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Abstract: Group key distribution protocol is a mechanism in which a group key is
generated and distributed by KGC to a set of communicating parties in a group. This
group key generally ensures secure communication among communicating parties in an
unsecure channel. Harn and Lin protocol is one such. It is based on Shamir’s secret
sharing scheme. Nam et al. exposed the vulnerability in Harn and Lin protocol through
their replay attack and proposed a countermeasure using nonce mechanism. In this paper,
we are generalizing the replay attack proposed by Nam et al. and proposing an alternative
countermeasure without using nonce mechanism. Novelty of our countermeasure is that
KGC is not required to detect replay messages and hence each user doesn’t need to
compute authentication message as in Nam et al. Proposed countermeasure thereby
brings down the computational complexity of the scheme.

1 Introduction

Along with the rapid development of distributed networks and E-commerce, group-
oriented applications have become increasingly popular. When group members want
to establish a secure communication over an open network, they must run a group key
establishment protocol to set up a common session key that encrypts their communication
data. Over the last decades, many group key establishment protocols have been proposed.
According to [1], group key establishment protocols are classified into two types: group
key distribution protocols and group key agreement protocols. In key agreement proto-
cols, all authorized users are involved to determine the session keys. The most commonly
used key agreement protocol is Diffie-Hellman(DH) key agreement protocol [2]. In DH
protocol, the session key is determined by exchanging public keys of two users. Most
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of the key agreement protocols take natural generalization of DH protocol. There are
some other protocols based on non-DH key agreement approach as well. In group key
distribution protocols, a trusted third party(KGC) chooses a session key then securely
distributes it to all authorized group members. Most often, KGC encrypts session keys
under another secret key shared with each entity during registration. A group key distri-
bution protocol is said to be secure when it allows only authorized users to reconstruct a
group key in a session.

In 2010, Harn and Lin [4] proposed an authenticated group key transfer protocol based
on Shamir’s secret sharing scheme [9]. In this protocol KGC shares a random long term
secret with each user during registration phase then KGC selects a group key and broad-
casts the group key information to all the members in the session. All users in the session
reconstruct the group key using group key information and their long term secrets. With
Shamir’s (t,n) threshold scheme [9], any authorized group member can obtain the group
key, and unauthorized users cannot learn anything about the group key. They claim
that their protocol can withstand the insider attack i.e any malicious user won’t be able
to disclose the long term secret of other users. In 2013, Liu et al.[6] proved that Harn
and Lin protocol[4] can not resist insider attack and proposed an improved authenticated
group key transfer protocol based on secret sharing. They stated that their protocol can
resist both insider and outsider attacks. In 2013, Yuan et al.[10] proposed a man-in-
the-middle attack against the Harn and Lin protocol [4] and proposed a countermeasure
using RSA signatures [8]. They improved the Harn and Lin protocol by incorporating
RSA signatures into it.

In 2011, Nam et al.[7] proved that Harn and Lin protocol [4] can not resist insider attack
by proposing a replay attack against their protocol. Liu et al’s improved protocol [6] and
Yuan et al’s improved protocol [10] are also can not resist Nam et al’s replay attack. Nam
et al. proposed a countermeasure to prevent their replay attack. Their countermeasure
helps KGC to detect replay messages from users. To ensure this, each user computes an
authentication message using his/her long term secret and random integer sent by KGC.

In this paper, we generalize the replay attack proposed by Nam et al. and propose
an alternative countermeasure without using nonce mechanism. Novelty of our counter-
measure is that the KGC is not required to detect replay messages and hence each user
doesn’t need to compute authentication message; thereby bringing down the computa-
tional complexity of the scheme.

In 2012, Guo and Chang [3] proposed a group key distribution protocol similar to Harn
and Lin protocol. Instead of Lagrange’s interpolation polynomial they used generalized
Chinese remainder theorem to reduce the communication cost. In 2013, Liu et al.[5]
exposed the security problems in Guo and chang group key distribution protocol and
proposed a simpler authenticated group key distribution protocol based on Chinese re-
mainder theorem.

Organization of the paper is as follows: Section 2 describes the Harn and Lin’s key
transfer protocol, Section 3 describes the Replay attack and its countermeasure, Section
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4 describes the proposed generalization of the replay attack, Section 5 describes the pro-
posed countermeasure and improved Harn and Lin protocol and Conclusions are given in
Section 6.

