
Fast Secure Computation for Small Population over the Internet ∗

Megha Byali † Arun Joseph ‡ Arpita Patra § Divya Ravi¶

Abstract

Secure Multi-Party Computation (MPC) with small number of parties is an interesting area of research,
primarily due to its ability to model most real-life MPC applications and the simplicity and efficiency of the
resulting protocols. In this work, we present efficient, constant-round 3-party (3PC) and 4-party (4PC) protocols
in the honest-majority setting that achieve strong security notions of fairness (corrupted parties receive their
output only if all honest parties receive output) and guaranteed output delivery (corrupted parties cannot prevent
honest parties from receiving their output). Being constant-round, our constructions are suitable for Internet-like
high-latency networks and are built from garbled circuits (GC).

Assuming the minimal model of pairwise-private channels, we present two protocols that involve computa-
tion and communication of a single GC– (a) a 4-round 3PC with fairness, (b) a 5-round 4PC with guaranteed
output delivery. Empirically, our protocols are on par with the best known 3PC protocol of Mohassel et al. [CCS
2015] that only achieves security with selective abort, in terms of the computation time, LAN runtime, WAN
runtime and communication cost. In fact, our 4PC outperforms the 3PC of Mohassel et al. significantly in terms
of per-party computation and communication cost. With an extra GC, we improve the round complexity of our
4PC to four rounds. The only 4PC in our setting, given by Ishai et al. [CRYPTO 2015], involves 12 GCs.

Assuming an additional broadcast channel, we present a 5-round 3PC with guaranteed output delivery that
involves computation and communication of a single GC. A broadcast channel is inevitable in this setting for
achieving guaranteed output delivery, owing to an impossibility result in the literature. The overall broadcast
communication of our protocol is nominal and most importantly, is independent of the circuit size. This protocol
too induces a nominal overhead compared to the protocol of Mohassel et al.

∗This article is the full and extended version of an earlier article to appear in ACM CCS 2018: https://doi.org/10.1145/3243734.3243784
†Indian Institute of Science. Email: megha@iisc.ac.in.
‡Indian Institute of Science. Email: arunj@iisc.ac.in.
§Indian Institute of Science. Email: arpita@iisc.ac.in.
¶Indian Institute of Science. Email: divyar@iisc.ac.in.

1

Contents

1 Introduction 3
1.1 Related Work . 3
1.2 Our Contribution . 4

2 Preliminaries 6
2.1 Model and Notations . 6
2.2 Primitives . 6

3 3PC with Fairness 8
3.1 Correctness and Security . 9
3.2 Optimizations and generalization . 11

4 4PC with guaranteed output delivery 11
4.1 Protocol for Input Consistency . 12
4.2 Our protocol . 13
4.3 Correctness and Security . 16
4.4 Optimizations . 18

5 4PC with guaranteed output delivery in four rounds 18
5.1 Our protocol . 18
5.2 Correctness and Security . 18
5.3 Optimizations . 20

6 3PC with Guaranteed Output Delivery 21
6.1 Correctness and security . 21
6.2 Optimizations . 24

7 Experimental results 24

A The Security Model 30

B Primitives 31
B.1 Properties of Garbling Scheme . 31
B.2 Non-Interactive Commitment Schemes (NICOM) . 31
B.3 Equivocal Non-interactive Commitment (eNICOM) . 32

C Security Proof of f3PC Protocol 33

D Security Proof for g4PC 36

E Security Proof for g4PC4 42

F Security Proof for protocol g3PC 43

2

1 Introduction

Secure Multi-Party Computation (MPC) [GMW87, CDG87, Yao82], the standard bearer problem of cryptography,
has evolved tremendously over recent years. It studies the problem of enabling a set of n parties to perform joint
computation on their private inputs, in a way that no coalition of t parties can learn more information than the
output (privacy) or affect the true output of the computation (correctness). While the vast literature in MPC has
traditionally been focused on theoretical aspects, lately, with increasing demand for efficient constructions suitable
in real-time applications, there has been a growing interest to improve the concrete efficiency of protocols.

The domain of MPC can be broadly classified into honest majority [BGW88, RB89, BMR90, Bea91, DN07,
BFO12, BH07, BH08] and dishonest majority [GMW87, DO10, BDOZ11, DPSZ12, AJL+12, GGHR14, LPSY15]
settings. The special case of two-party (2PC) in dishonest majority setting has enjoyed overwhelming focus over
the years in terms of improving its efficiency [LP07, LP12, Lin13, AMPR14, NO16]. In contrast, the special cases
of honest majority setting have not been in the limelight until recently when practically efficient MPC constructions
of [CGMV17, MRZ15, AFL+16, FLNW17] leveraged presence of small number of parties.

The area of MPC with small number of parties in the honest majority setting has drawn popularity partic-
ularly due to simplicity and efficiency of the resulting protocols. The area is worthwhile to explore due to the
following reasons. First, most real-time applications involve small number of parties. For instance, applications
such as statistical data analysis [BTW12], email-filtering [LADM14], financial data analysis [BTW12], distributed
credential encryption [MRZ15], Danish sugar beet auction [BCD+09] involve 3 parties. Additionally, the MPC
frameworks such as VIFF [Gei07], Sharemind [BLW08] have been explored with 3 parties. The recent advances
that involve MPC in privacy-preserving machine learning have exhibited applications that involve small number
of parties [MRSV17]. Second, for the instance of large-scale computation on data involving sensitive information,
it is preferable to utilize 3 or 4 servers in comparison to only two for improved fault-tolerance and performance.
Another crucial advantage over the 2-party setting is enabling stronger security goals such as fairness (corrupted
parties receive their output only if all honest parties receive output) and guaranteed output delivery (corrupted
parties cannot prevent honest parties from receiving their output) which are attainable only in the honest major-
ity setting [Cle86]. These goals are desirable in practical applications as they serve as a stimulant for parties
to be engaged in the computation. Also, having honest majority is advantageous to obtain constructions rely-
ing on weaker cryptographic assumptions and light-weight cryptographic tools. For example, the protocols of
[IKKP15, MRZ15] are built using symmetric-key primitives whereas 2PC protocols require Oblivious Transfer
(OT) [Yao82, LP07, IPS08].

In this work, we consider the honest-majority setting for small number of parties (n = 3 and n = 4) tolerating
at most one malicious corruption (t = 1). Next, we outline the relevant literature related to MPC with small
number of parties beyond the two-party case.

1.1 Related Work

The regime of MPC over small population has seen growth both in the domain of low-latency and high-throughput
protocols. Relying on garbled circuits, the unique selling point of the former is constant rounds and these serve
better in high-latency networks such as the Internet. Whereas, the added edge of the latter category is low com-
munication overhead (band-width) and simple computations. Building on secret sharing, this category however
takes number of rounds proportional to the depth of the circuit representing the function to be computed. These
primarily cater to low-latency networks.

In the domain of constant-round protocols which is the focus of this paper, [MRZ15] presents a 3-round effi-
cient 3-party (3PC) protocol tolerating at most one malicious corruption and involving transmission and evaluation
of a single garbled circuit. Concurrently, in the 3-party setting, [IKKP15] achieves a 2-round protocol whose cost
is essentially that of 3 garbled circuits. However, both these protocols achieve a weaker notion of security i.e
security with selective abort (corrupt party can selectively deprive some of the honest parties of the output). In the
presence of a broadcast channel, the 3PC of [MRZ15] can additionally achieve unanimous abort (where either all
or none of the honest parties output abort), albeit for specific class of functions that give same output to all. The

3

work of [IKKP15] presents a 2-round 4-party (4PC) protocol tolerating single corruption that achieves guaranteed
output delivery in the absence of broadcast channel. Since the focus of [IKKP15] is on minimizing the number of
rounds of interaction, the protocol comprises of several parallel instances of private simultaneous message (PSMs)
which when instantiated with garbled circuit (GC) would sum upto communication of 12 GCs. The recent work
of [PR18] explores the exact round complexity of 3PC protocols under various security notions including fairness
and guaranteed output delivery. While the protocols are round-optimal, they involve a minimum of 3 GCs. The
work of [CGMV17] explores the case of 5-party with two malicious corruptions and relies on distributed garbling
approach of [BLO16] (which is more expensive than Yao’s garbling). Recent paper of [BO17], improving on the
distributed garbling techniques of [BLO16], proposes an honest majority protocol with n > 3t and shows practical
implementation for 31 parties. The results mentioned above are designed in the honest majority. [CKMZ14] stud-
ies 3PC in dishonest majority setting. In summary, the most relevant work that is close to our work efficiency-wise
is that of [MRZ15] which we compare with.

There have been a flurry of works in the high-throughput domain recently [AFL+16, FLNW17, ABF+16,
ABF+17]. In 3-party setting, [AFL+16] and [FLNW17, GRW18] presents semi-honest and maliciously secure
protocols respectively that are extremely fast on standard hardware. [ABF+17] significantly improves over the
protocol of [FLNW17], achieving the computation rate of 1.15 billion AND gates/second. In the 4 party setting,
the work of [GRW18] provides a construction that is secure against one malicious corruption based on the dual
execution approach. They incur communication of 1.5 bits per party per gate for boolean circuits and thus offer a
performance that is 4.5 times better than that of [ABF+17]. [GRW18] also includes protocol variants for achieving
fairness and robustness.

1.2 Our Contribution

In this paper, we present efficient constant-round constructions of 3PC and 4PC achieving strong security notions
of fairness and guaranteed output delivery that tolerate one active corruption. Our constructions, all based on
symmetric-key primitives are built from GC. We outline our results below. For empirical purpose, the circuits of
AES-128, SHA-256 and MD5 are used as benchmarks.

3PC with fairness In the minimal network setting of pairwise-private channels, our 3PC protocol with fairness
consumes four rounds and involves transmission and evaluation of a single GC. Our protocol shows a minimal
overhead of 0.06–0.16 ms, 0.03–0.8 ms, 0.21–0.5 s and 5.63–10.74 KB over the 3PC of [MRZ15], in terms of
the average computation time, LAN runtime, WAN runtime and communication, where average is taken over the
number of parties and the range is taken over the choice of benchmark circuits. The nominal overhead to trade
fairness over abort security makes our construction a better choice for practical purposes. This protocol has a
natural extension to more than 3 parties (still for one corruption) with neither inflating the round complexity nor
the number of GCs.

On the technical side, constructing on the ideas of [MRZ15, IKKP15], our protocol has two parties enacting
the role of the garblers and the remaining party acting as an evaluator for a GC. Contrary to [MRZ15, IKKP15], we
use a different kind of garbling scheme, namely an oblivious one that hides the circuit output when the decoding
information is withheld, in order to enforce fairness. Specifically, an evaluator gets the decoding information only
when it shares the result of the GC evaluation to its garblers. Crucial to enforce unanimity across the honest parties,
we introduce a clever ‘proof mechanism’ that allows a garbler to convince its co-garbler about the correctness of
the final output. When the evaluator is corrupt and aids only one of its garblers to obtain the output, the technique
allows both the honest parties to conclude the same output.

4PC with guaranteed output delivery In the 4-party setting, we present an efficient protocol that achieves
guaranteed output delivery in five rounds, assuming just pairwise-private channels. Our protocol involves commu-
nication of a single GC compared to the 2-round protocol of [IKKP15] that incurs a cost of 12 GCs. Our protocol
has asymmetric roles for each party involved and as a result, interestingly, our protocol gives better performance
compared to the 3PC of [MRZ15]. The protocol terminates in three rounds when no malicious behaviour takes

4

place and has minimal communication (and negligible computation) done in last two rounds. We take reading
for both 3-round run and 5-round run of the protocol. For the former, our protocol shows a gain of 0.19–2.61 ms,
0.17–2.45 ms and respectively 18.63–500.56 KB compared to the 3PC of [MRZ15] in terms of average computation
time, LAN runtime and communication. The overhead for WAN runtime is minimal and amounts to 0.02–0.31 s.
When the protocol is stretched to 5 rounds, the gains reported above remain unaffected (or witness negligible de-
crease). In terms of average WAN runtime, the overhead increases to 0.51 – 0.83 s, reflecting the increase in round
complexity. At the expense of one extra GC, we also present a 4-round 4PC primarily as a theoretical contribution,
which also terminates in three rounds when no malicious behaviour takes place.

On the technical side, deviating from the usual approach of appointing (n − 1) garblers and one evaluator in
the GC-based protocols of n parties [IKKP15, MRZ15, CGMV17], we explore the setting of two garblers and
one evaluator in our 5-round 4PC. The fourth party participates only to share its input among the rest. At the
heart of this protocol, lie a few neat tricks. We overlap the input commitment phase with evaluation of GC, yet
ensure computation on committed input alone by a convenient and clever use of oblivious garbling scheme. It
further banks on a technique of identifying a trusted (honest) party amongst the participants and then enabling her
to evaluate the function on clear. Specifically, the protocol looks for potential misbehaviour, identifies conflict and
assigns the left-out third party the role of trusted-third party (TTP). The TTP, on receiving the view of any other
party, takes charge of computing the function on direct inputs and forwarding the output to all. To bring down the
round complexity to four, we present a protocol that explores the setting of two garblers and two evaluators and
leverages the guarantee of having at least one honest evaluator.

3PC with guaranteed output delivery With an additional broadcast channel, we present a 5-round 3PC proto-
cols with guaranteed output delivery at the cost of communication of a single GC. A broadcast channel is inevitable
in this regime owing to the results of [CHOR16]. We ensure that the broadcast communication is nominal and most
importantly, independent of the circuit size. Our implementation, using a physical UDP broadcast channel available
on LAN, shows that the average computation time, LAN runtime and communication overhead are 0.16–0.3 ms,
1.52–3 ms and 0.19–0.46 KB respectively over that of [MRZ15]. For the worst case run when the execution is
stretched to 5 rounds, there is negligible change in the computation and LAN runtime, but communication over-
head is witnessed to increase to a value between 0.21–0.57 KB. We do not implement the protocol in WAN as it
would require an implementation of a robust broadcast protocol. When the adversary remains semi-honest, this
protocol too terminates in 3 rounds and the extra communication and computation needed in the last two rounds is
almost nothing.

On the technical side, our construction embarks on similar idea as that of our fair 3PC protocol, except that
a garbling scheme without obliviousness works for us. Similar to our 4PC, this protocol also leverages a clever
(yet, different from the one used in 4PC) way of identifying a TTP in the face of misbehaviour and evaluating the
function on clear.

Theoretical and Empirical Comparison Our protocols put in the context of the relevant state-of-the-art proto-
cols in terms of number of GCs, rounds and security are given below. ‘god’ implies guaranteed output delivery.

Ref. # Parties # GCs Rounds Security Broadcast

[MRZ15] 3 1 3 selective abort 7

This paper 3 1 4 fairness 7

This paper 3 1 5 god 3 [CHOR16]
[IKKP15] 4 12 2 god 7

This paper 4 2 4 god 7

This paper 4 1 5 god 7

While elaborate experimental results appear later in the paper, we summarize the overhead or gain (indicated by
g) of our protocols compared to the 3PC of [MRZ15] in terms of average computation time, LAN runtime, WAN

5

runtime and communication cost, where the average is taken over the number of parties and the range is taken over
the choice of circuits. We show in bracket the increase in the overhead or decrease in the gain for the worst case
5-round run of our 3PC and 4PC with guaranteed output delivery. With respect to our 4-round 4PC with guaranteed
output delivery, in the worst case run, we save one round at the expense of one garbled circuit over our 5-round
4PC which amounts to a value in the range 72 KB− 1530 KB for the benchmark circuits.

Ref. Computation LAN WAN Communication
(ms) (ms) (s) (KB)

fair 3PC 0.06 – 0.16 0.03 – 0.8 0.21 – 0.5 5.63 – 10.74
4PC with god 0.19 – 2.61 (g) 0.17 – 2.45 (g) 0.02 (+.49) – 0.31 (+.52) 18.63 (−.01) – 500.56 (−.1) (g)
3PC with god 0.16 – 0.3 1.52 – 3 - 0.19 (+.02) – 0.46 (+.11)

Roadmap: Our needed primitives appear in Section 2. Our efficient 3PC protocols achieving fairness and guaran-
teed output delivery are presented in Section 3 and 6 respectively. The 4PC protocol with rounds 5 and 4 appear in
Section 4 and 5 respectively. The experimental results are presented in Section 7. The security model and proofs
of the four protocols appear in Appendices A, C, F, D and E.

2 Preliminaries

2.1 Model and Notations

We consider a set P of at most four parties, denoted by P1, P2, P3, P4. We assume that any two parties are
connected by pair-wise secure and authentic channels. We assume the existence of a broadcast channel only for
the 3PC protocol achieving guaranteed output delivery. Each party can be considered as a Probabilistic Polynomial
time Turing (PPT) machine. Our model assumes a PPT adversary A, who can statically and maliciously corrupt
at most one party out of the 3 or 4 parties. For any subset X of P , ind(X) refers to the indexes of the parties. For
example, when X = {P1, P2}, then ind(X) = {1, 2}.

We denote the computational security parameter by κ. A negligible function in κ is denoted by negl(κ). A
function negl(·) is negligible if for every polynomial p(·) there exists a value N such that for all m > N it
holds that negl(m) < 1

p(m) . We denote by [x], the set of elements {1, . . . , x} and by [x, y], the set of elements
{x, x + 1, . . . , y} such that y > x. For any x ∈R {0, 1}m, xi denotes the ith bit of x, i ∈ [m]. We use
||i∈[n]xi to denote concatenation of strings xi. Let S be an infinite set and X = {Xs}s∈S , Y = {Ys}s∈S be the
distribution ensembles. We say X and Y are computationally indistinguishable, if for any PPT distinguisher D
and all sufficiently large s ∈ S, we have |Pr[D(Xs) = 1]−Pr[D(Ys) = 1]| < 1/p(|s|) for every polynomial p(·).

We prove the security of our protocols in the standard real/ideal world paradigm. The security definition and
the required functionalities are given in Appendix A.

2.2 Primitives

Garbling Schemes ‘Garbling Schemes’ traditionally used as a technique in secure protocols, were formalized
as a primitive by Bellare et al. [BHR12] and were assigned well-defined notions of security, namely correctness,
privacy, obliviousness, and authenticity. This terminology has largely been adopted by works that followed in this
domain [JKO13, ZRE15, GLNP15].

A garbling scheme G is characterized by a tuple of PPT algorithms G = (Gb,En,Ev,De) described below.
With the exception of Gb, are all deterministic.

• Gb (1κ, C) is invoked on a circuit C in order to produce a ‘garbled circuit’ C, ‘input encoding information’ e,
and ‘output decoding information’ d.

• En (x, e) encodes a clear input x with encoding information e in order to produce an encoded input X.

6

• Ev (C,X) evaluates C on X to produce an encoded output Y.

• De (Y, d) translates Y into a clear output y as per decoding information d.

We give an informal intuition of the notion captured by each of the security properties, namely correctness,
privacy, obliviousness, and authenticity. Correctness enforces that a correctly garbled circuit, when evaluated, out-
puts the correct output of the underlying circuit. Privacy aims to protect the privacy of encoded inputs. Authenticity
enforces that the evaluator can only learn the output label that corresponds to the value of the function. Oblivious-
ness captures the notion that when the decoding information is withheld, the garbled circuit evaluation leaks no
information about any underlying clear values; be they of the input, intermediate, or output wires of the circuit.
The formal definitions are deferred to Appendix B.1. We are interested in a class of garbling schemes referred to
as projective in [BHR12]. When garbling a circuit C : {0, 1}n 7→ {0, 1}m, a projective garbling scheme produces
encoding information of the form e =

(
e0
i , e

1
i

)
i∈[n]

, and the encoded input X corresponding to x = (xi)i∈[n] can
be interpreted as X = En(x, e) = (exii)i∈[n].

