = ””, S = ””) = SHAKE(X,L).

AES Specified in FIPS-197, AES with security levels 128, 192
and 256 is used as symmetric block cipher in Round5.
AES is also used as an optional alternative to generate
random data.

randombytes init Function to initialize a true random number generator
randombytes().
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randombytes() Function that returns B bytes of true random data de-
noted as randomness.

randomness = randombytes(B)

hash() Function to obtain an output len byte long hash output of
an input len byte long input using a customization string
of a given length.
output = hash(output len, input, input len, customiza-
tion string, customization string len)
Round5 uses cSHAKE with a security strength of 128-
or 256-bits as the default hash function due to its fast
performance in software and the requirement to obtain
hashes of variable length. If the S customization string
equals ””, then Round5 hash is equivalent to SHAKE
with a security strength of 128- or 256-bits:

output = hash(output leninput, input len)

Usage for different key lengths is specified in Table 19.

drbg init customization()
Function to initialize a Deterministic Random Bit Gen-
erator (DRBG) that takes as input a seed seed and a
customization string. This function also hides complex-

ity of f
(τ)
d,n and its implementation using either cSHAKE

or AES.

drbg init(seed, customization string)

Round5 uses cSHAKE as the default DRBG due to its
fast performance in software. When cSHAKE is used,
drbg init is implemented with cSHAKE Absorb with a
security strength of 128- or 256-bits.

drbg init = cSHAKE absorb(seed, ””, customization string)

Round5 also supports AES as an optional DRBG due
to its fast performance in hardware. When AES is used,
R5 DRBG Init involves two steps. First, it derives seedAES
using cSHAKE()

seed AES = hash(seed len, seed, seed len, customization string, 2)

then it uses seed AES to initialize the AES key with
security level of seed len bits. Usage for different key
lengths is specified in Table 19.
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drbg init() Function used instead of drbg init customization() when
customization string equals ””. This function has an
identical definition, but it already assumes customiza-
tion string = ””, and thus, the usage of cSHAKE is
equivalent to the direct usage of SHAKE.

drbg() Function to obtain a len-byte long byte string denoted
as randomdata from Round5’s Deterministic Random Bit
Generator (DRBG).

randomdata = drbg(len)

Round5 uses cSHAKE as the default DRBG due to its
fast performance in software. When cSHAKE is used,
Round5’s DRBG implements cSHAKE Squeeze with a
security strength of 128- or 256-bits.

drbg(len) = cSHAKE Squeeze(len)

Round5 also supports AES as an optional DRBG due to
its fast performance in hardware. When AES is used,
Round5’s DRBG applies AES in counter mode (NIST
SP 800-38D) for a security level of 128-, 192- or 256-bits
with input 16 byte long block of all zeros
0x00000000000000000000000000000000.

drbg(len) = AESCTR(len)

Usage for different key lengths is specified in Table 19.

The retrieved bits from the underlying random bit func-
tion must always be interpreted as little endian. Thus,
they will need to be reversed on a big endian machine.

drbg sampler16 Function to sample random numbers uniformly distributed
in a given range.

randomdata = drbg range16(range)

This function requires initializing the drbg with drbg init
before its first invocation. It first computes the greatest
positive integer range divisor such that range divisor ·
range < 216. Then it uses drbg(216) to compute random
numbers x till x < range divisor · range. The returned
value is bx/range divisorc

drbg sampler16 2 Function to sample random numbers uniformly distributed
in a given range that is a power of two.

randomdata = drbg range16 2(range)
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This function requires initializing the drbg with drbg init
before its first invocation. It uses drbg(216) to compute
a 2 byte random number x. The returned value corre-
sponds to the first r bits = log2(range) bits of x, i.e.,
[x 0, x 1, . . . , x (r bits− 1)] For instance, if drbg returns
[0x12, 0x34] and range = 212, then the sampled element
is [0x12, 0x30].

1.11.5 Cryptographic algorithm choices

Round5 includes a drbg, a function to generate pseudorandom data, a hash
function, and a DEM. These functions are implemented by means of cSHAKE
(or optionally, AES in counter mode), and AES in GCM mode. The main reason
for choosing cSHAKE is the use the customization string in the generation of

the permutation in f
(τ)
d,n . In other cases, the customization string is not included

and in those cases cSHAKE is equivalent to SHAKE. The reason for including
– optionally – AES in counter mode is its fast performance.

Table 19: Cryptographic algorithm choices

kappa drbg init drbg hash DEM

Def.

128 cSHAKE128 absorb cSHAKE128 squeeze cSHAKE128 GCM-AES128

192 cSHAKE256 absorb cSHAKE256 squeeze cSHAKE256 GCM-AES192

256 cSHAKE256 absorb cSHAKE256 squeeze cSHAKE256 GCM-AES256

Opt.

128 hash CTR-AES-128 cSHAKE128 GCM-AES128

Init CTR-AES128

192 hash CTR-AES-192 cSHAKE256 GCM-AES192

Init CTR-AES192

256 hash CTR-AES-256 cSHAKE256 GCM-AES256

Init CTR-AES256

The security strength of the algorithms is determined as a function of the
length of the secret, kappa. Since cSHAKE is also defined with security strengths
of 128− and 256− bits, cSHAKE128 is used when kappa = 128; otherwise,
cSHAKE256 is used.

The default configuration (Def.) means that those are the default choices in
Round5 code. This choice is motivated by the faster performance of cSHAKE
in software compared with AES. The optional configuration (Opt.) means that
those are optional choices in Round5 code. This choice is motivated by the fact
that some platforms have hardware-enabled AES instructions that increase the
performance of the pseudo random data generation.
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1.11.6 Core functions

mult poly ntru Function that multiplies input polynomials a and b in
Rn,r = Zr[x]/ (Nn+1(x)) obtaining polynomial c.

c = mult poly ntru(a, b, n, r)

lift poly Function that lifts input polynomial a in Zr[x]/ (Φn+1(x))
obtaining polynomiala(L) in Zr[x]/ (Nn+1(x)).

a(L) = lift poly(a, n, r)

In mathematical terms, lifting means:

a(L) = (x− 1)a

Coefficient-wise, this means that:

a(L) = a
(L)
0 + a

(L)
1 · x+ a

(L)
2 · x2 + · · ·+ a(L)

n xn

equals

−a0+(a0−a1)x+(a1−a2)x2+· · ·+(an−2−an−1)xn−1+an−1x
n

unlift poly Function that unlifts input polynomial a(L) in Zr[x]/ (Nn+1(x)),
obtaining a in Zr[x]/ (Φn+1(x)).

a = unlift poly(a(L), n, r)

In mathematical terms, unlifting means:

a = a(L)/(x− 1)

As a(L) = liftpoly(a, n, r), the coefficients of a can be
recursively computed as

a0 = −aL0 and ai = ai−1 − aLi for 1 ≤ i ≤ n− 1.

mult poly Function that takes input polynomials a and b of length
n and multiplies them inRn,r = Zr[x]/ (ξn+1(x)) obtain-
ing polynomial c.

c = mult poly(a, b, n, r,Xi)

If Xi = N , then c = mult poly ntru(a||0, b, n, r). If Xi =
Phi, then this function lifts input parameter a before
calling mult poly ntru and unlifts the result c, i.e., c =
unlift(mult poly ntru(lift(a, n, r), b, n, r), n, r).
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add poly Function that takes input polynomials a and b of length
n and adds them component-wise obtaining c.

c = add poly(a, b, n, r,Xi)

mult matrix Function that multiplies two matricesA andB of dimen-
sion A row×A col and B row×B col, with elements in
Rn,r = Zr[x]/ (ξn+1(x)) obtaining matrix C of dimen-
sion A row ×B col whose elements are also in Rn,r.

C = mult matrix(A, A row,A col,B, B row,B col, n, r,Xi)

1 for(i = 0; i < A row; i+ +)
2 for(j = 0; j < B col; j + +)
3 C[i, j] = 0
4 for(k = 0; k < A col; k + +)
5 tmp = mult poly(A[i, k],B[k, j], n, r,Xi)
6 C[i, j] = add poly(C[i, j], tmp, n, r)

transpose matrix Function that transposes input matrix A of dimension
A row×A col with elements in Rn,r = Zr[x]/ (Φn+1(x))
obtaining matrixA T of dimension A col×A row whose
elements are also in Rn,r.

A T = transpose matrix(A, A row,A col, n, r)

round element Function that rounds a bits bits long element x from
a bits to b bits bits using rounding constant h where a =
2a bits and b = 2b bits.

x = round(x, a bits, b bits, h) =
⌊ x+ h

2a bits−b bits

⌋
=
⌊ b
a

(x+h)
⌋

round matrix Function that performs coefficient-wise rounding apply-
ing round element to all polynomial coefficients in ma-
trix A of dimension A row × A col with elements in
Rn,2a bits = Z2a bits [x]/ (ξn+1(x)), obtaining matrix B of
dimension A row × A col with elements in Rn,2b bits =
Z2b bits [x]/ (ξn+1(x)).

B = round matrix(A, A row ·A col, n, a bits, b bits, h)

decompress Function that decompresses element x from b bits to
a bits bits .

x = decompress(x, b bits, a bits) = x · 2a bits−b bits
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decompress matrix Function that performs coefficient-wise decompression us-
ing decompress of the first mu polynomial coefficients in
matrix A of dimension A row × A col with elements in
Rn,2b bits = Z2b bits [x]/ (ξn+1(x)), obtaining vector b of
dimension mu with elements in Z2a bits .

b = decompress matrix(A,mu, 1, b bits, a bits)

permutation tau 1 Function that computes permutation p1 associated to

f
(1)
d,1 used to permute the row elements in a fixed mas-

ter public parameter matrix A master and obtain the
public parameter A.

p1 = permutation tau 1(sigma)

p1 is a vector of length d with elements in Zd. permu-
tation tau 1(sigma) is obtained by first initializing the
DRBG with drbg init(seed, customization string=0x0001)
and then sampling the elements with drbg sampler16()
with range d.

permutation tau 2 Function that computes permutation p2 associated to

f
(2)
d,1 used to permute the elements in a master public

parameter vector a master and obtain the public pa-
rameter A.

p2 = permutation tau 2(sigma)

p2 is a vector of length d with elements in Zq. Permu-
tation tau 2(sigma) is obtained by first initializing the
DRBG with drbg init(seed, customization string=0x0001)
and then running drbg sampler16 2 with range q.

create A Function that computes master public parameterA given
random sigma.

A = create A(sigma)

Internally, depending on the choice of tau, create A com-
putes A using one out of three strategies that provide a
trade-off between CPU and memory performance (see
Section 1.4.2).

f
(0)
d,n : Applies drbg sampler16 2 with range q. This func-

tion must be initialized with seed sigma and without cus-
tomization string. Output of drbg sampler16 2 is used to
fill-in A row-wise, i.e., first polynomial element 0 in row
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0, then polynomial element 1 in row 0, till all polynomial
elements in row 0 are assigned; then polynomial element
0 in row 1, then polynomial element 1 in row 1, till all
polynomial elements in row 1 are assigned. This process
goes on till all elements inA are initialized. Each element
in A is a polynomial, and it is filled-in coefficient-wise,
i.e., first coefficient of degree 0, then coefficient of degree
1, till the coefficient of highest degree.