2 Harn and Lin’s Group Key Transfer Protocol

The Harn and Lin protocol [4] consists of three phases: initialization of KGC, user reg-
istration and, group key generation and distribution phases.

Initialization of KGC. The KGC randomly selects two large safe primes p and q
(i.e p′ = p−1

2
and q′ = q−1

2
are also primes) and computes n=pq. n is made publicly

known.

User Registration. Each user is required to register at KGC to subscribe to the key
distribution service. The KGC keeps track of all the registered users and removes any
unsubscribed users. During the registration, KGC shares a long-term secret (xi, yi) with
each user Ui, 1 ≤ i ≤ m, where (xi, yi) ∈ Z∗n × Z∗n.

Group Key Generation and Distribution. After receiving a group key generation
request from any user, KGC randomly chooses a group key and distributes this group key
to all the group members in a secure and authenticated way as follows: Let a session be
consisting of t members, {U1, · · · , Ut} whose long term secrets shared with the KGC are
(xi, yi), 1 ≤ i ≤ t. The key generation and distribution process for this session consists
of the following five steps:
Step 1. The initiator sends a key generation request to KGC with a list of group mem-
bers as {U1, · · · , Ut}.

Step 2. KGC broadcasts the participants list {U1, · · · , Ut} to all Ui, 1 ≤ i ≤ t, as
a response to the request.

Step 3. Each user Ui, 1 ≤ i ≤ t, sends a random challenge Ri ∈ Z∗n to KGC.

Step 4. KGC randomly selects a session key k and constructs a tth degree interpolation
polynomial f(x) passing through (t + 1) points: {(0, k), (x1, y1 ⊕ R1), · · · , (xt, yt ⊕ Rt)}.
Next, KGC selects t additional points P1, · · · , Pt that lie on the polynomial f(x). KGC
then computes the authentication message Auth=h(k, U1, · · · , Ut, R1, · · · , Rt, P1, · · · , Pt),
where h is a one-way hash function, and broadcasts (R1, · · · , Rt, P1, · · · , Pt, Auth) to all
users participated in session. All computations with respect to f(x) are performed modulo
n.

Step 5. Each Ui, 1 ≤ i ≤ t, constructs the polynomial f(x) from the (t+1) points:
P1, · · · , Pt and (xi, yi ⊕ Ri). Then Ui recovers the session key k = f(0) and checks the
correctness by calculating h(k, U1, · · · , Ut, R1, · · · , Rt, P1, · · · , Pt). Ui aborts if the equal-
ity does not hold.
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3 Replay Attack and Its Countermeausre

In replay attack, adversary’s main goal is to get the long term secret of a targeted user.
If so, he can reconstruct the group key of any session in which the targeted user is autho-
rized and the adversary is unauthorized. Harn and Lin considered this attack but stated
that the scheme is resistant to this attack saying that solving for the long term secret is
equivalent to factoring the n, which is chosen as a product of two safe primes. Nam et al.
proved that their claim is wrong by slightly modifying the attack. This modified attack
is as follows :

Attack-1.
Suppose Ua is an adversary whose main goal is to get the long-term secret (xi, yi) of a
targeted user Ui, where 1 ≤ i ≤ m, 1 ≤ a ≤ m (where m is the number of registered
users at registration phase) and i 6= a. Ua can achieve his goal by mounting the following
attack against the Harn and Lin protocol.

Round 1. The adversary Ua initiates two legitimate concurrent sessions S1 and S2

of the protocol and sends {Ua, Ui} list as group key generation request to KGC in both
sessions. But Ui doesn’t know that he is one of the participants in both these sessions.

Round 2. The KGC broadcasts the {Ua, Ui} list as response to all the participated
users in both sessions but Ua prevents it from reaching Ui.

Round 3.In this round Ua plays dual role as himself and targeted user Ui.
In S1, Ua selects two random integers Ra ∈ Z∗n and Ri ∈ Z∗n, then Ua sends Ra to KGC
as its own challenge and sends Ri to KGC as Ui’s challenge.

In S2, Ua replays the challenges Ra and Ri i.e. Ua sends Ra to KGC as its own challenge
and sends Ri as Ui’s challenge.