Our 3PC with fairness and 4PC with guaranteed output delivery protocol rely on garbling schemes that are
simultaneously correct, private, oblivious and authentic. Our 3PC protocol with guaranteed output delivery relies
on garbling schemes that are correct, private and authentic. It further needs an additional decoding mechanism de-
noted as soft decoding algorithm sDe [MRZ15] that can decode garbled outputs without the decoding information
d. The soft-decoding algorithm must comply with correctness: sDe(Ev(C,En(e, x))) = C(x) for all (C, e, d).
While both sDe and De can decode garbled outputs, the authenticity needs to hold only with respect to De. In
practice, soft decoding in typical garbling schemes can be achieved by simply appending the truth value to each
output wire label.

Non-Interactive Commitment Schemes A non-interactive commitment scheme (NICOM) consists of two al-
gorithms (Com,Open) defined as follows. Given a security parameter κ, a common parameter pp, message x and
random coins r, PPT algorithm Com outputs commitment c and corresponding opening information o. Given κ,
pp, a commitment and corresponding opening information (c, o), PPT algorithm Open outputs the message x. The
algorithms should satisfy correctness, binding (i.e. it must be hard for an adversary to come up with two different
openings of any c) and hiding (a commitment must not leak information about the underlying message) properties.
For our 3-party protocols, binding is required to hold only with respect to uniformly chosen public parameter pp,
while our 4-party protocols demand stronger form of binding that must hold even against adversarially chosen pub-
lic parameter. There exist instantiations based on one-way functions for the former and injective one-way function
(alternately one-way permutation) for the latter. We denote the NICOM with the stronger binding property as
strong NICOM that consists of (sCom, sOpen). The formal definitions of the properties and the instantiations of
NICOM based on symmetric key primitives are given in Appendix B.2.

We also need a NICOM scheme that admits equivocation property for our fair 3PC. An equivocal NICOM
(eNICOM) is a NICOM that allows equivocation of a certain commitment to any given message with the help of a
trapdoor. Apart from the usual two algorithms (eCom, eOpen), eNICOM comprises of:

– eGen(1κ) returns a public parameter and a corresponding trapdoor (epp, t), where epp is used by both eCom
and eOpen. The trapdoor t is used for equivocation.

– Equiv(c, o′, x, t) is invoked on a certain commitment c and its corresponding opening o′, given message x and
the trapdoor t and returns o such that x← eOpen(epp, c, o).

An eNICOM satisfies correctness, hiding and binding properties much like the NICOM does. The hiding prop-
erty of eNICOM is slightly changed compared to that of NICOM taking the equivocation property into account.
This new definition implies the usual hiding definition. In our fair protocol, the public parameter epp for eNICOM
is generated jointly by two parties acting garblers so that the trapdoor t remains distributed among them. Our
instantiations are based on Naor [Nao91] and programmable random oracle, all of which admit the above property.
We thus rewrite eGen in our fair protocol as (epp, t1, t2) ← eGen(1κ), where ti denotes the share of trapdoor

7

held by garbler Pi (i ∈ [2]). Both these shares are necessary to perform equivocation. The formal definitions and
instantiations appear in Appendix B.3.

In the implementation of our protocols, we use the random oracle based construction for all the above variants
of NICOM which is implemented using SHA-256 .

Replicated Secret Sharing (RSS) [CDI05, ISN89] We use a 3-party replicated secret sharing scheme private
against one corruption (1-private). Informally, for a secret s to be shared over a boolean field F2, we randomly
choose r1, r2 and compute r3 such that s = r1 ⊕ r2 ⊕ r3 (where r3 = s ⊕ r1 ⊕ r2). We refer to r1, r2, r3 as the
three shares of s. Each of the 3 participating parties say P1, P2, P3 are given access to two among the three shares
i.e (r2, r3), (r1, r3) and (r1, r2) respectively. Reconstruction of s is possible by combining the shares held by any
two among the three parties. However, given only the shares of a single party, the distribution of shares appears
random and hence s remains private. We say that two parties say P1, P3 hold consistent shares if r′2 = r2 where
(r′2, r3) are the shares held by P1 and (r1, r2) are the shares held by P3 [IKKP15].

Pre-Image Resistance Hash [RS04] Consider a hash function family H: K ×M → Y . The hash function H
is said to be pre-image resistant if for all probabilistic polynomial-time adversaries A, given y = Hk(x) where
k ∈R K;x ∈R {0, 1}m, Pr[x′ ← A(k, y) : Hk(x

′) = y] is negligible in κ, where m = poly(κ).

Collision-Resistant Hash [RS04] Consider a hash function family H′: K ×M → Y . The hash function H′ is
said to be collision resistant if for all probabilistic polynomial-time adversaries A, given H′k where k ∈R K;x ∈R
{0, 1}m, Pr[(x, x′)← A(k) : (x 6= x′) ∧ H′k(x) = H′k(x

′)] is negligible in κ, where m = poly(κ).

3 3PC with Fairness

In this section, we present an efficient fair 3PC protocol that consumes 4 rounds in a network constituting of only
pairwise-private channels. The starting point of our protocol is that of [MRZ15]. In the protocol of [MRZ15],
P1, P2 act as garblers while P3 acts as an evaluator. The garblers use common randomness to construct the same
GC individually. Since at most one party can be corrupt, a comparison of GCs received from the garblers allows
the evaluator P3 to conclude its correctness. Besides, P3 additively shares his input among the garblers at the
beginning of the protocol. This eliminates the need of oblivious transfer (OT) to transfer the evaluator’s encoded
input, as the garblers can directly send the encoded inputs corresponding to their own input as well as the share
of P3’s input held by them. To force the garblers to input encoded inputs (the keys) that are consistent with the
GCs, the following technique is adopted. Together with the GC, each garbler also generates the commitment to the
encoding information using the common shared randomness and communicates to the evaluator. Again a simple
check on whether the set of commitments are same for both the garblers allows to conclude their correctness. Now
it is infeasible for the garblers to decommit the encoded input corresponding to their own input and the evaluator’s
share to something that are inconsistent to the GC without being caught. Following a common trick to hide the
inputs of the garblers, the commitments on the encoding information corresponding to every bit of the garblers’
input are sent in permuted order that is private to the garblers. Now if evaluation of the GC by P3 is successful,
P3 computes the output using soft decoding on the encoded output Y. P3 then sends Y to the garblers, enabling
them to decode the output. For a function where all parties receive same output, depending upon whether Y is
broadcast or sent over pairwise channel, the protocol achieves security with abort or selective abort respectively.
Specifically, in the latter case when Y is sent over point-to-point channel, a corrupt P3 may choose to send Y to
only one of the garblers, thereby achieving security with selective abort.

In the protocol of [MRZ15], the only scenario in which fairness is violated is when a malicious P3 computes
the output via soft decoding but chooses not to send (or sends wrong) encoded output Y to the garblers. At a high-
level, we overcome this limitation by using oblivious garbling instead and withholding the decoding information
d from P3 until he forwards Y. Obliviousness ensures that P3 gets no information regarding output as long as
d is unknown to him. A corrupt P3 is forced to send Y to the garblers if he wants to learn the output, in which

8

case at least one the garblers P1, P2 also learn the output. Authenticity ensures that P3 cannot forge an encoded
output Y′ 6= Y such that its decoding is valid. Even if P3 chooses to abort, fairness is achieved as no party learns
the output. However, this new step gives rise to the following issues: (a) A corrupt garbler may send incorrect
decoding information to an honest P3 who forwarded Y; (b) A corrupt P3 may send the correct encoded output
Y (obtained by GC evaluation) to only one of the garblers. To tackle (a), the garblers are made to commit to the
decoding information which P3 can verify by means of cross-checking across garblers. The binding property of
the commitment scheme prevents the corrupt garbler from lying about the decoding information later. The second
issue is trivial to resolve with a broadcast channel. Without a broadcast channel, each garbler is made to forward
the encoded output received from the evaluator to its co-garbler with a “proof" that he indeed received the encoded
output from P3. Without a proof, a corrupt garbler may “pretend" to have received the encoded output from honest
P3, whereas in reality P3 was unable to evaluate the GC.

We facilitate this “proof" using a preimage-resistant cryptographic hash H function (alternately, one-way func-
tion can be used). In Round 1, each garbler Pi chooses a random value ri (which will serve as the proof) and sends
its digest hi = H(ri) to the other two parties, while it sends ri only to P3. In Round 2, each garbler Pi forwards
the digest received from its co-garbler (in Round 1) to P3. For each digest hi, P3 verifies its validity (whether
hi = H(ri)) and consistency (whether both garblers are in agreement with respect to hi) and aborts in case the
checks fail. If no abort has occurred, an honest P3 who is able to obtain Y upon successful GC evaluation addi-
tionally sends the preimage of a garbler’s digest with the fellow garbler. This preimage helps a garbler to convince
its fellow garbler about the fact that Y (which is also valid) was received from P3. When an honest P3 was unable
to evaluate GC, the property of pre-image resistance of the hash ensures that the corrupt garbler P1 will not have
access to any r′2 such that H(r′2) = h2 except with negligible probability. Therefore, he will not be able to fool his
honest co-garbler P2 to accept. On the flip side, consider a corrupt P3 who sends Y to P1 alone. If P3 sends any
proof, say r′2 to P1 that verifies (may not be the same r2 received from P2; note that given r2, it may be possible for
corrupt P3 to compute r′2 such that H(r′2) = h2 since we do not assume H is second-preimage resistant), then P1

would check H(r′2) = h2 holds, accept the output, forward the proof and the output to P2. Importantly, pre-image
resistance suffices for an honest P2 who hasn’t received Y from P3, to conclude that P3 is corrupt upon receiving
any r′2 (may not be equal to r2 picked by him) from P1 such that H(r′2) = h2. Thus, P2 can simply accept output
from P1.

The protocol f3PC appears in Figures 1, 2. We use an eNICOM to commit to the decoding information.
This is due to a technicality that arises in the security proof explained in Appendix C. Our proofs and proposed
optimizations for f3PC which are incorporated in our implementation are explained subsequently. Lastly, the
protocol f3PC cannot be naively extended to obtain guaranteed output delivery even in the presence of a broadcast
channel (which is necessary due to [CHOR16]). When the evaluator fails to obtain the encoded output, there
should be a way to compute the output which either seems to need more parties to enact the role of the evaluator
and consequently involvement of more than one GCs or seems to require more than four rounds. We take the latter
way-out and design a 5-round protocol in Section 6.

3.1 Correctness and Security

Theorem 3.1. The protocol f3PC is correct.

Proof. The inputs committed by P3 is defined by the shares it distributes to the garblers in the first round. The in-
puts committed by the garblers are defined based on their openings of commitments. The encoded output obtained
upon evaluation is based on the committed inputs. The correctness of the output follows from the correctness of
the garbling scheme.

While the formal proof is deferred to Appendix C, we give intuition for fairness and state the theorem below.
We need to argue that a corrupt party gets the output of the computation if and only if the honest parties receive the
output. For the forward direction assume that a corrupt party gets the output. Say the evaluator P3 is corrupt. Due
to oblivious garbling, P3 would obtain the output only if given access to decoding information. This would occur
only if he had sent a valid (Y, rj) to at least one of the garblers say Pi (Pj is the co-garbler) i.e., De(Y, d) 6=⊥ and
H(rj) = hj . Pi would communicate (Y, rj) to Pj as well which would be verified and subsequently accepted by Pj .

9

Figure 1: Protocol f3PC

Inputs: Party Pα has xα for α ∈ [3].

Common Inputs: The circuit C(x1, x2, x3, x4) that computes f(x1, x2, x3⊕x4) where x1, x2, x3, x4 as well
as function output belong to {0, 1}` for ` ∈ poly(κ). P3 is assumed to be the evaluator and (P1, P2) as
the garblers.

Output: y = C(x1, x2, x3, x4) = f(x1, x2, x3 ⊕ x4) or ⊥.

Primitives: G = (Gb,En,Ev,De) that is correct, private, oblivious and authentic, a NICOM (Com,Open),
an eNICOM (eGen, eCom, eOpen,Equiv), a PRG G and a preimage-resistant Hash H.

Round 1:

– P1 chooses random seed s ∈R {0, 1}κ for G and sends s to P2.

– P1 does the following (Similar steps will be executed by P2): Sample t1 corresponding to its share epp1 for
eNICOM. Compute h1 = H(r1), where r1 is chosen uniformly at random. Send {epp1, h1} to P2 and
{h1, r1} to P3.

– P3 samples pp for the NICOM and sends (x31, pp) to P1, (x32, pp) to P2.

Round 2:

– Pi(i ∈ [2]) does the following:

◦ Compute epp using eppi and the share eppj received from Pj (j ∈ [2] \ i). Forward hj received
from Pj to P3.

◦ Compute GC (C, e, d) ← Gb(1κ, C) using randomness from G(s). Assume {e0
α, e

1
α}α∈[`],

{e0
`+α, e

1
`+α}α∈[`], {e0

2`+α, e
1
2`+α}α∈[2`] correspond to the encoding information for the input of

P1, P2 and shares of P3 respectively.
◦ Choose permutation strings p1, p2 ∈R {0, 1}` for the garblers’ input wires and generate commit-

ments to e and d using randomness from G(s). For b ∈ {0, 1}, (cbα, o
b
α) ← Com(pp, e

pα1⊕b
α),

(cb`+α, o
b
`+α) ← Com(pp, e

pα2⊕b
`+α) for α ∈ [`] and (cb2`+α, o

b
2`+α) ← Com(pp, eb2`+α) for α ∈ [2`].

Let (c, o)← eCom(epp, d). Set B =
{
epp,C, {cbα}α∈[4`],b∈{0,1} , c

}
.

– P1 computesm1 = x1⊕p1 and sends to P3: B, the openings of the commitments corresponding to (x1, x31)

i.e {om
α
1

α , o
xα31
2`+α}α∈[`] and m1. Similarly, P2 computes m2 = x2 ⊕ p2 and sends to P3: B, the openings

of the commitments corresponding to (x2, x32) i.e {om
α
2

`+α, o
xα32
3`+α}α∈[`] and m2.

– P3 does the following computation locally.

◦ Abort if B or (h1, h2) received from P1, P2 is not identical or H(ri) 6= hi for some i ∈ [2].
◦ Abort if (X1,X2,X31,X32) contains ⊥ where for α ∈ [`] : Xα

1 = Open(pp, c
mα1
α , o

mα1
α), Xα

2 =

Open(pp, c
mα2
`+α, o

mα2
`+α),Xα

31 = Open(pp, c
xα31
2`+α, o

xα31
2`+α),Xα

32 = Open(pp, c
xα32
3`+α, o

xα32
3`+α).

◦ Else set X = X1|X2|X31|X32 and run Y ← Ev(C,X) for C ∈ B.

Round 3: If Y 6= ⊥, P3 sends (Y, r2) to P1 and (Y, r1) to P2.

10

Figure 2: Protocol f3PC

Round 4: Pi (i ∈ [2]) does the following: Let (j ∈ [2] \ i). Execute y ← De(Y, d), compute z = H(r′j) if
(Y, r′j) received from P3. If y 6= ⊥ and z = hj (received from Pj in Round 1), send o to P3 and (y, r′j) to Pj .
Else set y = ⊥.
The parties do the following.

– P3 runs d ← eOpen(epp, c, o) where P3 received o from Pi (i ∈ [2]). For d 6= ⊥, P3 outputs y ←
De(Y, d).

– Pi (i ∈ [2]) does the following if y = ⊥: If received (y′, r′i) from P[2]\i such that H(r′i) = hi, set y = y′.

Thus all parties would learn the output. The case of corrupt garbler, say P1 obtaining the output is straightforward
- it would occur only in the case when the honest P3 is able to evaluate the garbled circuit successfully. In this
case, it is easy to see that the honest garbler P2 and evaluator P3 would be able to obtain the output using encoded
output and decoding information received from the other respectively.

For the opposite direction, suppose an honest P3 gets the output. Both garblers must have obtained the output
via the encoded output sent by P3. Finally an honest garbler, say P1 who gets the output by decoding Y received
from P3, would forward the decoding information enabling P3 to get the output as well. Next, an honest P1 would
accept the output only if he has a valid proof r′2 corresponding to his co-garbler P2 i.e H(r′2) = h2. This proof
would be verified and output accepted by P2. This completes the intuition.

Theorem 3.2. If one way functions exists, then protocol f3PC securely realizes the functionality FFair (Fig. 10)
against a malicious adversary that corrupts at most one party.

3.2 Optimizations and generalization

We propose the following optimizations to improve communication efficiency. Firstly, P1 and P2 treat the common
message B sent privately to P3 in Round 2 as a string B, divided into equal halves B = B1||B2. P1 sends B1 and
H′(B2) while P2 sends H′(B1) and B2 to P3, where H′ refers to a collision-resistant hash function (definition in
Section 2) This would suffice for P3 to verify if P1, P2 agree on a common B. This optimization technique not only
reduces the communication, but also improves the latency (transmission time) when both P1, P2 run at the same
time [MRZ15]. The second optimization is to use equivocal commitment on the hash of the decoding information
(collision-resistant hash), rather than simply committing on the decoding information.

Our protocol design has a natural extension to more than 3 parties (still for one corruption) without inflating the
round complexity and number of GCs. The generalized protocol comprises of (n − 1) garblers who use common
randomness for garbling and a single evaluator who additively shares her input amongst the garblers. For n > 3,
the correctness of GC can be concluded based on majority rule on the GCs received from the garblers.

4 4PC with guaranteed output delivery

In this section, we propose an efficient 5-round 4PC secure against one active corruption, assuming pairwise
channels. Our protocol involves communication and computation of just one GC, in contrast to the protocol of
[IKKP15] that requires 12 GCs. We take the route of employing two garblers and one evaluator as in our fair 3PC
protocol. The fourth party simply shares its input amongst the rest. When the evaluator is honest, our protocol
ensures that either an honest party identifies the corrupt party or a conflict (assured to include the corrupt party),
or the honest evaluator is successful in GC evaluation by the end of Round 2. In the former case, the honest

11

party would identify at least one honest party, to whom she sends her possessed input shares in Round 3. We use
replicated secret sharing (RSS) that allows reconstruction of the output based on views of any two (honest) parties.
In the latter scenario, the encoded output obtained upon GC evaluation is instantly used for output computation
by all the parties in Round 3. Thus, in either scenario, at least one of the honest parties will be able to compute
the output latest by Round 3 and everyone will receive it by Round 4. On the other hand, a corrupt evaluator can
drag the honest parties up to Round 4 to reveal its identity. This is the only case that makes our protocol run for 5
rounds where the last round is used by the honest parties to exchange their possessed shares to compute the output
on clear.

With the above high level idea, we describe a sub-protocol that enforces input consistency as per RSS and then
we present our 5-round protocol g4PC. Each party Pi (i ∈ [4]) maintains a pair of global sets– a corrupt set Ci and
a conflict set Fi which respectively hold identities of the party detected to be corrupt and pairs of parties detected
to be in conflict.

4.1 Protocol for Input Consistency

Our protocol InputCommiti that runs for two rounds, enforces input consistency of party Pi’s secret xi as per RSS.
Recall that as per RSS for three shareholders, Pi makes three shares of its secret xi as xi = ⊕Pj∈Pixij where
Pi = [4] \ i denotes the shareholders (i.e. all but Pi). The share xij goes to all but Pi and Pj , namely to the set
of parties in Pij = P \ {Pi, Pj}. Now to ensure that a corrupt Pi remains committed to its secret or a corrupt
shareholder Pj later cannot open a share of Pi differently, we use commitments on the shares. Namely, in the first
round, commitments on input shares are distributed by Pi to all while the openings are sent only to the relevant
shareholders. In the second round, the shareholders exchange the commitments received in the first round, while
the openings are exchanged only with the relevant shareholders. A simple majority rule suffices to conclude on the
commitment cij of the ‘committed’ share xij . When no honest majority is found, it can be concluded that Pi is
corrupt and his input is taken as a default value by all parties. When the commitment and the opening distributed
by Pi is found to be inconsistent, then Pi is identified as corrupt. When the commitment as distributed by Pi and
forwarded by Pj contradict, then Pi and Pj are put in conflict set.