When n = 1, A consists of d2 polynomial elements in
Rn,q = Zq. Since all Round5 parameter sets are such
that 216 ≥ q > 28, a total of d2 calls to drbg sampler16 2
are required. When n = d, A consists of a single element
in Rn,r = Zq[x]/ (Φn+1(x)). Since all Round5 parameter
sets are such that 216 ≥ q > 28, thus, a total of d calls
to drbg sampler16 2 are required. In both cases, (n = 1
and n = d) element i is assigned the output of the ith

call to drbg sampler16 2.

f
(1)
d,n : only applies to n = 1. This requires that a ma-

trix A master of size d× d has been precomputed and
is a public-parameter known to all parties in the sys-
tem. It requires permutation vector p1 – computed with
permutation tau 1() – of length d with elements ran-
domly chosen in Zd to permute the elements in each
row in A master to obtain A, in particular: A[i, j] =
A master[i, (j + p1[j])mod d].

The reference and optimized implementations fill inA master
from a precomputed matrixA fixed of the same dimen-
sions. This is done to enable an implementation that can
run ring and non-ring parameters with a different tau
choice.

f
(2)
d,n : only applies to n = 1. This approach first com-

putes a vector amaster of length q by calling q times
drbg sampler16 2 with range q. This function must be
initialized with seed sigma and without customization
string.

It then uses a permutation vector p2 computed with per-
mutation tau 2 of length d with elements Zq to pickup
d consecutive elements in a master and construct A in
this way, in particular:
A[i, j] = amaster[(p2[i] + j)mod q]

create secret vector Function that computes a sparse ternary secret s of di-
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mension length × 1 and having fixed hamming weight
h.

s = create secret vector(length, h)

Each secret vector s contains d/n polynomials in Rn,r =
Zr[x]/ (ξn+1(x)). Since n can only take values 1 and d,
then this secret vector can represent two different data
structures always consisting of d elements in Zr:

• ring case: a single polynomial containing n ternary
coefficients, with exactly h/2 ”+1” and h/2 ”−1”
values.

• non-ring case: d polynomials, each of them having
a single ternary coefficient, and the vector with ex-
actly h/2 ”+1” and h/2 ”−1” values.

Since in both data structures, there are exactly h/2 ”+1”
and h/2 ”−1” values, then this function only computes
the h positions in vector s containing the h non-zero
elements. To this end, this function uses drbg sample16
to sample the h non-zero positions with i = 0, ..., h −
1. This is done by checking whether a position s[i] is
occupied already, or not. The ith sampled position is
assigned value ”− 1” if i is odd and ” + 1” if i is even as
described below.

1 s[length] = 0
2 for(i = 0; i < h; i+ +)
3 do
4 x = drbg sampler16(d)
5 while(s[x]! = 0);
6 if(is even(i))
7 s[x] = 1;
8 else
9 s[x] = −1;

create S T Function that computes secret ST of dimension n̄×d and
hamming weight h per row given function create secret vector(d
, h).

S T = create S T (n̄, length = d/n·n, hamming weight = h)

create R T Function that computes secret RT of dimension m̄ ×
d and hamming weight h per row given function cre-
ate secret vector(d , h).

R T = create R T (m̄, length = d/n·n, hamming weight = h)
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sample mu Function that returns the firstmu polynomial coefficients
of M where M contains n̄ × m̄ polynomials in Rn,r =
Zr[x]/ (ξn+1(x)).

When n = d, M contains a single polynomial m and the
values returned by sample mu corresponds to the first
mu polynomial coefficients:

m0 +m1x+ · · ·+mmu−1x
mu−1

When n = 1, M contains n̄ × m̄ polynomials, each of
them having a single element in Zr denoted as Mi,j

where i and j refer to the row and column indexes. The
returned coefficients are the first mu coefficients in the
matrix iterated row-wise.

mu coefficients︷ ︸︸ ︷
M0,0,M0,1, . . . ,M0,n̄−1︸ ︷︷ ︸

Row 0

, . . .Mii−1,0,Mii−1,1, . . . ,Mii−1,jj−1︸ ︷︷ ︸
Row ii− 1

,

where mu = ii · n̄+ jj

add msg Function that converts a binary string message m of
length mu · b bits into mu elements in Zt and then adds
them to a vector x of length mu whose elements are each
t bits long.

result = add msg(len,x,m, b bits, t bits)

Addition of message bits m[i·b bits, . . . , (i+1)·b bits−1]
is done by first multiplying this bit string interpreted as
an element in Zb by t/b so that this is represented in Zt.
For instance, if t = 25 and b = 22, and m[0, 1] = [1, 1],
then its bit representation in Zt is [0,0,0,1,1] where the
left most bit is bit 0 and the right most bit is bit 4. This
value is added to the t bits-bit value x[0].

diff msg Function that computes difference of mu elements in
vecv and x modulo p.

result = diff msg(len,v,x, p)

xef compute Round5’s error correction operates in a bit string m of
size mu ·b bits, of which kappa bits are used to transport
a shared secret message of length 128-, 192- or 256- bits
and the remaining xe = mu − kappa bits are used to
correct errors in it. The XEf design is easily scalable, so
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that it is possible to use the parameter f to correct a
variable number of errors in a message.

m = xef compute(m,κ, f)

is the function that given the κ bits long message com-
putes the xe parity bits consisting of the values of 2f reg-
isters. The lengths {l0, l1, . . . , l2f−1} of registers {r0, r1, . . . , r2f−1}
for XE(κ, f) are as follows:

• XE(128, 2) : {11, 13, 14, 15}
• XE(192, 4) : {13, 15, 16, 17, 19, 23, 29, 31}
• XE(128, 5) : {16(∗), 11, 13, 16, 17, 19, 21, 23, 25, 29}
• XE(192, 5) : {24(∗), 13, 16, 17, 19, 21, 23, 25, 29, 31}
• XE(256, 5) : {16(∗), 16, 17, 19, 21, 23, 25, 29, 31, 37}

The lengths of xe =
∑
li for XE(128, 2), XE(192, 4),

XE(128, 5), XE(192, 5), XE(256, 5) are 53, 163, 190,
218, and 234, respectively.

Bit j in register ri of length li is computed as:

ri[j] = m[j]⊕m[j + li]⊕ · · · ⊕m[j + bκ− 1− j
li

c · li]

As in HILA5, register r0 in XE5 codes is special – marked
with (∗) – and computes the register bits as the block-
wise XOR of kappa/l0 consecutive string bits.

r0[j] = m[j · κ
l0

]⊕ · · · ⊕m[(j + 1) · κ
l0
− 1]

Given a code XE(κ, f), a κ bit message m and the set
r including 2f registers r0, r1, . . . , r2f−1 obtained from
m and with total length xe, the output bit string of
xef compute is:

m⊕ [0kappa||r0||r1|| . . . ||r2f−1]

xef correct Function that corrects up to f errors distributed over the
block of mu · b bits = kappa+ xe bits.

m = xef correct(m,κ, f)

This function requires applying xe compute on the re-
ceived bit string of length mu · b bits before error correc-
tion. When doing so, the registers r′′i computed from the
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received message m′ are XORed with the received regis-
ters r′i , i.e., r′′′i = r′i⊕ r′′i so that only the bit differences
are left in the last xe bits of the received bit string.

m′[0, . . . , kappa− 1]︸ ︷︷ ︸
kappa bits

|| r′′′0 || . . . ||r′′′2f−1︸ ︷︷ ︸
xe bits

= compute xef(m′, kappa, f)

Message bit m′[k] is flipped if:

2f−1∑
i=0

r′′′i [fri(k)] > f

where fri(j) determines the bit in register ri that de-
pends on message bit j as specified in xef compute de-
pending on whether ri is a special register or not.

pack Function that serializes an input vector input containing
input length components, each of size input size bits and
places it into an output message output of size dinput length·
input size/8e bytes.

output = pack(input, input length, input size)

For instance, input vector [0x8, 0x1, 0xf, 0x2] contains 4
elements, each of them 4 bits long is serialized in output
vector [0x81, 0xf2]. If the size is not a multiple of 8 bits,
then the most significant bits of the last byte are padded
with 0s.

pack pk Function that serializes the components sigma and B of
Round5 public key. The function is defined as follows
and uses pack internally.

pk = pack pk(sigma, ss size,B, d/n · n bar · n, p bits)

By definition, the sigma is packed in the first ss size
bytes of pk. Next, the d/n× n̄ n-coefficient polynomials
in B are packed. Packing is done row-wise (first element
0 in row 0, then element 1 in row 0,..., till the last element
in row 0; next the second row till the last row). For
each polynomial element, packing is done starting with
coefficient of degree 0 and ending with the coefficient
of degree n − 1. For each polynomial coefficient having
p bits bits, bit 0 comes first and bit p bits−1 comes last.

pack ct Function that serializes the componentsU and v of Round5
ciphertext. The function is defined as follows and uses
pack internally.

ct = pack ct(U , d/n ·m bar · n, p bits,v,mu, t bits)
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By definition, U is packed in the first dd/n ·m bar · n ·
p bits/8e bytes of ct. Packing is done row-wise (first ele-
ment 0 in row 0, then element 1 in row 0,..., till the last
element in row 0; next the second row till the last row).
For each polynomial element, packing is done starting
with coefficient of degree 0 and ending with the coeffi-
cient of degree n − 1. For each polynomial coefficient
having p bits bits, bit 0 comes first and bit p bits − 1
comes last. Next, v is packed packing first v[0], then
v[1], till v[mu − 1]. Each coefficient v[i] of v has t bits
bits and those are also packed following a little endian
approach, i.e., first bit 0, then bit 1, till bit t bits− 1.

unpack Function that deserializes a bit string input of length
dnumber elements · element bits/8e bytes into a vector
of size number elements in which each vector element is
in Z2element bits .

output = unpack(input, number elements, element bits)

Bits {i ∗ element bits, . . . , (i + 1) ∗ element bits − 1} in
the input bit string correspond to element output[i] of
the deserialized output vector.

unpack pk Function that de-serializes the components sigma and
B of Round5’s public-key pk. The function is defined as
follows and uses unpack internally.

(sigma,B) = unpack pk(pk, sigma size,B elements,B element bits)

where the input parameters are the serialized public-key,
the size of sigma, the number of polynomial coefficients
in B and the size in bits of each polynomial coefficient.

unpack ct Function that de-serializes the components U and v of
Round5’s ciphertext ct. The function is defined as follows
and uses unpack internally.

(U ,v) = unpack ct(ct, U elem,U elem size, v elem, v elem size)

where the input parameters are the serialized ciphertext,
the number of polynomial coefficients in U , the size in
bits of each polynomial coefficient, the number of poly-
nomial coefficients in v, and the size in bits of each vector
coefficient.

verify Compares two byte strings s1 and s2 of equal length l
and outputs bit 0 if they are equal.

c = verify(s1, s2, l)
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conditional constant time memcpy
Function that copies byte string a of length a bytes start-
ing at memory address mem if condition cond is true.

conditional constant time memcpy(mem, a, a bytes, cond)

1.11.7 Implementation of r5 cpa pke

Round5’s INDCPA public-key encryption is specified in Algorithms 1, 2, and 3.
Their implementation is described in Algorithms 13, 14, and 15.