Round 4.
In S1, after receiving Ra and Ri messages, the KGC randomly selects a random session key
k ∈ Z∗n and constructs a 2nd degree interpolation polynomial f(x) = a2x

2 + a1x + a0
passing through the 3 points: (0, k),(xa, ya ⊕ Ra),(xi, yi ⊕ Ri). Next, KGC selects 2
additional points P1, P2 that lie on the polynomial f(x). KGC then computes the au-
thentication message Auth = h(k, Ua, Ui, Ra, Ri, P1, P2), and broadcasts the group key
information (Ra, Ri, P1, P2, Auth) to users Ua,Ui but Ua prevents it from reaching Ui .

In S2, KGC follows the procedure same as in S1. It constructs a 2nd degree polynomial
f ′(x) = a′2x

2 + a′1x + a′0 passing through the 3 points: (0, k′),(xa, ya⊕Ra),(xi, yi⊕Ri).
Then KGC broadcasts (Ra, Ri, P

′
1, P

′
2, Auth

′) to users Ua,Ui but Ua prevents it from reach-
ing Ui, where Auth′ is h(k′, Ua, Ui, Ra, Ri, P

′
1, P

′
2).
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Round 5.
In S1, After receiving the group key information in Round 4, adversary Ua constructs a
polynomial f(x) = a2x

2 + a1x + a0 passing through 3 points: P1, P2 and (xa, ya ⊕Ra).
To recover the session key k, Ua substitutes 0 in f(x), then polynomial becomes
f(x) = a2x

2 + a1x + k , where k = a0.

In S2, Ua follows the procedure same as in S1 and constructs the polynomial
f ′(x) = a′2x

2 + a′1x + a′0 passing through the 3 points: P ′1, P
′
2 and (xa, ya ⊕Ra). After

substituting 0 in polynomial f ′(x), it becomes a′2x
2 + a′1x + k′ , where k′ = a′0.

In order to find the xi of targeted user Ui, the adversary Ua forms the polynomial g(x) as

g(x) = f(x)− f ′(x)

= (a2 − a′2)x
2 + (a1 − a′1)x + (k − k′)

Note that xa and xi are the roots of g(x). This is because f(xa) = f ′(xa) = ya ⊕Ra and
f(xi) = f ′(xi) = yi ⊕Ri.

Therefore,

xi = xa
−1(k − k′)(a2 − a′2)

−1

Once adversary knows the xi , he can easily compute the yi of Ui by substituting xi value
in f(x) or f ′(x).

f(xi) = yi ⊕Ri

The value of yi varies and depends on whether yi ⊕Ri < n or yi ⊕Ri > n.

yi = f(xi)⊕Ri if yi ⊕Ri < n ;

yi = (f(xi) mod n) ⊕Ri otherwise.

Attack-2.
In case if the KGC does not allow the two party key establishment in Harn and Lin
protocol, then the above Attack 1 is not possible. But, Nam et al. proposed that there
is another possibility of replay attack. In this attack, adversary Ua can collude with
another malicious user Uj to know the long term secret of targeted user Ui. Ua initiates
two concurrent sessions as in the Round 1 of Attack-1, whereas the participants of both
sessions are {Ua, Ui, Uj}. If Ua and Uj collude together and run the two sessions as in the
above Attack1, they can construct a cubic polynomial

g(x) = (a3 − a′3)x
3 + (a2 − a′2)x

2 + (a1 − a′1)x + (k − k′)

such that g(xa) = g(xi) = g(xj) = 0 which implies xa, xi and xj are the roots of the cu-
bic equation (a3 − a′3)x

3 + (a2 − a′2)x
2 + (a1 − a′1)x + (k − k′) = 0. Adversary already

knows the xa and xj , he can compute xi as

xi = (−1)(xaxj)
−1(k − k′)(a3 − a′3)

−1
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Once adversary knows the xi, he can compute yi as in Attack 1.

Countermeasure.
Countermeasure-1.The above replay attack is possible because the KGC can not de-
tect the replay messages. That is, in Round 3 of Attack-1, though the adversary Ua is
sending the same challenges Ra, Ri to KGC in both the sessions, KGC was unable to
detect those reply messages. This made it possible for attacker to compute a polynomial
g(x) such that xa,xi are roots to g(x). In order to prevent this replay attack Nam et al.
proposed a countermeasure so that KGC can detect the replay messages. They modified
step 2 and step 3 of Harn and Lin protocol to prevent the replay messages. The modified
steps are as follows:

Step 2. The KGC selects a random integer R0 and broadcasts it to all participants
along with the participants list {U1, · · · , Ut}.