A share xij is said to be ‘committed’ if each honest Pα ∈ Pi holds cij and each honest Pβ ∈ Pij holds oij
such that cij opens to xij via oij . A secret xi is said to be ‘committed’ if each of its three shares are committed. An
honest party always ‘commits’ to its secret. When a corrupt party does not commit to a secret, it is either identified
as corrupt or found to be in conflict by at least one honest party. For the commitments, we use a strong NICOM
according to which binding holds even for adversarially chosen public parameter of the NICOM (Appendix B.2).
Looking ahead the strong NICOM ensures that Pi itself cannot change its committed secret later and also cannot
keep two different parties on different pages in terms of the opening information oij . Protocol InputCommiti
appears in Figure 3.

Lemma 4.1. If Pi is honest, its chosen input xi is committed in InputCommiti.

Proof. Since the corrupt party forms a minority in Pi, irrespective of its behaviour in Round 2, every xij and
therefore xi remains committed.

Lemma 4.2. When corruptPi misbehaves, it belongs to either Cj orFj of some honestPj by the end of InputCommiti.

Proof. For the jth (j ∈ ind(Pi)) share of Pi, it can misbehave in the following ways: (a) Pi sends different
versions of (ppi, cij) to the parties in Pi; (b) Pi sends invalid opening oij (or does not send any opening) to some
party in Pij . In the former case, all the honest parties will populate their corrupt set if there is no majority in
Pi’s commitments else they populate their conflict set with a pair, consisting of Pi. In the latter case, the honest
recipient of the invalid opening will include Pi in its corrupt set. So the lemma holds.

Lemma 4.3. Either corrupt Pi ‘commits’ to an input or all honest parties agree on a default value by the end of
InputCommiti.

12

Figure 3: Protocol InputCommiti()

Inputs: Party Pi has xi and others have no input.

Notation: Pi and Pij denote the set P \ Pi and respectively P \ {Pi, Pj}. ind(S) denotes the set of indices
belonging to the parties in a set S.

Output: Each Pk ∈ Pi outputs ({cij}j∈ind(Pi), {oij , xij}j∈ind(Pik), Ck,Fk). {cij , oij} denote the commit-
ment and opening of the share xij . Ck and Fk denote the corrupt and conflict set respectively.

Primitives: A NICOM (sCom, sOpen) with strong binding property (Appendix B.2), a 3-party 1-private RSS.

Round 1:

– Pi shares his input as xi = ⊕j∈ind(Pi)xij .

– Pi samples ppi and generates commitments on shares xij for j ∈ ind(Pi) as (cij , oij)← sCom(ppi, xij)

– For every xij , Pi sends (ppi, cij) to Pi and oij to Pij .

Round 2: With respect to every share xij , every Pk in Pij sets Ck = {Pi} if sOpen(ppi, cij , oij) = ⊥.
Otherwise, Pk forwards (ppi, cij) to Pi and oij to Pij . Now Pk does the following local computation.

– Set Ck = {Pl} if Pl forwards an invalid opening i.e sOpen(ppi, cij , oij) = ⊥ holds for (ppi, cij , oij) sent
by Pl.

– Set Fk = {Pi, Pl} if (ppi, cij) received from Pi and forwarded by Pl do not match.

– Set Ck = {Pi}, if there is no majority among the versions of (ppi, cij) forwarded by the parties in Pi.
If Pk ∈ Pij , set xij to a default value (and commitments are assumed appropriately). Otherwise, set
(ppi, cij) as the majority value, oij as the corresponding opening, and xij = sOpen(ppi, cij , oij).

Proof. For the jth (j ∈ ind(Pi)) share of Pi, there are two cases based on whether Pi sends the same common
message (ppi, cij) to at least two among the parties in Pi with valid corresponding opening oij sent to every party
in Pij . If not, the exchange of messages among the honest parties in Round 2 will not constitute a majority and
all the honest parties would detect Pi to be corrupt and a default value will be taken as xij . Else, cij would be
accepted as the commitment for the jth share. The exchange of opening oij among the parties in Pij ensure that
they have access to the corresponding unique committed share xij . The uniqueness of the share is ensured by the
binding property of commitment scheme.

4.2 Our protocol

Without loss of generality, P1, P2 take the role of garblers and P3 enacts the role of evaluator in our protocol g4PC.
In parallel to running the input commitment sub-protocol for every party Pi, protocol g4PC, in similar spirit to our
previous protocols, proceeds by having the garblers P1 and P2 share and utilize common randomness to compute
individually the same garbled circuit and permuted commitments of the encoding information corresponding to
the three shares of the inputs of all the parties. The permutation strings are used for all the shares for the sake of
uniformity. Then the strings corresponding to the shares possessed by an evaluator are simply disclosed to her,

13

emulating the case in the three-party protocols where no permutation string is needed for the shares of an evaluator
to protect them from a bad garbler. As per RSS, a party Pα would ideally hold the shares {xij}i∈[4],j∈ind(Piα) that
include its three shares {xαj}j∈Pα and the two designated shares {xij}j∈Piα of every other party Pi by the end of
Round 1. Note that the latter shares may not be the committed ones and final committed values may differ by the
end of Round 2 (say, if the majority turns out to be different or if a default value is assumed).

In the second round, while the garblers send the GCs, committed encoding information in permuted order, the
relevant permutation strings on clear, the opening of the shares held by it, an evaluator checks the sanity of the
received information, often leveraging the fact that at least one of the garblers is honest and would have computed
the information correctly. The round-saving trick of composing the input commitment with the release of the
encoded inputs for the shares in parallel leads to release of encoded inputs for non-committed shares, which in
turn results in evaluation of the circuit on non-committed inputs. Evaluating the circuit only when no corrupt and
no conflict is detected by the end of Round 2 would solve the problem for an honest evaluator, as this ensures
encoded input for committed shares alone has been dealt. The trick to prevent a corrupt evaluator from getting
output on non-committed inputs is to withhold (yet commit in Round 1) the decoding information for an oblivious
garbling scheme and release the (hash of) decoding information only upon a confirmation that an encoded output
is computed using committed inputs. The simple check that a corrupt evaluator has no conflict with any of the
garblers ensures that the garblers must be in possession of the committed shares of the corrupt evaluator by the end
of first round itself and so the released encoded inputs correspond to the committed shares (and the encoded output
corresponds to committed inputs).

The repetitive disbursal of shares in RSS brings along another issue. Both the garblers possess the share
x34. An evaluator receives encoded input for these shares from both the garblers, as per the protocol. A corrupt
evaluator P3 can exploit this step to obtain encoded inputs for two different versions of the share x34 (by dealing
to the garblers) and subsequently evaluates the circuit on multiple inputs. While having the decoding information
hidden would not leak the clear outputs, the corrupt evaluator, on holding the the encoded outputs, can conclude
if its two different chosen inputs lead to the same output or not. While the issue is very subtle, the fix is quite
easy where only one pre-determined garbler is given responsibility of releasing the encoded input for the common
share x34. In order to avoid repeated disclosing of encoded outputs of the common shares between the garblers,
this approach is taken for all the common shares, namely {x13, x14, x23, x24, x34, x43}. To balance load, we ask
P1 to open encoded inputs for {x13, x14, x34} and P2 to take care of the rest.

In Round 3, if any party identifies the corrupt or any conflict, it sends the openings for all the shares that it
possesses from the input commitment protocol to a party who remains outside the corrupt and conflict sets and
thus guaranteed to be honest. This special party is denoted as TTP who takes care of reconstructing all the inputs
and computing the output on clear and lastly handing it over to all the parties in the next round. Even a corrupt
evaluator cannot make an honest TTP to compute an output on anything other than committed inputs. The strong
binding property of the commitments does not allow a corrupt evaluator to change its own committed shares.
To disambiguate about the identity of TTP, a party when disclosing its opening to its selected TTP notifies the
identity of the designated TTP to all. When a TTP takes responsibility, all the parties safely accept the output
relayed by the TTP in the next round, for a TTP is never corrupt. An honest party will never elect a corrupt party
as a TTP and a corrupt evaluator does not have a corrupt companion to enact a TTP. Therefore, if an honest
party elects a TTP in Round 3, all terminate the protocol with output by Round 4. On the other hand when no
conflict and no corrupt is detected, an honest evaluator computes the encoded output and forwards the same to
the garblers in Round 3. Similarly, an honest garbler opens the (hash of) decoding information to P3 and P4. We
use preimage-resistant hash to enable P3 and P4 to compute the output while preserving the authenticity of the
garbling scheme. For an honest evaluator, then all parties compute the output by the end of Round 3 itself via the
encoded output and decoding information. A corrupt evaluator, however, can keep the honest parties on different
pages in terms of the identity of TTP, while not disclosing its possessed shares to anyone. In this case, the honest
parties realize that the evaluator P3 is corrupt earliest at the end of Round 4. They can then exchange their shares
in Round 5 to compute the output on clear like a TTP does. The protocol appears in Figures 4, 5. The proof for
correctness and security appear below.

14

Figure 4: Protocol g4PC()

Inputs: Party Pα has xα for α ∈ [4].

Common Inputs: The circuit C(x1, x2, x3, x4) that computes f(x12 ⊕ x13 ⊕ x14, x21 ⊕ x23 ⊕ x24, x31 ⊕
x32⊕ x34, x41⊕ x42⊕ x43) each input, their shares and output are from {0, 1}`. P3 is the evaluator and
(P1, P2) are the garblers.

Output: y = C(x1, x2, x3, x4)

Primitives: G = (Gb,En,Ev,De) that is correct, private, oblivious and authentic, a NICOM (Com,Open), a
PRG G, a preimage-resistant Hash H and sub-protocol InputCommitα (Figure 3) for every Pα ∈ P .

Round 1: Round 1 of InputCommitα() for every Pα ∈ P is run. In parallel,

– P1 chooses random seed s ∈R {0, 1}κ for G and sends s to P2.

– P3 samples pp3 for NICOM and sends to P1, P2.

Round 2: Round 2 of InputCommitα() is run. In parallel,

– Pg(g ∈ [2]) locally computes the following:

◦ Compute garbled circuit (C, e, d) ← Gb(1κ, C) using randomness from G(s). Assume
{e0
α, e

1
α}α∈[3`], {e0

3`+α, e
1
3`+α}α∈[3`], {e0

6`+α, e
1
6`+α}α∈[3`], {e0

9`+α, e
1
9`+α}α∈[3`] correspond to the

encoding information for the input shares of P1, P2, P3, P4 respectively (w.l.o.g).
◦ Let pij ∈R {0, 1}` be permutation string for input wires derived from randomness G(s) correspond-

ing to Pi’s shares i.e {xij}j∈ind(Pi) for i ∈ [4] and pi ← ||j∈ind(Pi)pij .
◦ Generate commitments to e and d using randomness from G(s). For b ∈ {0, 1} and α ∈ [3`],

compute (cbα, o
b
α) ← Com(pp3, e

pα1⊕b
α), (cb3`+α, o

b
3`+α) ← Com(pp3, e

pα2⊕b
3`+α), (cb6`+α, o

b
6`+α) ←

Com(pp3, e
pα3⊕b
6`+α), (cb9`+α, o

b
9`+α) ← Com(pp3, e

pα4⊕b
9`+α). Let (c, o) ← Com(pp3,H(d)). Set B ={

C, {cbα}α∈[12`],b∈{0,1} , c, {pij}i∈[4],j∈ind(Pi3)

}
, where {pij}i∈[4],j∈ind(Pi3) refer to the permutation

strings of wires corresponding to the shares known to P3.

– Pg(g ∈ [2]) sends B to P3 and c to P4. If Cg = ∅, Pg sends the openings of the commitments
in B corresponding to {xij}i∈[4],j∈ind(Pig) i.e the input shares that it holds at end of Round 1 and
Mg = {mij}i∈[4],j∈ind(Pig) where mαβ = pαβ ⊕ xαβ . The common shares, however, are opened by
one garbler. The openings corresponding to commitment of {x13, x14, x34} are sent only by P1. The
openings corresponding to commitment of {x23, x24, x43} are sent only by P2.

– P3 locally does

◦ Add {P1, P2} to F3 if B received from P1, P2 is not identical.
◦ If C3 = F3 = ∅ (indicating no conflict with the garblers so far), then (a) add Pg to C3 (g ∈ [2]) when

the indices {m̄ij = pij ⊕ xij}i∈[4],j∈ind(Pi3), computed using its version of xij and pij , received
from Pg, mismatches with {mij}i∈[4],j∈ind(Pi3) received from Pg; (b) add (P1, P2) to F3 when
M1,M2 received from them is not consistent w.r.t. {m13,m14,m23,m24,m34,m43}.

◦ If C3 = F3 = ∅, then add Pg to C3 when any of the openings sent by Pg (g ∈ [2]) results to ⊥.
Otherwise, it sets X = ||i∈[4],j∈ind(Pi)Xij , where Xij contains encoded input for xij and computes
Y ← Ev(C,X) with C ∈ B.

15

Figure 5: Protocol g4PC() (contd)

– P4 locally adds {P1, P2} to F4 if c received from them do not match.

Round 3:

– If Cα 6= ∅∨Fα 6= ∅, Pα (α ∈ [4]) sends Oα = {oij}i∈[4],j∈ind(Piα) to Pβ where Pβ /∈ Cα∪Fα and (TTP, β)
to all.

– If Cg = Fg = ∅, Pg (g ∈ [2]) sends o to P3, P4.

– If C3 = F3 = ∅, P3 sends Y to P1, P2 and P4.

– If Pα (α ∈ [4]) receives Oβ from Pβ in Round 3, it uses Oβ to open its missing shares {xiα}i∈[4]\{α}.
If one of the opening leads to ⊥, set Cα = Pβ . Else compute y = f(⊕j∈ind(P1)x1j ,
⊕ind(P2)x2j ,⊕ind(P3)x3j ,⊕ind(P4)x4j).

– If Pg (g ∈ [2]) receives Y from P3 such that P3 /∈ Cg and (P3, P1), (P3, P2) /∈ Fg, then compute y ←
De(Y, d). If P4 receives Y as above and o from one of the Pgs, it computes y after recovering H(d)←
Open(pp, c, o). If P1/P2/P4 receives invalid Y, they populate their respective corrupt set C with P3. If
P3 receives o, then it computes H(d) and subsequently y.

Round 4:

– If Pα computed y, it sends (y,TTP) when elected as TTP and y otherwise to all and terminates.

– If (TTP, β) is received in Round 3 and (y,TTP) is received from Pβ , a party Pα outputs y and terminates.
If only the former condition is true, then Pα identifies the sender of the message (TTP, β) as corrupt.

– If Cα 6= ∅ and y is received from a party not in Cα, Pα outputs y and terminate.

Round 5: If Pα (α ∈ [4]) has not terminated yet, it sends its view Oα to every party in P \ Cα. On receiving
Oβ from some Pβ 6∈ Cα, it computes y as a TTP does and terminates.

4.3 Correctness and Security

We prove the correctness via a sequence of lemmas.

Lemma 4.4. For honest Pi, Pj , Pi /∈ Cj holds.

Proof. An honest Pj would add Pi to Cj if one of the following are true: (a) During InputCommiti if either
there is no majority among the version of (ppi, cij) received from the set of parties Pi or Pj receives an invalid
opening corresponding to commitment on input share from Pi; (b) garbler Pi sends labels inconsistent with the
message that it sent to evaluator Pj in Round 1; (c) garbler Pi’s opening of committed encoded input of GC sent
to evaluator Pj fails; (d) evaluator Pi sends an invalid Y to Pj ; (e) Pi assigns Pj to be the TTP and sends Oi
comprising of invalid openings of committed shares; (f) Pj received (TTP, β) from Pi but no output is received
from Pβ in Round 4. Since none of the above can occur for honest Pi and Pj , the lemma holds.

Lemma 4.5. A pair of honest parties cannot belong to Fi of an honest Pi.

Proof. An honestPi would add (Pj , Pk) toFi if one of the following holds: (a) During execution of InputCommitj ,
the versions of Pj’s commitment on its input shares received by Pi from Pj and Pk were inconsistent (analogous

16

condition w.r.t. InputCommitk); (b) when (Pj , Pk) are garblers, Pi = P4 and o received from Pj , Pk is not identi-
cal; (c) (Pj , Pk) are garblers, Pi = P3 and: (c.1) B received from Pj , Pk is not identical (c.2) when Fi = ∅ at the
end of of all the four executions of InputCommit but the indices received by Pi from the garblers corresponding to
the common shares held by them do not match i.e when Mj ,Mk received from them is not consistent. It is easy to
verify that cases (a), (b) and (c.1) cannot occur for honest Pj , Pk. Regarding case (c.2), the argument follows from
the fact that Pj , Pk must be in agreement with respect to corrupt party’s (say Pl) input shares at the end of Round 1
itself. If not, then the version forwarded by at most one among (Pj , Pk) (say Pj) during InputCommitl can match
with the one Pi received by Pl, leading to Pi populating Fi with {Pl, Pk}. This contradicts the assumption in case
(c.2) regarding Fi = ∅ at the end of of all executions of InputCommit; completing the proof.

Lemma 4.6. The encoded output Y computed by an honest P3 corresponds to the committed inputs of all parties.

Proof. An honest P3 evaluates the GC and computes Y when both F3 and C3 are empty. This implies that the
corrupt party ‘commits’ to its input in Round 1 of its InputCommit instance (by Lemma 4.2). We can thus conclude
that the honest garbler would possess committed input shares of all parties at the end of Round 1 itself and open
the encoded inputs accordingly. A potentially corrupt garbler is forced to send the encoded inputs corresponding
to committed inputs. Because– (a) if corrupt garbler tries to open different encoded inputs for the shares known
to P3, then he is added to C3; (b) if it tries to open different encoded inputs for the shares not known to P3, then
P3 would add the pair of garblers to F3. Thus, in either case, P3 does not evaluate as at least one among F3, C3 is
non-empty.

Lemma 4.7. If the encoded output Y of a corrupt evaluator P3 is used for output computation by an honest
garbler, then it must correspond to committed inputs of all parties.

Proof. An honest garbler, say Pg releases the opening information o for H(d) and uses the encoded output Y
(such that De(Y, d) 6= ⊥) received from evaluator P3 to compute output if P3 /∈ Cg and (P3, P1), (P3, P2) /∈ Fg.
Lemma 4.2 implies that P3 did not misbehave in InputCommit3 at all and has committed a unique input in Round
1. This implies that P3 receives encoded inputs for committed shares and authenticity ensures that Y corresponds
to the committed inputs of all the parties. Note that authenticity of the garbling scheme is preserved since P3

receives only the preimage-resistant hash of the decoding information in the form H(Y0)||H(Y1) corresponding
to each output wire (enabling P3 to compute the output). Here, Y0,Y1 refer to the labels for values 0 and 1
respectively corresponding to an output wire.

Lemma 4.8. Protocol g4PC is correct.

Proof. We argue that the output y computed corresponds to the unique inputs committed by each Pi (i ∈ [4])
during InputCommiti. It follows from Lemmas 4.3, 4.1 respectively that a corrupt party is forced to commit to a
unique input and the honest parties’ inputs are established as the committed inputs with public commitments by the
end of parallel executions of InputCommit. According to the protocol, an honest party Pα computes output in one
of the following ways: (a) via decoding the encoded output Y; (b) via the Oβ received from Pβ on being elected as
TTP; (c) on receiving y from an honest party; (d) on receiving (y,TTP) from Pβ and (TTP, β) from some other
party. In case (a), irrespective of whether P3 is honest or corrupt, correctness follows from Lemma 4.6–4.7. The
strong binding property of commitment scheme implies the output computed in case (b) is correct irrespective of
whether Pβ is honest or corrupt. The correctness for case (c) follows from case (a) and the fact that the message
was received from an honest party. The last case is argued as follows. The chosen TTP, Pβ , is honest, irrespective
of whether the message (TTP, β) is received from a corrupt or an honest party. While the former follows from the
fact that a corrupt party does not have a corrupt companion to elect, the latter follows from Lemma 4.4–4.5. Now
the correctness follows in case (d) from case (b).