Algorithm 13: r5 cpa pke keygen

output: pk : kappa bytes+ dn bar · d/n · n · p bits/8e byte string.
: sk : kappa bytes byte string.

1 sigma = randombytes(kappa bytes)
2 A = create A(sigma)
3 sk = randombytes(kappa bytes)
4 S T = create S T (sk)
5 S = transpose matrix(S T, n bar, d/n, n)
6 B = mult matrix(A, d/n, d/n,S, d/n, n bar, n, q, Phi)
7 B = round matrix(B, d/n · n bar, n, q bits, p bits, h1)
8 pk = pack pk(sigma, kappa bytes, b bits, d/n · n bar · n, p bits)
9 return pk, sk

Algorithm 14: r5 cpa pke encrypt

input: pk : kappa bytes+ dn bar · d/n · n · p bits/8e byte string.
input: m : kappa bytes byte string that is encrypted.
input: ρ : kappa bytes byte string.
output: ct : (dn bar · d/n · n · p bits+mu · t bits)/8e encrypted byte string.

1 sigma,B = unpack pk(pk, kappa bytes, d/n · n bar · n, p bits)
2 A = create A(sigma)
3 R T = create R T (ρ)
4 A T = transpose matrix(A, d/n, d/n, n)
5 R = transpose matrix(R T ,m bar, d/n, n)
6 U = mult matrix(A T , d/n, d/n,R, d/n,m bar, n, q, Phi)
7 U = round matrix(U , d/n ·m bar, n, q bits, p bits, h2)
8 B T = transpose matrix(B, d/n, n bar, n)
9 X = mult matrix(B T , n bar, d/n,R, d/n,m bar, n, p,Xi)

10 x = round matrix(sample mu(X),mu, 1, p bits, t bits, h2)
11 m1 = xef compute(m)
12 v = add msg(mu,x,m1, b bits, t bits)
13 ct = pack ct(U , d/n ·m bar · n, p bits,v,mu, t bits)
14 return ct
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Algorithm 15: r5 cpa pke decrypt

input: ct : (dn bar · d/n · n · p bits+mu · t bits)/8e byte string.
: sk : kappa bytes byte string.

output: m : kappa bytes byte string that has been decrypted.
1 S T = create S T (sk)
2 U ,v = unpack ct(ct, d/n ·m bar · n, p bits,mu, t bits)
3 v = decompress matrix(v,mu, 1, p bits, t bits)
4 X prime = mult matrix(S T , n bar, d/n,U , d/n,m bar, n, p,Xi)
5 m2 = diff msg(mu,v, sample mu(X prime), p)
6 m2 = round matrix(m2,mu, 1, p bits, b bits, h3)
7 m1 = pack(m2,mu, b bits)
8 m1 = xef compute(m1, kappa bytes, f)
9 return m = xef fixerr(m1, kappa bytes, f)

1.11.8 Implementation of r5 cpa kem

Round5’s main building block is an INDCPA KEM are specified in Algorithms 4,
5, and 6. They are described from an implementation perspective in Algorithms
16, 17, and 18.

Algorithm 16: r5 cpa kem keygen

output: pk : dkappa bytes+ n bar · d/n · n · p bits/8e byte string.
: sk : kappa bytes byte string.

1 (pk, sk) = r5 cpa pke keygen
2 return pk, sk

Algorithm 17: r5 cpa kem encapsulate

input: pk : dkappa bytes+ n bar · d/n · n · p bits/8e byte string.
output: ct : (dn bar · d/n · n · p bits+mu · t bits)/8e byte string.
output: k : kappa bytes byte string.

1 m = randombytes(kappa bytes)
2 rho = randombytes(kappa bytes)
3 ct = r5 cpa pke encrypt(pk,m, rho)
4 k = hash(kappa bytes,m||ct, ””, kappa bytes+ dn bar · d/n · n · p bits+mu ·

t bits)/8e, ””, 0)
5 return k

Algorithm 18: r5 cpa pke decapsulate

input: sk : kappa bytes byte string.
input: ct : (dn bar · d/n · n · p bits+mu · t bits)/8e byte string.
output: k : kappa bytes byte string.

1 m = r5 cpa pke decrypt(sk, ct)
2 k = hash(kappa bytes,m||ct, kappa bytes+ dn bar · d/n · n · p bits+mu ·

t bits)/8e, ””, 0)
3 return k
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1.11.9 Implementation of r5 cca kem

Round5 relies on an INDCCA KEM specified in Algorithms 7, 8, and 9. They
are described from an implementation perspective in Algorithms 19, 20, and 21.

Algorithm 19: r5 cca kem keygen

output: pk : dkappa bytes+ n bar · d/n · n · p bits/8e byte string.
: sk : d3 · kappa bytes+ n bar · d/n · n · p bits/8e byte string.

1 (pk, sk) = r5 cpa pke keygen
2 y = randombytes(kappa bytes)
3 sk = sk||y||pk
4 return (pk, sk)

Algorithm 20: r5 cca kem encapsulate

input: pk : d3 · kappa bytes+ (n bar · d/n · n · p bits)/8e byte string.
output: ct : dkappa bytes+ (n bar · d/n · n · p bits+mu · t bits)/8e byte string.
output: k : kappa bytes byte string.

1 m = randombytes(kappa bytes)
2 L||g||rho =

hash(3 · kappa bytes,m||pk, d2 · kappa bytes+ (n bar · d/n · n · p bits)/8e, ””, 0)
3 (U ,v) = r5 cpa pke encrypt(pk,m, rho)
4 ct = U ||v||g
5 k = hash(kappa bytes, L||ct, kappa bytes+ d(n bar · d/n · n · p bits+mu ·

t bits)/8e, ””, 0)
6 return ct, k

Algorithm 21: r5 cca pke decapsulate

input: sk : d3 · kappa bytes+ n bar · d/n · n · p bits/8e byte string.
input: ct : dkappa bytes+ (n bar · d/n · n · p bits+mu · t bits)/8e byte string.
output: k : kappa bytes byte string.

1 m′ = r5 cpa pke decrypt(sk, ct)
2 L prime||g prime||rho prime =

hash(3 · kappa bytes,m′||pk, d2 · kappa bytes+ (n bar · d/n ·n · p bits)/8e, ””, 0)
3 (U prime,v prime) = r5 cpa pke encrypt(pk,m prime, rho prime)
4 input = L prime||ct
5 fail = verify(ct, ct prime, dkappa bytes+(n bar ·d/n ·n ·p bits+mu ·t bits)/8e)
6 conditional constant time memcpy(hashinput, y, kappa bytes, fail)
7 k = hash(kappa bytes, hash input, 2 · kappa bytes+ dn bar · d/n · n · p bits+

mu · t bits)/8e, ””, 0)
8 return k
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A Formal security of Round5

This section contains details on the formal security of Round5, its algorithms
and building blocks. It is organized as follows: Section A.2 introduces notions of
security based on indistinguishablity of ciphertexts or encapsulated keys. Sec-
tion A.3 gives results (existing and new) on the hardness of our underlying
problem, or rather its two specific instances we use – the Learning with Round-
ing problem with sparse ternary secrets (LWRspt) and the Ring Learning with
Rounding problem with sparse ternary secrets (RLWRspt). Sections A.6 and A.7
contain the first main result of this section – a proof of IND-CPA security for
r5 cpa kem (Theorem A.6.0.1), and a proof of IND-CCA security of r5 cca pke
(Theorems A.7.0.1 and A.7.0.2), assuming the hardness of the above problems.
Finally, Section A.8 and Theorem A.8.0.1 contain the second main result of this
reduction: a proof of the hardness for LWRspt, the underlying problem of our
schemes for the non-ring case (i.e., for n = 1) in the form of a polynomial-time
reduction to it from the Learning with Errors (LWE) problem with secrets uni-
formly chosen from Zdq and errors drawn according to a Gaussian distribution.

A.1 Deterministic generation of A

The General Learning with Rounding (GLWR) public parameterA in Round5 is

generated using the function f
(τ)
d,n from a short random seed (see Section 1.4.2).

The core component in f
(τ)
d,n responsible for deterministically expanding this

short random seed into a longer random sequence is either AES(128 or 256) [44]
or SHAKE(128 or 256) [45]. In order to relate Round5’s security to the hardness
of the GLWR problem, we reuse Naehrig et al.’s argument in [75] to argue

that we can replace a uniformly sampled matrix A ∈ Rd/n×d/nn,q with matrices
sampled according to Round5’s key-generation algorithm, for both of the above
two algorithms, while considering a realistic adversary with access to the seed.
The proof for both the cases of AES and SHAKE proceeds by using the notion
of indifferentiability [71, 37, Def. 3], in exactly the same manner as in [75,
Sec. 5.1.4].

In case of AES, the proof holds directly for the instantiation f
(0)
d,n, and also

for f
(1)
d,n when the function permutes complete AES blocks. We explain the in-

tuition behind the proof. Let F denote an “ideal domain expansion” primitive
that expands a short random seed, block-wise, into a larger sequence, such that
each block is unique and also sampled uniformly at random. In our security
reductions, the GLWR public parameter A is generated by querying the GLWR
oracle. It can be shown that marginally increasing the number of calls to the
GLWR oracle makes it possible to construct a GLWR matrix A that fits (with
high probability) the output distribution of F , without deteriorating the prob-
lem’s hardness [75, Sec. 5.1.4]. Next, we consider a construction CG in the Ideal
Cipher model implementing F as AES (as in Round5). It can be shown that
CG is indifferentiable from F [75, Sec. 5.1.4]. This therefore allows us to replace
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the uniformly random sampling of A in the GLWR problem with one generated

as in Round5’s f
(τ)
d,n without affecting security. By definition, this is directly

possible if τ = 0; it also holds for τ = 1 if f
(1)
d,n permutes complete AES blocks.

Next, we explain the intuition behind the proof when SHAKE is used in

f
(0)|
n or f

(1)
n . In the random oracle model, SHAKE is an ideal XOF [43]. It

can be shown that [75, Sec. 5.1.4] SHAKE can be modeled as an ideal hash
function used to expand a seed into each row of the matrix A, each step being
independent, thereby expanding the uniformly random seed into a larger uni-
formly random matrix. This construction implements the ideal functionality F
perfectly, completing the proof. We refer to [75, Sec. 5.1.4] for details.

A.2 Security Definitions

Security requirements for public-key encryption and key-encapsulation schemes
are based on whether static or ephemeral keys are used. (Static) public-key
encryption (PKE) schemes, and nominally ephemeral key-encapsulation mech-
anisms that allow key caching that provide security against adaptive chosen
ciphertext attack (corresponding to IND-CCA2 security) are considered to be
sufficiently secure [76, Section 4.A.2]. On the other hand, a purely ephemeral
key encapsulation mechanism (KEM) that provides semantic security against
chosen plaintext attack, i.e., IND-CPA security, is considered to be sufficiently
secure [76, Section 4.A.3].

Definition A.2.0.1 (Distinguishing advantage). Let A be a randomized algo-
rithm that takes as input elements from a set X with output in {0, 1}. Let D1

and D2 two probability distributions on X. The advantage of A for distinguish-
ing between D1 and D2, denoted by AdvD1,D2

(A) , is defined as

AdvD1,D2
(A) = |Pr [A(x) = 1 | x← D1]− Pr [A(x) = 1 | x← D2] |

Table 20: IND-CPA game for PKE

1. (pk, sk) = KeyGen(λ).

