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Abstract. The key exchange protocol of Diffie and Hellman, which can be
defined for any group, has the special feature of using only exponentiations.
In particular, it can also be instantiated in Kummer varieties, which are not
groups, and in the post-quantum isogeny-based setting with the supersingular
isogeny DH scheme of De Feo, Jao and Plût (SIDH).
In this article, we propose a new simple oblivious transfer (OT) protocol,
based on the Diffie-Hellman key exchange, that only uses exponentiations; we
also revisit the older Wu-Zhang-Wang scheme. Both protocols can be directly
instantiated on fast Kummer varieties; more importantly, they can also be
transposed in the post-quantum SIDH setting. The semantic security of our
proposals relies on the hardness of non-standard versions of the (supersingular)
Diffie-Hellman problem, that are investigated within this article. To the best of
our knowledge, these protocols are the simplest secure discrete-log based OT
schemes using only exponentiations, and the first isogeny-based OT schemes.

Keywords: Oblivious transfer, Diffie-Hellman key exchange, supersingular
isogeny, post-quantum cryptography

1 Introduction

The key exchange protocol of Diffie and Hellman [15] is undoubtedly the single most
influential concept in the history of modern cryptography, and though more than
forty year old, it continues to see new developments. A convenient feature of the
Diffie-Hellman protocol is that it can be instantiated in any group, provided that
the discrete logarithm problem (DLP) is hard; current applications no longer use the
multiplicative group of finite fields where it was first defined but rather the group of
points of an elliptic curve or Jacobian variety. Interestingly, the key exchange does not
use group products, but only exponentiations, or more precisely commuting exponen-
tiation maps. This seemingly benign observation actually allows the generalization of
the Diffie-Hellman protocol to group-less settings, two of which we will describe now.

The first one is Kummer varieties, which are formed from Jacobian varieties by
identifying a point and its inverse. A Kummer variety is not a group, but neverthe-
less inherits some of the operations of its parent Jacobian: in particular, there are
well-defined (in additive notations) multiplication maps [D] 7→ [aD] and differential
addition {[D], [D′]} 7→ {[D + D′], [D − D′]}. These operations are sufficient for im-
plementing the Diffie-Hellman key exchange, and more importantly, they are usually
faster than their Jacobian counterparts. For elliptic curves, it corresponds to the fa-
mous x-only Montgomery’s ladder [24]. The use of Kummer varieties in higher genus



is more recent (see notably [17,18]), and their performances in genus 2 make them
competitive alternatives to elliptic curves [5,30].

The second setting is supersingular isogeny graphs. A drawback of the Diffie-
Hellman protocol is its vulnerability to quantum attacks: if quantum computers are
eventually constructed, they will be able to efficiently solve the discrete logarithm
problem thanks to Shor’s algorithm [32]. For this reason, there have been in re-
cent years a push toward the conception of efficient, quantum-resistant cryptographic
schemes. One such proposal is the SIDH key exchange of De Feo, Jao and Plût [13],
which is directly adapted from Diffie-Hellman: the group of points of a single elliptic
curve is replaced by the set of all supersingular elliptic curves defined over a finite
field Fp2 , and exponentiation maps are replaced by isogenies of prescribed degrees.
In this context, the analog of the discrete logarithm problem is the computational
supersingular isogeny problem: given two supersingular elliptic curves E and E′, find
an isogeny φ from E to E′. There is currently no known subexponential quantum
algorithm for solving this problem.

The analogy between the group setting and the supersingular isogeny setting is
far from being an exact correspondence, though. Consequently, the adaptation of a
DLP-based protocol using only exponentiations to this second setting can be quite
challenging (while on the other hand, the adaptation to Kummer varieties is trivial).
However, we believe that most exponentiation-only DLP-based protocols can be modi-
fied to work with supersingular isogenies. The goal of this article is to demonstrate this
claim on two examples: the first is a new oblivious transfer protocol, while the second
is an older scheme of Wu, Zhang and Wang. Both protocols are exponentiation-only,
and we explain how to convert them into SIDH-based protocols.

Oblivious transfer is among the fundamental tools of cryptography. It can be pre-
sented quite simply: Alice knows two secrets, say s0 and s1. Bob wants to know one
of these secrets, but he does not want Alice to know which one. Oblivious transfer
protocols (more precisely here,

(
2
1

)
-oblivious tranfer) resolve exactly that, allowing

Bob to learn the secret of his choice without learning anything about the other secret,
and without divulging anything about his choice to Alice1. Introduced by Rabin [29]
and Even et al. [16] in the early 80’s, oblivious transfer is a universal basic block for
secure multiparty computations [21], and a number of constructions have been pro-
posed. In many protocols, the security relies on the computational hardness of either
the RSA problem or the Diffie-Hellman problem, or variants thereof. In this article,
we are interested in the latter (DH-based protocols); the most well-known are Bellare-
Micali’s, Naor-Pinkas’s and Chou-Orlandi’s [4,11,25]. To the best of our knowledge,
only Wu, Zhang and Wang’s construction [38] relies solely on exponentiations, but it
requires additional validation measures to be secure, see Sect. 2.2. And while several
post-quantum OT schemes have been proposed (most notably by Peikert et al. [27];
see also [20] for more references), none of them are based on supersingular isogenies.

The first contribution of this article is the study and construction of DH-based
oblivious transfer schemes that use only exponentiations (Sect. 2). We begin by review-
ing the protocol of Wu, Zhang and Wang [38], explaining how to improve its security.

1 This is usually not meant in a information-theoretic sense, but rather in a computational-
theoretic one.
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We then propose a new, conceptually simple oblivious transfer scheme. Because it can
be straightforwardly adapted to work on fast Kummer varieties, we believe this proto-
col to be interesting on its own, outside of the post-quantum setting. For its analysis
(Sect. 2.4 and 2.5), we define a notion of semantic security of an oblivious transfer
scheme, capturing the computational intractability for the receiver of gaining infor-
mation on both of Alice’s secrets. The security of our new protocol then relies on the
hardness of a new variant of the Diffie-Hellman problem. This “2-inverse problem” is
relevant either in its computational or decisional formulation, depending on whether
the underlying encryption scheme is modeled as a random oracle, or is just assumed
to satisfy the IND-CPA property. We also analyse Wu-Zhang-Wang protocol, showing
that in the random oracle model (and only in this model), its security is equivalent
to the hardness of a second variant of the Diffie-Hellman problem. Of course, these
two problems deserve more scrutiny, but we give some arguments in favor of their
intractability, proving in Appendix A that the first one is basically as hard as the
discrete logarithm problem in the generic group model.

We recall in the next section the supersingular isogeny Diffie-Hellman key exchange
(SIDH) of De Feo, Jao and Plût, before presenting in Sect. 4.2 the corresponding
version of our new OT protocol. We also explain how to translate Wu-Zhang-Wang
protocol in this new setting, raising some interesting open problems along the way.
The last section deals with their security, which mainly relies on the hardness of the
isogeny versions of the previous problems.

Related works

Since the first version of this article, two preprints have been posted on the same
topic. The first paper, by Barreto, Oliveira and Benits [2], proposes a supersingular
isogeny oblivious transfer protocol that does not derive from an exponentiation-only
algorithm. Instead, it is an adaptation of Chou-Orlandi’s protocol [11]. The difficulty
is to replace the group product appearing in the protocol; the solution of Barreto
et al. requires the use by Alice and Bob of a secure coin-flipping mechanism. Their
protocol is about as efficient as ours, but this extra mechanism makes it somewhat
less natural.

The second paper is a recent preprint by Delpech de Saint Guilhem, Orsini, Pe-
tit and Smart [14]. Their work is quite similar to ours: realizing the importance of
exponentiation-only algorithms, they independently arrived at the same protocol as
the one proposed here, and seem to have rediscovered Wu-Zhang-Wang’s OT scheme.
However, their security proofs are quite different, focusing on UC security in the
random oracle model; we believe their work and ours to be complementary.

2 Simple Diffie-Hellman based oblivious transfer protocols

2.1 The Diffie-Hellman key exchange

In the standard Diffie-Hellman key exchange protocol, the two participants Alice and
Bob, who communicate through an insecure communication channel, agree on a cyclic
group G and a generator g of G. Alice and Bob both choose secret integers a and b
respectively; Alice computes A = ga via a fast exponentiation algorithm and sends it
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to Bob, while Bob computes and sends Alice B = gb. Upon reception of A, resp. B,
Bob computes Ab, resp. Alice computes Ba. Of course, Ab = (ga)b = gab = (gb)a =
Ba, thus Alice and Bob now have a shared secret from which they can derive an actual
key for encrypting securely their future communications.

g

B = gb

A = ga

(ga)b = (gb)a

φa

φ
b

φ
b

φa

Fig. 1. Another view of the Diffie-Hellman key exchange.

Another point of view on this protocol is the following (see Fig. 1): Alice has a
secret map φa : G → G, x 7→ xa, and Bob has his own secret map φb : x 7→ xb.
Both apply their secret map to a common starting element g ∈ G, then to the value
computed by the other participant. The fact that they obtain the same final value
comes from the commutativity property φa ◦ φb = φb ◦ φa. Of course, their maps
remain secret even if φa(g) and φb(g) are known, precisely because the discrete log
problem is hard in G.

Since this scheme only uses exponentiations in G and no multiplication, it has been
applied succesfully to Kummer varieties [17,18,30], which only form a “pseudo-group”.
This property is also what will enable its transposition to the quantum-resistant
isogeny setting, see Sect. 3.