While the full proof of security appear in Appendix D, we provide intuition for guaranteed output delivery
and state the theorem below. If the corrupt party misbehaves in one of the InputCommit instances or while com-
municating the GC and openings on commitment of input labels (as a garbler in round 2), then an honest party
invokes TTP on identifying the corrupt or detecting a conflict in Round 3. All the parties get output in Round

17

4. Otherwise, if P3 is honest and gives out Y, then all the honest parties compute output by the end of Round 3
itself using hash of the decoding information sent by one of the garblers and Y. A corrupt P3 can neither receive
decoding information for his non-committed input nor convince honest parties about the corresponding Y. If Y
corresponds to its committed input but it sends it only to some honest party or none, the remaining honest parties
will receive output from the honest party who receives Y or through Oβs sent by other honest parties in Round 5.

Theorem 4.9. Assuming one-way permutations, protocol g4PC securely realizes the functionality FGOD (Fig. 11)
against a malicious adversary that corrupts at most one party.

4.4 Optimizations

The communication efficiency of our g4PC can be boosted similar to as described for f3PC in Section 3.2.

5 4PC with guaranteed output delivery in four rounds

In this section, we propose an efficient 4-round 4-party protocol secure against one active corruption, assuming
pairwise channels. Deviating from the approach of [IKKP15, MRZ15] and our proposals for 3PC and 4PC, we
explore the setting of multiple evaluators, namely two evaluators and two garblers. With a guarantee of an honest
evaluator, this protocol achieves guaranteed output delivery at the expense of communication and computation of
two copies of the same GC.

The protocol ensures that the honest evaluator is either successful in GC evaluation or some honest party
identifies a corrupt party or a pair of parties in conflict (assured to include the corrupt party) by the end of Round
2. In the former case, the encoded output obtained upon GC evaluation is used for output computation in Round
3 itself. In the latter case, the honest party, having identified at least one honest party, sends his possessed input
shares in Round 3. The use of replicated secret sharing (RSS) allows reconstruction of the output based on views
of two honest parties by the end of Round 3. All parties obtain output by the end of Round 4.

The single evaluator and three garblers approach seems to require a minimum of 5 rounds (when the evaluator
is corrupt) while requiring the same amount of communication. With the above high level idea, we proceed to
present our protocol. We reuse the protocol for input consistency (Fig. 3). Similar to our g4PC protocol, each
party Pi (i ∈ [4]) maintains a pair of global sets– a corrupt set Ci and a conflict set Fi which respectively hold
identities of the party detected to be corrupt and pairs of parties detected to be in conflict.

5.1 Our protocol

Without loss of generality, P1, P2 take the role of garblers and P3, P4 enact the role of evaluators in our protocol
g4PC4. We reuse most of the tricks from our 5-round protocol and leverage the presence of an honest evaluator.
Specifically, the corrupt evaluator, unlike in our 5-round protocol, cannot drag all the honest parties all the way to
Round 4 for its detection. If everything goes as per the protocol and so no honest party elects a TTP in the end
of Round 2, the honest evaluator must be able to compute the encoded output Y by the end of Round 2 and help
all to get the output in Round 3. Otherwise, all the parties get output via a TTP by Round 4. The presence of an
additional evaluator needs communicating one extra copy of the GC. We present the protocol g4PC4 in Figure 6.

5.2 Correctness and Security

The proof for correctness appear below.

Lemma 5.1. For honest Pi, Pj , Pi /∈ Cj holds.

Proof. The proof follows directly from the Lemma 4.4.

Lemma 5.2. Consider honest Pi. A pair of honest parties cannot belong to Fi.

18

Figure 6: Protocol g4PC4()

Inputs: Party Pα has xα for α ∈ [4].

Common Inputs: The circuitC(x1, x2, x3, x4) that computes f(x12⊕x13⊕x14, x21⊕x23⊕x24, x31⊕x32⊕
x34, x41⊕ x42⊕ x43) each input, their shares and output are from {0, 1}`. P3, P4 are the evaluators and
(P1, P2) are the garblers.

Output: y = C(x1, x2, x3, x4)

Primitives: G = (Gb,En,Ev,De) that is correct, private, oblivious and authentic, a NICOM (Com,Open) a
PRG G, a 3-party 1-private RSS, pre-image resistant Hash H and sub-protocol InputCommitα (Figure
3) for every Pα ∈ P .

Round 1: Round 1 of InputCommitα for every Pα ∈ P is run. In parallel,

– P1 chooses random seed s ∈R {0, 1}κ for G and sends s to P2.

– Pv (v ∈ {3, 4}) samples ppv for NICOM and sends to P1, P2.

Round 2: Round 2 of InputCommitα is run. In parallel,

– Pg(g ∈ [2]) locally computes B3 exactly the way B is computed in Protocol g4PC. It also computes B4 with
respect to pp4 in a similar way.

– Pg(g ∈ [2]) sends B3 to P3. If Cg = ∅, Pg sends the openings of the commitments in B3 corresponding to
{xij}i∈[4],j∈ind(Pig) i.e the input shares that it holds at end of Round 1 and Mg = {mij}i∈[4],j∈ind(Pig)

where mαβ = pαβ ⊕ xαβ . Analogous steps are executed with respect to P4. The common shares,
however, are opened by one garbler. The openings corresponding to commitment of {x13, x14, x34} are
sent only by P1. The openings corresponding to commitment of {x23, x24, x43} are sent only by P2.

– Pv (v ∈ {3, 4})) local computation step is same as that of P3 in g4PC (with respect to Cv and Fv).

Round 3:

– If Cα 6= ∅∨Fα 6= ∅, Pα (α ∈ [4]) sends Oα = {oij}i∈[4],j∈ind(Piα) to Pβ where Pβ /∈ Cα∪Fα and (TTP, β)
to all.

– If Cg = Fg = ∅, Pg (g ∈ [2]) sends o to P3, P4.

– If Cv = Fv = ∅, Pv (v ∈ {3, 4}) sends Y to all.

– If Pα (α ∈ [4]) receives Oβ from Pβ in Round 3, it uses Oβ to open its missing shares {xiα}i∈[4]\{α}.
If one of the opening leads to ⊥, set Cα = Pβ . Else compute y = f(⊕j∈ind(P1)x1j ,
⊕ind(P2)x2j ,⊕ind(P3)x3j ,⊕ind(P4)x4j).

– IfPg (g ∈ [2]) receives a valid Y fromPv such thatPv /∈ Cg and (Pv, P1), (Pv, P2) /∈ Fg, then compute y ←
De(Y, d). If Pv receives o from one of the Pgs, it computes y after recovering H(d)← Open(pp, c, o).

Round 4:

– If Pα computed y via being elected as TTP, it sends (y,TTP) to all and terminates.

– If (TTP, β) is received in Round 3 and (y,TTP) is received from Pβ , a party Pα outputs y and terminates.

19

Proof. An honestPi would add (Pj , Pk) toFi if one of the following holds: (a) During execution of InputCommitj ,
the versions of Pj’s commitment on its input shares received by Pi from Pj and Pk were inconsistent. (Analogous
condition wrt InputCommitk) (b) When (Pj , Pk) are garblers, Pi is evaluator and: (b.1) Bi received from Pj , Pk is
not identical (b.2) When Fi = ∅ at the end of all executions of InputCommitm(m ∈ [4]) but the indices received
by Pi from the garblers corresponding to the common shares held by them do not match i.e when Mj ,Mk received
from them is not consistent. It is easy to verify that cases (a) and (b.1) cannot occur for honest Pj , Pk. For case
(b.2), the argument follows from the fact that Pj , Pk must be in agreement with respect to corrupt party’s (say
Pl) input shares at the end of Round 1 itself. If not, then the version forwarded by atmost one among (Pj , Pk)
(say Pj) during InputCommitl could match the one Pi received by Pl, leading to Pi populating Fi with {Pl, Pk}.
This contradicts the assumption in case (b.2) regarding Fi = ∅ at the end of of all executions of InputCommit;
completing the proof.

Lemma 5.3. The encoded output Y computed by an honest evaluator corresponds to the committed inputs of all
parties.

Proof. Consider an honest evaluator Pi. If i = 3, the proof follows exactly as described in Lemma 4.6. Else if
i = 4, the proof of Lemma 4.6 still holds, except in that P3,F3, C3 are replaced with P4,F4, C4.

Lemma 5.4. If the encoded output sent by a potentially corrupt evaluator is used for output computation by an
honest garbler, it must correspond to committed inputs of all parties.

Proof. Similar to our g4PC protocol, an honest garbler, say Pg uses the encoded output Y (such that De(Y, d) 6=
⊥) received from evaluator Pv to compute output only if Pv /∈ Cg and (Pv, P1), (Pv, P2) /∈ Fg at the end of round
2. Correspondingly, if Cg = Fg = ∅, Pg would also send o to both the evaluators in round 3. This ensures that Y
corresponds to committed inputs as follows: Although Pv may be corrupt, however, Lemma 4.2 implies that Pv
did not misbehave in InputCommitv at all and has committed a unique input in Round 1. As a result, Pv receives
encoded inputs for committed shares and authenticity ensures that Y corresponds to the committed inputs of all
the parties. Note that authenticity of the garbling scheme is preserved since Pv receives only the preimage-resistant
hash of the decoding information.

Theorem 5.5. Protocol g4PC4 is correct.

Proof. We argue that the output y computed corresponds to the unique inputs committed by each Pi (i ∈ [4])
during InputCommiti. It follows from Lemmas 4.1, 4.3 that a corrupt party is forced to commit to its input and
the honest parties’ inputs are established as the committed inputs with public commitments by the end of parallel
executions of InputCommit. According to the protocol, output computation is done by one of the following cases:
(a) by decoding the encoded output Y sent by an evaluator (b) by Oα received from Pα on being elected as a TTP.
(c) by receiving (y,TTP) from a party Pβ when (TTP, β) was received in round 3. Case (a) follows directly from
Lemma 5.4 and 5.3. In case (b), since the TTP is honest, the strong binding property of commitments established
by Round 2 ensures the correctness of output computed by the TTP, irrespective of whether Pα is honest or not.
For case (c), the chosen TTP, Pβ , is honest, irrespective of whether the message (TTP, β) is received from a
corrupt or an honest party. While the former follows from the fact that a corrupt party does not have a corrupt
companion to elect, the latter follows from Lemma 5.2 and 5.1. Now the correctness follows in case (c) from case
(b).

While the sketch of proof of security appears in Appendix E (the full proof and intuition for achieving guaran-
teed output delivery is similar to our 5-round 4PC), we state the theorem below.

Theorem 5.6. Assuming one-way permutations, our protocol g4PC4 securely realizes the functionalityFGOD (Fig.
11) against a malicious adversary that can corrupt at most one party.

5.3 Optimizations

The communication efficiency of our g4PC4 can be boosted similar to as described for f3PC in Section 3.2.
Additionally, computation of commitment on encoding information by a garbler wrt pp (for NICOM) sent by

20

each of the two evaluators can be avoided as follows: P3 alone chooses pp used for commitment on encoding
information and sends pp to all. The message from garblers can include pp, allowing P4 to check if the garblers
and P3 are in agreement with respect to pp or populate the conflict set accordingly based on mismatch.

6 3PC with Guaranteed Output Delivery

In this section, we describe our efficient 3PC protocol, g3PC with guaranteed output delivery. This protocol
necessarily requires a broadcast channel [CHOR16]. In accordance with our goal of computation and communi-
cation efficiency, the broadcast communication complexity of our (optimized) protocol is independent of circuit
size. In terms of communication over private channels, g3PC involves a single GC and is therefore comparable to
[MRZ15].

Starting with the protocol of [MRZ15], the main idea of our protocol is centered around the following neat
trick. In a situation where it is publicly known that a pair of parties is in conflict, it must be the case that one
among the two specific parties is corrupt. It follows that the third party is honest and therefore entitled to act as
the trusted-third party (TTP). Suppose such a TTP is established during the protocol, the other parties send their
inputs on clear to this TTP who computes the function on direct inputs and forwards the output to all. Banking on
this intuition, we now proceed to give a high-level description of our protocol.

In the first round, similar to f3PC, P3 shares his input while the garblers agree upon common randomness. In
round 2, garblers broadcast the common message computed using shared randomness, namely the GC and com-
mitment on encoding information. Additionally, the garblers privately send the opening of relevant commitments,
namely corresponding to their own input and the input share of P3 held by them. If the broadcast messages are
identical and openings are valid then P3 can begin evaluating the GC. However, if the broadcast messages mis-
match, it can be publicly inferred that P1, P2 are in conflict and therefore P3 is eligible to enact the role of TTP.
We extend this idea to the case when broadcast messages are identical but P3 locally identifies one of the garblers
to be corrupt. In this scenario, say P3 identified P2 to be corrupt. Then, P3 makes this conflict public in Round 3
via broadcast. Consequently P1 is entitled to act as the TTP. The protocol ensures that if P3 fails to evaluate the
GC, a TTP is established at most by Round 3. If the TTP is established, the parties send their inputs on clear to
the TTP in Round 4 who computes and subsequently sends the output to all in the final round of the protocol.

An issue that surfaces in the above approach is that a corrupt P3 who has successfully evaluated the GC with
respect to his input x3 shared in the round 1, might pretend to be in conflict with one of the garblers, say P2. Now
P1 would be established as the TTP. P3 can now send x′3 6= x3 to P1 and get the output corresponding to x′3
as well. This violates security since P3 gets outputs corresponding to his two chosen inputs. To handle this, we
adopt the following strategy: The evaluator P3 broadcasts the commitment on his shares in Round 1 and sends the
openings of shares to the respective garbler. A garbler who receives invalid opening is allowed to publicly raise a
conflict with P3 in Round 2, establishing his co-garbler as the TTP. If valid openings are issued, P3 is committed
to each of his shares and therefore his input. The binding property of commitment ensures that the TTP computes
output with respect to P3’s shares distributed in Round 1. Tying up the loose ends, if P3 is identified to be corrupt
by both garblers, then P1 is chosen to be the TTP by default.

In a nutshell, P3 acts as TTP only when common message broadcast by garblers are not identical. Contrarily,
a garbler, say P1, is TTP when either P3 locally identified P2 to be corrupt at the end of Round 2 (due to invalid
opening of commitment on encoded inputs) or P2 found P3 to be corrupt at the end of Round 1 (inconsistent
opening of commitment of P3’s input share sent to P2). Also, P1 is chosen as TTP by default when both garblers
identify P3 to be corrupt. The formal description of the protocol appears in Figures 7, 8 and its proofs appear
below. Our proposed optimizations which are incorporated in our implementation are given below.

6.1 Correctness and security

Below we give the proof of correctness.

Lemma 6.1. A pair of honest parties can never be in conflict.

21

Figure 7: Protocol g3PC

Inputs: Party Pα has xα for α ∈ [3].

Common Inputs: Same as f3PC.

Output: y = C(x1, x2, x3, x4) = f(x1, x2, x3 ⊕ x4)

Primitives: A garbling scheme G = (Gb,En,Ev,De) that is correct, private and authentic with the property
of soft decoding, a NICOM (Com,Open) and a PRG G.

Round 1:

– P1 chooses random seed s ∈R {0, 1}κ for G and sends s to P2.

– P3 picks x31, x32 ∈R {0, 1}` with x3 = x31 ⊕ x32. P3 samples pp for NICOM and generates (c31, o31)←
Com(pp, x31), (c32, o32)← Com(pp, x32), broadcasts {pp, c31, c32} and sends (x31, o31), (x32, o32) to
P1, P2 respectively.

Round 2:

– Pi(i ∈ [2]) broadcasts (Conflict, P3) if Open(c3i, o3i) 6= x3i. Else, it does the following:

◦ Compute GC (C, e, d) ← Gb(1κ, C) using randomness from G(s). Assume {e0
α, e

1
α}α∈[`],

{e0
`+α, e

1
`+α}α∈[`], {e0

2`+α, e
1
2`+α}α∈[2`] correspond to the encoding information for the input of

P1, P2 and the shares of P3 respectively (w.l.o.g).
◦ Compute permutation strings p1, p2 ∈R {0, 1}` for the garblers’ input wires and generate com-

mitments to e using randomness from G(s). For b ∈ {0, 1}, (cbα, o
b
α) ← Com(pp, e

pα1⊕b
α),

(cb`+α, o
b
`+α) ← Com(pp, e

pα2⊕b
`+α) for α ∈ [`] and (cb2`+α, o

b
2`+α) ← Com(pp, eb2`+α) for α ∈ [2`].

Set Bi =
{
C, {cbα}α∈[4`],b∈{0,1}

}
. Broadcast Bi.

◦ P1 computes m1 = x1 ⊕ p1 and sends to P3: the openings of the commitments corresponding to
(x1, x31) i.e {om

α
1

α , o
xα31
2`+α}α∈[`] and m1. Similarly, P2 computes m2 = x2 ⊕ p2 and sends to P3:

the openings of the commitments corresponding to (x2, x32) i.e {om
α
2

`+α, o
xα32
3`+α}α∈[`] and m2.

– Every party sets TTP as follows. If exactly one Pi(i ∈ [2]) broadcasts (Conflict, P3) in Round 2, set
TTP = P[2]\i. If both raise conflict, set TTP = P1. If B1 6= B2, set TTP = P3.

Round 3: If TTP = ∅, P3 does the following:
◦ Assign Xα

1 = Open(pp, c
mα1
α , o

mα1
α) and Xα

31 = Open(pp, c
xα31
2`+α, o

xα31
2`+α) for α ∈ [`]. Broadcast

(Conflict, P1) if Open results in ⊥
◦ Assign Xα

2 = Open(pp, c
mα2
`+α, o

mα2
`+α) and Xα

32 = Open(pp, c
xα32
3`+α, o

xα32
3`+α) for α ∈ [`]. Broadcast

(Conflict, P2) if Open results in ⊥
◦ Else, set X = X1|X2|X31|X32, run Y ← Ev(C,X) and y ← sDe(Y). Broadcast Y.

If P3 broadcasts (Conflict, Pi), then set TTP = P[2]\i. If TTP = ∅ and P3 broadcasts Y, Pi (i ∈ [2]) does
the following: Execute y ← De(Y, d). If y = ⊥, set TTP = P1.

Round 4: If TTP 6= ∅: Pi (i ∈ [2]) sends xi and o3i (if valid) to TTP. P3 sends o31, o32 to TTP.

22

Figure 8: Protocol g3PC (contd)

Round 5: TTP computes x3i = Open(c3i, o3i) using openings sent by P1, P2 (if available), else uses the
openings sent by P3. If valid opening is not received, a default value is used for shares of x3. Compute
y = f(x1, x2, x31 ⊕ x32) and send y to others.
Every party computes output as follows. If y = ⊥ and received y′ from TTP, set y = y′.

Proof. It is easy to note that a pair of honest garblers will never be in conflict since the message B broadcast by
them in Round 2 must be identical. Next, a garbler, say P1 and evaluator P3 would be in conflict only if one of
the following hold: (a) The commitment and opening of the input share sent by P3 to P1 is inconsistent (b) P1’s
opening of committed encoded input of garbled circuit sent to P3 fails. It is easy to check that the above cannot
occur for honest P1, P3.

Lemma 6.2. An honest evaluator either evaluates the GC successfully at the end of round 2 or a TTP is established
latest by Round 3.