2. b
$←− {0, 1}

3. (m0,m1, st) = A(pk) such that |m0| = |m1|.
4. c = Enc(pk,mb)

5. b′ = A(pk, c, st)

6. return [b′ = b]

Definition A.2.0.2 (IND-CPA Secure PKE). Let PKE=(Keygen, Enc, Dec)
be a public key encryption scheme with message space M. Let λ be a secu-
rity parameter. The IND-CPA game is defined in Table 20, and the IND-CPA
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advantage of an adversary A against PKE is defined as

AdvIND-CPAPKE (A) = | Pr[IND-CPAA ⇒ 1]− 1

2
| .

Definition A.2.0.3 (IND-CCA Secure PKE). Let PKE=(Keygen, Enc, Dec)
be a public key encryption scheme with message space M. Let λ be a security
parameter. Let A be an adversary against PKE. The IND-CCA game is defined
as Table 20, with the addition that A has access to a decryption oracle Dec(·) =
Dec(sk, ·) that returns m′ = Dec (sk, Enc(pk,m′)), and the restriction that A
cannot query Dec(·) with the challenge c. The IND-CCA advantage of A against
PKE is defined as

AdvIND-CCAPKE (ADec(·)) = | Pr[IND-CCAA ⇒ 1]− 1

2
| .

Table 21: IND-CPA game for KEM

1. (pk, sk) = KeyGen(λ).

2. b
$←− {0, 1}

3. (c,K0) = Encaps(pk)

4. K1
$←− K

5. b′ = A(pk, c,Kb)

6. return [b′ = b]

Definition A.2.0.4 (IND-CPA Secure KEM). Let KEM=(Keygen, Encaps,
Decaps) be a key encapsulation mechanism with key space K. Let λ be a secu-
rity parameter. The IND-CPA game is defined in Table 21, and the IND-CPA
advantage of an adversary A against KEM is defined as

AdvIND-CPAKEM (A) = | Pr[IND-CPAA ⇒ 1]− 1

2
| .

Definition A.2.0.5 (IND-CCA Secure KEM). Let KEM=(Keygen, Encaps,
Decaps) be a key encapsulation mechanism with key space K. Let λ be a se-
curity parameter. Let A be an adversary against KEM. The IND-CCA game
is defined in Table 21, with the addition that A has access to a decapsula-
tion oracle Decaps(·) = Decaps(sk, ·) that returns K ′ = Decaps(sk, c′) where
(c′,K ′) = Encaps(pk), and the restriction that A cannot query Decaps(·) with
the challenge c. The IND-CCA advantage of A against KEM is defined as

AdvIND-CCAKEM (ADecaps(·)) = | Pr[IND-CCAA ⇒ 1]− 1

2
| .

In the random oracle model [21] (both for IND-CPA and IND-CCA games),
the adversary is given access to a random oracle H that it can query up to a



Round5 Draft Friday 25th January, 2019 87

polynomial number qH of times. In a post-quantum setting, it can be assumed
that the adversary has access to a quantum accessible random oracle HQ [24]
that can be queried up to qHQ times on arbitrary superpositions of input strings.

A.3 Hardness Assumption (Underlying Problem)

In this section, we detail the underlying problem on whose hardness the security
of our schemes are established. Depending on whether the system parameter n
is chosen to be 1 or d (see Section 1.4.2), the proposed public-key encryption and
key-encapsulation mechanism are instantiated either as non-ring (LWR) based
or ring (RLWR) based schemes. The security of the proposals are therefore
based on the hardness of the Decision-General Learning with Rounding prob-
lem with sparse-ternary secrets, i.e., dGLWRspt (see Section 1.3). We first recall
hardness results for LWR before introducing our own results on the hardness of
dLWRspt. We then recall hardness results of RLWR.

Provable Security in the non-ring case: The hardness of the LWR prob-
lem has been studied in [18, 9, 23, 17] and established based on the hardness of
the Learning with Errors (LWE) problem [83]. The most recent work are two
independent reductions to LWR from LWE: the first, due to Bai et al. [17, The-
orem 6.4] preserves the dimension n between the two problems but decreases
the number of LWR samples that may be queried by an attacker by a factor
(p/q); the second due to Bogdanov et al. [23, Theorem 3] preserves the number
of samples between the two problems but increases the LWR dimension by a
factor log q. We follow the approach of Bai since it results in a smaller LWR
dimension, leading to smaller bandwidth requirements and better performance.

Bai et al.’s reduction [17, Theorem 6.4] is an essential component that we
use in Section A.8 to prove a reduction from dLWEn,m′,q,Dα (U (Zq)) to
dLWRn,m,q,p (U(Hn (h))), i.e., to dLWRspt.

Provable Security in the ring case: Next, we recall hardness results for
the ring case, i.e., for Decision-RLWR [18]. To the best of our knowledge, the
only existing result on the hardness of Decision-RLWR is due to [18, Theo-
rem 3.2], who show that Decision-RLWR is at least as hard as Decision-RLWE
as long as the underlying ring and secret distribution remain the same for the
two problems, the RLWE noise is sampled from any (balanced) distribution
in {−B, . . . , B}, and q is super-polynomial in n, i.e., q ≥ pBnω(1). The last
condition may be too restrictive for practical schemes. Hence, although [18,
Theorem 3.2] is relevant for the provable (IND) security of our schemes’ ring-
based instantiations, it remains to be seen whether the above reduction can be
improved to be made practical.

A.4 IND-CPA Security of r5 cpa pke

In this section it is shown that the public-key encryption scheme r5 cpa pke
is IND-CPA secure, based on the hardness of the decision GLWR problem
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with sparse-ternary secrets. In Section A.7 this result will be used to show
that r5 cca pke is IND-CCA Secure. The proof is restricted to the case that
ξ(x) = Φn+1(x). Referring to Table 20, we take for KeyGen the function
r5 cpa pke keygen, and for Enc the function r5 cpa pke encrypt(pk,m, ρ) with
uniform choice for ρ. That is,

ρ
$←− {0, 1}κ; Enc(pk,m) = r5 cpa pke encrypt(pk,m, ρ).

Let n,m, p, q, d, h be positive integers with n ∈ {1, d} . The hard problem
underlying the security of our schemes is decision-GLWR with sparse-ternary
secrets (see Section 1.3). For the above parameters, we define the GLWR oracle
Om,χS ,s for a secret distribution χS that returns m GLWR samples as follows:

Om,χS ,s : A
$←− Rm×d/nn,q , s← χS ; return (A,Rq→p(As)) (35)

The decision-GLWR problem with sparse-ternary secrets is to distinguish be-

tween the distributions U(Rm×d/nn,q )× U(Rn,p) and Om,χS ,s, with s common to
all samples and χS := U(Hn,d/n(h)). For an adversary A, we define

Adv
dGLWRspt
d,n,m,q,p(A) =

|Pr
[
A(A, b) = 1 | (A, b) $←− Om,χS ,s

]
− Pr

[
A(A, b) = 1 | A $←− Rm×d/nn,q , b

$←− Rmn,p
]
|

For an extended form of the decision-GLWR problem with the secret in form
of a matrix consisting of n independent secret vectors, we define a similar oracle
Om,χS ,n,S as follows:

Om,χS ,n,S : A
$←− U

(
Rm×d/nn,q

)
, S ← (χS)n; return (A,Rq→p(AS)) (36)

The advantage of an adversary for this extended form of the decision-GLWR
problem is defined in a similar manner as above.

The following theorem shows that r5 cpa pke is IND-CPA secure assuming
the hardness of decision-GLWR with sparse-ternary secrets.

Theorem A.4.0.1. Let p, q, t be integers such that t|p|q, and let z = max(p, tq/p).

Furthermore, assume that ξ(x) = Φn+1(x). If f
(τ)
d,n, fS and fR induce distribu-

tions indistinguishable from uniform, then r5 cpa pke is IND-CPA secure under
the hardness assumption of the Decision-GLWR problem with sparse-ternary se-
crets. More precisely, for every IND-CPA adversary A, if AdvIND-CPA

CPA-PKE(A) is
the advantage in winning the IND-CPA game, then there exist distinguishers
B, C,D, E ,F such that

AdvIND-CPA
CPA-PKE(A) ≤ AdvU(Rd/n×d/nn,q ),Fτ

(B) + AdvGS ,χnS
(C) + AdvGR,χmS

(D)

+ n ·Adv
dGLWRspt
d,n,d/n,q,p(E) + Adv

dGLWRspt
d,n,d/n+n,q,z(F)

(37)

In this equation, Fτ is the distribution of f
(τ)
d,n with σ

$←− {0, 1}κ, GS is the

distribution of fS(s) with s
$←− {0, 1}κ and GR is the distribution of fR(ρ) with
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Table 22: IND-CPA games for r5 cpa pke: games G0 and G1

Game G0 Game G1

1. σ
$←− {0, 1}κ; A = f

(τ)
d,n(σ) 1. σ

$←− {0, 1}κ; A = f
(τ)
d,n(σ)

2. s
$←− {0, 1}κ; S = fS(s) 2. s

$←− {0, 1}κ; S = fS(s)

3. B = Rq→p(〈AS〉Φn+1) 3. B = Rq→p(〈AS〉Φn+1)

4. Choose β
$←− {0, 1}. 4. Choose β

$←− {0, 1}.
5. (m0,m1, st) = A(A,B) 5. (m0,m1, st) = A(A,B)

6. ρ
$←− {0, 1}κ; R = fR(ρ) 6. ρ

$←− {0, 1}κ; R = fR(ρ)

7. U = Rq→p,h2(〈ATR〉Φn+1) 7. U = Rq→p,h2(〈ATR〉Φn+1)

8. v = 〈Sampleµ
(
Rp→t,h2(〈BTR〉ξ)

)
+

t
b
ECC Encκ,f (mβ)〉t

8. V = 〈
(
Rp→t,h2(〈BTR〉ξ)

)
+ t

b
Mβ〉t

9. β′ = A ((A,B), (U ,v), st) 9. β′ = A
(
(A,B), (U ,Sampleµ(V ), st

)
10. return[(β′ = β)]. 10. return[(β′ = β)].

ρ
$←− {0, 1}κ. Moreover, Adv

dGLWRspt
d,n,m,q1,q2

(Z) is the advantage of adversary Z in
distinguishing m GLWR samples (with sparse-ternary secrets) from uniform,
with the GLWR problem defined for the parameters d, n, q1, q2.