Because of its simplicity, the Diffie-Hellman key exchange has served as a basis
for several oblivious transfer methods, most notably by Bellare and Micali, Naor and
Pinkas, and more recently Chou and Orlandi [4,11,25]. However, all these schemes
use some multiplications in the group G, besides exponentiations. To the best of our
knowledge, the only existing exponentiation-only oblivious transfer construction is
the 2003 protocol of Wu, Zhang and Wang [38]. We revisit this protocol in the next
section, before proposing in Sect. 2.3 a new scheme, conceptually close to Bellare and
Micali’s (and Chou and Orlandi’s variant). Being based uniquely on exponentiations,
both protocols can be adapted to work directly on fast Kummer varieties, and we will
be able in Sect. 4 to turn them into quantum-resistant, isogeny-based protocols.

2.2 The oblivious transfer protocol of Wu, Zhang and Wang

In the oblivious transfer setting, Alice has two secrets s0, s1 and Bob wants to learn
one of them, without allowing Alice to know which one; and Alice does not want Bob
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to learn both secrets. Let k ∈ {0, 1} be the index of Bob’s choice. As published in
[38], Wu-Zhang-Wang protocol requires Alice’s secrets to be (encoded as) elements of
the group G. It is based on the “double lock” principle, which in turn amounts to the
commutativity of the exponentiation maps.

1. Setup: Alice and Bob agree on a cyclic group G of prime order and a generator
g of G, such that the Diffie-Hellman problem is hard in G. They also agree on a
method to encode messages as elements of G.

2. Alice picks a uniformly random integer a ∈ {1, . . . ,#G− 1}. She computes A0 =
(s0)a and A1 = (s1)a and sends them to Bob.

3. Bob chooses a uniformly random integer b ∈ {1, . . . ,#G − 1}. According to the
index k of the secret he is interested in, he computes the group element B′ = (Ak)b

and sends it to Alice.
4. Alice computes B = (B′)a

−1

and sends it to Bob.

5. Bob computes Bb
−1

.

Here a−1 and b−1 stand for the inverses of a and b modulo #G. Basically, Alice has
“locked” her secrets using exponentiation by a, Bob adds his lock (exponentiation by
b) on one of them, then Alice removes her lock, and finally Bob unlocks his desired se-

cret. Correctness of the protocol follows from the identity Bb
−1

= ((((sk)a)b)a
−1

)b
−1

=
sk. As above, it can be interpreted in terms of the commutativity of the maps φa, φb
and their inverses, see Fig. 2.

s0

s1

B = (s0)b

A0 = (s0)a

A1 = (s1)a

B′ = (s0)ab

φa

φa

φ −
1b

φ
b

φ
−1
a

s0

s1

B = (s1)b

A0 = (s0)a

A1 = (s1)a

B′ = (s1)ab

φa

φa

φ −
1b

φ
b

φ
−1
a

Fig. 2. Wu-Zhang-Wang protocol (left, k = 0; right, k = 1).

Unfortunately, this protocol is unsecure against a malicious Bob (we will give more
complete definitions in the security review of Sect. 2.5). Indeed, a dishonest Bob can
send B′′ = (Ax0A

y
1)b for some x, y of his choice to Alice, instead of Ab0 or Ab1. If he does

that, at the end of the exchange he will learn not s0 nor s1, but the quantity sx0s
y
1,

which is related to both (typically, it will be their quotient s0/s1). A way to prevent
this is to use a validation method, as discussed in [38], in order to ensure that Bob
sends either Ab0 or Ab1, but this adds to the complexity of the protocol.
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A more interesting possibility is to turn the protocol into a random oblivious
transfer [3]. Instead of s0 and s1, Alice starts with two random elements r0 and r1
of G, and computes A0 and A1 as (r0)a and (r1)a. At the end of the exchange, Bob
knows either r0 and r1, but not both, and Alice does not know which one; at this
point her secrets s0 and s1 have not been involved yet. Then r0 and r1 can be used as
key seeds to encrypt s0 and s1 using a symmetric encryption function. Of course, a
malicious Bob could still learn rx0r

y
1 instead of r0 or r1; but if the encryption function

is secure enough, that does not help him to decrypt Alice’s secrets. We give below the
complete protocol; it is summed up in Fig. 3.

Alice Bob
secrets s0, s1 secret k ∈ {0, 1}

agree on G = 〈g〉
chooses r0, r1 ∈R G \ {e}
chooses a ∈R (Z/#GZ)∗

computes A0 = (r0)a, A1 = (r1)a

chooses b ∈R (Z/#GZ)∗

computes B′ = (Ak)b

computes B = (B′)a
−1

,
S0 = Enc(s0, KDF(r0)),
S1 = Enc(s1, KDF(r1))

computes Enc−1(Sk, KDF(Bb
−1

))

A0, A1

B′

B,S0, S1

Fig. 3. Random OT version of Wu-Zhang-Wang protocol.

1. Setup: Alice and Bob agree on a cyclic group G of prime order, such that the
Diffie-Hellman problem is hard in G. They also agree on a symmetric encryption
scheme Enc and a key derivation function KDF.

2. Alice picks two uniformly random, non-neutral elements r0, r1 ∈ G, and a uni-
formly random integer a ∈ {1, . . . ,#G − 1}. She computes A0 = (r0)a and
A1 = (r1)a with a fast exponentiation algorithm and sends them to Bob.

3. Bob chooses a uniformly random integer b ∈ {1, . . . ,#G − 1}. According to the
index k of the secret he is interested in, he computes the group element B′ = (Ak)b

and sends it to Alice.

4. Alice encrypts her secrets s0 and s1 with the key derived from the random values
r0 and r1 respectively. She computes B = (B′)a

−1

and sends it to Bob, together
with the ciphertexts S0 = Enc(s0, KDF(r0)) and S1 = Enc(s1, KDF(r1)).

5. Bob decrypts Sk with the key derived from Bb
−1

= rk.
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2.3 A new, simple DH-based oblivious transfer protocol

We propose in this section a new random oblivious transfer protocol, also based on
the Diffie-Hellman key exchange scheme. We will see that it has some advantages
compared to Wu-Zhang-Wang protocol, with respect to security (Sect. 2.5) and com-
plexity in the supersingular isogeny setting (Sect. 4.3).

As above, Alice has two secrets s0, s1 and Bob wants to learn one of them, without
allowing Alice to know which one; and Alice does not want Bob to learn both secrets.
The index of Bob’s choice is denoted by k ∈ {0, 1}.

1. Setup: Alice and Bob agree on a cyclic group G of prime order and a generator g
of G, such that the discrete logarithm problem (and the Diffie-Hellman problem)
is hard in G. They also agree on a secure symmetric encryption function Enc and
key derivation function KDF.

2. – Alice picks two different integers a0, a1 ∈ {1, . . . ,#G − 1}, chosen indepen-
dently and uniformly randomly.

– For each i ∈ {0, 1}, she computes with a fast exponentiation algorithm Ai =
gai ; she sends Bob A0, A1.

3. Bob chooses a uniformly random integer b ∈ {1, . . . ,#G− 1}.
– He computes the group element B = gb.
– According to the index k ∈ {0, 1} of the secret he is interested in, Bob com-

putes B′ = (Ak)b and sends it to Alice.

4. For each i ∈ {0, 1}, Alice computes B′
a−1
i where a−1i is the inverse of ai modulo

#G, and encrypts her secret si with the key derived from this computed value. She

sends Bob the ciphertexts S0 = Enc(s0, KDF(B′
a−1
0 )) and S1 = Enc(s1, KDF(B′

a−1
1 )).

5. Bob computes Enc−1(Sk, KDF(B)).

Alice Bob
secrets s0, s1 secret k ∈ {0, 1}

agree on G = 〈g〉

chooses a0, a1 ∈R (Z/#GZ)∗ chooses b ∈R (Z/#GZ)∗

computes A0 = ga0 , A1 = ga1 computes B = gb

computes B′ = (Ak)b

computes

S0 = Enc(s0, KDF(B′a
−1
0 ))

S1 = Enc(s1, KDF(B′a
−1
1 ))

computes Enc−1(Sk, KDF(B))

A0, A1

B′

S0, S1

Fig. 4. Our DH-based oblivious transfer protocol.
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Correctness of the protocol follows from the identity B′
a−1
k = ((gak)b)a

−1
k = gb =

B. As above, it can be interpreted in terms of commuting maps φa0 , φa1 and φb, see
Fig. 5. If we compare to Fig. 1, we see that the direction of the lower-right arrows have
been reversed, and only one of them completes a commutative diagram; the second
one points to a value that Bob should not be able to compute.

g

A0 = ga0

A1 = ga1

B = gb = B′
a−1
0

B′ = (A0)b

B′
a−1
1

φa1

φa
0

φ
b

φ
b

φ a
−
1

0

φ a−
1

1

g

A0 = ga0

A1 = ga1

B = gb = B′
a−1
1

B′ = (A1)b

B′
a−1
0

φa1

φa
0

φ
b

φ
b

φ a−
1

1

φ a
−
1

0

Fig. 5. Another view of our DH-based OT protocol (left, k = 0; right, k = 1)

As discussed above, this actually implements a random OT scheme: after the two

first exchanges, Alice has two random (but related) elements B′a
−1
0 and B′a

−1
1 , and

only one of them is known to Bob, but at this point Alice’s secrets have not yet been
involved. The use of a symmetric encryption scheme together with a key derivation
function gives the

(
2
1

)
-OT protocol.