Proof. Consider an honest P3. If a garbler raises a conflict with P3 in Round 2, then his co-garbler is established
as the TTP. Else, if P3 receives broadcast and pairwise messages as per the protocol in round 2, then P3 evaluates
the circuit. On the other hand, if P3 discovers that the broadcast messages sent by the garblers do not match, then
P3 is unanimously established as the TTP. Finally, in case P3 locally identifies one of the garblers to be corrupt
due to inconsistent/invalid pairwise message received in round 2, he raises a conflict, establishing the other garbler
as the TTP. Thus the lemma holds.

Theorem 6.3. The protocol g3PC is correct i.e output obtained by the parties corresponds to a valid computation
performed on unique set of inputs.

Proof. We analyze the cases based on whether TTP is established during the protocol or not. If not, since none
of the garblers raised a conflict with P3 in Round 2, each of them must have a valid opening corresponding to
P3’s public commitment of its input shares. In such a case, these shares constitute P3’s committed input. With
respect to garblers, input labels sent by them in round 2 corresponding to their own input establish their committed
inputs. It now follows from correctness of garbling and authenticity (potentially corrupt P3 could not have forged
Y) that the output obtained by all corresponds to the evaluation of garbled circuit on above mentioned committed
inputs. We now consider the case when TTP is established. Here, the inputs sent by garblers on clear to the
TTP constitute their committed inputs. The committed input of P3 depends on whether the TTP is established
during or after Round 2. In the former where none of the garblers raised conflict in Round 2, it is clear from the
protocol description that P3’s committed input is based on its shares distributed in Round 1 (enforced by binding
of commitment on input shares). Else, the committed input of P3 is considered as the one sent on clear to the TTP.
Finally, the correctness of output computation based on committed inputs follows from the fact that the TTP must
be honest (Lemma 6.1 shows that the pair of parties in conflict must involve the corrupt).

While the full proof of security appear in Appendix F, the intuition on why the protocol achieves guaranteed
output delivery and the theorem statement follow. Based on whether the evaluator is honest or corrupt, guaranteed
output delivery is argued below. By Lemma 6.2, an honest evaluator either identifies a TTP or evaluates the GC
successfully at the end of round 2. If evaluation is performed, then an honest evaluator would obtain output by
soft decoding and enable the garblers to get output by sending the encoded output. If TTP is identified by an
honest evaluator all parties accept the output sent by the TTP. Next, consider a corrupt evaluator. In case a corrupt
evaluator does not communicate the encoded output to the garblers or sends an invalid Y, then the garblers would
unanimously identify the evaluator to be corrupt. Then, P1 would be chosen as a TTP and eventually each party
receives the output through the computation performed by TTP. Even in the case when a corrupt evaluator falsely
raises a conflict, the TTP chosen by him must be honest and each party would obtain the output from the TTP.

23

Theorem 6.4. Assuming one-way functions, protocol g3PC securely realizes the functionality FGOD (Fig. 11)
against a malicious adversary that corrupts at most one party.

6.2 Optimizations

We propose several optimizations for g3PC to reduce its communication. Firstly, since broadcast communication is
considered more expensive than private communication, a broadcast of a message, saym is replaced with broadcast
of H′(m), where H′ denotes a collision-resistant hash while the message m is sent privately over point-to-point
channel to the receiver. Besides, the trick described for fair3PC (Section 3.2) can be applied where the common
message of garblers B is divided into equal halves B = B1||B2; each garbler sends one part on clear and the other
in compressed form. Second, we elaborate on the optimization applied to broadcast of Y in round 3 by P3: P3

broadcasts H′(Y) where Y denotes the encoded output comprising of concatenation of the output label of each
output wire obtained by GC evaluation. Additionally, P3 sends Y privately to each of the garblers enabling them
to compute the hash of the message received privately and check against the broadcast message to conclude its
consistency. Thus, the optimization applied on broadcast of B and Y makes broadcast independent of circuit size.
Finally, we point that the description of protocol in Figures 7, 8 includes certain redundancies such as a party
established as TTP sending message to itself and the protocol proceeding till the last round even in cases where
termination can occur earlier. This was done only to keep the protocol description simple and facilitate better
understanding. In the implementation, the redundant messages are avoided. Further, when TTP is established in
round 2 itself, round 3 can be skipped and the last two rounds executed, enabling the protocol to terminate within
4 rounds.

7 Experimental results

In this section, we provide empirical results for our protocols. We use the circuits of AES-128, SHA-256 and MD5
as benchmarks. We start with the description of the setup environment, both software and hardware.

Hardware Details We have experimented both in LAN and WAN setting. The specifications of our systems used
for LAN include 32GB RAM; an Intel Core i7-7700-4690 octa-core CPU with 3.6 GHz processing speed. The
hardware supports AES-NI instructions. For WAN setting, we use Microsoft Azure Cloud Services with machines
located in West USA, East Asia and India. Our 3PC protocols have exactly one party at each location while for
4PC results, two of the four parties are located in East Asia and one party each in West USA and India. We
used machines with 1.75GB RAM and single core processor. The bandwidth is limited to 100Mbps for the WAN
network between the machines in West USA and East Asia and it is limited to 8Mbps from the machine in India.
Before running our experiments, we measured sample round trip delay between India-West USA, India-East Asia
and East Asia-West USA for communication of one byte of data. These values average to 0.42 s, 0.14 s and 0.18 s
respectively.

Software Details For efficient implementation, the garbling technique used throughout is that of Half Gates
[ZRE15]. The code is built on libgarble library whose starting point is the JustGarble library, both licensed under
GNU GPL License. The libgarble library operates with AES-NI support from hardware. The operating system
used for LAN and WAN results are Ubuntu 17.10 (64-bit) and Ubuntu 16.04 (64-bit) respectively. Our code
follows the standards of C++11. We make use of openSSL 1.0.2g library for commitments. We use SHA-256
to implement a commitment scheme. We have benchmarked our results with 3 circuits AES, SHA-256, MD5.
The circuit description is obtained as a simple text file (.txt) for implementation purposes. Communication is
done with the help of sockets. We instantiate multiple threads to facilitate communication between the garblers
and evaluator. The garblers also share a connection between each other to share the randomness. All our results
indicate the average values over a set of 20 runs of the experiments.

24

Table 1: Computation time (CT), Runtime for LAN (LAN), WAN (WAN) and Communication (CC) for the 3PC of [MRZ15].

Circuit CT(ms) LAN(ms) WAN(s) CC(KB)
P1/P2 P3 P1/P2 P3 P1/P2 P3 (s) P1/P2 P3

AES 0.96 0.72 1.19 0.86 0.62 1.04 153.2 2.1
SHA-256 11.36 9.4 13.3 10.7 1.05 1.65 3073.6 4.5
MD5 4.5 3.0 4.9 3.9 0.83 1.24 1036.4 2.5

Table 2: Computation time (CT), Runtime for LAN (LAN), WAN (WAN) and Communication (CC) for f3PC protocol.

Circuit CT(ms) LAN (ms) WAN (s) CC(KB)
P1/P2 P3 P1/P2 P3 P1/P2 P3 P1/P2 P3

AES 1.04 0.74 1.17 1.0 0.83 1.27 161.55 2.27
SHA-256 11.55 9.5 13.6 12.5 1.65 1.97 3089.7 4.5
MD5 4.61 3.05 4.96 4.32 1.39 1.54 1044.93 2.52

Table 3: Computation time (CT), Runtime for LAN (LAN), WAN (WAN) and Communication (CC) for g4PC protocol.

Circuit CT(ms) LAN(ms) WAN(s) CC(KB)
P1/P2 P3 P4 P1/P2 P3 P4 P1/P2 P3 P4 P1/P2 P3 P4

AES 0.95 0.8 0.04 1.21 0.96 0.27 0.78 1.08 0.47 163.3 8.1 2.1
SHA-256 11.3 9.72 0.09 13.67 12.06 0.54 1.86 2.0 0.54 3091.9 14.1 2.1
MD5 4.42 3.03 0.07 5.05 4.1 0.43 1.24 1.66 0.52 1046.8 8.13 2.1

Table 4: Computation time (CT), Runtime for LAN (LAN) and Communication (CC) both over private (pp) and broadcast (bc) channels
for g3PC protocol.

Circuit CT(ms) LAN(ms) pp CC(KB) bc CC(KB)
P1/P2 P3 P1/P2 P3 P1/P2 P3 P1/P2 P3

AES 1.12 0.9 2.62 2.58 153.36 2.23 0.032 0.06
SHA-256 11.63 9.76 16.25 13.8 3074.16 4.62 0.032 0.06
MD5 4.73 3.22 7.18 5.88 1036.66 2.51 0.032 0.06

Comparison We compare our results with the related ones for the high-latency networks (such as the Internet)
in the honest majority setting. The most relevant is that of [MRZ15] and we elaborate on the comparison with
it below. With regard to the 4-party protocol of [IKKP15], it is expected to lag in performance compared to
g4PC since its computation and communication is significantly higher. As per our calculations, the overhead
of transmitting 12 GCs instead of 1 is more than the efficiency gain of having 2 rounds instead of 5, even with
bandwidth of 100Mbps for our benchmark circuits of SHA-256 and MD5. In case of limited bandwidth of around
8Mbps, our protocol would perform better than that of [IKKP15] for all our benchmark circuits including AES.
The difference in performance will be even more significant for larger circuits or when multiple MPC executions
are run in parallel. Another work close to our setting is that of [CGMV17] that explores 5PC in the honest majority
setting. Similar to [MRZ15], it only provides selective abort. It uses distributed garbling and requires 8 rounds. Our
3 party and 4 party protocols perform better than the protocol of [CGMV17], in spite of achieving better security
notions of fairness and guaranteed output delivery. The total communication for any of our protocol constitutes
only 1 - 3.5 % of the total communication of their implementation in the malicious setting and 3 - 6 % of the total
communication of their implementation in the semi-honest setting.

For comparing with [MRZ15], four parameters are considered– computation time (CT), communication cost
(CC) and runtime both in LAN (LAN) and WAN (WAN). The LAN and WAN runtime are computed by adding
the computation time and the corresponding network time. Noting that the roles of the parties in the protocols are
asymmetric, we show the computation time, LAN and WAN runtime and communication cost separately for the
parties with distinct roles. The trend of WAN runtime across the tables indicates the influence of round complexity
and the location of servers. For a fair comparison with our protocols, we instantiate the protocol of [MRZ15] in
our environment and the results appear in Table 1. The results for our 3PC with fairness, 4PC (5 rounds) and 3PC
with guaranteed output delivery appear in Tables 2, 3 and 4 respectively. With respect to our 4-round 4PC with
god, in the worst case run, we save a round at the expense of one garbled circuit over our 5-round 4PC which

25

Table 5: The average computation time (aCT), runtime in LAN (aLAN), WAN (aWAN) and communication (aCC) per party for
[MRZ15] and our protocols. The figures in bracket indicate the increase for the worst case 5-round runs of g4PC and g3PC.

Circuit
aCT(ms) aLAN(ms) aWAN(s) aCC(KB)

[MRZ15] f3PC g4PC g3PC [MRZ15] f3PC g4PC g3PC [MRZ15] f3PC g4PC [MRZ15] f3PC g4PC g3PC

AES 0.88 0.94 0.69 1.04 1.08 1.11 0.91 2.60 0.76 0.97 0.78 (+.49) 102.83 108.46 84.2 (+.01) 103.02 (+.02)
SHA-256 10.70 10.87 8.1 11.01 12.43 13.23 9.98 15.43 1.25 1.75 1.56 (+.52) 2050.56 2061.3 1550 (+.1) 2051.02 (+.08)
MD5 4.0 4.09 2.98 4.22 4.56 4.74 3.65 6.74 0.96 1.44 1.16 (+.49) 691.76 697.46 525.97 (+.03) 691.98 (+.09)

amounts to 72 KB− 1530 KB for the benchmark circuits. For the 3PC with guaranteed output delivery, we provide
implementation result only for LAN setting where the broadcast channel is emulated using an UDP physical
broadcast. We calculate separately the cost of communication over private channels and broadcast channel and
demonstrate that the latter communication is independent of the circuit size. Our protocols providing guaranteed
output delivery run in 3 rounds when the adversary does not strike. The round complexity stretches to 5 in the worst
case for our 5-round protocols. Tables 3-4 show performance for the 3-round runs. With minimal communication
and computation in the last two rounds, the overhead shows up mainly in the WAN runtime by a factor of half a
second and communication by less than 1 KB.

Figure 9: Performance Comparison (avg/party) of various Protocols for fairness and guaranteed output delivery. (5) denotes worst case
execution of the protocol in consideration.

(a) LAN Runtime (ms)

1 3 5
0

5

10

15

Type of Circuit

[MRZ15]
f3PC

g4PC

g3PC

(b) WAN Runtime (s)

1 3 5

1

1.5

2

Type of Circuit

[MRZ15]
f3PC

g4PC

g4PC(5)

(c) Data(MB)

1 3 5

0

0.5

1

1.5

2

Type of Circuit

[MRZ15]
f3PC

g4PC

g4PC(5)
g3PC

g3PC(5)

The x-axes indicate the type of the circuit used for evaluation 1-AES, 3-MD5, 5-SHA-256. The y-axis indicates Runtime in ms, s for
graphs (a), (b) respectively and communication data in MB for (c).

For a unified comparison with [MRZ15], we compute the average of the above parameters per party for all the
protocols and the results appear in Table 5. In terms of average computation time, LAN runtime and communica-
tion cost our 4PC turns out to be the winner inspite of providing the strongest notion of security. The improvement
per party comes from the fact that the costs of this protocol are almost similar to that of 3PC protocols inspite of
having one extra party in the system. It closely trails [MRZ15] in terms of WAN runtime due to the additional com-
munication involved in the InputCommit routine and the delayed opening of the committed decoding information
both of which are not present in the protocol of [MRZ15]. Our 3PC with fairness is almost on par with [MRZ15]
and yet achieves a stronger security notion. The extra overhead over [MRZ15] occurs primarily as a consequence
of commitments to the decoding information and the postponed opening of decoding information by the garblers in
order to achieve fairness. However, in [MRZ15], the use of soft-decoding avoided the need for additional commu-
nication to deliver the decoding information. The variation in the communication overhead over the circuits reflects

26

the fact that the output size and thus the size of information (openings of the commitments) related to decoding
information are different over the circuits. For example, the SHA-256 has 256 bit output, whereas the output size
of AES is half of it. Therefore, the communication overhead for SHA-256 for our protocol is almost double that of
AES, namely 10.74 KB vs. 5.63 KB. The WAN runtime overhead reflects the increased round requirement of our
fair protocol. The communication overhead of our 3PC with guaranteed output delivery is almost nominal over
[MRZ15] as both protocols use of soft-decoding. In Table 5, we show in bracket the increase for the 5-round runs
of our 4PC (5-round) and 3PC protocols providing guaranteed output delivery. The performance of our protocols
compared to that of [MRZ15] is plotted in Figure. 9.

Acknowledgement: Arpita Patra would like to acknowledge financial support by SERB Women Excellence Award
from Science and Engineering Research Board of India.

References

[ABF+16] Toshinori Araki, Assaf Barak, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. DEMO:
high-throughput secure three-party computation of kerberos ticket generation. In ACM CCS, pages
1841–1843, 2016.

[ABF+17] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel Nof, Kazuma
Ohara, Adi Watzman, and Or Weinstein. Optimized honest-majority MPC for malicious adversaries -
breaking the 1 billion-gate per second barrier. In IEEE Symposium on Security and Privacy, SP, pages
843–862, 2017.

[AFL+16] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-throughput
semi-honest secure three-party computation with an honest majority. In ACM CCS, 2016.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and Daniel
Wichs. Multiparty computation with low communication, computation and interaction via threshold
FHE. In EUROCRYPT, 2012.

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure computation
based on cut-and-choose. In EUROCRYPT, 2014.

[BCD+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler, Thomas P. Jakobsen, Mikkel
Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter, Michael I.
Schwartzbach, and Tomas Toft. Secure multiparty computation goes live. In FC, 2009.

[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption
and multiparty computation. In EUROCRYPT, 2011.

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO, 1991.

[BFO12] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky. Near-linear unconditionally-secure multiparty
computation with a dishonest minority. In CRYPTO, 2012.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In STOC, 1988.

[BH07] Zuzana Beerliová-Trubíniová and Martin Hirt. Simple and efficient perfectly-secure asynchronous
MPC. In ASIACRYPT, 2007.

[BH08] Zuzana Beerliová-Trubíniová and Martin Hirt. Perfectly-secure MPC with linear communication
complexity. In TCC, 2008.

27

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In CCS, 2012.

[BLO16] Aner Ben-Efraim, Yehuda Lindell, and Eran Omri. Optimizing semi-honest secure multiparty com-
putation for the internet. IACR Cryptology ePrint Archive, 2016:1066, 2016.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast privacy-preserving
computations. In Computer Security- ESORICS, 2008.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols (ex-
tended abstract). In STOC, 1990.

[BO17] Aner Ben-Efraim and Eran Omri. Concrete efficiency improvements for multiparty garbling with an
honest majority. In LATINCRYPT, 2017.

[BTW12] Dan Bogdanov, Riivo Talviste, and Jan Willemson. Deploying secure multi-party computation for
financial data analysis - (short paper). In FC, 2012.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptology, 13(1),
2000.

[CDG87] David Chaum, Ivan Damgård, and Jeroen Graaf. Multiparty computations ensuring privacy of each
party’s input and correctness of the result. In CRYPTO, 1987.

[CDI05] Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share conversion, pseudorandom secret-sharing and
applications to secure computation. In Joe Kilian, editor, Theory of Cryptography. Springer Berlin
Heidelberg, 2005.

[CGMV17] Nishanth Chandran, Juan A. Garay, Payman Mohassel, and Satyanarayana Vusirikala. Efficient,
constant-round and actively secure MPC: beyond the three-party case. In ACM CCS, 2017.

[CHOR16] Ran Cohen, Iftach Haitner, Eran Omri, and Lior Rotem. Characterization of secure multiparty com-
putation without broadcast. In TCC, 2016.

[CIO98] Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky. Non-interactive and non-malleable com-
mitment. In STOC, 1998.

[CKMZ14] Seung Geol Choi, Jonathan Katz, Alex J. Malozemoff, and Vassilis Zikas. Efficient three-party com-
putation from cut-and-choose. In CRYPTO, 2014.

[CL14] Ran Cohen and Yehuda Lindell. Fairness versus guaranteed output delivery in secure multiparty
computation. In ASIACRYPT, 2014.

[Cle86] Richard Cleve. Limits on the security of coin flips when half the processors are faulty (extended
abstract). In STOC, 1986.

[DN07] Ivan Damgård and Jesper Buus Nielsen. Scalable and unconditionally secure multiparty computation.
In CRYPTO, 2007.

[DO10] Ivan Damgård and Claudio Orlandi. Multiparty computation for dishonest majority: From passive to
active security at low cost. In CRYPTO, 2010.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from
somewhat homomorphic encryption. In CRYPTO, 2012.

[FLNW17] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-throughput secure three-party
computation for malicious adversaries and an honest majority. In EUROCRYPT, 2017.

28

[Gei07] Martin Geisler. Viff: Virtual ideal functionality framework, 2007.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure MPC from indis-
tinguishability obfuscation. In TCC, 2014.

[GLNP15] Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling of circuits under standard
assumptions. In ACM CCS, 2015.

[GLS15] S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness and guarantee of
output delivery. In CRYPTO, 2015.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In STOC, 1987.

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Techniques. Cambridge Uni-
versity Press, 2001.

[GRW18] S. Dov Gordon, Samuel Ranellucci, and Xiao Wang. Secure computation with low communication
from cross-checking. IACR Cryptology ePrint Archive, 2018:216, 2018.

[IKKP15] Yuval Ishai, Ranjit Kumaresan, Eyal Kushilevitz, and Anat Paskin-Cherniavsky. Secure computation
with minimal interaction, revisited. In CRYPTO, 2015.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer -
efficiently. In CRYPTO, 2008.

[ISN89] Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing scheme realizing general access struc-
ture. Electronics and Communications in Japan (Part III: Fundamental Electronic Science), 1989.