Step 3. Each user Ui, for 1 ≤ i ≤ t, selects a random integer Ri ∈ Z∗n and computes
Authi=h(xi, yi, R0, Ri, U1, · · · , Ut) and sends (Authi, Ri) to KGC.

Then in Step 4 of protocol, the KGC checks the correctness of Authi by computing
h(xi, yi, R0, Ri, U1, · · · , Ut). KGC aborts if the equality of atleast one user does not hold.
This counters the replay attack as Authi will be different for different sessions.

Here, we generalize the above Attack-2 to t number of users where any t−1 malicious
users can collude to know the longterm secret of the targeted user. The possible attack
is explained below:

4 Proposed Generalization of the Replay Attack

Suppose {U1, · · · , Ut} are the t users participating in a session S. In S, U1 is the adver-
sary(insider), he wants to know the long term secret of a targeted user Ut so he colludes
with all other malicious users in that session except Ut.

Round 1. The adversary U1 initiates two legitimate concurrent sessions S1 and S2

of the protocol and sends {U1, U2, · · · , Ut} list as group key generation request to KGC in
both sessions. But Ut doesn’t know that he is one of the participant in both these sessions.

Round 2. The KGC broadcasts the {U1, U2, · · · , Ut} list as response to all the par-
ticipated users in both sessions but U1 prevents it from reaching Ut.

Round 3. In this round U1 plays dual role as himself and targeted user Ut.
In S1, U1 selects two random integers R1 ∈ Z∗n and Rt ∈ Z∗n, then U1 sends R1 to KGC
as its own challenge and sends Rt to KGC as Ut’s challenge. For 2 ≤ i ≤ t− 1, each user
Ui selects random challenge Ri ∈ Z∗n and sends it to KGC
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In S2, U1 replays the challenges R1 and Rt i.e. U1 sends the R1 to KGC as its own
challenge and sends Rt as Ut’s challenge. Remaining all users Ui, 2 ≤ i ≤ t− 1 sends the
previously selected challenge Ri in S1 to KGC as their challenge.

Round 4.
In S1, after receiving R1,R2,· · · ,Rt challenges, the KGC randomly selects a session key k
and constructs a tth degree interpolation polynomial

f(x) = atx
t + at−1x

t−1 + at−2x
t−2 + · · ·+ a2x

2 + a1x
1 + a0

passing through the t points: (0, k), (x1, y1 ⊕R1), (x2, y2 ⊕R2), · · · , (xt, yt ⊕ Rt). Next,
KGC selects t additional points P1, P2, · · · , Pt that lie on the polynomial f(x). KGC then
computes the authentication message Auth = h(k, U1, · · · , Ut, R1, · · · , Rt, P1, · · · , Pt),
and broadcasts the group key information (R1, · · · , Rt, P1, · · · , Pt, Auth) to all users but
U1 prevents it from reaching Ut .

In S2, KGC follows the procedure same as in S1. It constructs a tth degree polyno-
mial f ′(x) = a′tx

t + a′t−1x
t−1 + a′t−2x

t−2 + · · ·+ a′2x
2 + a′1x

1 + a′0 passing through the
t points: (0, k′), (x1, y1 ⊕R1), (x2, y2 ⊕R2), · · · , (xt, yt ⊕ Rt). Then KGC broadcasts
(R1, · · · , Rt, P

′
1, · · · , P ′t , Auth′) to all participated users ,where Auth′ is h(k′, U1, · · · , Ut, R1

, · · · , Rt, P
′
1, · · · , P ′t). But U1 prevents the group key information reaching Ut

Round 5.
In S1, after receiving the group key information in Round 4, adversary U1 constructs a
polynomial f(x) = atx

t + at−1x
t−1 + at−2x

t−2 + · · ·+ a2x
2 + a1x

1 + a0 passing through
t+1 points: P1, P2, · · · , Pt and (x1, y1⊕R1). To recover the session key k, U1 substitutes
0 in computed f(x), then polynomial becomes

f(x) = atx
t + at−1x

t−1 + at−2x
t−2 + · · ·+ a2x

2 + a1x
1 + k

, where k = a0.

In S2, U1 follows the procedure same as in S1 and constructs the polynomial

f ′(x) = a′tx
t + a′t−1x

t−1 + a′t−2x
t−2 + · · ·+ a′2x

2 + a′1x
1 + a′0

passing through the t + 1 points: P ′1, P
′
2, · · · , P ′t and (x1, y1 ⊕ R1). After substituting

0 in polynomial f ′(x), it becomes a′tx
t + a′t−1x

t−1 + a′t−2x
t−2 + · · ·+ a′2x

2 + a′1x
1 + k′ ,

where k′ = a′0.