2.4 Security against a malicious sender

The goal of a malicious Alice is to discover the secret bit k ∈ {0, 1} of Bob. In both
protocols, the only information she has access to is Bob’s computed value B′ = (Ak)b.
If Alice complies with the protocol, and the order of the group G is indeed prime as
specified, then A0 and A1, which are equal to either (r0)a and (r1)a or ga0 and ga1 , are
both generators of the group G. Since b is uniformly distributed in {1, . . . ,#G−1} '
(Z/#GZ)∗, the element B′ = (Ak)b is also uniformly distributed in G \ {e} (where
e = g0 is the neutral element) and therefore leaks no information about k to Alice.

A malicious Alice could, however, send Bob elements A0, A1 that are not of the
specified form. But for B′ = (Ak)b not to be uniformly distributed she needs A0 or
A1 not to be a generator of G. As long as G is of prime order, this means setting
A0 or A1 to e, which Bob can detect easily. Otherwise, Alice could try working in a
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group G of composite order. This is only possible if Bob does not check the order of
the agreed-upon group G, or if Alice sends elements A0 and A1 that are not in G, in
the spirit of the invalid curve attack [6]. In any case, as long as Bob performs some
elementary checks – namely, that G has indeed prime order, that A0 and A1 belong
to G and are different from e – then Alice obtains no information whatsoever about
Bob’s secret bit k.

2.5 Security against a malicious receiver

The goal of a malicious Bob is to decrypt, or at least gain information, on both of
Alice’s secrets s0 and s1. A difficulty in the analysis is that Bob is not constrained to
follow the protocol: instead of sending B′ = (Ak)b, he can send Alice any element of
his choice in G. As discussed above, Alice has no mean to ensure the validity of Bob’s
transmitted value; doing otherwise would require expensive validation mechanisms,
such as providing a zero-knowledge proof that Bob knows the logarithm of B′ in basis
either A0 or A1.

Because of this, we need a model for the security of an oblivious transfer protocols
with respect to the sender’s secrets. It is often defined in terms of an ideal functionality,
but this makes for difficult proofs outside of the random oracle model. We prefer to
define this security in terms of an indistinguishability property. Quite classically, in
order to express that Bob obtains useful information on a secret or not, we consider
a situation where the secret is selected randomly between two messages of his choice
and ask if Bob can tell which one was selected. The following game is modeled on the
definition of the IND-CPA property; in our

(
2
1

)
-oblivious transfer context, it makes

no real sense to give Bob more power and to consider adaptative attacks (see however
[9] for the securtiy of adaptative

(
n
k

)
-OT).

Indistinguishability game for oblivious transfer:
Given a message length n :

– Bob sends Alice two couples of distinct messages (m0,m
′
0) and (m1,m

′
1) of

his choice, of same length n;
– Alice chooses randomly, uniformly and independently two bits b0 and b1, then

sets s0 =

{
m0 if b0 = 0

m′0 if b0 = 1
and s1 =

{
m1 if b1 = 0

m′1 if b1 = 1

– Alice and Bob perform the oblivious transfer protocol with s0 and s1;
– Bob must answer whether b0 = b1 or b0 6= b1.

Definition 1.
An oblivious transfer protocol is semantically secure if for any polynomially-limited
Bob, his advantage, defined as P (correct answer) − 1/2, is a polynomially-negligible
function in the security parameter.

The rationale behind this definition is that Bob should not be able to extract
meaningful information about both s0 and s1, or equivalently about both b0 and
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b1. Since they are bits, this means being able to answer correctly whether b0 = b1
or b0 6= b1 with probability greater than 1/2. If Bob is honest-but-curious, he can
learn either b0 or b1, and the semantic security implies that he does not learn non-
negligible information on the second bit, as expected. If Bob is malicious, he could
conceivably try to cheat during the protocol by sending invalid data, exchanging the
certain knowledge of either b0 or b1 for a partial knowledge on both; this is for instance
possible in Wu-Zhang-Wang’s original protocol. Our definition of semantic security
implies that only negligible information can be thus obtained. Overall, it captures the
idea that any useful information gained by Bob on one of Alice’s secrets forbids him
to gain any useful information on the other secret.

Security analysis in the random oracle model.
Obviously, the practical security of the random OT schemes we have presented de-
pends on the underlying encryption and key derivation functions Enc and KDF, and
they cannot provide a perfect secrecy as it is the case for Bob’s secret k. Let us as-
sume for the moment that Enc combined with KDF operates as a random oracle; in
this model, Bob cannot gain any information on s0 and s1 if he does not know the en-
cryption keys. For instance, as in [4,25], one can simply set Enc(s, KDF(k)) = s⊕H(k)
where H is a random oracle (in practice, a cryptographic hash function).

Then in order to obtain any information on both messages, Bob must be able to

recover both encryption keys. In our protocol, this means being able to compute B′a
−1
0

and B′a
−1
1 for an element B′ of Bob’s choice, knowing only g, ga0 and ga1 . A trivial

solution for Bob is to send Alice B′ = e, but she can easily detect that and abort the
communication in that case. Otherwise, Bob has to solve the following problem.

2-inverse computational Diffie-Hellman problem (2-inv-CDHP):
Given a cyclic group G = 〈g〉 of prime order and elements gα and gβ , produce a

triple (X,Y, Z) such that X 6= e and Y = Xα−1

and Z = Xβ−1

.

If Bob can solve the computational Diffie-Hellman problem (CDHP), he can easily
solve 2-inv-CDHP by producing (gαβ , gβ , gα), or more generally ((gαβ)x, (gβ)x, (gα)x)
for any x coprime to #G. On the other hand, if for any X ∈ G, Bob can produce
elements Y,Z such that Y = Xα−1

and Z = Xβ−1

, then setting X = g he can solve the
inverse Diffie-Hellman problem (computing gα

−1

), which is equivalent to the standard
CDHP. However, Bob only has to produce such a triple for an X of his choice. Thus
in theory, Bob could find any triple that is easier to compute than (gαβ , gβ , gα) or

(g, gα
−1

, gβ
−1

). But in practice, we do not see how this additional freedom can be
used and we believe this new problem to be as hard as CDHP.

Actually, it is reminiscent of the “2-out-of-3” Diffie-Hellman problem [23], which
consists, given g, gα and gβ , in producing a couple (X,T ) where T = Xαβ . Although
there does not seem to be a reduction between 2-out-of-3 DHP and 2-inv-CDHP, in
both cases the lack of restriction on X implies that there is no obvious reduction from
CDHP. Moreover, Kunz-Jacques and Pointcheval have proved in [23] that the 2-out-
of-3 problem is difficult in the generic group model, and their method can be adapted
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to our problem. We recall that in the generic group model, all details about the group
G are masked by a random bijective encoding σ : G → I and its inverse τ : I → G,
where I can be taken as {1, . . . ,#G}. Any operation on the group G is queried to an
oracle, that on input (a, x, a′, x′) ∈ (Z× I)2 answers2 σ(τ(x)a.τ(x′)a

′
). An algorithm

that works in the generic group model (a generic algorithm) can therefore only rely
on group operations and equality testing. In this model, we obtain the following result
(see Appendix A for the proof), which implies that a generic algorithm needs Ω(

√
#G)

operations in order to solve 3-inv-CDHP with a non-negligible probability.

Theorem 1. The probability of solving 2-inv-CDHP after qG oracle queries is bounded

by (3qG+4)2

2#G + 1
#G2 = O(q2G/#G).

Note finally that Bob can of course produce couples of the form (X,Xα−1

) or

(X,Xβ−1

) by setting X = (gα)x or (gβ)x, and this is exactly how he can decrypt one
of Alice’s ciphertexts in our protocol.

The security of Wu-Zhang-Wang protocol in the random oracle model relies on the
hardness of a different problem. Indeed, to gain information on both of Alice’s secrets
in this protocol, Bob must compute r0 and r1 from the only information available to
him, namely (r0)a, (r1)a, and the image B′a

−1

under the exponentiation by a−1 of
the element B′ of his choice. This is formalized in the following problem.

One-more exponentiation problem (1MEP):
Given a cyclic group G = 〈g〉 of prime order, two non-neutral elements Y and Z,
and a secret integer α ∈ {1, . . . ,#G− 1},
– Bob submits an element X ∈ G of his choice to an oracle, that outputs Xα;
– then Bob must produce Y α and Zα.

This problem is reminiscent of several non-standard Diffie-Hellman problems, most
notably the “static” one-more Diffie-Hellman problem [7,22]. Clearly, Bob can solve
1MEP if he can solve the computational Diffie-Hellman problem (twice, with inputs
X, Xα, Y and then X, Xα, Z). On the other hand, for an honest-but-curious Bob
who follows the protocol and submits either Y or Z, solving 1MEP is equivalent to
solving the CDHP with inputs Y , Z and either Y α or Zα. But a malicious Bob is
not constrained in his choice of X; as in the case of 2-inv-CDHP, this freedom means
that there is no trivial equivalence between 1MEP and CDHP, even though it is not
at all clear how to use this freedom meaningfully. In any case, there does not seem to
be any practical way to solve these problems beyond computing discrete logarithms.

Semantic security
The assumption that the encryption and key derivation functions act as a random
oracle is however unrealistically strong. A more reasonable assumption is that Enc

2 Other models only allow queries of the form σ(τ(x).τ(x′)) or σ((τ(x))−1), but this does
not fundamentally alter our result.
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combined KDF is semantically secure [19], or more precisely satisfies the indistin-
guishability under chosen-plaintext attack (IND-CPA) property. Coming back to our
indistinguishability game, under this assumption Bob cannot tell apart the encryp-
tions of m0 and m′0, resp. m1 and m′1, with polynomially-limited resources if he does
not have information on the respective encryption key.