Theorem A.4.0.1 via a sequence of IND-CPA games shown in Tables 22 to
25, following the methodology of Peikert et al. in [77, Lemma 4.1] and that
of [26, Theorem 3.3]. Steps for combining samples using rounding from q to p
and samples using rounding from p to t are due to [40]. Game G0 is the actual
CPA-PKE game. For convenience, the steps of r5 cpa pke encrypt(pk,m, ρ) are
written out explicitly. Moreover, we write χS for the uniform distribution on
Hn,d/n(h).
In Game G1, Mβ is the matrix that has zero coefficients in all positions not
picked up by Sampleµ and satisfies ECC Encκ,f (mβ) = Sampleµ(Mβ). Clearly,

Pr(S0) = Pr(S1) (38)

Games G1 and G2 only differ in the generation ofA. A distinguisher between

U(Rd/n×d/nn,q ) and Fτ , defined as the distribution of fτd,n(σ) with σ
$←− {0, 1}κ,

can be constructed as follows. On input A ∈ Rd/n×d/nn,q , perform steps 2-10
of game G1. The output b′ is distributed as in game G1 if A is distributed
according to Fτ , and is distributed as in game G2 if A is distributed uniformly.
We conclude that there is a distinghuisher B such that

AdvU(Rd/n×d/nn,q ),Fτ
(B) = | Pr(S1)− Pr(S2) | . (39)

Games G2 and G3 only differ in the generation of the secret matrix S. We

denote the distribution of fS(s) with s
$←− {0, 1}κ by GS . Similarly to the
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Table 23: IND-CPA games for r5 cpa pke: games G2 and G3

Game G2 Game G3

1. A
$←− Rd/n×d/nn,q 1. A

$←− Rd/n×d/nn,q

2. s
$←− {0, 1}κ; S = fS(s) 2. S

$←− χnS
3. B = Rq→p(〈AS〉Φn+1) 3. B = Rq→p(〈AS〉Φn+1)

4. Choose β
$←− {0, 1}. 4. Choose β

$←− {0, 1}.
5. (m0,m1, st) = A(A,B). 5. (m0,m1, st) = A(A,B).

6. ρ
$←− {0, 1}κ; R = fR(ρ) 6. ρ

$←− {0, 1}κ; R = fR(ρ)

7. U = Rq→p,h2(〈ATR〉φn+1) 7. U = Rq→p,h2(〈ATR〉φn+1)

8. V = 〈
(
Rp→t,h2(〈BTR〉ξ)

)
+ t

b
Mb〉t 8. V = 〈

(
Rp→t,h2(〈BTR〉ξ)

)
+ t

b
Mb〉t

9. β′ = A
(
(A,B), (U ,Sampleµ(V )), st

)
9. β′ = A

(
(A,B), (U , Sampleµ(V )), st

)
10. return[(β′ = β)]. 10. return[(β′ = β)].

reasoning for Games G1 and G2, there is a distinguisher C such that

AdvGS ,χnS (C) = | Pr(S2)− Pr(S3) | . (40)

Games G3 and G4 only differ in the generation of B. Consider the following

algorithm. On input (A,B) ∈ Rd/n×d/nn,q × Rd/n×nn,p , run steps 3-10 from game
G3. As (A,B) is distributed like Om,χS ,n,S in game G3 and uniformly in game
G4, we conclude that there is a distinguisher X such that

AdvO
m,χS,n,S,U(Rd/n×d/nn,q ×Rd/n×nn,p )

(X ) = | Pr(S3)− Pr(S4)) | (41)

By using a standard hybrid argument, we infer that there is a distinguisher E
such that

AdvO
m,χS,n,S,U(Rd/n×d/nn,q ×Rd/n×nn,p )

(X ) ≤ n ·AdvO
m,χS,1,s,U(Rd/n×d/nn,q ×Rd/n×1

n,p )
(E)

(42)
Games G4 and G5 only differ in the generation of the secret matrix R. We

denote the distribution of fR(ρ) with ρ
$←− {0, 1}κ by GR. Similarly to the

reasoning for games G1 and G2, there is a distinguisher D such that

AdvGR,χmS (D) = | Pr(S4)− Pr(S5) | . (43)

Now consider Games G5 and G6. As p divides q, 〈Bq〉p is uniformly dis-
tributed. By definition of the rounding function,

V ′ ≡ b t
p

(〈Bq
TR〉ξ + h2J)c+

t

b
M b (mod

tq

p
).

As p divides q and Bq ≡ 〈Bq〉p (mod p),

V ′′ ≡ b t
p

(〈Bq
T 〉pR〉ξ + h2J)c+

t

b
Mb (mod t).
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Table 24: IND-CPA games for r5 cpa pke: games G4 and G5

Game G4 Game G5

1. A
$←− Rd/n×d/nn,q 1. A

$←− Rd/n×d/nn,q

2. - 2. -

3. B
$←− Rd/n×nn,p 3. B

$←− Rd/n×nn,p

4. Choose β
$←− {0, 1}. 4. Choose β

$←− {0, 1}.
5. (m0,m1, st) = A(A,B). 5. (m0,m1, st) = A(A, 〈(Bq〉p).
6. ρ

$←− {0, 1}κ; R = fR(ρ) 6. R
$←− χmS

7. U = Rq→p,h2(〈ATR〉Φn+1) 7. U = Rq→p,h2(〈ATR〉Φn+1)

8. V = 〈
(
Rp→t,h2(〈BTR〉ξ)

)
+ t

b
Mb〉t 8. V = 〈

(
Rp→t,h2(〈BTR〉ξ)

)
+ t

b
Mb〉t

9. β′ = A
(
(A,B), (U ,Sampleµ(V )), st

)
9. β′ = A

(
(A,B), (U , Sampleµ(V )), st

)
10. return[(β′ = β)]. 10. return[(β′ = β)].

As a result, the pairs (B,v) in Game G5 and (〈Bq〉p, 〈v′〉t) in Game G6 have
the same distribution, and so

Pr(S5) = Pr(S6). (44)

We now consider games G6 and G7. We will use the following lemma.

Lemma A.4.0.1. Let a, b, c be positive integers such that a|b|c. Then for any
x ∈ R

ba
c
xc = ba

b
bb
c
xcc

Proof Write m = c
b and n = b

a . It is sufficient that to show that

b x
mn
c = b 1

n
b x
m
cc.

We write x = mnb x
mnc+y with 0 ≤ y < mn. Obviously, 1

nb
x
mc = b x

mnc+
1
nb

y
mc.

As 0 ≤ y < mn, it holds that 0 ≤ y
m < n and so 0 ≤ b ymc ≤ n− 1. �

Applying the above lemma, we infer that (U ,V ′) in Game G6 and (U ′,V ”) in
Game G7 are related as U = bpzU

′c and V ′ ≡ b tqpzV ”c (mod tq
p ). As a result,

Pr(S6) = Pr(S7). (45)

In Game G8, the variable

[
Rq→z,h2

(〈ATR〉φn+1
)

Rq→z,h2(〈BTR〉ξ)

]
from Game G7 is replaced

by the (d/n+ n)×m matrix

[
U”

W ′

]
with entries uniformly drawn from Rn,z.
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Table 25: IND-CPA games for r5 cpa pke: games G6, G7 and G8

Game G6 Game G7 Game G8

1. A
$←− Rd/n×d/nn,q 1. A

$←− Rd/n×d/nn,q 1. A
$←− Rd/n×d/nn,q

2. - 2. -

3. Bq
$←− Rd/n×nn,p 3. Bq

$←− Rd/n×nn,q 3. Bq
$←− Rd/n×nn,p

4. Choose β
$←− {0, 1}. 4. Choose β

$←− {0, 1}. 4. Choose β
$←− {0, 1}.

5. (m0,m1, st) = A(A, 〈Bq〉p). 5. (m0,m1, st) = A(A, 〈(Bq〉p). 5. (m0,m1, st) = A(A, 〈Bq〉p).
6. R

$←− χmS 6. R
$←− χmS

7. U = Rq→p,h2(〈ATR〉Φn+1) 7. U ′ = Rq→z,h2(〈ATR〉Φn+1) z =
max(p, tq/p)

7. U”
$←− Rd/n×mn,z

8. V ′ = 〈
(
Rq→tq/p,h2(〈BqTR〉ξ)

)
+ t

b
Mb〉tq/p 8. V ′′ = 〈

(
Rq→z,h2(〈BqTR〉ξ)

)
+ pz

qb
Mb〉z 8. W

$←− Rn×mn,z ; V ′′′ = 〈W + pz
qb
Mb〉z

9. β′ = A
(
(A, 〈Bq〉p), (U ,Sampleµ(〈V ′〉t), st

)
9. β′ = A((A, 〈Bq〉p), (〈b pzU

′c〉p, 9. β′ =
A((A, 〈Bq〉p), (〈b pzU”c〉p,
Sampleµ(〈b tq

pz
V ′′c〉t), st) Sampleµ(〈b tq

pz
V ′′′c〉t), st)

10. return[(β′ = β)]. 10. return[(β′ = β)]. 10. return[(β′ = β)].

As h2 = q
2z , Rq→z,h2

= Rq→z. Moreover, if ξ = Φn+1, the first variable in fact

equals Rq→z(〈

[
AT

BT

]
R〉φ). We infer that there exists a distinghuisher E such

that
Adv

dGLWRspt

d,n,d/n+n,q,z(A ◦ Z) = | Pr(S7)− Pr(S8) | (46)

As all inputs to A in Game G8 are uniform, Pr(S8) = 1
2 , and so

AdvIND-CPA
CPA-PKE(A) = | Pr(S0)−Pr(S8) | = |

7∑
i=0

Pr(Si)−Pr(Si+1) | ≤
7∑
i=0

|Pr(Si)−Pr(Si+1)|.

(47)

By combining (38)-(47), the theorem follows.

A.5 IND-CPA Security for RLWE-based Round5 variant
with different reduction polynomials

As described in Section 1.4.1, the merged parameters of Round5 require that the
reduction polynomial ξ(x) used in the computation of the ciphertext component
v and in decryption equals xn+1 − 1. The proof of the IND-CPA security of
r5 cpa pke presented in Section A.4, however, only applies if ξ(x) = Φn+1(x).
The reason is that otherwise the replacement of (U ′,V ′′) by random matrices
in the transition from game G7 to game G8 cannot be directly related to the
difficulty of GLWR with one single reduction polynomial.

Next we argue why this construction is secure: First, Round5 uses function
Sampleµ that selects µ coefficients out of n + 1. We show how it prevents
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known distinguishing attacks such as the “Evaluate at 1 ” attack [55]. Second,
we discuss an extension of the IND-CPA security proof in Section A.4 for a
RLWE-variant of Round5. The existence of this proof for the RLWE case gives
strong confidence in the Round5 parameters using error correction. Finally, we
discuss why this proof does not directly translate to an RLWR based design and
a simple design change in Round5 that would make it work, but that we have
not introduced since it does not bring major benefits from a concrete security
viewpoint.

Distinguishing attack at x = 1. In this section, the well-known “Evaluate
at x = 1” distinguishing attack [55] is described that can be applied if ξ(x) =
xn+1 − 1 and µ = n + 1. Next, it is argued that this attack cannot be applied
in Round5 if µ ≤ n. As a shorthand, N(x) is written instead of xn+1 − 1.