In order to find the xt of targeted user Ut, The adversary U1 forms the polynomial
g(x) such that

g(x) = f(x)− f ′(x)

= (at − a′t)x
t + (at−1 − a′t−1)x

t−1 + · · ·+ (a2 − a′2)x
2 + (a1 − a′1)x + (k − k′)

The roots of this polynomial are x1,x2,· · · ,xt. This is because f(xi) = f ′(xi) = yi ⊕ Ri,
for 1 ≤ i ≤ t.
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Therefore,

xt = (x1x2x3 · · ·xt−1)
−1(k − k′)(at−1 − a′t−1)

−1 ..... (1).

Once adversary knows the xt , he can easily compute the yt of victim Ut as in the Attack-1.

Note: To compute xt using Eq.(1), the adversary needs xi value of each user Ui,
2 ≤ i ≤ t− 1. But {U2, · · · , Ut−1} may not be willing to share their long term secret xi,
as this allows the adversary to compromise the security of the participants. This problem
can be overcome by the adversary U1 as follows: Initially adversary U1 multiplies his x1

with some random integer R ∈ Z∗n then forwards the result to U2. Then U2 multiplies it
with his x2 and forwards it to the next user. Similarly all the users in the session except
victim multiplies their xi with the value sent by its previous user. The last user then
sends it to the adversary who divides the resultant value with R. This way adversary can
get the x1x2x3 · · ·xt−1 and substitutes it in the above Eq.(1).

In countermeasure-1, Nam et al. prevented the replay attack by making the KGC to
detect replay messages in Step 4 of the Harn and Lin protocol. To do that, each user has
to compute a authentication message i.e. Authi=h(xi, yi, R0, Ri, U1, · · · , Ut) in Step 3 of
protocol and sends (Authi, Ri) to KGC. But computing authentication message by each
user will increase the computational complexity of the scheme and if the number of par-
ticipants increase, computational cost will increase more. The following countermeasure
that we hereby propose is an alternative to Countermeasure-1 and which will reduce the
computational complexity of the scheme. In our countermeasure, KGC is not required
to detect the replay messages to prevent the replay attack and hence each user doesn’t
need to compute authentication message.

5 Proposed Countermeasure

Countermeasure-2. The above replay attack is possible because adversary was able to
compute a tth degree polynomial g(x) by sending replay messages. The roots of g(x) are
xi of user Ui, for 1 ≤ i ≤ t. As the degree of the polynomial is equal to the number of
roots, adversary can easily compute xi of targeted user using the product of the roots of
a polynomial. To prevent this attack, we made following modifications to the step 4 and
step 5 of original Harn and Lin protocol.

Step 4. The KGC randomly selects a session key k and constructs a (t + 1)th de-
gree interpolation polynomial f(x) passing through the (t + 2) points: (0, k),(x1, y1 ⊕
R1),· · · ,(xt, yt⊕Rt) and a random coordinate (xr, yr⊕Rr), where (xr, yr) ∈ Z∗n × Z∗n and
Rr ∈ Z∗n. Next, KGC selects (t+1) additional points P1, · · · , Pt, Pt+1 that lie on the poly-
nomial f(x). KGC then computes the authentication message Auth=h(k, U1, · · · , Ut, R1,
· · · , Rt, P1, · · · , Pt, Pt+1), where h is a one-way hash function and broadcasts (R1, · · · , Rt,
P1, · · · , Pt, Pt+1, Auth) to all users participating in the session. All computations with
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respect to f(x) are performed modulo n.

Step 5. Each Ui, for 1 ≤ i ≤ t, computes the group key k = f(0) by interpolating
the points P1, · · · , Pt, Pt+1 and (xi, yi ⊕Ri), Then checks the correctness of Auth by cal-
culating h(k, U1, · · · , Ut, R1, · · · , Rt, P1, · · · , Pt, Pt+1). Ui aborts if the equality does not
hold.