The security of our protocol in the IND-CPA model consequently relies on the
assumption that Bob cannot produce an element B′ ∈ G \ {e} such that he has

information on both B′a
−1
0 and B′a

−1
1 . This is made precise in the following decisional

problem, presented in the form of a game between Bob and an oracle.

2-inverse decisional Diffie-Hellman problem (2-inv-DDHP):
Given a cyclic group G = 〈g〉, elements gα, gβ :

– Bob sends the challenge oracle an element X ∈ G \ {e} of his choice;
– the oracle samples two independently and uniformly random elements R0,
R1 ∈ G \ {e} and bits b0, b1 ∈ {0, 1}.

– the oracle then outputs two couples (Y, Y ′) and (Z,Z ′) such that

(Y, Y ′) =

{
(Xα−1

, R0) if b0 = 0

(R0, X
α−1

) if b0 = 1
and (Z,Z ′) =

{
(Xβ−1

, R1) if b1 = 0

(R1, X
β−1

) if b1 = 1

– Bob must answer whether b0 = b1 or b0 6= b1.

Bob’s advantage in this game is defined as P (correct answer)− 1/2.
Then 2-inv-DDHP is hard if no algorithm can achieve a non-negligible advantage
for Bob in probabilistic polynomial time.

As in the oblivious transfer indistinguishability game, if the problem is hard then
Bob cannot gain any useful information on the couple (Xα−1

, Xβ−1

) that does not
come from information on only one of them separately. Bob can of course identify
either b0 or b1 by submitting X = (gα)x or (gβ)x for an x of his choice; if the 2-inv-
DDHP is hard in G, he cannot do better (with polynomially-limited resources).

Theorem 2. The protocol of Sect. 2.3 is semantically secure if 2-inv-DDHP is hard
and the underlying encryption scheme is IND-CPA.

For better readability, the proof of this result is postponed to Appendix B.

There is an obvious reduction from 2-inv-CDHP to 2-inv-DDHP, and also from the
standard decisional Diffie-Hellman problem (DDHP). Actually, the decisional problem
closest to ours is the inverse decisional Diffie-Hellman problem (inv-DDHP, see [1]):

given g, gα and h, determine if h = gα
−1

. If Bob can solve inv-DDHP, he can solve
2-inv-DDHP by submitting X = g. As with the computational problem, there is no
obvious reduction from 2-inv-DDHP to inv-DDHP (and neither from inv-DDHP to
DDHP), because of the additional freedom in the choice of X, but we do not believe
this freedom to be practically usable.

As a matter of fact, even if Bob manages to obtain some partial information on

both Alice’s encryption keys B′a
−1
0 and B′a

−1
1 , he will probably not be able to use
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it to gain partial information on both secrets s0 and s1, although this claim clearly
depends of the encryption scheme used (he would need some kind of related key
attacks). Nevertheless, it is safer to implement our oblivious transfer protocol in a
group where the decisional Diffie-Hellman problem is hard, for instance on elliptic
curves that are not pairing-friendly.

For Wu-Zhang-Wang protocol, however, the IND-CPA property is not enough to
guarantee the semantic security of the overall scheme. The problem is that the deci-
sional version of the one-more exponentiation problem (1MEP) is easy: by submitting
Y/Z to the exponentiation oracle, Bob recovers Y α/Zα and therefore gains informa-
tion on the couple (Y α, Zα). This is exactly the reason why the original version of
Wu-Zhang-Wang protocol was insecure and had to be transformed in a random OT
scheme. As remarked just above, this is an actual weakness only if Bob manages to
mount a kind of related key attack. But in any case, achieving semantic security for
Wu-Zhang-Wang protocol would require not only the hardness of 1MEP, but also
some kind of non-standard indistinguishability property of the underlying encryption
scheme.

2.6 Comparison between the two schemes

From a complexity point of view, we can compare the two schemes by counting the
number of group exponentiations, which are usually the most expensive operations.
We can see that Wu-Zhang-Wang protocol requires five exponentiations, against six
for our proposal, and is thus slightly more efficient. This is however no longer true in
the supersingular isogeny setting, as explained in Sect. 4.3.

Note that the protocols, as presented above, actually implement
(
2
1

)
(or 1-out-of-2)

oblivious transfer. Turning them into
(
n
1

)
-OT can be done using the classical Naor-

Pinkas transform. It only requires O(ln(n)) parallel executions of the first steps of
the protocol, and thus only O(ln(n)) exponentiations; but obviously, Alice must still
send O(n) encrypted messages in the final step. We refer to Naor and Pinkas original
article [26] for more details. Achieving

(
n
t

)
-OT is a different task. Wu-Zhang-Wang

protocol admits a solution with O(n+t) operations, as explained in the original paper
[38], whereas our protocol still necessitates t executions of the

(
n
1

)
scheme.

From a security point of view, we have seen that the two schemes relies on distinct
hardness assumptions. Still, outside of the random oracle model Wu-Zhang-Wang
protocol is weaker than ours, and cannot offer semantic security under standard in-
distinguishability assumptions on the underlying symmetric encryption scheme.

3 The De Feo-Jao-Plût supersingular isogeny key exchange

Let E and E′ be two elliptic curves defined over the same finite field Fq (we refer to
[33] for more details on elliptic curves and isogenies). By a theorem of Tate, we know
that there exists an isogeny φ : E → E′ defined over Fq if and only if E and E′ have
the same number of Fq-rational points, and this can be checked quite efficiently. On
the other hand, finding such an isogeny φ, or equivalently determining its kernel, is
usually much more difficult.
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Actually, this gives a construction of a one-way function. Starting from a subgroup
G of E(Fq), Vélu’s formulae [37] allow one to compute the curve E′ ' E/G and the
corresponding isogeny φ : E → E′ using O(#G) operations in E. But when the
order of G is smooth (in applications we will have #G = 2n or 3m), then φ can be
efficiently computed as a composition of small degree isogenies, and the cost drops
to Õ(log(#G)); see [13] for more details on the optimal computation strategy. On
the other hand, the inverse function, which consists of determining G = kerφ from
E, E′ and potential other information such as #G = deg φ, is harder to compute.
How much harder depends on the setting; in the case of smooth degrees (the one we
are interested in), the best known quantum attacks have subexponential complexity
for ordinary elliptic curves [10], but exponential complexity for supersingular elliptic
curves [35].

This one-way function can be used to construct a Diffie-Hellman-type key ex-
change. In this context, the exponentiation maps of the Diffie-Hellman protocol are
replaced by the computation of quotient curves E/G, and recovering G from E and
E/G is the analog of the discrete logarithm problem. The first isogeny-based key
exchange proposal (by Couveignes in 1997 [12], rediscovered ten years later by Ros-
tovtsev and Stolbunov [31,34]) used ordinary elliptic curves. After the discovery of a
quantum subexponential attack [10], this key exchange protocol was adapted to the
supersingular setting by De Feo, Jao and Plût [13].

The difficulty is that the analogy between exponentations and taking quotients of
curves is not perfect. Indeed, in the group setting, the knowledge of a ∈ (Z/#GZ)∗

allows one to associate an element ga ∈ G to any element g ∈ G; in other words,
the group (Z/#GZ)∗ acts on G, and the Diffie-Hellman key exchange relies on the
commutativity of this action (as expressed by the diagram of Fig. 1). But there is no
such commutative group action for supersingular elliptic curves3. For any subgroup
G ⊂ E, one can compute the curve E/G and associated isogeny φ : E → E/G such
that kerφ = G, but there is no canonical way to extend this correspondence E 7→ E/G
to all supersingular curves.

The idea of the supersingular isogeny Diffie-Hellman (SIDH) key exchange of De
Feo, Jao and Plût is to work with two different torsion subgroups of a supersingular
curve E defined over Fp2 . We will assume that the full 2n and 3m torsion of E is
defined over Fp2 , where n and m are integers related to the security level (typically
100 ≤ n ≤ 500) such that 2n ≈ 3m. Actually, any couple of small prime numbers can
be used intead of 2 and 3; in the notations of [13], we have chosen eA = 2, `A = n,
eB = 3 and `B = m to simplify the presentation. The protocol begins as follows:

– Alice and Bob, the two participants in the key exchange protocol, each choose a
subgroup of E: Alice chooses a cyclic subgroup GA = 〈RA〉 ⊂ E[2n] of order 2n,
and Bob a cyclic subgroup GB = 〈RB〉 ⊂ E[3m] of order 3m.

– Alice computes the curve EA ' E/〈RA〉 with corresponding isogeny φA : E → EA
and sends EA to Bob; Bob computes the curve EB ' E/〈RB〉 with corresponding
isogeny φB : E → EB and sends EB to Alice.

Now we would like Alice (resp. Bob) to compute an isogeny φ′A : EB → EBA
(resp. φ′B : EA → EAB) that is in some sense “parallel” to φA : E → EA (resp. to

3 This commutative group action does exist, however, for ordinary elliptic curves; but this
is precisely the basis of the quantum attack on the computational isogeny problem.
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φB : E → EB). Of course, we also want EAB ' EBA, so that Alice and Bob can use
the common j-invariant j(EAB) = j(EBA) as a shared secret. A natural solution is
to take kerφ′A = φB(GA) = 〈φB(RA)〉 and kerφ′B = φA(GB) = 〈φA(RB)〉; then

EBA ' EB/〈φB(RA)〉 ' E/〈RA, RB〉 ' EA/〈φA(RB)〉 ' EAB .