[JKO13] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently. In CCS, 2013.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and applica-
tions. In ICALP, 2008.

[LADM14] John Launchbury, Dave Archer, Thomas DuBuisson, and Eric Mertens. Application-scale secure
multiparty computation. In ESOP, 2014.

[Lin13] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert adversaries. In
CRYPTO, 2013.

[Lin17] Yehuda Lindell. How to simulate it - A tutorial on the simulation proof technique. In Tutorials on the
Foundations of Cryptography., pages 277–346. 2017.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in the
presence of malicious adversaries. In EUROCRYPT, 2007.

[LP12] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose oblivious trans-
fer. J. Cryptology, 25(4):680–722, 2012.

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant round multi-
party computation combining BMR and SPDZ. In CRYPTO, 2015.

[MRSV17] Eleftheria Makri, Dragos Rotaru, Nigel P. Smart, and Frederik Vercauteren. Epic: Efficient private
image classification (or: Learning from the masters). Cryptology ePrint Archive, Report 2017/1190,
2017. https://eprint.iacr.org/2017/1190.

29

https://eprint.iacr.org/2017/1190

[MRZ15] Payman Mohassel, Mike Rosulek, and Ye Zhang. Fast and secure three-party computation: The
garbled circuit approach. In ACM CCS, 2015.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2), 1991.

[NO16] Jesper Buus Nielsen and Claudio Orlandi. Cross and clean: Amortized garbled circuits with constant
overhead. In TCC, 2016.

[PR18] Arpita Patra and Divya Ravi. On the exact round complexity of secure three-party computation. IACR
Cryptology ePrint Archive, 2018:481, 2018.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority
(extended abstract). In STOC, 1989.

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics: Definitions, implica-
tions, and separations for preimage resistance, second-preimage resistance, and collision resistance.
In FSE, 2004.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS, 1982.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data transfer in
garbled circuits using half gates. In EUROCRYPT, 2015.

A The Security Model

We prove the security of our protocols based on the standard real/ideal world paradigm. Essentially, security of a
protocol is analyzed by comparing an adversary’s behaviour in a real execution to that of an ideal execution that is
considered secure by definition (in the presence of an incorruptible trusted party). In an ideal execution, each party

Figure 10: Ideal Functionality FFair

Each honest party Pi (i ∈ [3]) sends its input xi to the functionality. Corrupted parties may send the trusted
party arbitrary inputs as instructed by the adversary. When sending the inputs to the trusted party, the adversary
is allowed to send a special abort command as well.
Input: On message (Input, xi) from a party Pi, do the following: if (Input, ∗) message was received from Pi,
then ignore. Otherwise record x′i = xi internally. If x′i is outside of the domain for Pi, consider x′i = abort.
Output: If there exists i ∈ [3] such that x′i = abort, send (Output,⊥) to all the parties. Else, send
(Output, y) to party Pi for every i ∈ [3], where y = f(x′1, x

′
2, x
′
3).

Figure 11: Ideal Functionality FGOD

Each honest party Pi sends its input xi to the functionality. Corrupted parties may send the trusted party
arbitrary inputs as instructed by the adversary.
Input: On message (Input, xi) from a party Pi (i ∈ [3]), do the following: if (Input, ∗) message was received
from Pi, then ignore. Otherwise record x′i = xi internally. If x′i is outside of the domain for Pi, set x′i to be
some predetermined default value.
Output: Compute y = f(x′1, x

′
2, x
′
3) and send (Output, y) to party Pi for every i ∈ [3].

30

sends its input to the trusted party over a perfectly secure channel, the trusted party computes the function based on
these inputs and sends to each party its respective output. Informally, a protocol is secure if whatever an adversary
can do in the real protocol (where no trusted party exists) can be done in the above described ideal computation.
We refer to [Can00, Gol01, Lin17, CL14] for further details regarding the security model.

The “ideal" world execution involves a set of parties P with |P| = 3 or 4 (corresponding to 3PC / 4PC), an
ideal adversary S who may corrupt one of the parties, and a functionality F . The “real" world execution involves
the PPT set of parties P , and a real world adversaryAwho may corrupt one of the parties. We let IDEALF ,S(1κ, z)
denote the output pair of the honest parties and the ideal-world adversary S from the ideal execution with respect to
the security parameter 1κ and auxiliary input z. Similarly, let REALΠ,A(1κ, z) denote the output pair of the honest
parties and the adversaryA from the real execution with respect to the security parameter 1κ and auxiliary input z.

Definition A.1. For n ∈ N, let F be a functionality and let Π be a 3/4-party protocol. We say that Π securely
realizesF if for every PPT real world adversaryA, there exists a PPT ideal world adversary S, corrupting the same
parties, such that the following two distributions are computationally indistinguishable: IDEALF ,S

c
≈ REALΠ,A.

Target Functionalities. Taking motivation from [CL14, GLS15], we define two ideal functionalitiesFFair,FGOD

in Figures 10, 11 for secure 3PC of a function f with fairness and guaranteed output delivery respectively. The
functionalities can be defined similarly for 4PC.

B Primitives

B.1 Properties of Garbling Scheme

Definition B.1. (Correctness) A garbling scheme G is correct if for all input lengths n ≤ poly(κ), circuits C :
{0, 1}n → {0, 1}m and inputs x ∈ {0, 1}n, the following probability is negligible in κ:

Pr
(
De(Ev(C,En(e, x)), d) 6= C(x) : (C, e, d)← Gb(1κ, C)

)
.

Definition B.2. (Privacy) A garbling scheme G is private if for all input lengths n ≤ poly(κ), circuits C :
{0, 1}n → {0, 1}m, there exists a PPT simulator Spriv such that for all inputs x ∈ {0, 1}n, for all probabilistic
polynomial-time adversaries A, the following two distributions are computationally indistinguishable:

• REAL(C, x) : run (C, e, d)← Gb(1κ, C), and output (C,En(x, e), d).

• IDEALSpriv
(C,C(x)): output (C′,X, d′)← Spriv(1κ, C, C(x))

Definition B.3. (Authenticity) A garbling scheme G is authentic if for all input lengths n ≤ poly(κ), circuits
C : {0, 1}n → {0, 1}m, inputs x ∈ {0, 1}n, and all PPT adversaries A, the following probability is negligible in
κ:

Pr

(
Ŷ 6= Ev(C,X)

∧De(Ŷ, d) 6= ⊥
:
X = En(x, e), (C, e, d)← Gb(1κ, C)

Ŷ ← A(C,X)

)
.

B.2 Non-Interactive Commitment Schemes (NICOM)

Properties

– Correctness: For all pp, x ∈M and r ∈ R, if (c, o)← Com(x; r) then Open(c, o) = x.

– Binding: For all PPT adversariesA, it is with negligible probability (over uniform choice of pp and the random
coins ofA) thatA(pp) outputs (c, o, o′) such that Open(c, o) 6= Open(c, o′) and⊥ /∈ {Open(c, o),Open(c, o′)}

– Hiding: For all PPT adversaries A, all pp, and all x, x′ ∈M, the following difference is negligible:∣∣Pr(c,o)←Com(x)[A(c) = 1]− Pr(c,o)←Com(x′)[A(c) = 1]
∣∣

31

We use a NICOM with the above properties for our 3-party protocols. The NICOM (sCom, sOpen) with strong
binding is used in our 4-party protocols. It has the same properties except that binding is defined over all pp (not
just uniform choice of pp).

Instantiations Here we present two instantiations of NICOM borrowed from [MRZ15]. In the random oracle
model, the commitment is defined as (c, o) = (H(x||r), x||r) = Com(x; r). The pp can in fact be empty. We use
this commitment scheme for implementation purposes where the random oracle is realized via SHA-256.

In the standard model, we can use a multi-bit variant of Naor’s commitment [Nao91]. For n-bit messages,
we need a pp ∈R {0, 1}4n. Let G : {0, 1}n → {0, 1}4n be a pseudorandom generator, and let Pad : {0, 1}n →
{0, 1}4n be the function that prepends 3n zeroes to its argument. Then the commitment scheme is:

- Com(x; r): set C = G(r) + pp · Pad(x), with arithmetic in GF(24n); set o = (r, x).

- Open(c, o = (r, x)): return x if c = G(r) + pp · Pad(x); otherwise return ⊥.

Note that binding of the Naor-based instantiation holds over uniform choice of pp. However, the random-oracle
based instantiation satisfies the stronger binding property needed in our 4-party protocol. We now present an
instantiation of NICOM (sCom, sOpen) based on injective one-way function (alternately one-way permutation)
where binding holds even for adversarially chosen pp. In the standard model, we can use the following bit-
commitment scheme from any injective one-way function. Let f : {0, 1}n → {0, 1}n be a one-way permutation
and h : {0, 1}n → {0, 1} a hard core predicate for f(·). Then the commitment scheme for a single bit x is:

- sCom(x; r): set c = (f(r), x⊕ h(r)); where r ∈R {0, 1}n; set o = (r, x).

- sOpen(c, o = (r, x)): return x if c = (f(r), x⊕ h(r)); otherwise return ⊥.

B.3 Equivocal Non-interactive Commitment (eNICOM)

Properties

– Correctness For all (epp, t)← eGen(1κ), x ∈M and r ∈ R, if (c, o)← eCom(x; r) then eOpen(c, o) = x.

– Binding: For all (epp, t) ← eGen(1κ) and for all PPT adversaries A, it is with negligible probability that
A(epp) outputs (c, o, o′) such that eOpen(c, o) 6= eOpen(c, o′) and ⊥ /∈ {eOpen(c, o), eOpen(c, o′)}

– Hiding: For all (epp, t)← eGen(1κ) and for all PPT adversariesA, and all x, x′ ∈M, the following difference
is negligible:∣∣Pr(c,o)←eCom(x)[A(c, o) = 1]−Pr(c,o)←eCom(x′),o←Equiv(c,x,t)[A(c, o) = 1]

∣∣
Instantiations The folklore commitment scheme (c, o) = (H(x||r), x||r) = Com(x; r) in the random oracle
model supports equivocation via programmability of the random oracle. The (epp, t = (t1, t2)) can in fact be
empty. For empirical purposes alone, we rely on this random oracle based commitment scheme where the random
oracle is realized using SHA-256.

In the standard model, we present the equivocal bit commitment scheme of [CIO98], which is based on Naor’s
commitment scheme [Nao91] for single bit message. This scheme avoids the use of public-key primitives. Let
G : {0, 1}n → {0, 1}4n be a pseudorandom generator.

- eGen(1κ): set (epp, t1, t2) = ((σ,G(r0),G(r1)), r0, r1), where σ = G(r0)⊕ G(r1)

- eCom(x; r): set c = G(r) if x = 0, else c = G(r)⊕ σ; set o = (r, x)

- eOpen(c, o = (r, x)): return x if c = G(r)⊕ x · σ (where (·) denotes multiplication by constant); else return ⊥.

- Equiv(c = G(r0),⊥, x, (t1, t2)): return o = (r, x) where r = t1 if x = 0, else r = t2. Both t1, t2 are needed to
perform equivocation.

32

C Security Proof of f3PC Protocol

In this section, we provide a complete proof for the Theorem 3.2 that states the security of f3PC relative to its ideal
functionality.

Proof. We first explain the technicality behind using an equivocal commitment scheme (eNICOM) to commit to
the decoding information. In our protocol, the adversary can decide whether to let the computation succeed or fail
till round 3. This forces the simulator to make the same decision on adversary’s behalf at the end of round 3. As a
result, the simulator can get access to the output, only after simulation of round three is completed, at the earliest.
Therefore, the simulator needs to send the GC, encoding information and the commitment on decoding information
without access to the output, while acting on behalf of the honest parties. This is achieved by invoking oblivious
simulator of GC which neither takes the output, nor returns the decoding information. Consequently, the simulator
commits to a dummy value in round 2. Later if and when FFair is invoked and y is known, Sprv is invoked with the
same randomness which simply returns the decoding information that makes the fake GC returned by Sobv output
y. Correspondingly, the simulator equivocates to the correct decoding information that it obtains from the privacy
simulator in round 4. Equivocality is enabled via a trapdoor which in our protocol remains distributed between the
garblers. The public parameter for eNICOM is generated jointly by the garblers (Appendix B.3).

We now describe the simulator Sf3PC for the case when P1, P3 is corrupt. The case of P2 being corrupt is
symmetric to that of P1. Since the protocol may result either in output computation or abort based on the corrupt
party’s behaviour until Round 3, the privacy simulator Sprv (Ref. [BHR12]) that demands the output can only be
invoked only at the end of Round 3. Therefore, the oblivious simulator of the garbling scheme Sobv (Ref. [BHR12])
that does not need output is invoked first as a part of GC generation. We assume a garbling scheme such that Sobv
and Sprv when invoked on same randomness return the same (C,X) (Most known garbling schemes based on Yao
comply with this [Yao82, ZRE15, KS08]). Later, if the adversary behaves such that the protocol results in output
computation, the evaluator’s input is extracted, used to obtain output y via FFair and Sprv is invoked to retrieve
decoding information. Since this can be done earliest after Round 3, we use an equivocal commitment to explain
the commitment on decoding information sent in Round 2. The description of simulator S3

f3PC corresponding to P3

(evaluator) corrupt and S1
f3PC corresponding to P1 (garbler) corrupt is available in Figure 12 with R1/R2/R3/R4

indicating simulation for round 1, 2, 3 and 4 respectively.

Security against corrupt P ∗3 We now argue that IDEALFFair,S3f3PC
c
≈ REALf3PC,A, when A corrupts P3. The

views are shown to be indistinguishable via a series of intermediate hybrids.

– HYB0: Same as REALf3PC,A.

– HYB1: Same as HYB0, except that P1, P2 use uniform randomness rather than pseudo-randomness.

– HYB2: Same as HYB1, except that some of the commitments of input wire labels sent by P1, P2, which will
not be opened are replaced with commitments of dummy values. Specifically, these are the commitments with
indices 6= m1,m2, x31, x32.

– HYB3 : Same as HYB2, except the following:

- HYB3.1: When the execution results in abort, the GC is created as (C′,X) ← Sobv(1κ, C) and the commit-
ment to the decoding information is created for a dummy value.

- HYB3.2: When the execution results in output y, the GC is created as (C′,X, d′) ← Sprv(1κ, C, y), the
commitment c to the decoding information is created for a dummy value and later equivocated to d′ using o
computed via o← Equiv(c, d′, t1, t2).

– HYB4: Same as HYB3, except that the protocol results in abort if neither P1 nor P2 receive Y obtained upon GC
evaluation from P3.

33

Figure 12: Description of Sf3PC

(a) S3f3PC (P ∗
3 is corrupt)

R1 Receive (pp1, x31) and (pp2, x32) privately from P ∗3 on the behalf of P1, P2 respectively. If the input share
is not received / invalid, consider a default value.

R1 Send (h1, r1) and (h2, r2) to P3 according to the protocol on behalf of P1, P2 respectively.

R2 Use uniform randomness r on behalf of P1, P2 and run (C,X) ← Sobv(1κ, C), where Sobv is the
oblivious simulator of the garbling scheme.

R2 Choose m1,m2 at random. Let {cm
α
1

α , c
mα2
`+α, c

xα31
2`+α, c

xα32
3`+α}α∈[`] be commitments to the entries of X, cor-

responding to pp1. If pp1 6= pp2, the above is computed with respect to pp2 as well. Commit to dummy
values corresponding to other input wire labels. Using eCom (sample epp with trapdoor t1, t2), create
c as a commitment to a dummy value (Incase of Naor-based NICOM, set c to the specific commitment
supporting equivocation). Set Bi (i ∈ [2]) to include C, the set of commitments computed with respect
to ppi and c. Send Bi on behalf of Pi. Send ({om

α
1

α , o
xα31
2`+α}α∈[`],m1), ({om

α
2

`+α, o
xα32
3`+α}α∈[`],m2) on

behalf of P1, P2 to P ∗3 .

R4 Suppose on behalf of some Pi (i ∈ [2], j ∈ [2] \ i) received (Y = Ev(C,X), r′j) from P ∗3 in Round 3
such that H(r′j) = hj . Then invoke FFair with (Input, x3) on behalf of P ∗3 (where x3 is computed as
x3 = x31⊕x32) to obtain output y. Run (C,X, d′)← Spriv(1κ, C, y) where Spriv refers to the privacy
simulator of the garbling scheme. Send o to P ∗3 on behalf of Pi where o = Equiv(c, d′, t1, t2).

R4 Else invoke FFair with (Input, abort) on behalf of P ∗3 .

(b) S1f3PC (P ∗
1 is corrupt)

R1 Send a random share x31 and pp on behalf of P3. Choose r2 uniformly at random to compute h2 = H(r2).
Send (epp2, h2) to P ∗1 on behalf of P2 according to the protocol.

R1 Receive (s, h1, epp1) on behalf of P2 and (h1, r1) on behalf of P3. Compute B on behalf of P2 as per
protocol.

R2 Invoke FFair with (sid, Input, abort) on behalf of P ∗1 and set y = ⊥ if (a) h1 received on behalf of
P2, P3 does not match or H(r1) 6= h1 or (b) B received from P ∗1 on behalf of P3 does not match the B
computed on behalf of P2 or (c) any of the decommitments corresponding to encoded inputs sent by P ∗1
to P3 opens to something other than what was originally committed (known on behalf of P2).

R2 Else, extract P ∗1 ’s input as x1 = m1⊕ p1, where p1,m1 is known on behalf of P2, P3 respectively. Invoke
FFair with (sid, Input, x1) to get output y.

R3 Compute Y such that De(Y, d) = y (d known on behalf of P2). Send (Y, r2) to P ∗1 on behalf of P3.

R4 If y 6= ⊥, send (y, r1) to P ∗1 on behalf of P2.

Since HYB4 := IDEALFFair,Sf3PC , we show that every two consecutive hybrids are computationally indistin-
guishable which concludes the proof.

34

HYB0
c
≈ HYB1: The difference between the hybrids is that P1, P2 use uniform randomness in HYB1 rather than

pseudorandomness as in HYB0. The indistinguishability follows via reduction to the security of the PRG G.
HYB1

c
≈ HYB2: The difference between the hybrids is that some of commitments of the input labels in HYB1 that

will not be opened are replaced with commitments of dummy values in HYB2. The indistinguishability follows via
reduction to the hiding property of Com that holds even though pp was chosen by corrupt P3.
HYB2

c
≈ HYB3.1: The difference between the hybrids is in the way (C,X) is generated when the execution re-

sults in abort. In HYB2, (C, e, d) ← Gb(1κ, C ′) is run, which gives (C,En(x, e)). In HYB3.1, it is generated as
(C′,X)← Sobv(1κ, C ′). Additionally, the commitment to the decoding information is created for a dummy value
in HYB3.1. The indistinguishability follows via reduction to the obliviousness of garbling and the hiding property
of eCom.
HYB2

c
≈ HYB3.2: The difference between the hybrids is in the way (C,X, d) is generated. In HYB2, (C, e, d) ←

Gb(1κ, C ′) is run, which gives (C,En(x, e), d). In HYB3.2, it is generated as (C′,X, d′) ← Sprv(1κ, C ′, y). Ad-
ditionally, the commitment to the decoding information is created for a dummy value and later equivocated to d′

using o computed via o ← Equiv(c, d′, t1, t2). The indistinguishability follows via reduction to the privacy of the
garbling scheme and the hiding property of eCom.
HYB3

c
≈ HYB4: The difference between the hybrids is that in HYB3, the protocol results in abort if neither P1 nor

P2 receive Y such that De(Y, d) 6= ⊥ from P3; while in HYB4, the protocol results in abort if neither P1 nor P2

receive the Y that P3 obtained upon GC evaluation. Due to authenticity of the garbling scheme, P3 could have
sent Y such that Y 6= Ev(C,X) but De(Y, d) 6= ⊥ only with negligibility probability. Therefore, the hybrids are
indistiguishable.