Consider a pair of polynomials (b(x), v(x)) with b(x) uniformly distributed on
Zp[x]/(xn+1−1) and v(x) = 〈Sampleµ(b tp (〈b(x)r(x)〉N(x) +h2)c)+ t

bm(x)〉t with

r(x) drawn independently and uniformly from the ternary polynomials of degree
at most n−1 satisfying r(1) = 0, and m(x) drawn according to some distribution
on Zb[x]/(xµ − 1). We then have that v(x) ≡ bSampleµ( tp (〈b(x)r(x)〉N(x) +

h2)c) + t
bm(x) (mod t), and so w(x) = p

t v(x) satisfies

w(x) ≡ Sampleµ(〈b(x)r(x)〉N(x)) +
p

t
· h2

µ−1∑
i=0

xi − p

t
ε(x) +

p

b
m(x) (mod p).

where ε(x) is the result of rounding downwards, so all components of p
t ε(x) are

in [0, pt )∩Z. As (x−1) divides both r(x) and N(x), it follows that x−1 divides
〈b(x)r(x)〉N(x), and so if µ = n+ 1, then

w(1) ≡ p

t
· h2 · (n+ 1)− p

t

n∑
i=0

εi +
p

b
m(1) (mod p).

For large n, the value of pt
∑n
i=0 εi is close to its average, i.e., close to n p

2t . As a
result, has maxima at values p

t h2(n+ 1)− n p
2t + p

bk for 0 ≤ k ≤ b− 1. So w(1)
can serve as a distinguisher between the above distribution and the uniform one.
Now assume that µ < n + 1. We take µ = n, which is the case giving most
information to the attacker. Writing f(x) = 〈b(x)r(x)〉N(x) =

∑n
i=0 fix

i, it
holds that

w(1) ≡
n−1∑
i=0

fi +
p

t
· h2 · n−

p

t
ε(1) +

p

b
m(1) (mod p).

As shown above, f(1) = 0, and so
∑n−1
i=0 fi = −fn. Hence, under the assumption

that fn is distributed uniformly modulo p, also w(1) is distributed uniformly
modulo p. The latter assumption is supported by [79].
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Requirements for IND-CPA Security – Design rationale. An IND-
CPA Security proof is feasible for a RLWE variant of r5 cpa pke, i.e., a Round5
variant where the noise is independently generated. This proof is presented
below and gives confidence in Round5’s design and choices made.

The proof requires the secrets to be a multiple of (x− 1) and also the noise
polynomial for the ciphertext component v to be a multiple of (x − 1) (this
is used in an essential step of the proof, specifically in the map Ψ in (56))
This last requirement is the reason why this proof does not apply to Round5
with ξ(x) = xn+1 − 1 using RLWR defined as component-wise rounding. This
deterministic component-wise rounding does not allow enforcing that the noisy
“rounding” polynomials are multiples of (x− 1).

Round5’s design can be adapted to use a slightly different type of rounding
informally named as “rounding to the root lattice”1 - that allows the IND-CPA
proof to work. This “rounding to the root lattice” would work in three steps: (1)
perform component-wise rounding as currently done by rounding (down) from
a higher modulus q to a smaller one p; (2) compute the difference k between
the sum of the rounded coefficients and the next multiple of p; and (3) add 1
to the k rounded smallest coefficients. The components of the rounding noise
computed in this way adds up to “0” so that the IND-CPA proof works.

However, this modification – going from component-wise rounding to round-
ing to the root lattice – would introduce additional complexity and changes in
Round5’s design with no clear concrete security benefits. First, Sampleµ gets
rid of n + 1 − µ coefficients so that knowing k is irrelevant. Second, concrete
security attacks use the norm of the noise that hardly changes if rounding to
the root lattice is employed. Because of these two reasons, we argue that the
current Round5 design (and the rounding used in it) is sound and secure, and
further modifications are not required.

IND-CPA Proof for RLWE-based variant of Round5. We now present
the proof of IND-CPA security for the RLWE variant of r5 cpa pke. We restrict
ourselves to the case B = 1, that is, one single bit is extracted from each symbol.

The following notation will be used. We write φ(x) = 1 + x+ . . .+ xn, and
N(x) = xn+1 − 1, where n+ 1 is prime. Moreover, Rφ = Zq[x]/φ(x), and

R0 = {f(x) =

n∑
i=0

fix
i ∈ Zq[x] |

n∑
i=0

fi ≡ 0 (mod q)} (48)

As N(x) = (x− 1)φ(x), it holds that 〈(x− 1)f(x)〉N(x) = (x− 1)〈f(x)〉φ(x) for
any f ∈ Z[x]. As a result, f(x) 7→ (x− 1)f(x) is a bijection from Rφ to R0.

In the proof, the following lemma will be used.

Lemma A.5.0.1. Let q and n+ 1 be relatively prime, and let (n+ 1)−1 be the

1We thank Léo Ducas for helpful discussions on this topic.
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multiplicative inverse of n+ 1 in Zq. The mapping F defined as

F : (

n−1∑
i=0

fix
i) 7→

n−1∑
i=0

fix
i − (n+ 1)−1 ·

(
n−1∑
i=0

fi

)
· φ(x)

is a bijection from Rφ to R0.

Proof. It is easy to see that F maps Rφ to R0. To show that F is a bijection,
let g(x) =

∑n
i=0 gix

i ∈ R0, and let f(x) =
∑n
i=0〈gi − gn〉qxi. Clearly, f ∈ Zq[x]

has degree at most n− 1, and by direct computation, F(f(x)) = g(x).

In the description below, S denotes a set of secrets such that

S ⊂ {f(x) =

n−1∑
i=0

fix
i ∈ Zq[x] |

n−1∑
i=0

fi ≡ 0 (mod q)}, (49)

Moreover,M denotes a message space, and ECC Enc and ECC Dec are error
correcting encoding and decoding algorithms such that

{ECC Enc(m) | m ∈M} ⊂ {f(x) =

n∑
i=0

fix
i ∈ Z2[x] |

n∑
i=0

fi ≡ 0 (mod 2)}.

(50)
Moreover, χ denotes a probability distribution on Rφ.

For understanding Algorithm 24 below, note that as (x − 1)|s(x), we have
that su′ ≡ sa′r + se1 (mod N), and, as (x − 1)|r(x), that rb′ ≡ ra′s + re0

(mod N). As a consequence,

ζ ≡ v − su′ ≡ q

2
ECC Enc(m) + (x− 1)e2 + re0 − se1 (mod N), whence

b2
q
ζe ≡ ECC Enc(m) + b2

q
((x− 1)e2 + re0 − se1)e (mod N).

Algorithm 22: CPA-PKE.Keygen()

1 a′
$← Rφ, s

$← S, e0 ← χ
2 b′ = 〈a′s+ e0〉φ
3 pk = (a′, b′)
4 sk = s
5 return (pk, sk)

We are now in a position to prove the following result.

Theorem A.5.0.1. For every IND-CPA adversary A with advantage A, there
exist algorithms C and E such that

A ≤ Adv1(C) + Adv3(E). (51)
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Algorithm 23: CPA-PKE.Enc(pk = (a′, b′),m ∈M)

1 r
$← S, e1, e2

$← χ
2 u′ = 〈a′r + e1〉φ
3 v = 〈 q2ECC Enc(m) + b′r + (x− 1)e2〉N
4 ct = (u′, v)
5 return ct

Algorithm 24: CPA-PKE.Dec(sk, ct)

1 ζ = 〈v − su′〉N
2 m̂ = ECC Dec〈b 2ζ

q e〉2)

3 return m̂

Here Adv1 refers to the advantage of distinguishing between the uniform distri-
bution on (Zq[x]/φ(x))2 and the R-LWE distribution

(a′, b′ = 〈a′s+ e0〉φ) with a′
$← Rφ, s

$← S, e0 ← χ (52)

Similarly, Adv3 refers to the advantage of distinguishing between the uniform
distribution on (Zq[x]/φ(x))4 and the distribution of two R-LWE samples with
a common secret, given by

(a′, b′′, u′, v′) with a′, b′′
$← Zq[x]/φ(x), u = 〈a′r + e1〉φ, (53)

v = 〈b”r + e2〉φ with r
$← S, e1, e2 ← χ (54)

Proof. We prove the theorem using a sequence of IND-CPA games. We denote
by Si the event that the output of game i equals 1.
Game G0 is the original IND-CPA game. In Game G1, the public key (a′, b′) is
replaced by a pair (a′, b′) uniformly drawn from R2

φ. It can be shown that there

exists an algorithm C for distinguishing between the uniform distribution on R2
φ

and the R-LWE distribution of pairs (a′, b′) with a′
$←− Rφ, b′ = 〈as′+ e0〉φ with

s
$←− S and e0 ← χ such that

Adv1(C) = |Pr(S0)− Pr(S1)|.

In Game G2, the values u′ = 〈a′r+ e1〉φ and v̂ = 〈b′r+ (x− 1)e2〉N used in the
generation of v are simultaneously substituted with uniform random variables
from Rφ and R0, respectively. it can be shown that there exists an adversary
D with the same running time as that of A such that

Adv2(D) = |Pr(S1)− Pr(S2)|.
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Here Adv2 refers to the advantage of distinguishing between the uniform distri-
bution on R3

φ ×R0 and the distribution

(a′, b′, u′, v) = (a′, b′, 〈a′r+e1〉φ, 〈b′r+(x−1)e2〉N ) with a′, b′
$← Rφ, r

$← S, e1, e2
$← χ.

(55)
Because of (50), the value of the ciphertext v in Game G2 is independent of bit
b, and therefore Pr(S2) = 1/2. As a final step, we define Ψ : R3

φ ×R0 → R4
φ as

Ψ(a′(x), b′(x), u′(x), v(x)) = (a′(x), b′′(x), u′(x), v′(x)) with (56)

b′′(x) =
F(b′(x))

x− 1
, v′(x) =

v(x)

x− 1
(57)

As F is a bijection from Rφ to R0 (see Lemma A.5.0.1) and f(x) 7→ f(x)
x−1 is a

bijection from R0 to Rφ, it follows that Ψ is a bijection. Writing b(x) = F(b′(x)),
we infer that

b(x)r(x) = b′(x)r(x)− (n+ 1)−1b′(1)φ(x)r(x) ≡ b′(x)r(x) (mod N(x)),

where the latter equivalence holds as r(x) is a multiple of (x− 1), and so

v(x) = 〈b′(x)r(x) + (x− 1)e2(x)〉N = 〈b(x)r(x) + (x− 1)e2(x)〉N .

As r(x) is a multiple of x− 1, it follows that v(x) ∈ R0 and that

v′(x) =
v(x)

x− 1
≡ 〈b′′(x)r(x) + e2(x)〉φ where b′′(x) =

b(x)

x− 1
.

As a result, the advantage of E = Ψ ◦ D in distinguishing between the uniform
distribution on R4

Φ and the distribution

(a′, b′′, u′, v′) with a, b′′
$← Rφ, u

′(x) = 〈a′r + e1〉φ and v′ = 〈b′′r + e2〉φ

is equal to Adv2(D). Note that (a, u′) and (b”, v′) are two R-LWE samples with
common secret r(x) ∈ S, with a′, b” chosen uniformly in Rφ and independent
noise polynomials e1(x) and e2(x).
As Pr(S2) = 1

2 , we conclude that

Adv(A) = |Pr(S0)− Pr(S2)| ≤
1∑
i=0

|Pr(Si)− Pr(Si+1)| = Adv1(C) + Adv2(E).