But Alice cannot ask Bob to compute φB(RA): if it transits over an insecure com-
munication channel, any eavesdropper can compute the final shared value j(EBA) =
j(EB/〈φB(RA)). De Feo, Jao and Plût’s solution is to fix a basis (U, V ) of E[2n] and a
basis4 (P,Q) of E[3m] and to require Alice, resp. Bob, to transmit φA(P ) and φA(Q)
in addition to EA, resp. φB(U) and φB(V ) in addition to EB . The protocol can then
resume as follows:

– Alice computes xA, yA ∈ Z/2nZ such that RA = xAU + yAV (this is possi-
ble because the discrete logarithm problem is easy in E[2n]). Alternatively, and
preferably, she had chosen RA as xAU + yAV by sampling xA and yA randomly
in Z/2nZ such that at least one of them is coprime to 2.
After receiving EB , φB(U) and φB(V ), she computes xAφB(U)+yAφB(V ) (which
is equal to φB(RA)) and EBA ' EB/〈xAφB(U) + yAφB(V )〉.

– Bob does the same and computes EAB ' EA/〈xBφA(P ) + yBφA(Q)〉 where
xB , yB ∈ Z/3mZ are such that RB = xBP + yBQ.

In practice, with a small loss of generality we can assume that RA = U + aV and
RB = P + bQ where a, resp. b are chosen randomly and uniformly from Z/2nZ,
resp. Z/3mZ. The final protocol is summed up in Fig. 6.

E,U, V , P ,Q

EB ' E/〈P + bQ〉,
φB(U), φB(V )

EA ' E/〈U + aV 〉,
φA(P ), φA(Q)

EA/〈φA(P ) + b φA(Q〉
' EB/〈φB(U) + aφB(V )〉

φA

φ
B

φ ′
B

φ
′
A

Fig. 6. De Feo-Jao-Plût SIDH key exchange

The security of this scheme corresponds to the hardness of the analog of the
computational Diffie-Hellman problem (CDHP):

4 This corresponds to (PA, QA) and (PB , QB) in the notations of [13].
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Supersingular Computational Diffie-Hellman Problem (SSCDH [13]):
Let E be a supersingular elliptic curve defined over Fp2 with rational 2n and 3m

torsion, and let (U, V ) and (P,Q) be bases of E[2n] and E[3m] respectively. Let
φA : E → EA and φB : E → EB be isogenies such that kerφA = 〈U + aV 〉 and
kerφB = 〈P + bQ〉, where a, b are chosen randomly and uniformly in Z/2nZ and
Z/3mZ.
Given the curves E, EA, EB and the points φA(P ), φA(Q), φB(U), φB(V ), find
the j-invariant of E/〈U + aV, P + bQ〉.

There is a similar decisional problem, the Supersingular Decisional Diffie-Hellman
Problem (SSDDH); we refer to [13] for its formalization. Currently, the best approach
to solve this problem is to recover kerφA from the knowledge of E, EA and φA(P )
and φA(Q); this is the SIDH analog of the computation of discrete logarithms.

Computational Supersingular Isogeny Problem (CSSI [13]):
Let E be a supersingular elliptic curve defined over Fp2 with rational 2n and 3m

torsion, and let (U, V ) and (P,Q) be bases of E[2n] and E[3m] respectively. Let
φA : E → EA be an isogeny such that kerφA = 〈U + aV 〉 where a is chosen
randomly and uniformly in Z/2nZ.
Given the curves E, EA and the points φA(P ), φA(Q), determine kerφA.

Of course, we can swap the 2n and 3m torsion and obtain a similar statement.
Compared to the one-way function described at the beginning of this section, here an
attacker has access to the images of P and Q. However, currently there is no known
algorithm that exploits meaningfully this extra information, at least when 2n ≈ 3m

(see however [28]), and the best known quantum attack is the claw finding method of
[35], with exponential complexity.

4 SIDH-based oblivious transfer

4.1 Basic outline

From SIDH to OT. Our goal in this section is to construct isogeny-based, post-
quantum oblivious transfer protocols, that are the analog in the SIDH setting of
the group-based OT protocols presented in Sect. 2. We start with our new protocol
(Sect. 2.3), which is somehow simpler to adapt; Wu-Zhang-Wang protocol will be
treated in Sect. 4.3.

We follow closely the blueprint of the method presented in Sect. 2.3; the resulting
construction is illustrated in Fig. 7. Instead of computing only one curve EA and
the corresponding isogeny φA : E → EA as in the SIDH key exchange, Alice now
computes two curves EA,0 ' E/〈R0〉 and EA,1 ' E/〈R1〉, and the corresponding
isogenies φA,i : E → EA,i of degree 2n. She transmits Bob the two curves, one for
each of her secrets, together with auxiliary data (as above, the image of a fixed basis
of E[3m]). Then Bob computes his part, namely, the two curves EB ' E/〈RB〉 and
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E′B ' EA,k/〈φA,k(RB)〉, where k ∈ {0, 1} still stands for the index of the secret
Bob is interested in, and the corresponding “parallel” isogenies φB : E → EB and
φ′B : EA,k → E′B

E,P ,Q

EB ' E/〈P + bQ〉

EA,1 ' E/〈R1〉,
φA,1(P ), φA,1(Q)

EA,0 ' E/〈R0〉,
φA,0(P ), φA,0(Q)

E′B ' EA,k/〈φA,k(P ) + b φA,k(Q)〉

φ
A
,0

φA
,1

φ
B

φ ′
B

??

Fig. 7. First steps of the SIDH-based oblivious transfer (case k = 1)

In the key exchange protocol, Bob transmitted Alice the curve EB together with
the image by φB of a fixed basis of E[2n]; this allowed Alice to compute the isogeny φ′A
“parallel” to φA, whose kernel is 〈φB(RA)〉. But for the oblivious transfer protocol,
we want to proceed the other way round: Bob sends Alice the curve E′B , which is
3m-isogenous to EA,0 or EA,1, but Alice does not know to which one. Similarily to
Sect. 2.3, the key point is thus to “reverse” the map φ′A,k going from EB to E′B . In
the isogeny setting, what we are interested in are actually the domain and codomain
of the map φ′A,k, and our goal becomes to compute the dual isogeny φ̂′A,k : E′B → EB .

Dual isogenies. It is a standard fact about elliptic curves, see for instance [33],
that for any isogeny φ : E → E′ between two elliptic curves there exists another
isogeny φ̂ : E′ → E, called the dual isogeny of φ, such that φ̂ ◦ φ (resp. φ ◦ φ̂) is

the multiplication-by-deg φ endomorphism of E (resp. of E′). It also satisfies deg φ̂ =

deg φ,
̂̂
φ = φ, and φ̂ has the same field of definition as φ.

If φ : E → E′ is an isogeny of degree d coprime to the characteristic, given by a
cyclic kernel kerφ = 〈R〉 ⊂ E[d], then the kernel of φ̂ can be easily described. Let

T ∈ E be such that E[d] = 〈R, T 〉. Since ker(φ̂◦φ) = E[d] = 〈R, T 〉 and φ is surjective,

it follows that ker φ̂ = φ(E[d]) = 〈φ(R), φ(T )〉 = 〈φ(T )〉. When all the d-torsion is
rational, it is not difficult to find such a complementary generator T of E[d], after

which φ(T ) and φ̂ can be computed using Vélu’s formulae.

Completing the oblivious transfer. In order to complete the protocol, Alice will
compute two isogenies: one which will be parallel to φ̂A,k, and the other a bogus one,
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arriving at some unknown curve. As in De Feo-Jao-Plût construction, Alice needs
extra information to compute efficiently these maps. What she can do easily is find
a generator of the kernel of the dual isogeny φ̂A,i : EA,i → EA (for each i ∈ {0, 1}),
by taking the image by φA,i of a generator Ti of a complement of kerφA,i = 〈Ri〉
in E[2n]. Now she can compute φ̂′A,k, even without knowing k, if she has access to

φ′B(φA,k(Tk)). But she cannot give Bob φA,i(Ti): this discloses ker φ̂A,i, from which
Bob or any eavesdropper can recover kerφA,i, ruining the protocol. One way to achieve
that, while preventing Bob from gaining useful information, is to ask him to compute
and send Alice the image by φ′B of a basis of EA,k[2n]; we will see however in Sect. 5.1
that some care must be taken in doing so.

More precisely, a basis (U0, V0) of EA,0[2n] is chosen, as well as a basis (U1, V1) of
EA,1[2n], and Bob transmits φ′B(Uk) and φ′B(Vk) to Alice together with E′B . Then Al-
ice writes φA,0(T0) and φA,1(T1) as x0U0+y0V0 and x1U1+y1V1, and she computes the
two curves F0 ' E′B/〈x0φ′B(Uk) + y0φ

′
B(Vk)〉 and F1 ' E′B/〈x1φ′B(Uk) + y1φ

′
B(Vk)〉.

One of these two curves, Fk, corresponds to the quotient E′B/〈φ′B(Tk)〉, which is iso-
morphic to the curve EB computed by Bob; the other one is random. Thus Alice
has obtained two values j(F0) and j(F1), such that one of them, j(Fk) = j(EB), is
known to Bob, but Alice does not know which one. They can be used as key seeds to
encrypt Alice’s secrets using a key derivation function and a symmetric cipher, as in
the group-based setting. The complete construction is illustrated in Fig. 8 below.