Security against corrupt P ∗1 We now argue that IDEALFFair,S1f3PC
c
≈ REALf3PC,A, when A corrupts P1. The

views are shown to be indistinguishable via a series of intermediate hybrids.

– HYB0: Same as REALf3PC,A.

– HYB1: Same as HYB0, except that P3 aborts if it accepts any decommitment that opens to a value other than
what was originally committed.

– HYB2: Same as HYB1, except that Y is computed via De(Y, d) = y rather that Y = Ev(C,X).

– HYB3: Same as HYB2, except that P2 outputs ⊥ if GC could not be evaluated by P3 successfully.

Since HYB3 := IDEALFFair,Sfair3PC , we show that every two consecutive hybrids are computationally indistinguish-
able which concludes the proof.

HYB0
c
≈ HYB1: The difference between the hybrids is that in HYB0, P3 aborts if the decommitments sent by

P1 output ⊥ while in HYB1, P3 aborts if the decommitments sent by P1 opens to any value other than what was
originally committed. Since the commitment scheme Com is binding and pp was chosen uniformly at random by
P3, in HYB0, P1 could have decommitted successfully to a different input label than what was originally committed,
only with negligible probability.
HYB1

c
≈ HYB2: The difference between the hybrids is that in HYB1, P3 computes Y via Ev(C,X), while in HYB2,

Y is computed such that De(Y, d) = y. Due to the correctness of the garbling scheme, the equivalence of Y
computed via Ev(C,X) or such that De(Y, d) = y holds.
HYB2

c
≈ HYB3: The difference between the hybrids is that in HYB2, P2 may output non-⊥ if it receives a valid

‘proof’ from P1 even though P3 was unable to evaluate the GC successfully, while in HYB3, P2 outputs ⊥ in this
scenario. Due to the preimage resistance property of Hash H, P1 could have been able to compute a valid proof i.e
r′2 such that H(r′2) = h2 only with negligible probability.

35

D Security Proof for g4PC

In this section, we present the complete security proof of the Theorem. 4.9 that states the security of g4PC relative
to its ideal functionality.

Proof. We describe the simulator Sg4PC for the case when P1, P3 and P4 is corrupt. The simulator acts on
behalf of all the honest parties in the execution. The corruption of P2 is symmetric to the case when P1 is cor-
rupt. For better clarity, we separate out the simulation for the subroutine InputCommiti. Specifically, we describe
the simulator corresponding to InputCommit1 (simulation of InputCommit2, InputCommit3, InputCommit4 fol-
low analogously) for the case of corrupt P1 and P2. The cases of P3, P4 being corrupt during InputCommit1 is
symmetric to the case of P2. Figures 13-15 describes the simulator with R1, R2, R3, R4, R5 depicting simulation
for rounds 1, 2, 3, 4 and 5 respectively.

We first give brief overview of the main technicalities of the simulator. During simulation of InputCommiti
corresponding to corrupt Pi, it is possible for the simulator acting on behalf of the honest parties to extract the
committed input of the corrupt in the first round itself based on whether Pi had sent consistent messages to at least
majority of the honest parties (else a default value is used). Thus, the extracted input can be used to obtain output
y via FGOD at the end of Round 1 of simulation. The main technicality arises with respect to simulation in case of
corrupt P3. In this case, either the oblivious simulator of the garbling scheme Sobv (Ref. [BHR12]) or the privacy
simulator Sprv (can be invoked with output y obtained) is invoked based on whether corrupt P3 would get access to
input labels corresponding to any of his non-committed input shares or not respectively in Round 2. This is known
by the simulator acting on behalf of both the honest garblers since the committed input of the corrupt P3 is known
to simulator at end of Round 1. Finally in the former case when GC returned by Sobv is used, the commitment on
hash of decoding information is dummy (never has to be opened); while in the latter case when GC returned by
Sprv is used, commitment on hash of decoding information is done on the value d returned by the simulator. With
this background, we now proceed to the formal description.

Security against corrupt P ∗3 We now argue that IDEALFGOD,S3g4PC
c
≈ REALg4PC,A, when an adversaryA corrupts

P3. The views are shown to be indistinguishable via a series of intermediate hybrids.

– HYB0: Same as REALg4PC,A.

– HYB1: Same as HYB0, except that when the execution does not result in P3 getting access to the opening of
commitment cij (i ∈ ind(P3), j /∈ ind(Pi3)) sent by Pi, the commitment is replaced with commitment of
dummy value.

– HYB2: Same as HYB1 except that P3 is added to Ck (k ∈ ind(P3)) if the opening forwarded by P3 to Pk
during InputCommiti corresponding to Pi’s committed share (i ∈ ind(P3k)) is anything other than what
was originally committed.

– HYB3: Same as HYB2, except that P1, P2 use uniform randomness rather than pseudo-randomness.

– HYB4: Same as HYB3, except that some of the commitments of input wire labels sent on behalf of P1, P2, which
will not be opened are replaced with commitments of dummy values.

– HYB5: Same as HYB4, except the following:

– HYB5.1: When the execution results in P3 getting access to labels corresponding to its non-committed input
for the garbled circuit, the GC is created as (C′,X) ← Sobv(1κ, C) and the commitment to the hash of the
decoding information is created for a dummy value.

– HYB5.2: When the execution results in P3 getting access to labels corresponding to its committed input, the
GC is created as (C′,X, d′) ← Sprv(1κ, C, y). The commitment c is computed on decoding information
H(d′).

36

Figure 13: Description of SInputCommit1

S1
InputCommit1

(P ∗1 is corrupt)

R1 Receive commitments c12, c13, c14 on behalf of each among P2, P3, P4. Receive o12 on behalf of P3, P4;
o13 on behalf of P2, P4 and o14 on behalf of P2, P3.

R1 Set Ck = P1 on behalf of Pk (k ∈ {2, 3, 4}) if sOpen(pp1, c1j , o1j) (j ∈ ind(P1k)) received from P ∗1
results in ⊥.

R1 If there does not exist majority in the versions of (pp1, c12, c13, c14) received on behalf of P2, P3, P4 from
P ∗1 , assume a default value for P1’s input share and add P ∗1 to Ck, where k ∈ {2, 3, 4}.

R1 Else, set (pp1, c12, c13, c14) as the majority value and (o12, o13, o14) as the corresponding opening. Com-
pute x1 = x12 ⊕ x13 ⊕ x14 where x1j = sOpen(pp1, c1j , o1j) for j ∈ {2, 3, 4}. Invoke FGOD with
(Input, x1) on behalf of P ∗1 to obtain output y.

R1 If received different versions of (pp1, c12, c13, c14) on behalf of Pα, Pβ (where α, β ∈ {2, 3, 4}), add
(P1, Pα) in Fβ and (P1, Pβ) in Fα.

S2
InputCommit1

(P ∗2 is corrupt)

R1 On behalf of P1: Sample pp1 and compute c1j as commitments on randomly chosen x1j for j ∈ ind(P12)
(input shares of P1 available to corrupt P ∗2) and commitment of dummy value corresponding to j /∈
ind(P12). Send (pp1, c12, c13, c14) and openings (o13, o14) to P ∗2 .

R2 Send (pp1, c12, c13, c14) and o14 to P ∗2 on behalf of P3. Send (pp1, c12, c13, c14) and o13 to P ∗2 on behalf
of P4 .

R2 Receive (pp′1, c
′
12, c

′
13, c

′
14) from P ∗2 on behalf of Pk (k ∈ {3, 4}). Add (P1, P2) to Fk if the version

received from P ∗2 is not identical to the one sent on behalf of P1 in Round 1. Additionally, receive o′13,
o′14 on behalf of P4 and P3 respectively. Add P2 to Ck (k ∈ {3, 4}) if the opening received on behalf of
Pk is anything other than what was originally sent on behalf of P1 in Round 1.

– HYB6: Same as HYB5, except that P3 does not receive y in Round 4 if neither P1 nor P2 receive Y obtained
upon GC evaluation from P3 in Round 3.

– HYB7: Same as HYB6 except that the TTP assigned by P3 sends y only if the view O3 sent by P3 comprises of
decommitments that opens to the input shares of the parties that were originally committed.

Since HYB7 := IDEALFGOD,S3g4PC
, we show that every two consecutive hybrids are computationally indistinguish-

able which concludes the proof.
HYB0

c
≈ HYB1: The difference between the hybrids is that when the execution does not result in P3 getting

access to the opening of commitment cij (i ∈ ind(P3), j /∈ ind(Pi3)) sent by Pi, cij corresponds to the actual
input share xij in HYB0 while it corresponds to dummy value in HYB1. The indistinguishability follows from the
hiding property of sCom.

HYB1
c
≈ HYB2: The difference between the hybrids is that while in HYB1, P3 is added to Ck (k ∈ ind(P3)) if

the opening forwarded by P3 to Pk during InputCommiti (i ∈ ind(P3k)) corresponding to Pi’s committed share

37

Figure 14: Description of Sg4PC

S3
g4PC (P ∗3 is corrupt)

R1 Simulation of Round 1 of S3
InputCommitα

(α ∈ [4]) (Fig. 13). Let y denote the output computed.

R1 Receive pp1
3 and pp2

3 from P ∗3 on behalf of P1 and P2 respectively.

R2 Simulation of Round 2 of S3
InputCommitα

(α ∈ [4]) (Fig. 13).

R2 If P3 ∈ Ci (i ∈ {1, 2}) or (P1, P3) ∈ F2 or (P2, P3) ∈ F1 (i.e an honest garbler may
not have access to P3’s committed share at end of Round 1), use uniform randomness r on be-
half of P1, P2 instead of pseudorandomness and run (C′,X′) ← Sobv(1κ, C), where Sobv is the
oblivious simulator of the garbling scheme. Choose {mij}i∈[4],j∈ind(Pi) at random. Let mi ←
||j∈ind(Pi)mij and {cm

α
1

α , c
mα2
3`+α, c

mα3
6`+α, c

mα4
9`+α}α∈[`] be commitments to the entries of X, correspond-

ing to pp1
3. Commit to dummy values corresponding to other input wire labels. Let B1 ={

C′, {cbα}α∈[12`],b∈{0,1} , c
′, {pij}i∈[4],j∈ind(Pi3)

}
where pij’s are computed as follows: With respect

to i ∈ ind(P3), j ∈ ind(Pi3), it is computed as pij = xij ⊕ mij consistent with the (opening of)
shares distributed to P ∗3 during simulation of InputCommiti. Corresponding to P3’s shares, it is com-
puted with respect to the opening received on behalf of P1 (if valid, else take default) during simula-
tion of InputCommit3. Here, c′ is a commitment to dummy value. Send B1 to P ∗3 on behalf of P1.
If P3 /∈ C1, additionally send M1 and (openings of) encoding information corresponding to indices
{mij}i∈[4],j∈ind(Pi1) (corresponding to {x13, x14, x34}) as per protocol. Analogous steps are executed
on behalf of P2.

R2 Else, run (C′,X′, d′) ← Spriv(1κ, C, y). Execute similar steps as above except that c′ is computed as
commitment on H(d′).

R3 If Cα 6= ∅ ∨ Fα 6= ∅, Pα (α ∈ {1, 2, 4}), send (TTP, β) to P ∗3 where Pβ /∈ Cα ∪ Fα.

R3 If Cg = Fg = ∅ (g ∈ [2]) send opening of hash of decoding information o to P ∗3 on behalf of Pg.

R4 If received Y = Ev(C,X) from P3 on behalf of Pg(g ∈ [2]), send y to P ∗3 on behalf of Pg.

R4 If received a valid view O3 from P ∗3 (comprising of openings corresponding to P3’s committed shares and
the shares sent on behalf of honest parties in Round 1) along with (TTP, l), l ∈ [4] \ {3} on behalf of Pl
during Round 3, send (y,TTP) to P ∗3 in Round 4 on behalf of Pl.

R4 If had sent (TTP, β) to P ∗3 on behalf of either P1, P2, P4 in Round 3, send (y,TTP) to P ∗3 on behalf of Pβ .

S1
g4PC (P ∗1 is corrupt)

R1 Simulation of Round 1 of S1
InputCommitα

(α ∈ [4]) (Fig. 13). Let y denote the output computed.

R1 Receive s from P ∗1 on behalf of P2.

R1 Send pp3 to P ∗1 on behalf of P3.

R2 Simulation of Round 2 of S1
InputCommitα

(α ∈ [4]) (Fig. 13).

38

Figure 15: Description of Sg4PC (contd.)

R2 On behalf of P3: Receive B comprising of the garbled circuit, commitments on encoding and decoding
information information and permutation strings pij for (i ∈ [4], j ∈ ind(Pi3)) from P ∗1 . Additionally,
the openings corresponding to the input labels xij for (i ∈ [4], j ∈ ind(Pi1)) (except the labels for
x23, x24, x43) are received.

R2 Following steps are executed: (a) Set F3 = {P1, P2} if B is not consistent with B computed using
randomness G(s) and pp3, where s received on behalf of P2 in Round 1. (b) If C3 = F3 = ∅, set
P1 to C3 if (openings of) encoding information for xij , for i ∈ [4], j ∈ ind(Pi3) are anything other
than the originally committed labels (known on behalf of P2). If any of the labels corresponding to
xij(i ∈ [4], j /∈ ind(Pi3)) do not correspond to the originally committed label (known on behalf of P2),
then set F3 = {P1, P2}. Here, xij refers to the value sent to P ∗1 during InputCommiti (for i ∈ ind(P1))
on behalf of Pi or received on behalf of P3 from P ∗1 (during InputCommit1).

R2 Receive c from P ∗1 on behalf of P4. Add {P1, P2} to F4 if c received from P ∗1 is not consistent with B
computed using s received on behalf of P2.

R3 If C3 = F3 = ∅, compute Y such that De(Y, d) = y (d known as simulator acts on behalf of P2). Send
Y to P ∗1 on behalf of P3.

R3 If Cα 6= ∅ ∨ Fα 6= ∅, Pα (α ∈ {2, 3, 4}), send (TTP, β) to P ∗1 where Pβ /∈ Cα ∪ Fα.

R4 If Y was sent to P ∗1 on behalf of P3, send y to P ∗1 on behalf of P2, P4.

R4 If received a valid view O1 from P ∗1 (comprising of openings corresponding to P1’s committed shares and
the shares sent on behalf of honest parties in Round 1) along with (TTP, l), l ∈ [4] \ {1} on behalf of Pl
during Round 3, send (y,TTP) to P ∗1 in Round 4 on behalf of Pl.

R4 If had sent (TTP, β) to P ∗1 on behalf of either P2, P3, P4 in Round 3, send (y,TTP) to P ∗1 on behalf of
Pβ .

S4
g4PC (P ∗4 is corrupt)

R1 Simulation of Round 1 of S4
InputCommitα

(α ∈ [4]) (Fig. 13). Let y denote the output computed.

R2 Simulation of Round 2 of S4
InputCommitα

(α ∈ [4]) (Fig. 13).

R2 Use uniform randomness to compute c as commitment on H(d). Send c to P ∗4 on behalf of P1, P2.

R3 If Cg = Fg = ∅ for Pg(g ∈ [2]), send o (opening of hash of decoding information) to P ∗4 .

R3 If C3 = F3 = ∅, compute Y such that De(Y, d) = y. Send Y to P ∗4 on behalf of P3.

R3 If Cα 6= ∅ ∨ Fα 6= ∅, Pα (α ∈ {1, 2, 3}), send (TTP, β) to P ∗1 where Pβ /∈ Cα ∪ Fα.

R4 If Y was sent to P ∗4 , send y to P ∗4 on behalf of P1, P2.

R4 If received a valid view O4 from P ∗4 (comprising of openings corresponding to P4’s committed shares and
the shares sent on behalf of honest parties in Round 1) along with (TTP, l), l ∈ [4] \ {1} on behalf of Pl
during Round 3, send (y,TTP) to P ∗4 in Round 4 on behalf of Pl.

R4 If had sent (TTP, β) to P ∗4 on behalf of either P1, P2, P3 in Round 3, send (y,TTP) to P ∗4 on behalf of Pβ .

39

results in⊥; in HYB2, Ck is set to P3 if P3 sends opening anything other than what was originally committed. Since
the commitment scheme sCom is binding, in HYB2, P3 could have decommitted successfully to a different input
share of Pi other than what was originally committed, only with negligible probability. Therefore, the hybrids are
indistinguishable.

HYB2
c
≈ HYB3: The difference between the hybrids is that P1, P2 use uniform randomness in HYB3 rather than

pseudorandomness as in HYB2. The indistinguishability follows via reduction to the security of the PRG G.
HYB3

c
≈ HYB4: The difference between the hybrids is that some of commitments of the input wire labels in

HYB3 that will not be opened are replaced with commitments of dummy values in HYB4. The indistinguishability
follows via reduction to the hiding property of the commitment scheme Com.

HYB4
c
≈ HYB5.1: The difference between the hybrids is in the way (C,X) is generated when the execution

results in P3 getting access to labels corresponding to its non-committed input. In HYB4, (C, e, d) ← Gb(1κ, C ′)
is run, which gives (C,En(x, e)). In HYB5.1, it is generated as (C′,X) ← Sobv(1κ, C ′). Additionally, the com-
mitment to the decoding information is created for a dummy value in HYB5.1. The indistinguishability follows via
reduction to the obliviousness of the garbling scheme and the hiding property of commitment scheme.

HYB4
c
≈ HYB5.2: The difference between the hybrids is in the way (C,X, d) is generated. In HYB4, (C, e, d)←

Gb(1κ, C ′) is run, which gives (C,En(x, e), d). In HYB5.2, it is generated as (C′,X, d′) ← Sprv(1κ, C ′, y). Ad-
ditionally, the commitment to the decoding information is computed on d′. The indistinguishability follows via
reduction to the privacy of the garbling scheme and the hiding property of Com.

HYB5
c
≈ HYB6: The difference between the hybrids is that in HYB5, P3 does not receive y in Round 4 if neither

P1 nor P2 receive Y such that De(Y, d) 6= ⊥ from P3; while in HYB6, P3 does not receive y if neither P1 nor P2

receive Y = Ev(C,X). Due to authenticity of the garbling scheme and the property of preimage-resistant hash
used in the decoding information, P3 could have sent Y such that Y 6= Ev(C,X) but De(Y, d) 6= ⊥ only with
negligibility probability. Therefore, the hybrids are indistiguishable.

HYB6
c
≈ HYB7: The difference between the hybrids is that in HYB6, the TTP assigned by P3 would return y to

P3 if the view O3 sent by P3 comprises of decommitments that lead to non-⊥ (corresponding to the commitments
on shares output by the subroutine InputCommit); while in HYB7, the TTP assigned by P3 would return y to
P3 only if the view O3 sent by P3 contains decommitments that open to the input shares that were originally
committed. Since the commitment scheme sCom is (strong) binding even against an adversarially chosen pp; in
HYB6, P3 could have decommitted successfully to a different input share than what was originally committed, only
with negligible probability. Therefore, the hybrids are indistinguishable.

Security against corrupt P ∗1 We now argue that IDEALFGOD,S1g4PC
c
≈ REALg4PC,A, when an adversaryA corrupts

P1. The views are shown to be indistinguishable via a series of intermediate hybrids.

– HYB0: Same as REALg4PC,A.

– HYB1: Same as HYB0, except that when the execution does not result in P1 getting access to the opening of
commitment cij (i ∈ ind(P1), j /∈ ind(Pi1)) sent by Pi, the commitment is replaced with commitment of
dummy value.

– HYB2: Same as HYB1 except that P1 is added to Ck (k ∈ ind(P1)) if the opening forwarded by P1 to Pk
during InputCommiti corresponding to Pi’s committed share (i ∈ ind(P1k)) is anything other than what
was originally commited.