A.6 IND-CPA Security of r5 cpa kem

This section presents a proof that r5 cpa kem is IND-CPA secure, based on
the hardness of the decision GLWR problem with sparse-ternary secrets. In
the proof, instead of using pk = (σ,B), we use pk = (A = fτd,n(σ),B). The

distribution of fτd,n(σ) with σ
$←− {0, 1}κ is denoted by Fτ . Moreover, the uniform

distribution Hn,d/n(h) is denoted by χS . The proof is restricted to the case
ξ(x) = Φn+1(x).
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Theorem A.6.0.1. Let b, p, q, t be powers of two such that b|t|p|q, and let

z = max(p, tq/p). Furthermore, assume that ξ(x) = Φn+1(x). If f
(τ)
d,n, fS

and fR induce distributions indistinguishable from uniform, and H is a secure
pseudo-random function, then r5 cpa kem is IND-CPA secure under the hard-
ness assumption of the Decision-GLWR problem with sparse-ternary secrets.
More precisely, if AdvIND-CPA

r5 cpa kem(A) is the advantage of adversary A in distin-
guishing a key encapsulated using r5 cpa kem from random, then there exist
distinghuishers B, C,D, E ,F ,G such that

AdvIND-CPA
r5 cpa kem(A) ≤ AdvU(Rd/n×d/nn,q ),Fτ

(B) + AdvGS ,χnS
(C) + AdvGR,χmS

(D)

+ n ·Adv
dGLWRspt
d,n,d/n,q,p(E) + Adv

dGLWRspt
d,n,d/n+n,q,z(F) + AdvGH ,U({0,1}κ)(G)

(58)

In this equation, Fτ is the distribution of f
(τ)
d,n with σ

$←− {0, 1}κ, GS is the

distribution of fS(s) with s
$←− {0, 1}κ and GR is the distribution of fR(ρ) with

ρ
$←− {0, 1}κ. Moreover, Adv

dGLWRspt
d,n,m,q1,q2

(Z) is the advantage of adversary Z in
distinguishing m GLWR samples (with sparse-ternary secrets) from uniform,
with the GLWR problem defined for the parameters d, n, q1, q2. Finally, GH is

the distribution of H(x) with x
$←− {0, 1}κ+λ1 with λ1 = d · n log2(p) + µ log2(t).

Proof. The proof for Theorem A.6.0.1, proceeds via a similar sequence of games
as in the proof of Theorem A.4.0.1, shown in Tables 26 to 29. Again, Si denotes
the event that the output in game Gi equals 1. As the sequence of games is es-
sentially the same as for the proof of Theorem A.4.0.1, we focus on the essential
difference, which is game G8. Game G8 differs from game G7 only in the genera-
tion of K0. As p, q, t all are powers of two and z = max( tqp , p), p divides z and tq

divides pz. As a result, in games G7 and G8, bpzU
′′c is uniformly distributed on

Rd/n×mn,p . Also, as W ′′′ in games G7 and G8 is uniformly distributed on Rn×mn,z ,

the vector b tqpzv
′′′c is uniformly distributed on Z tq

p
. As t divides tq

p , the vector

〈b tqpzv
′′′c〉t is uniformly distributed on Zt. We conclude that the input to H in

game G7 is uniform. Therefore, there exists a distinguisher between the uniform

distribution on {0, 1}κ and the distribution of H(x) with x
$←− {0, 1}κ+λ1 (where

λ1 = d · n log2(p) + µ log2(t)) with advantage equal to | Pr(S7) − Pr(S8) |. As
the input to A in game G8 is uniform, Pr(S8) = 1

2 .

A.7 IND-CCA security of r5 cca pke

In this section, it is shown that r5 cca pke is IND-CCA secure. As r5 cca pke
is constructed from r5 cca kem and a secure data-encapsulation mechanism as
proposed by Cramer and Shoup [39], it is sufficient to show the IND-CCA
security of r5 cca kem. Indeed, as stated in Theorem A.7.0.1, when the hash
functions G and H in Algorithms 8 and 9 are modeled as random oracles,
the key-encapsulation mechanism r5 cca kem defined in Section 1.4.4 is IND-
CCA secure, assuming the hardness of the decision GLWR problem with sparse-
ternary secrets.
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Table 26: IND-CPA games for r5 cpa kem: Games G0 and G1

Game G0 Game G1

1. A← Fτ 1. A
$←− Rd/n×d/nn,q

2. s
$←− {0, 1}κ; S = fS(s) 2. s

$←− {0, 1}κ; S = fS(s) ;

3. B = Rq→p(〈AS〉Φn+1) 3. B = Rq→p(〈AS〉Φn+1)

4. Choose b
$←− {0, 1}. 4. Choose b

$←− {0, 1}.
5. (ct = (U ,v),K0) = r5 cpa kem encapsulate (A,B). 5. (ct = (U ,v),K0) = r5 cpa kem encapsulate (A,B).

6. K1
$←− {0, 1}κ. 6. K1

$←− {0, 1}κ.

7. b′ = A ((A,B), ct,Kb). 7. b′ = A ((A,B), ct,Kb).

8. Output [(b′ = b)]. 8. Output [(b′ = b)].

Table 27: IND-CPA games for r5 cpa kem: Games G2 and G3

Game G2 Game G3

1. A
$←− Rd/n×d/nn,q 1. A

$←− Rd/n×d/nn,q

2. S ← χnS 2. -

3. B = Rq→p(〈AS〉Φn+1) 3. B
$←− Rd/n×nn,p

4. Choose b
$←− {0, 1}. 4. Choose b

$←− {0, 1}.
5. (ct = (U ,v),K0) = r5 cpa kem encapsulate (A,B). 5. (ct = (U ,v),K0) = r5 cpa kem encapsulate (A,B).

6. K1
$←− {0, 1}κ. 6. K1

$←− {0, 1}κ.

7. b′ = A ((A,B), ct,Kb). 7. b′ = A ((A,B), ct,Kb).

8. Output [(b′ = b)]. 8. Output [(b′ = b)].

Theorem A.7.0.1. For any adversary A that makes at most qH queries to the
random oracle H, at most qG queries to the random oracle G, and at most qD
queries to the decryption oracle, there exists an adversary B such that

AdvIND-CCA
CCA-KEM (A) ≤ 3 · AdvIND-CPA

CPA-PKE (B) + qG · δ +
2qG + qH + 1

2µB
(59)

when r5 cpa pke and r5 cca kem both have a probability of decryption/decapsu-
lation failure that is at most δ.

Proof. The proof of Theorem A.7.0.1 proceeds via two transformation reduc-
tions due to [53]. First, Lemma A.7.0.1 establishes that the OW-PCA 2 secu-
rity of the deterministic public-key encryption scheme PKE1 obtained from the
public-key encryption scheme PKE via transformation T [53], tightly reduces to
IND-CPA security of PKE1. This lemma is a special case of [53, Theorem 3.2]

2The security notion of One-Way against Plaintext Checking Attacks.
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Table 28: IND-CPA games for r5 cpa kem: Games G4 and G5

Game G4 Game G5

1. A
$←− Rd/n×d/nn,q , B

$←− Rd/n×nn,p . 1. A
$←− Rd/n×d/nn,q , Bq

$←− Rd/n×nn,q .

2. Choose b
$←− {0, 1}. 2. Choose b

$←− {0, 1}.
3. m

$←− {0, 1}κ, ζ = ECC Encκ,f (m) 3. m
$←− {0, 1}κ, ζ = ECC Encκ,f (m)

4. R
$←−
(
Hn,d/n (h)

)1×m
. 4. R

$←−
(
Hn,d/n (h)

)1×m
5. U = Rq→p,h2(〈ATR〉Φn+1) 5. U = Rq→p,h2(〈ATR〉Φn+1)

6. W = Rp→t,h2(〈BTR〉ξ) 6. W ′ = Rq→tq/p,h2(〈BT
q R〉ξ)

7. v = 〈Sampleµ(W ) + t
b
ζ〉t 7. v′ = 〈Sampleµ(W ′) + t

b
ζ〉tq/p

8. K0 = H (m, bin1 (ct = (U ,v))). 8. K0 = H (m, bin1 (ct = (U , 〈v′〉t))).
9. K1

$←− {0, 1}κ. 9. K1
$←− {0, 1}κ.

10. b′ = A ((A,B), ct,Kb). 10. b′ = A ((A, 〈Bq〉p), ct,Kb).

11. Output [(b′ = b)]. 11. Output [(b′ = b)].

with qv = 0, since by definition OW-PCA security is OW-PCVA3 security where
the attacker is not allowed to query the ciphertext validity checking oracle.

Lemma A.7.0.1 (Adapted from [53, Theorem 3.2]). Assume PKE to be δ
correct. Then, for any OW-PCA adversary B that issues at most qG queries to
the random oracle G, qP queries to a plaintext checking oracle PCO, there exists
an IND-CPA adversary C such that

AdvOW-PCA
PKE1

(B) ≤ qG · δ +
2qG + 1

|M|
+ 3 · AdvIND-CPA

PKE (C) (60)

where M is the message/plaintext space of the public-key encryption schemes
PKE and PKE1.

Next, combinination of Lemma A.7.0.1 and the reduction in [53, Theo-
rem 3.4] shows that the IND-CCA security of a KEM with implicit rejection
that is constructed using a non-deterministic PKE (like r5 cca kem), tightly
reduces to the IND-CPA security of said PKE.

Direct application of [53, Theorem 4.6], similarly as in [26, Theorem 4.2],
shows that r5 cca kem is IND-CCA secure in the quantum random oracle model.
The resulting security bound however is not tight.

Theorem A.7.0.2. For any quantum adversary A that makes at most qH
queries to the quantum random oracle H, at most qG queries to the quantum
random oracle G, and at most qD (classical) queries to the decapsulation oracle,

3The security notion of OW-PCA, with access to a ciphertext Validity checking oracle.
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Table 29: IND-CPA games for r5 cpa kem: Games G6, G7 and G8

Game G6 Game G7 Game G8

1. A
$←− Rd/n×d/nn,q , Bq

$←− Rd/n×nn,q . 1. A
$←− Rd/n×d/nn,q , Bq

$←− Rd/n×nn,q . 1. A
$←− Rd/n×d/nn,q , Bq

$←− Rd/n×nn,q .

2. Choose b
$←− {0, 1}. 2. Choose b

$←− {0, 1}. 2. Choose b
$←− {0, 1}.

3. m
$←− {0, 1}κ, ζ = ECC Encκ,f (m) 3. m

$←− {0, 1}κ, ζ = ECC Encκ,f (m) 3. m
$←− {0, 1}κ, ζ = ECC Encκ,f (m)

4. R
$←−
(
Hn,d/n (h)

)1×m
. 4. - 4. -

5. U ′ = Rq→z,h2(〈ATR〉Φn+1), z =
max(p, tq/p)

5. U”
$←− Rd/n×mn,z 5. U”

$←− Rd/n×mn,z

6. W ” = Rq→z,h2(〈BT
q R〉ξ) 6. W ′′′ $←− Rn×mn,z 6. W ′′′ $←− Rn×mn,z

7. v” = 〈Sampleµ(W ”) + pz
qb
ζ〉z 7. v′′′ = 〈Sampleµ(W ′′′) + pz

qb
ζ〉z 7. v′′′ = 〈Sampleµ(W ′′′) + pz

qb
ζ〉z

8. K0 =

H
(
m, bin1

(
ct =

(
b p
z
U ′c, 〈b tq

pz
v”c〉t

)))
.