E,P ,Q

EB ' E/〈P + bQ〉 '
E′B/〈x1φ′B(U1) + y1φ

′
B(V1)〉

EA,1 ' E/〈R1〉,
φA,1(P ), φA,1(Q), U1, V1

EA,0 ' E/〈R0〉,
φA,0(P ), φA0(Q), U0, V0

E′B ' EA,1/〈φA,1(P ) + b φA,1(Q)〉
φ′B(U1), φ′B(V1)

F0 ' E′B/〈x0φ′B(U1) + y0φ
′
B(V1)〉

φ
A
,0

φA
,1

φ
B

φ ′
B

φ̂
′
A
,1

Fig. 8. SIDH-based oblivious transfer, case k = 1
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4.2 A first protocol

Alice
secrets s0, s1

Bob
secret k ∈ {0, 1}

agree on E,P,Q

chooses R0, R1, T0, T1 ∈R E[2n] such that
〈R0, T0〉 = 〈R1, T1〉 = E[2n]

chooses b ∈ Z/3mZ

for each i ∈ {0, 1}: computes EB ' E/〈P + bQ〉
computes φA,i : E → EA,i ' E/〈Ri〉

finds random bases U0, V0 of EA,0[2n],
and U1, V1 of EA,1[2n] s.t.
w(U0, V0) = w(U1, V1);
computes φ′B : EA,k → E′B where
E′B ' EA,k/〈φA,k(P ) + b φA,k(Q)〉

for each i ∈ {0, 1}:
• computes coordinates (xi, yi) of φA,i(Ti)
in basis (Ui, Vi)
• computes
Fi = E′B/〈xiφ′B(Uk) + yiφ

′
B(Vk)〉

• computes Si = Enc(si, KDF(j(Fi)))

computes Enc−1(Sk, KDF(j(EB)))

EA,0, φA,0(P ), φA,0(Q)

EA,1, φA,1(P ), φA,1(Q)

U0, V0, U1, V1, E
′
B , φ

′
B(Uk), φ′B(Vk)

S0, S1

Fig. 9. Our SIDH-based oblivious transfer protocol.

We now detail the protocol sketched above for the
(
2
1

)
-oblivious transfer; as in

Sect. 2.6, it can be easily turned into a
(
n
1

)
-OT. Alice has two secrets s0, s1 and Bob

wants to learn one of them, without allowing Alice to know which one; and Alice does
not want Bob to learn both secrets. Let k ∈ {0, 1} be the index of Bob’s choice.

1. Setup: Alice and Bob agree on security parameters n,m such that 2n ≈ 3m, a
supersingular curve E defined over a finite field Fp2 such that E[2n3m] ⊂ E(Fp2),
and points P,Q generating E[3m]. They also agree on a secure symmetric encryp-
tion protocol Enc and a key derivation function KDF.

2. – Alice chooses two different cyclic random subgroups G0 = 〈R0〉, G1 = 〈R1〉
of E of order 2n. She also finds T0, T1 ∈ E[2n] such that E[2n] = 〈R0, T0〉 =
〈R1, T1〉.
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– For each i ∈ {0, 1}, she computes with Vélu’s formula the curve EA,i ' E/Gi
and the corresponding isogeny φA,i : E → EA,i.
She sends Bob EA,i, φA,i(P ), φA,i(Q).

3. Bob chooses a uniformly random b ∈ Z/3mZ.
– He computes the curve EB ' E/〈P + bQ〉 and its j-invariant jB .
– He chooses random generators U0, V0 of EA,0[2n], resp. U1, V1 of EA,1[2n],

such that the Weil pairings w(U0, V0) and w(U1, V1) are equal.
– He computes the curve E′B ' EA,k/〈φA,k(P )+b φA,k(Q)〉 and the correspond-

ing isogeny φ′B : EA,k → E′B . He sends Alice U0, V0, U1, V1, E′B , φ′B(Uk),
φ′B(Vk).

4. For each i ∈ {0, 1}, Alice computes xi, yi ∈ Z/2nZ such that φA,i(Ti) = xiUi +
yiVi. She then computes Fi ' E′B/〈xiφ′B(Uk) + yiφ

′
B(Vk)〉. She computes the

encryption Si =Enc(si, KDF(j(Fi))) of the secret si with the key derived from the
j-invariant of Fi. She then sends Bob S0, S1.

5. Bob computes Enc−1(Sk, KDF(jB)).

The correctness of the algorithm follows from the identities

Fk '
(
(E/〈Rk〉)/〈φA,k(P ) + b φA,k(Q)〉

)
/〈xkφ′B(Uk) + ykφ

′
B(Vk)〉

'
(
(E/〈Rk〉)/〈φA,k(P + bQ)〉

)
/〈φ′B(xkUk + ykVk)〉

'
(
(E/〈Rk〉)/〈φA,k(P + bQ)〉

)
/〈φ′B(φA,k(Tk))〉

' (E/〈Rk, Tk〉)/〈P + bQ〉 ' (E/E[2n])/〈P + bQ〉 ' E/〈P + bQ〉 ' EB .

The associated diagram is presented in Fig. 8 above. Conceptually, it is the analog
of Fig. 5 (except that for brevity only the case k = 1 is pictured), with supersingular
curves and isogenies instead of group elements and exponentiation maps. When com-
pared to Fig. 6, the lower-right isogenies have been replaced by their duals, and only
one of them completes the diagram; as in the Diffie-Hellman setting, the second one
points to a curve that Bob should not be able to compute.

4.3 The supersingular isogeny version of Wu-Zhang-Wang protocol

The exponentiation-only OT scheme of Wu-Zhang-Wang can also be modified to work
in the supersingular isogeny setting. But this translation raises some very interesting
points about isogeny-based crypto. We recall that in the original Wu-Zhang-Wang
protocol (Sect. 2.2), Alice’s secrets s0 and s1 are elements of the group G, whereas in
the random-OT version, Alice chooses random elements r0, r1 ∈ G. Thus for its SIDH
adaptation, we need to be able to answer one of the following problems.

– Problem 1: is is possible to efficiently encode messages as (isomorphism classes
of) supersingular elliptic curves over a given finite field?

– Problem 2: is it possible to efficiently sample random (isomorphism classes of)
supersingular elliptic curves over a given finite field?

Both questions are not new, but satisfying answers would greatly improve the
state-of-the-art in isogeny-based cryptography. Note that it is possible to efficiently

20



construct supersingular elliptic curves over a finite field (see [8]), but the resulting
curves are always quite special (usually j = 0 or 1728).

The difficulty with both problems is that supersingular elliptic curves form a very
small proportion of all elliptic curves: over Fp2 , approximately only one curve out of
p is supersingular. Even though testing for supersingularity can be done efficiently,
this small proportion means that the strategy of sampling random curves until a
supersingular one is found is prohibitively expensive. Now, a standard solution to the
second problem is to run a random isogeny walk, starting from a known supersingular
curve. Because of the good mixing properties of the supersingular isogeny graph, only
O(ln(p)) steps are needed to reach an almost uniform distribution. But even if the
reached curve is random, the entity running the isogeny walk always knows the path
connecting it to the starting curve; this may be a problem in some applications.

The first problem is much more difficult and has currently no solution, even partial.
Isogeny walks allow to map messages to supersingular curves, but this only yields
one-way functions. For this reason, we just give below the SIDH translation of the
random-OT version of Wu-Zhang-Wang protocol.

1. Setup: Alice and Bob agree on security parameters n,m such that 2n ≈ 3m, and
a finite field Fp2 such that 2n3m|p± 1.

2. – Alice chooses two random supersingular elliptic curves E0 and E1 defined over
Fp2 with cardinality divisible by 22n32m. For each i ∈ {0, 1}, she chooses a
random subgroup 〈Ri〉 ⊂ Ei[2n] of order 2n, as well as Ti such that 〈Ri, Ti〉 =
Ei[2

n], and she computes with Vélu’s formulae the curve EA,i ' Ei/〈Ri〉 and
the corresponding isogeny φA,i : E → EA,i.

– Alice finds points W0 ∈ EA,0 and W1 ∈ EA,1 such that (φA,0(T0),W0) and
(φA,1(T1),W1) are bases of EA,0[2n] and EA,1[2n] respectively, with equal Weil
pairing. Using one random invertible matrix in GL2(Z/2nZ), she computes
new bases (U0, V0) and (U1, V1) of EA,0[2n] and EA,1[2n] respectively, with
equal Weil pairing, and such that φ(T0) = U0 + aV0 and φ(T1) = U1 + aV1 for
a given a ∈ Z/2nZ. She keeps a secret and sends Bob EA,0, U0, V0, EA,1, U1, V1.

3. – According to the index k of the secret he is interested in, Bob chooses a random
order 3m subgroup 〈P 〉 ⊂ EA,k[3m], as well as Q such that 〈P,Q〉 = EA,k[3m].
He computes the curve E′B ' EA,k/〈P 〉 and the corresponding isogeny φ′B :
EA,k → EAB .

– Bob chooses a random basis (P ′, Q′) of E′B [3m] and computes the coordinates
x, y of φ′B(Q) in this basis. He sends Alice E′B , φ′B(Uk), φ′B(Vk), P ′, Q′.

4. Alice computes EB ' E′B/〈φ′B(Uk) + aφ′B(Vk)〉 and the corresponding isogeny

φ̂′A,k : E′B → EB . She sends Bob EB , φ̂′A,k(P ′), φ̂′A,k(Q′).
5. For each i ∈ {0, 1}, Alice computes Si =Enc(si, KDF(j(Ei))), the encryption of the

secret si with the key derived from the j-invariant of Ei.
She sends Bob S0, S1.