Based on step 4 and step 5, the adversary computes two polynomials f(x) and f ′(x)
of degree t+1 in sessions S1 and S2 respectively using two t + 2 points in Round 5 of
replay attack. Then the adversary computes a new polynomial g(x) of t+ 1 degree whose
roots are xi value of user Ui, for 1 ≤ i ≤ t and xr, which is randomly selected by the
KGC. To find the xi of targeted user, the adversary needs t roots but he is equipped with
only t− 1 roots and hence fails to compute the xi value of targeted user using products
of the roots as he did in the earlier attacks.

As explained above, our countermeasure prevents the generalized replay attack. Now
we will explain how it can be customized to prevent the simple replay attack i.e. Attack-
1.
In Attack-1, adversary Ua computes long term secret of a targeted user Ui beacuse he
was able to form a 2nd degree polynomial g(x) using f(x) and f ′(x) in the Round 5 of
Attack-1. The roots of g(x) are xa and xi values of users Ua and Ui. As adversary already
knows his xa value, he computes xi of targeted user Ui using product of the roots of a
polynomial. Now based on modified steps Step 4 and Step 5, adversary computes a 3rd

degree polynomial g(x) = (a3 − a′3)x
3 + (a2 − a′2)x

2 + (a1 − a′1)x + (k − k′) using poly-
nomials f(x) = a3x

3 + a2x
2 + a1x + a0 and f(x) = a′3x

3 + a′2x
2 + a′1x + a′0 . To find

the xi of targeted user Ui using product of the roots of a polynomial, the adversary needs
two known roots but he is equipped with only one root i.e. his own xa value and thereby
fails to compute the xi of the targeted user Ui.

After incorporating the above mentioned countermeasure, we have the following im-
proved protocol that can resist the replay attacks.

Initialization of KGC. The KGC randomly selects two large safe primes p and q
(i.e p′ = p−1

2
and q′ = q−1

2
are also primes) and computes n=pq. n is made publicly

known.

User Registration. Each user is required to register at KGC to subscribe the key
distribution service. The KGC keeps track of all the registered users and removes any
unsubscribed users. During the registration, KGC shares a long-term secret (xi, yi) with
each user Ui, 1 ≤ i ≤ m, where (xi, yi) ∈ Z∗n × Z∗n.

Group Key Generation and Distribution. After receiving the group key genera-
tion request from any user, KGC randomly chooses a group key. Then KGC distributes
this group key to all the group members in a secure and authenticated way. Let us con-
sider a group consisting of t members, {U1, · · · , Ut}, whose long term secrets shared with
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the KGC are (xi, yi), 1 ≤ i ≤ t. The key generation and distribution process for the
above session consists of the following five steps.

Step 1. The initiator sends a key generation request to KGC with a list of group
members as {U1, · · · , Ut}.

Step 2. KGC broadcasts the participants list {U1, · · · , Ut} to all Ui, 1 ≤ i ≤ t , as
a response to the request.

Step 3. Each user Ui, 1 ≤ i ≤ t, chooses a random challenge Ri ∈ Z∗n and sends it
to KGC.

Step 4. The KGC randomly selects a session key k and constructs a t+1th degree interpo-
lation polynomial f(x) passing through (t + 2) points: (0, k), (x1, y1 ⊕R1), · · · , (xt, yt ⊕Rt)
and a random coordinate (xr, yr⊕Rr), where (xr, yr) ∈ Z∗n × Z∗n and Rr ∈ Z∗n. Next, KGC
selects (t+1) additional points P1, · · · , Pt, Pt+1 that lie on the polynomial f(x). KGC then
computes the authentication message Auth=h(k, U1, · · · , Ut, R1, · · · , Rt, P1, · · · , Pt, Pt+1),
where h is a one-way hash function, and broadcasts (R1, · · · , Rt, P1, · · · , Pt, Pt+1, Auth)
to all users participated in session.

Step 5. Each Ui, 1 ≤ i ≤ t, computes the group key k = f(0) by interpolating the
points P1, · · · , Pt, Pt+1 and (xi, yi ⊕ Ri), then checks the correctness of Auth by calcu-
lating h(k, U1, · · · , Ut, R1, · · · , Rt, P1, · · · , Pt, Pt+1). Ui aborts if the equality does not
hold.

6 Conclusion

Nam et al. proposed a replay attack against the Harn and Lin’s group key distribution
protocol [4]. They also proposed a counter measure to resist this attack using a nonce
mechanism [7]. However, this countermeasure increases the computational cost of the
scheme. So, this paper proposes an alternative counter measure that does away with the
computation of authentication by each user. Also studied in this paper is a generalization
of the Nam et al.’s replay attack.
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