8. K0 =

H
(
m, bin1

(
ct =

(
b p
z
U”c, 〈b tq

pz
v′′′c〉t

)))
.

8. K0
$←− {0, 1}κ

9. K1
$←− {0, 1}κ. 9. K1

$←− {0, 1}κ. 9. K1
$←− {0, 1}κ.

10. b′ =
A(
(

(A, 〈Bq〉p), (b pzU
′c, 〈b tq

pz
v”c〉t),Kb

)
.

10. b′ =
A(
(

(A, 〈Bq〉p), (b pzU”c, 〈b tq
pz
v′′′c〉t),Kb

)
.

10. b′ =
A(
(

(A, 〈Bq〉p), (b pzU”c, 〈b tq
pz
v′′′c〉t),Kb

)
.

11. Output [b′ = b)]. 11. Output [(b′ = b)]. 10. Output [(b′ = b)].

there exists a quantum adversary B such that

AdvIND-CCA
CCA-KEM (A) ≤ 4qH

√
qD · qH · δ + qG ·

√
AdvIND-CPA

CPA-PKE (B) (61)

A.8 Hardness of Sparse-Ternary LWR

In this section, we prove the hardness of the Decision-LWR problem with sparse-
ternary secrets assuming that the small modulus p divides the large modulus
q. Figure 4 provides an overview of the reductions involved in the proof of the
main result, Theorem A.8.0.1.

Theorem A.8.0.1. Let k, p, q ≥ 1 and m ≥ n ≥ h ≥ 1 be integers such that p
divides q, and k ≥ m′ = q

p ·m. Let ε ∈ (0, 1
2 ), and α, δ > 0 such that

α ≥ q−1
√

(2/π) ln(2n(1 + ε−1)),

(
n

h

)
2h ≥ qk+1 · δ−2, and m = O(

logn

α
√

10h
)

There exist three (transformation) reductions from dLWEk,m′,q,Dα to
dLWEn,m′,q,Dα√10h

(U(Hn (h))) such that for any algorithm for the latter problem
with advantage ζ, at least one of the reductions produces an algorithm for the
former with advantage at least

(ζ − δ)/(3m′)− 41ε/2−
∑

s|q,s prime

s−k−1.
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LWEk,m· qp ,q,α

Lemma A.8.0.1

SPT-LWEn,m· qp ,q,α
√

10h For
(
n
h

)
2h > qk

SPT-LWEn,m· qp ,q,
1
q bqUBc

Lemma A.8.0.2

For B = Ω
(
m · qp · α

√
10h/ log n

)

SPT-LWRn,m,q,p

[17, Theorem 6.3]

Lemma
A.8.0.4

Theorem
A.8.0.1

Figure 4: Summary of reductions used in Theorem A.8.0.1. “SPT” refers to a
variant of the problem in question where the secret is sparse-ternary, instead of
uniform in Zdq .

Moreover, there is a reduction from dLWEn,m′,q,Dα√10h
(U(Hn (h))) to

dLWRn,m,q,p (U(Hn (h))).

Proof. Combination of Lemma A.8.0.1 and Lemma A.8.0.4 with α′ = α
√

10h.

Theorem A.8.0.1 implies the hardness of the sparse-ternary LWR problem
LWRspt based on the hardness of the LWE problem with uniformly random secrets
in Zq and Gaussian errors.

Step 1: Reduction from LWE with secrets in Zq and Gaussian errors to
Sparse-ternary LWE: In [35, Theorem 1], specializing [34, Theorem 4], it is
shown that if

(
n
h

)
2h > qk+1 and ω > α

√
10h, then the dLWEn,m,q,Dω (U(Hn (h)))

problem is at least as hard as the dLWEk,m,q,Dα problem. More formally, gener-
alizing [31, Theorem 4.1], the following holds.

Lemma A.8.0.1. Let k, q ≥ 1 and m ≥ n ≥ h ≥ 1 be integers, and let
ε ∈ (0, 1

2 ), and α, δ > 0 such that

α ≥ q−1
√

(2/π) ln(2n(1 + ε−1)), and

(
n

h

)
2h ≥ qk+1 · δ−2
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There exist three (transformation) reductions from dLWEk,m,q,Dα to
dLWEn,m,q,Dα√10h

(U(Hn (h))) such that for any algorithm for the latter problem
with advantage ζ, at least one of the reductions produces an algorithm for the
former with advantage at least

(ζ − δ)/(3m)− 41ε/2−
∑

s|q,s prime

s−k−1.

Step 2: Reduction from Sparse-ternary LWE to Sparse-ternary LWR:
Bai et al. provide in [17, Theorem 6.4] a reduction from LWE with Gaussian
noise to LWR, that is based on two independent reductions It can readily be seen
that one of these reductions [17, Theorem 6.3] holds for any secret distribution
with support on Zn∗q = {(x1, . . . , xn) ∈ Znq | gcd(x1, x2, . . . , xn, q) = 1}, and
therefore can be applied to the case when the secret is chosen from {−1, 0, 1}n.
The other reduction [17, Theorem 5.1] however, implicitly assumes the secret
to be chosen uniformly at random from Znq . Below, we describe an extension of
[17, Theorem 5.1] that describes a reduction from LWE with Gaussian noise and
sparse ternary secrets reduces to LWR with sparse-ternary secrets. Below, we
will describe such an extension. UB denotes the continuous uniform distribution
in [−B, . . . , B].

Lemma A.8.0.2 (Adapted from [17, Theorem 5.1]). Let n,m, q be positive
integers. Let α,B > 0 be real numbers with B = Ω (mα/log n) and Bq ∈ Z. Let

m > log
((
n
h

)
2h
)
/log (α+B)

−1 ≥ 1. Then there is a polynomial time reduction
from LWEn,m,q,Dα(U(Hn(h))) to LWEn,m,q,φ(U(Hn(h))) with φ = 1

q bqUBe.

Proof. The reduction proceeds similar to that of [17, Theorem 5.1], relying on
five steps. Steps 1, 3, 4 below proceed exactly as in [17, Theorem 5.1]. For
steps 2 and 5, we mention our adaptations in order to prove the reduction for
the case of sparse-ternary secrets, and the resulting conditions. We omit details
for brevity.

1. A reduction from dLWEn,m,q,Dα to dLWEn,m,q,ψ, with ψ = Dα + UB .

2. A reduction from dLWEn,m,q,ψ to sLWEn,m,q,ψ. We adapt the corresponding
step in [17, Theorem 5.1] to work for the uniform distribution on Hn(h)
instead of the uniform distribution on Znq . This results in the bound on
m as stated in the lemma.

3. A reduction from sLWEn,m,q,ψ to sLWEn,m,q,UB .

4. A reduction from sLWEn,m,q,UB to sLWEn,m,q,φ, with φ = 1
q bqUBe.

5. A reduction from sLWEn,m,q,φ to dLWEn,m,q,φ. Since the modulus q is not a
prime, the argument from [17, Theorem 5.1] cannot be applied. Instead,
we extend an argument due to Regev (see, e.g, [83]) to prove the search-
to-decision reduction, which requires that Bq is an integer. We first state
an easy lemma.
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Lemma A.8.0.3. Let a > 1, and let φ be the discrete probability distribu-
tion obtained by rounding the continuous uniform probability on [−a, a] to
the closest integer. If a is an integer, then

∑
keven φ(k) =

∑
kodd φ(k) =

1
2 .

Proof. For |k| ≤ bac − 1, the interval [k − 1
2 , k + 1

2 ] is a subset of −[a, a],

so that
∑
k≡1−bac (mod 2) φ(k) =

∑bac−1
j=0 φ(2j − bac+ 1) = bac

2a .

We are now in a position to extend Regev’s reduction. Let φ be a prob-
ability distribution on Zq such that

∑
k φ(2k) =

∑
k φ(2k + 1) = 1

2 . For
each s ∈ Znq , the probability distribution As,φ on Znq × Zq is obtained by
choosing a ∈ Znq uniformly, choosing e according to φ, and outputting
(a, (a, s) + e) where the additions are modulo q. If qB is integer, then
a distinguisher for dLWEn,m,q,φ(Ds) can be used to construct a solver for
sLWEn,m,q,φ(Ds) for any secret distribution Ds supported on {−1, 0, 1}n,
where φ is the discrete noise 1

q bqUBc. Note that if Bq is integer, the noise

φ is distributed as φ(k) = 1
2B for |k| ≤ B − 1, and φ(B) = φ(−B) = 1

4B .

We now show that if Bq is integer, then a distinguisher for deciding be-
tween uniform samples (a, u) ∈ U(Znq ) × U(Zq) and samples (a, b) from
As,φ for some unknown s ∈ S ⊂ {−1, 0, 1}n can be used for solving. We
show how to find s1, the first coordinate of a secret. For each k ∈ Zq,
we consider the following transformation. For each pair (a, b), we choose
a random r ∈ Zq and output (a′, b′) = (a + (r, 0, . . . , 0), b + rk). Clearly,
this transformation takes the uniform distribution to itself. So let us
now assume that b = (a, s) + e for some s ∈ S and some error e. Then
b′ = (a′, s)+r(k−s1)+e. If k = s1, then (a′, b′) is from As,φ. If |k−s1| = 1
, then r(k−s1) is uniform over Zq, and so (a′,b) follows the uniform distri-
bution. Finally, we can have that |k−s1| = 2. We consider k−s1 = 2, the
other case being similar. We then have that b′ = (a, s) + 2r + e (mod q).
If q is odd, then 2r is uniformly distributed on Zq, so that (a′,b) is uni-
formly distributed. If q is even, then 2r is distributed uniformly on the
even elements of Zq. With our specific error distribution, e is even with
probability 1

2 , so that 2r + e is distributed uniformly on Zq. So also in
this case, (a′, b) is distributed uniformly.

Finally, we state the reduction from dLWEn,m,q,Dα to dLWRn,m,q,p, for the
sparse-ternary secret distribution.

Lemma A.8.0.4. Let p, q be positive integers such that p divides q. Let α′ > 0.
Let m′ = m · (q/p) with m = O(log n/α′) for m′ ≥ m ≥ n ≥ 1. There is a
polynomial time reduction from dLWEn,m′,q,Dα′ to dLWRn,m,q,p, both defined for
the sparse-ternary secret distribution.

Proof. Let B = q/2p. The reduction has two steps:
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1. A reduction from dLWEn,m′,q,Dα′ to dLWEn,m′,q,φ, whereB = Ω(m′α′/ log n).
due to Lemma A.8.0.2.

2. A reduction from dLWEn,m′,q,φ to dLWRn,m,q,p, due to [17, Theorem 6.3].

As m′ = m · (q/p) = (q/p)O( logn
α′ ), it follows that B = q/2p = Ω(m′α′/ log n),

so that Lemma A.8.0.2 indeed is applicable.

Note that the conditions imposed by Lemma ]A.8.0.2 imply that 1/α must
at least grow linearly in n. This is a common bottleneck in all known LWE to
LWR reductions [17, 23, 18].
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[25] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig,
Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo:
Take off the ring! Practical, Quantum-Secure Key Exchange from LWE.
Cryptology ePrint Archive, Report 2016/659, 2016. http://eprint.iacr.
org/2016/659.
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