6. Bob computes E′k ' EB/〈x φ̂′A,k(P ′) + y φ̂′A,k(Q′)〉 and Enc−1(Sk, KDF(j(E′k)).

This protocol corresponds to the diagram of Fig. 10. Its correctness follows from
the identities

E′k ' EB/〈φ̂′A,k(φ′B(Q))〉 ' E′B/〈φ′B(Tk), φ′B(Q)〉
' EA,k/〈P, Tk, Q〉 ' (EA,k/EA,k[3m])/〈Tk〉 ' EA,k/〈Tk〉 ' Ek.
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E0

E1

' EB/〈x φ̂′A,k(P ′) + y φ̂′A,k(Q′)〉

EB ' E′B/〈φ′B(Uk) + aφ′B(Vk)〉,
φ̂′A,k(P ′), φ̂′A,k(Q′)

EA,0 ' E0/〈R0〉,
U0, V0

EA,1 ' E1/〈R1〉,
U1, V1

E′B ' EA,k/〈P 〉,
φ′B(Uk), φ′B(Vk), P ′, Q′

φA
,0

φA
,1

φ ′
B

φ̂
′
A
,k

φ̂
B

Fig. 10. SIDH version of Wu-Zhang-Wang protocol, case k = 1

Compared to the DH-based protocol (Fig. 2), we see that the exponentiations have
been replaced by isogeny computations, and their inverses by taking dual isogenies.
As in the De Feo-Jao-Plût protocol and our previous proposal, we need information
on images of basis points to ensure commutativity. A difficulty comes from the fact
that Alice must compute φ̂′A,k, the dual to the isogeny parallel to φA,k, without
knowing k. For this reason, we need that φA,0(T0) and φA,1(T1), which generate the

kernels of the duals φ̂A,0 and φ̂A,1, have the same coordinates in bases (U0, V0) and
(U1, V1) respectively. This, and the considerations of Sect. 5.1, explain the somewhat
complicated second item of step 2.

The most expensive operation in isogeny-based crypto is by far the computation of
large degree isogenies. At first glance, it seems that the above protocol requires only
five such operations. However, as explained above, choosing the random supersingular
curves E0 and E1 requires the computations of two additional large degree isogenies,
for a total of seven operations. This is slightly more than with our first protocol,
which only requires six isogeny computations.

5 Security analysis

5.1 Malicious Alice

Contrarily to the group-based setting, our SIDH-based protocols do not provide per-
fect secrecy for Bob’s secret bit k. In both protocols, Alice has access to Bob’s answer
E′B , φ′B(Uk), φ′B(Vk), and she knows that E′B is 3m-isogenous to one of the curves
EA,0, EA,1; recovering Bob’s secret k amounts to finding to which curve E′B is isoge-
nous. This is the Decisional Supersingular Isogeny (DSSI) problem of [13]: given two
supersingular elliptic curves defined over Fp2 , determine if they are 3m-isogenous. A
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simple cardinality argument shows that it is very unlikely that E′B is 3m-isogenous to
both EA,0 and EA,1 (there are ≈ p/12 supersingular curves defined over Fp2 , while
the number of 3m-isogenies from E′B is of the order of 3m ≤ √p). So a brute-force
approach can, in theory, succeed in finding k; nevertheless this problem is expected
to be computationally intractable.

However Alice has more information than just E′B : she knows φ′B(Uk) and φ′B(Vk),
the images by Bob’s isogeny of the basis points Uk, Vk. In particular, she can compute
the Weil pairings of φ′B(Uk) with φ′B(Vk), U0 with V0, and U1 with V1. Because of the
property of the Weil pairing, it holds that

w(φ′B(Uk), φ′B(Vk)) = w(Uk, Vk)deg φ
′
B = w(Uk, Vk)3

m

.

Thus if w(U0, V0) 6= w(U1, V1), Alice can find which one is equal to
w(φ′B(Uk), φ′B(Vk)) when put to the 3m-th power, and determine Bob’s secret k.

For this reason, such values of U0, V0 and U1, V1 have been avoided in our protocols
(one cannot simply choose w(Ui, Vi) = 1 since in that case (Ui, Vi) do not form a basis
of EA,i[2

n]). In the first protocol of Sect. 4.2, we tasked Bob with the responsability
of choosing Ui, Vi, see second item of step 3. It is not possible to do that in the second
protocol of Sect. 4.3, because the points φA,0(T0) and φA,1(T1), which are known only
to Alice, must have the same coordinates in bases (U0, V0) and (U1, V1) respectively.
Consequently, Bob must imperatively check that the points sent by Alice have the
same Weil pairing, and are indeed bases of EA,0[2n], resp. EA,1[2n].

With this extra condition, we see that our protocol requires the following extension
of the DSSI problem to be computationally hard:

Extended decisional supersingular isogeny problem (XDSSI):
Given two supersingular elliptic curves E and E′ defined over Fp2 , together with
points U, V , U ′, V ′ such that 〈U, V 〉 = E[2n], 〈U ′, V ′〉 = E′[2n], and w(U, V )3

m

=
w(U ′, V ′), determine if there exists an isogeny φ : E → E′ of degree 3m such that
φ(U) = U ′ and φ(V ) = V ′.

It turns out that in our setting, the computational and decisional problems CSSI
and XDSSI are basically equivalent, see [36]. Consequently, as long as the CSSI prob-
lem remains hard5, with suitable parameters our constructions are secure with respect
to Bob’s choice.

As a final note, the above analysis actually holds for an honest-but-curious Al-
ice. Conceivably, a malicious Alice could transmit Bob a pair of supersingular elliptic
curves and basis points of her choice, that could help her discover Bob’s secret. More
precisely, she could send any pair of curves, although Bob can easily check that the
curves he receives are indeed supersingular, and that (in our first protocol) the ac-
companying points form a basis of the 3m-torsion satisfying w(φA,i(P ), φA,i(Q)) =
w(P,Q)2

n

. However, it is expected that the (extended) decisional supersingular isogeny
problem is hard for any starting curve E, and thus a malicious Alice has no advantage
over an honest-but-curious one.

5 i.e. as long as isogeny-based crypto remains relevant.
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5.2 Malicious Bob

Most of what has been said in Sect. 2.5 about the security of the oblivious transfer
schemes in the group-based setting can be transposed to the supersingular isogeny
setting; in particular, we can differentiate between the random oracle model and the
IND-CPA property. The difference is in the formulation of the security assumptions
– besides the obvious fact that they have been much less studied than their group
counterparts.

More precisely, in the random oracle model the security of our first protocol relies
on the hardness of the following problem:

2-inverse computational supersingular isogeny problem
(2-inv-CSSIP):

Let E,E0, E1 be three supersingular elliptic curves defined over Fp2 such that
E0 and E1 are 2n-isogenous to E, and φ0 : E → E0, φ1 : E → E1 be the
corresponding isogenies. Let (P,Q) be a basis of E[3m] and for each i = 0, 1,
let (Ui, Vi) be a basis of Ei[2

n] and (xi, yi) be the coordinates in this basis of a

generator of the dual isogeny φ̂i.
Given E,E0, E1 and the points P,Q,U0, V0, U1, V1, φ0(P ), φ0(Q), φ1(P ),

φ1(Q), find three supersingular elliptic curves E′, F0, F1 and a basis (U ′, V ′) of
E′[2n] such that F0 ' E′/〈x0U ′ + y0V

′〉 and F1 ' E′/〈x1U ′ + y1V
′〉.

If one can solve the Computational Supersingular Isogeny Problem (CSSI, see
Sect. 3), i.e. generators of kerφ0 and kerφ1 can be efficiently computed, then it is easy
to obtain values for x0, y0, x1, y1 and solve the above problem. However, in contrast
with 2-inv-CDHP, there is no obvious reduction to the SSCDH problem (Sect. 3); this
is because E,E0, E1 and the associated points do not form a SIDH triple (this would
need one of E0 and E1 to be 3m-isogenous to E instead of 2n-isogenous).

Actually, it seems difficult to solve 2-inv-CSSIP without computing x0, y0, x1, y1,
that is, solving the CSSI problem. It would require to find a curve E′ and points
U ′, V ′ such that U ′, resp. V ′, is related to both U0 and U1, resp. V0 and V1. This
is possible for either U0 and V0 or U1 and V1, and it is precisely how the oblivious
transfer protocol works, but we expect this to be computationally infeasible for both,
even on a quantum computer. The only other way is to cheat and submit points U ′, V ′

that do not form a basis of E′[2n], thus limiting the possible values of xiU
′+ yiV

′. In
our protocol, Alice can easily detect if Bob does that and abort the communication if
necessary; in any case she should always perform this safety check (in step 4) before
going any further.

If we only assume that the encryption scheme Enc combined with KDF is IND-CPA,
then the decisional version of 2-inv-CSSIP must be computationally hard.

2-inverse decisional supersingular isogeny problem (2-inv-DSSIP):
With the notations of 2-inv-CSSIP, given E,E0, E1, the points P,Q, U0, V0,
U1, V1, φ0(P ), φ0(Q), φ1(P ), φ1(Q):
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– Bob sends the challenge oracle a supersingular elliptic curve E′ and a basis
(U ′, V ′) of E′[2n];

– the oracle computes the supersingular curves F0 ' E′/〈x0U ′ + y0V
′〉, F1 '

E′/〈x1U ′ + y1V
′〉, F ′0 ' E′/〈W0〉 and F ′1 ' E′/〈W1〉 where W0 and W1 are

uniformly random points of E′ of order 2n;
– the oracle chooses randomly, uniformly and independently two bits b0, b1.

Then it outputs two couples (C0, C
′
0) and (C1, C

′
1) of supersingular curves

such that

(C0, C
′
0) =

{
(F0, F

′
0) if b0 = 0

(F ′0, F0) if b0 = 1
and (C1, C

′
1) =

{
(F1, F

′
1) if b1 = 0

(F ′1, F1) if b1 = 1

– Bob must answer whether b0 = b1 or b0 6= b1.