– HYB3: Same as HYB2, except that when C3 = F3 = ∅ at the end of Round 2, P1 is added to C3 if P3 receives
anything other than the encoding information corresponding to committed share xij (i ∈ [4], j ∈ ind(Pi3)).

– HYB4: Same as HYB3, except that when C3 = F3 = ∅ at the end of Round 2, {P1, P2} is added to F3 if P3

receives anything other than the encoding information corresponding to committed share xij (i ∈ [4], j /∈
ind(Pi3)).

40

– HYB5: Same as HYB4, except that Y is computed via De(Y, d) = y in place of Y = Ev(C,X).

– HYB6: Same as HYB5 except that the TTP assigned by P1 sends y only if the view O1 sent by P1 comprises of
decommitments that opens to the input shares of the parties that were originally committed.

Since HYB6 := IDEALFGOD,S1g4PC
, we show that every two consecutive hybrids are computationally indistin-

guishable which concludes the proof.
HYB0

c
≈ HYB1: The difference between the hybrids is that when the execution does not result in P1 getting

access to the opening of commitment cij(i ∈ ind(P1), j /∈ ind(Pi1)) sent by Pi, cij corresponds to the actual input
share xij in HYB0 while it corresponds to dummy value in HYB1. The indistinguishability follows from the hiding
property of sCom.

HYB1
c
≈ HYB2: The difference between the hybrids is that while in HYB1, P1 is added to Ck (k ∈ ind(P1)) if

the opening forwarded by P1 to Pk during InputCommiti (i ∈ ind(P1k)) corresponding to Pi’s committed share
results in⊥; in HYB2, Ck is set to P1 if P1 sends opening anything other than what was originally committed. Since
the commitment scheme sCom is binding, in HYB2, P1 could have decommitted successfully to a different input
share of Pi other than what was originally committed, only with negligible probability. Therefore, the hybrids are
indistinguishable.

HYB2
c
≈ HYB3: The difference between the hybrids is that in HYB1, when C3 = F3 = ∅ at the end of Round 2,

P1 is added to C3 if the decommitments (corresponding to encoding of committed share xij (i ∈ [4], j ∈ ind(Pi3)))
sent by P1 output ⊥ while in HYB2, P1 is added to C3 if the decommitments sent by P1 open to any value other
than the originally committed encoding information corresponding to xij . Since the commitment scheme Com is
binding and pp was chosen uniformly at random by P3; in HYB1, P1 could have decommitted successfully to a
different input label than what was originally committed, only with negligible probability. Therefore, the hybrids
are indistinguishable.

HYB3
c
≈ HYB4: The difference between the hybrids is that in HYB3, when C3 = F3 = ∅ at the end of Round 2,

{P1, P2} is added toF3 if the index of the decommitments (corresponding to encoding of committed share xij (i ∈
[4], j /∈ ind(Pi3))) sent by P1 are inconsistent with that known on behalf of P2, while in HYB4, {P1, P2} is added
toF3 if the decommitments sent by P1 open to any value other than the originally committed encoding information
corresponding to xij . Since the commitment scheme Com is binding and pp was chosen uniformly at random by
P3; in HYB3, P1 could have sent opening corresponding to the consistent index but decommitted successfully to a
different input label than what was originally committed, only with negligible probability. Therefore, the hybrids
are indistinguishable.

HYB4
c
≈ HYB5: The difference between the hybrids is that in HYB4, Y is computed via Ev(C,X), while in

HYB5, Y is computed such that De(Y, d) = y. Due to the correctness of the garbling scheme, the equivalence of
Y computed via Ev(C,X) or such that De(Y, d) = y holds.

HYB5
c
≈ HYB6: The difference between the hybrids is that in HYB5, the TTP assigned by P1 would return y to

P1 if the view O1 sent by P1 comprises of decommitments that lead to non-⊥ (corresponding to the commitments
on shares output by the subroutine InputCommiti); while in HYB6, the TTP assigned by P1 would return y to
P1 only if the view O1 sent by P1 contains decommitments that open to the input shares that were originally
committed. Since the commitment scheme sCom is binding even against an adversarially chosen pp; in HYB5,
P1 could have decommitted successfully to a different input share than what was originally committed, only with
negligible probability. Therefore, the hybrids are indistinguishable.

Security against corrupt P ∗4 : We now argue that IDEALFGOD,S4g4PC
c
≈ REALg4PC,A, when an adversary A cor-

rupts P4. The views are shown to be indistinguishable via a series of intermediate hybrids.

– HYB0: Same as REALg4PC,A.

41

– HYB1: Same as HYB0, except that when the execution does not result in P4 getting access to the opening of
commitment cij (i ∈ ind(P4), j /∈ ind(Pi4)) sent by Pi, the commitment is replaced with commitment of
dummy value.

– HYB2: Same as HYB1 except that P4 is added to Ck (k ∈ ind(P4)) if the opening forwarded by P4 to Pk
during InputCommiti corresponding to Pi’s committed share (i ∈ ind(P4k)) is anything other than what
was originally committed.

– HYB3: Same as HYB2, except that P1, P2 use uniform randomness rather than pseudo-randomness.

– HYB4: Same as HYB4, except that Y is computed via De(Y, d) = y in place of Y = Ev(C,X).

– HYB5: Same as HYB4 except that the TTP assigned by P4 sends y only if the view O4 sent by P4 comprises of
decommitments that opens to the input shares of the parties that were originally committed.

Since HYB5 := IDEALFGOD,S4g4PC
, we show that every two consecutive hybrids are computationally indistinguish-

able which concludes the proof.
HYB0

c
≈ HYB1: The difference between the hybrids is that when the execution does not result in P4 getting

access to the opening of commitment cij (i ∈ ind(P4), j /∈ ind(Pi4) sent by Pi, cij corresponds to the actual input
share xij in HYB0 while it corresponds to dummy value in HYB1. The indistinguishability follows from the hiding
property of sCom.

HYB1
c
≈ HYB2: The difference between the hybrids is that while in HYB1, P4 is added to Ck (k ∈ ind(P1)) if

the opening forwarded by P4 to Pk during InputCommiti (i ∈ ind(P4k)) corresponding to Pi’s committed share
results in⊥; in HYB2, Ck is set to P4 if P4 sends opening anything other than what was originally committed. Since
the commitment scheme sCom is binding, in HYB2, P4 could have decommitted successfully to a different input
share of Pi other than what was originally committed, only with negligible probability. Therefore, the hybrids are
indistinguishable.

HYB2
c
≈ HYB3: The difference between the hybrids is that P1, P2 use uniform randomness in HYB1 rather than

pseudorandomness as in HYB1. The indistinguishability follows via reduction to the security of the PRG G.
HYB3

c
≈ HYB4: The difference between the hybrids is that in HYB3, Y is computed via Ev(C,X), while in

HYB4, Y is computed such that De(Y, d) = y. Due to the correctness of the garbling scheme, the equivalence of
Y computed via Ev(C,X) or such that De(Y, d) = y holds.

HYB4
c
≈ HYB5: The difference between the hybrids is that in HYB4, the TTP assigned by P4 would return y to

P4 if the view O4 sent by P4 comprises of decommitments that lead to non-⊥ (corresponding to the commitments
on shares output by the subroutine InputCommit); while in HYB5, the TTP assigned by P4 would return y to
P4 only if the view O4 sent by P4 contains decommitments that open to the input shares that were originally
committed. Since the commitment scheme sCom is binding even against an adversarially chosen pp; in HYB4,
P4 could have decommitted successfully to a different input share than what was originally committed, only with
negligible probability. Therefore, the hybrids are indistinguishable. This completes the proof.

E Security Proof for g4PC4

In this section, we provide a high-level overview of the proof of Theorem 5.6 that states the security of g4PC4
relative to its ideal functionality.

Proof. We describe the simulator Sg4PC4 for the cases of corrupt P1 and P3. The corruption of P2 and P4 is
analogous to the case of P1 and P3 respectively. We give only a sketch of the simulator below since the simulation
proceeds almost exactly as the simulation of g4PC described formally in Section D.

For the case when P3 is corrupt, simulator S3
g4PC4 acts on behalf of honest P1, P2, P4 as follows: In round 1

of InputCommitα, α ∈ P3, S3
g4PC4 chooses random values corresponding to the shares of honest parties accessible

42

to P3, namely xij (i ∈ P3, j ∈ Pi3) and acts according to the protocol. Commitments on the remaining shares
of honest parties are dummy. Correspondingly, on behalf of the honest parties, simulator receives commitments
corresponding to x3j(j ∈ P3) in round 1 of InputCommit3 and checks if there exists a majority commitment
corresponding to each of the shares. If not, P3 is added to Ci (i ∈ P3) and FGOD is invoked with default value
to retrieve y. Else, P3’s input is extracted using the shares corresponding to the majority commitment and its
opening. Consequently, FGOD is invoked using the committed input of P3 and y is obtained. The corrupt and
conflict sets of the honest parties are populated according to the protocol. For simulation of Round 2 on behalf of
garblers, we consider two cases depending on whether: (a) P3 gets access to the labels corresponding to any of its
non-committed input shares (b) P3 gets access to labels corresponding to its committed input shares. The case that
will follow can be determined at the end of Round 1 itself by simulator acting on behalf of the honest garblers since
P3’s committed input is known to simulator by then. Accordingly in Round 2, either the oblivious simulator of
the garbling scheme Sobv or the privacy simulator Sprv (can be invoked with output y obtained) is invoked for case
(a) and (b) respectively. In case (a) when GC returned by Sobv is used, the commitment on hash of the decoding
information is dummy and never has to be opened to P3 according to the protocol steps as for each garbler Pg
atleast one of Cg 6= ∅/Fg 6= ∅ holds. In the latter case when GC returned by Sprv is used, the commitment is done
on the value H(d), where d is returned by Sprv. This commitment is opened during Round 3 by simulator acting
on behalf of garbler Pg if Cg = Fg = ∅.

Next, if P3 sends a (TTP, β) message to a party in P3 and sends a valid O3 (with openings of committed
shares known to simulator) to Pβ in Round 3, (y,TTP) is sent to P3 on behalf of Pβ . Additionally, the conflict and
corrupt set of Pi, i ∈ P3 that are locally computed (during simulation of InputCommit3) are used by Pi to identify
TTP as per the protocol and (TTP, β) message is sent accordingly to P3 in Round 3. Subsequently, (y,TTP) is
sent to P3 on behalf of the Pβ .

For the case when P1 is corrupt, simulator S1
g4PC4 acts on behalf of P2, P3, P4 as follows: Simulation of

InputCommitα, α ∈ [4] is the same as described for S3
g4PC4 which would lead to extraction of P1’s committed

input and retrieval of y via FGOD. On behalf of the evaluator, say P3 if C3 = F3 = ∅ (populated during simulation
of executions of InputCommitα()), the simulator checks if P1 (a) sends GC consistent with randomness shared
with P2 (b) sends encoding of committed input shares. If either of the checks fails, the corrupt or conflict set
of P3 is populated accordingly (for (b), incase of shares known to P3, corrupt set is populated; else conflict is
populated with {P1, P2} corresponding to shares that are not held by P3 and held by both garblers) and the TTP
is assigned as per the protocol. The output y is sent to P1 on behalf of the TTP in Round 4. If the checks pass and
Ci = Fi = ∅, i ∈ {3, 4}, then Y is computed such that it decodes to output y and sent to P1 on behalf of Pi in
round 3. This completes the simulation sketch of g4PC4.

F Security Proof for protocol g3PC

In this section, we present the proof of Theorem 6.4 that states the security of god3PC relative to its ideal func-
tionality.

Proof. We describe the simulator Sg3PC for the case when P1, P3 is corrupt. The case of P2 being corrupt
is symmetric to that of P1. The description of the simulator is available in Figure 16 with R1/R2/R3/R4/R5
indicating simulation for round 1, 2, 3, 4 and 5 respectively.

Security against corrupt P ∗3 We now argue that IDEALFGOD,S3g3PC
c
≈ REALg3PC,A, when A corrupts P3. The

views are shown to be indistinguishable via a series of intermediate hybrids.

– HYB0: Same as REALg3PC,A.

– HYB1: Same as HYB0, except that P1, P2 use uniform randomness rather than pseudo-randomness.

43

Figure 16: Description of Sg3PC

(a) S3g3PC (P ∗
3 is corrupt)

R1 Receive (pp, c31, c32) via broadcast and (x31, x32, o31, o32) privately from P ∗3 on behalf of P1, P2.

R2 Broadcast (Conflict, P3) on behalf of Pi if Open(c3i, o3i) 6= x3i for i ∈ [2]. If for exactly one i the
check doesn’t pass, set TTP to P[2]\i and broadcast B as per protocol on behalf of P[2]\i . If check
doesn’t pass for both i ∈ [2], set TTP = P1.

R2 If TTP = ∅, extract x3 = x31 ⊕ x32 and invoke FGOD with (Input, x3) on behalf of P ∗3 to retrieve output
y. Use uniform randomness r on behalf of P1, P2 and run (C,X, d)← Sprv(1κ, C, y).

R2 If TTP = ∅, choose m1,m2 at random. Let {cm
α
1

α , c
mα2
`+α, c

xα31
2`+α, c

xα32
3`+α}α∈[`] be commitments to the

entries of X. Commit to dummy values corresponding to other input labels. Set B to include C

and set of commitments. Broadcast B on behalf of both P1, P2. Send ({om
α
1

α , o
xα31
2`+α}α∈[`],m1),

({om
α
2

`+α, o
xα32
3`+α}α∈[`],m2) on behalf of P1, P2 respectively.

R3 If received broadcast of (Conflict, Pi)(i ∈ [2]) from P3, set TTP = P[2]\i. Else if received Y 6= (C,X),
set TTP = P1.

R4 If TTP 6= ∅ and y = ⊥: Invoke FGOD with (Input, x3) to get output y where x3 is computed using
o31, o32 received in Round 1 on behalf of honest parties, else received from P ∗3 on behalf of TTP in
Round 4 (take default value if not received or invalid).

R5 Send y to P ∗3 on behalf of TTP if TTP 6= ∅.

(b) S1g3PC (P ∗
1 is corrupt)

R1 Choose x31, pp at random. Compute (c31, o31) ← Com(pp, x31). Broadcast {pp, c31, c32} where c32 is
commitment of dummy value. Send {x31, o31} to P ∗1 on behalf of P3.

R2 Compute and broadcast B2 on behalf of P2, using s received from P ∗1 as per protocol.

R2 Set TTP = P3 if B1 6= B2. Set TTP = P2 if P1 broadcasts (Conflict, P3)

R3 Suppose TTP = ∅: Check if any of the decommitments sent by P ∗1 to P3 in Round 2 opens to something
other than what was originally committed (known on behalf of P2). If so, broadcast (Conflict, P1) on
behalf of P3 and set TTP = P2.

R3 If TTP = ∅, extract P ∗1 ’s input as x1 = m1⊕ p1, where p1,m1 is known on behalf of P2, P3 respectively.
Invoke FGOD with (Input, x1) to receive output y. Compute Y such that De(Y, d) = y (d known to P2)
and broadcast Y on behalf of P3.

R4 If TTP 6= ∅, receive x1 from P ∗1 (take default value if not received) on behalf of TTP. Invoke FGOD with
(Input, x1) to retrieve output y.

R5 If TTP 6= ∅, send y to P ∗1 on behalf of TTP.

44

– HYB2: Same as HYB1, except that some of the commitments of input wire labels sent by P1, P2, which will not
be opened are replaced with commitments of dummy values. Specifically, these are the commitments with
indices 6= m1,m2, x31, x32.

– HYB3 : Same as HYB2, except that when the execution results in P3 evaluating the garbled circuit (GC), the GC
is created as (C′,X, d′)← Sprv(1κ, C, y).

– HYB4 : Same as HYB3, except that P1 is set to TTP if P3 broadcasts Y 6= (C,X).

Since HYB4 := IDEALFGOD,S3g3PC
, we show that every two consecutive hybrids are computationally indistinguish-

able which concludes the proof.
HYB0

c
≈ HYB1: The difference between the hybrids is that P1, P2 use uniform randomness in HYB1 rather than

pseudorandomness as in HYB0. The indistinguishability follows via reduction to the security of the PRG G.
HYB1

c
≈ HYB2: The difference between the hybrids is that some of commitments of the input wire labels in

HYB1 that will not be opened are replaced with commitments of dummy values in HYB2. The indistinguishability
follows via reduction to the hiding property of the commitment scheme Com that holds even though pp was chosen
by corrupt P3.

HYB2
c
≈ HYB3: The difference between the hybrids is in the way (C,X, d) is generated. In HYB2, (C, e, d)←

Gb(1κ, C) is run, which gives (C,En(x, e), d). In HYB3, it is generated as (C′,X, d1) ← Sprv(1κ, C, y). The
indistinguishability follows via reduction to the privacy of the garbling scheme.

HYB3
c
≈ HYB4: The difference between the hybrids in that while in HYB3, P1 is set to TTP when P3 broadcasts

Y such that De(Y, d) = ⊥; in HYB4, P1 is set to TTP when P3 broadcasts Y 6= (C,X). It follows from the
authenticity property of garbling that P3 will be able to come up with Y such that Y 6= (C,X) but De(Y, d) 6= ⊥
only with negligible probability.

Security against corrupt P ∗1 We now argue that IDEALFGOD,S1g3PC
c
≈ REALg3PC,A, when A corrupts P1. The

views are shown to be indistinguishable via a series of intermediate hybrids.

– HYB0: Same as REALg3PC,A

– HYB1: Same as HYB0, except that P3 raises a conflict with P1 if it accepts any decommitment that opens to a
value other than what was originally committed.

– HYB2: Same as HYB1, except that when the execution does not result in P1 getting access to the opening of
commitment c32 (corresponding to x32) broadcast by P3, the commitment is replaced with commitment of
dummy value.

– HYB3: Same as HYB2, except that Y is computed via De(Y, d) = y rather than Y = Ev(C,X)

Since HYB3 := IDEALFGOD,S1g3PC
, we show that every two consecutive hybrids are computationally indistinguish-

able which concludes the proof.
HYB0

c
≈ HYB1: The difference between the hybrids is that in HYB0, P3 raises a conflict with P1 if the decom-

mitments sent by P1 output ⊥ while in HYB1, P3 raises a conflict if the decommitments sent by P1 opens to any
value other than what was originally committed. Since the commitment scheme Com is binding and pp was chosen
uniformly at random by P3; in HYB1, P1 could have decommitted successfully to a different input label than what
was originally committed, only with negligible probability. Therefore, the hybrids are indistinguishable.

HYB1
c
≈ HYB2: The difference between the hybrids is that when the execution does not result in P1 getting

access to the opening of commitment c32 (corresponding to x32) broadcast by P3, c32 corresponds to the actual
input share x32 in HYB1 while it corresponds to dummy value in HYB2. The indistinguishability follows from the
hiding property of Com.

45

HYB2
c
≈ HYB3: The difference between the hybrids is that in HYB2, P3 computes Y via Ev(C,X), while in

HYB3, Y is computed such that De(Y, d) = y. Due to the correctness of the garbling scheme, the equivalence of
Y computed via Ev(C,X) or such that De(Y, d) = y holds.

46

	Introduction
	Related Work
	Our Contribution

	Preliminaries
	Model and Notations
	Primitives

	3PC with Fairness
	Correctness and Security
	Optimizations and generalization

	4PC with guaranteed output delivery
	Protocol for Input Consistency
	Our protocol
	Correctness and Security
	Optimizations

	4PC with guaranteed output delivery in four rounds
	Our protocol
	Correctness and Security
	Optimizations

	3PC with Guaranteed Output Delivery
	Correctness and security
	Optimizations

	Experimental results
	The Security Model
	Primitives
	Properties of Garbling Scheme
	Non-Interactive Commitment Schemes (NICOM)
	Equivocal Non-interactive Commitment (eNICOM)

	Security Proof of f3PC Protocol
	Security Proof for g4PC
	Security Proof for g4PC4
	Security Proof for protocol g3PC