Bob’s advantage in this game is defined as P (correct answer)− 1/2.
Then 2-inv-DSSIP is hard if no algorithm can achieve a non-negligible advantage
for Bob in probabilistic polynomial time.

This problem is of course easier than its computational version. But apart from
that, there is no visible reduction to the SSDDH problem, nor even to the DSSI
problem, and we expect it to be as difficult as 2-inv-CSSIP. Of course, Theorem 2 and
its proof can be straightforwardly adapted.

Looking now at the supersingular isogeny version of Wu-Zhang-Wang protocol,
we can see that its security relies on the hardness of the analog of the one-more
exponentiation problem.

One-more isogeny computational problem (1MICP)
Let E0 and E1 be two supersingular elliptic curves defined over Fp2 . Let (U0, V0),
resp. (U1, V1), be a basis of E0[2n], resp. E1[2n]. Finally, let a be a random element
of Z/2nZ.

– Bob submits a supersingular elliptic curve of his choice E′, together with a
basis (U ′, V ′) of E′[2n] and a basis (P ′, Q′) of E′[3m] to an oracle;

– the oracle outputs E′′ ' E′/〈U ′ + aV ′〉, as well as the points φ′(P ′), φ′(Q′),
where φ′ is the isogeny E′ → E′′;

– then Bob must produce E0/〈U0 + aV0〉 and E1/〈U1 + aV1〉.

As with 2-inv-CSSIP, there is a clear reduction from this problem to the CSSI
problem, but no obvious reduction to the SSCDH problem. Interestingly, in this su-
persingular isogeny setting the decisional version of this problem is not easy, as was
the casein the group setting (we do not give its full definition, but it follows the same
distinguishability game as 2-inv-DSSIP). Indeed, because of the lack of a group law,
it is difficult for Bob to submit an elliptic curve E′ that is related to both E0 and E1.
Actually, if Bob can find such a curve E′ isogenous both to E0 and E1, then he can

25



find an isogeny between E0 and E1; but this is supposed to be a quantum-hard prob-
lem. Consequently, and under reasonable hardness assumptions, the supersingular
isogeny version of Wu-Zhang-Wang protocol can offer a semantically secure oblivious
transfer if coupled with an IND-CPA encryption scheme; this was not the case for the
group-based protocol.

6 Conclusion

We have studied in this article two Diffie-Hellman based oblivious transfer protocols:
a rewriting of the 2003 scheme of Wu, Zhang and Wang, and an entirely new one.
Besides their simplicity, their main advantages are that they can be instantiated on
fast Kummer surfaces, and that they give rise to post-quantum, supersingular isogeny
based protocols. To the best of our knowledge, these are the only existing OT protocols
with these features.

Our analysis introduces a new definition of semantic security for OT schemes,
as well as several non-standard versions of the (SI)DH problem. We believe these
problems to be intractable in general, and have given evidences in that direction; but
obviously, further investigation by the cryptographic community is needed.

As importantly, we hope to have demonstrated the importance of being exponen-
tiation-only for discrete-log based schemes. Finding such a simple DLP-based signa-
ture protocol is an open problem; this would provide a practical signature protocol
for isogeny-based cryptography, which is currently lacking.
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A Hardness of 2-inv-CDHP in the generic group model

We follow the notations of [23], to which we refer for more details. Let G be a group of
prime order p and g, gx0 , gx1 three distinct group elements, different from e = g0. The
goal of an attacker on the 2-inv-CDHP problem is to find three non-neutral elements
Y = gy0 , Z = gy1 , X = gy2 such that Y x0 = Zx1 = X; this corresponds to the
modular equations

y2 = x0y0 = x1y1 mod p, y2 6= 0 mod p.

We observe that a uniformly random triplet (y0, y1, y2) ∈ Z/pZ satisfies these condi-
tions with probability p−1

p3 ≤ p
−2.

In the generic group model, the attacker starts with the sole knowledge of the group
order and of (r0, r1, r2, r3) = (σ(g0), σ(g), σ(gx0), σ(gx1)), and his goal is to produce
rX , rY , rZ ∈ I \ {r0} such that (σ−1(rY ))x0 = (σ−1(rZ))x0 = σ−1(rX). Any query to
the generic group oracle necessarily involves either previously unseen elements of I or
previously obtained values. Each time a previously unseen element rj of I is introduced
as input to the oracle, we note xj = log[g](σ

−1(rj)), where the index j means that it
is the (j−3)-th such introduced element. Any output of the oracle is thus of the form
σ(gF (x0,x1,x2,... )) where F is an affine polynomial in (Z/pZ)[X0, X1, X2, . . . ], known
to the attacker. We assume that the last three queries to the oracle are the attacker’s
answers, i.e. are (1, rX , 0, ), (1, rY , 0, ), and (1, rZ , 0, ).
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Let F0 = 0, F1 = 1, F2 = X0, F3 = X1. After qG oracle queries, the attacker knows
the representation of n group elements of the form gFk(x0,x1,x2,... ) for a number n of
distinct affine polynomials in variablesX0, X1, . . . , XN , whereN is bounded by 2qG+2
(at most two new variables for each query). This family of polynomials corresponds
to the oracle outputs, but also includes the polynomials X2, . . . , XN corresponding to
the introduced elements r2, . . . , rN ; thus an upper bound on n is 3qG + 4. Since there
are no affine polynomials over Z/pZ solutions to the equations

P2 = X0P0 = X1P1 6= 0,

if all the values (Fk(x0, . . . , xN )), 0 ≤ k < n, are distinct, then the probability of
success is equal to (p − 1)/p3. And the probability, for (x0, . . . , xN ) uniformly dis-
tributed in the set of tuples of (Z/pZ)N without repetition, that all the values
(Fk(x0, . . . , xN ))0≤k≤n are distinct is itself bounded below by 1 − n2/2p, hence the
result of Theorem 1.

B Proof of Theorem 2

We recall that our goal here is to prove that the OT protocol of Sect. 2.3 is semantically
secure if the 2-inverse decisional Diffie-Hellman problem (2-inv-DDHP) is hard and the
encryption scheme is IND-CPA. To this end, we will construct a reduction between
the two problems under the IND-CPA assumption. More precisely, we consider a
participant, Charlie, who has access to a black box machine that can play the oblivious
transfer indistinguishability game of Sect. 2.5 with a non-negligible advantage, and
we will show that Charlie then has a non-negligible advantage in solving 2-inv-DDHP.

Charlie can play the 2-inv-DDHP challenge as specified in Fig. 11, using the chal-
lenge data to carry out the OT indistinguishability game with the black box. In
particular, he uses Y and Z, given by the challenge oracle, to encrypt the messages
s0 and s1. If Y 6= Xα−1

or Z 6= Xβ−1

(which happens with probability 1/2 for each),
then S0 and S1 form invalid data for the indistinguishability game. The black box’s
behavior is unspecified in this case, but we will assume that it always does its best to
guess if b0 = b1 or not, even if it detects invalid inputs6. There are thus two cases to
analyze:

– Case 1: Y = Xα−1

and Z = Xβ−1

. Then Charlie answers correctly if and only if
the black box’s guess is correct. Since the encryptions S0 and S1 are valid data,
the black box has a non-negligible advantage, that we will denote by a; this is
also Charlie’s advantage in this case.

– Case 2: Y 6= Xα−1

or Z 6= Xβ−1

. Then s0 and/or s1 are encrypted with uniformly
random keys. Because the encryption scheme is IND-CPA, the black box can only
learn negligible information on b0 and/or b1 (it is possible, however, that the black
box detects the invalidity of S0 or S1). And since the encryption keys Y and Z
are unrelated, the difference between 1/2 and the probability that the black box
outputs a correct answer is negligible. This in turn implies that the probability
that Charlie’s answer is correct is of the form 1/2 + ε, where ε is a negligible
function.

6 Alternatively, it could signal detected invalid inputs to the user; this increases Charlie’s
advantage, but complicates the analysis.
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Overall, Charlie answers correctly with probability

1

4
(
1

2
+ a) +

3

4
(
1

2
+ ε) =

1

2
+

1

4
a+

3

4
ε.

His advantage in solving 2-inv-DDHP is thus non-negligible.
This ends the proof that under the IND-CPA assumption, hardness of 2-inv-DDHP

implies the semantic security of our proposed oblivious transfer scheme.
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Challenge Oracle Charlie Black Box

initial challenge data initial message choices

chooses bits b′0, b
′
1 and sets

s0 =

{
m0 if b′0 = 0

m′0 if b′0 = 1

s1 =

{
m1 if b′1 = 0

m′1 if b′1 = 1

then initiates OT protocol
with black box

transmits black box’s an-
swer to oracle

generates 2-inv-DDHP challenge :

(Y, Y ′) =

{
(Xα−1

, R0) if b0 = 0

(R0, X
α−1

) if b0 = 1

(Z,Z′) =

{
(Xβ−1

, R1) if b1 = 0

(R1, X
β−1

) if b1 = 1

computes
S0 = Enc(s0, KDF(Y ))
S1 = Enc(s1, KDF(Z))

answers whether b′0 = b′1 or
b′0 6= b′1

answers b0 = b1 if black
box’s guess is correct,
b0 6= b1 otherwise

(m0,m
′
0)

(m1,m
′
1)

gα, gβ

A0 = gα, A1 = gβ

B′

X = B′

(Y, Y ′)

(Z,Z′)

(S0, S1)

b′0 = b′1?

Fig. 11. Communications between the 2-inv-DDHP challenge oracle and the indistinguisha-
bility game’s black box.
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